WO2019155999A1 - 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体 - Google Patents

近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体 Download PDF

Info

Publication number
WO2019155999A1
WO2019155999A1 PCT/JP2019/003656 JP2019003656W WO2019155999A1 WO 2019155999 A1 WO2019155999 A1 WO 2019155999A1 JP 2019003656 W JP2019003656 W JP 2019003656W WO 2019155999 A1 WO2019155999 A1 WO 2019155999A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
infrared absorbing
absorbing material
fine particles
particle dispersion
Prior art date
Application number
PCT/JP2019/003656
Other languages
English (en)
French (fr)
Inventor
中山 博貴
小林 宏
健二 福田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP19750968.0A priority Critical patent/EP3761082A4/en
Priority to CN201980012355.3A priority patent/CN111699421B/zh
Priority to JP2019570722A priority patent/JP7259769B2/ja
Priority to KR1020207023247A priority patent/KR102575326B1/ko
Priority to US16/968,714 priority patent/US20210070961A1/en
Publication of WO2019155999A1 publication Critical patent/WO2019155999A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Definitions

  • the present invention provides a near-infrared absorbing material fine particle dispersion, a near-infrared absorber, a near-infrared absorber laminate, and a near-infrared-absorbing laminated structure that are transparent in the visible light region and absorbable in the near-infrared region.
  • a near-infrared absorbing material fine particle dispersion a near-infrared absorber, a near-infrared absorber laminate, and a near-infrared-absorbing laminated structure that are transparent in the visible light region and absorbable in the near-infrared region.
  • a material containing free electrons exhibits a reflection absorption response due to plasma vibration with respect to an electromagnetic wave having a wavelength of 200 nm to 2600 nm around the region of sunlight. If the powder particles constituting the material are fine particles having a diameter smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) of the material is reduced, and transparency of the visible light region is increased. It is known to be obtained.
  • “transparency” is used to mean that the visible light has little scattering and the visible light transmission is high.
  • Patent Document 1 the applicant does not need a large manufacturing facility for film formation on the substrate, and transmits visible light while efficiently eliminating high-temperature heat treatment after film formation, and efficiently blocks near infrared rays.
  • An infrared shielding material fine particle dispersion in which tungsten oxide fine particles and / or composite tungsten oxide fine particles having a particle diameter of 1 nm to 800 nm are dispersed in a solid medium has been disclosed.
  • Patent Document 1 has found that the near-infrared absorbing material fine particles may aggregate in the solid medium and the transparency may be lowered. .
  • the present invention is superior in transparency to near-infrared fine particle dispersions, near-infrared absorbers, and near-infrared-absorbing laminated structures containing tungsten oxide and composite tungsten oxide according to the prior art.
  • An object of the present invention is to provide a near-infrared absorbing material fine particle dispersion, a near-infrared absorber, and a near-infrared absorbing laminated structure that can exhibit high near-infrared absorptivity while ensuring the above.
  • the present inventors conducted research. And, from the viewpoint of suppressing the aggregation of near-infrared absorbing material fine particles in the acrylic resin, the acrylic resin is equivalent to or better than glass and has excellent transparency, weather resistance, chemical resistance, and optical properties.
  • the near-infrared absorbing material fine particle dispersion in which the composite tungsten oxide fine particles and the silane compound are contained in the acrylic resin, and the near-infrared absorbing material fine particle dispersion using the near-infrared absorbing material fine particle dispersion are used.
  • the present invention has been completed by conceiving the configurations of an infrared absorber, a near infrared absorber laminate, and a near infrared absorbing laminated structure.
  • the first invention for solving the above-described problem is A near-infrared absorbing material fine particle dispersion characterized in that composite tungsten oxide fine particles and a silane compound are contained in an acrylic resin.
  • the second invention is The near-infrared absorbing material fine particle dispersion according to the first invention, wherein the silane compound is at least one selected from a silane coupling agent, an alkoxysilane compound, and a silicone resin.
  • the third invention is The silane compound has one or more functional groups selected from an amino group, an epoxy group, a mercapto group, a (meth) acryl group, a vinyl group, a phenyl group, an isocyanate group, and an imidazole group.
  • the fourth invention is: The near-infrared absorption according to the second invention, wherein the monomer unit constituting the silicone resin is represented by R—SiO 1.6 (wherein R is a hydrogen atom or an organic group). It is a fine particle dispersion.
  • the fifth invention is: The near-infrared absorbing material fine particle dispersion according to the second or fourth invention, wherein the silicone resin has a weight average molecular weight of 1500 or more and 200,000 or less.
  • the sixth invention is: The near-infrared absorbing material fine particle dispersion according to any one of the first to fifth inventions, wherein the composite tungsten oxide fine particles have a dispersed particle diameter of 1 nm to 200 nm.
  • the seventh invention The composite tungsten oxide fine particles have the general formula MxWyOz (where the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir).
  • the near-infrared absorbing material fine particle dispersion according to any one of the first to sixth inventions.
  • the eighth invention The near-infrared absorbing material fine particle dispersion according to the seventh invention, wherein the M element is one or more elements selected from Cs and Rb.
  • the ninth invention The near-infrared absorbing material fine particle dispersion according to any one of the first to eighth aspects, wherein the composite tungsten oxide fine particles include composite tungsten oxide fine particles having a hexagonal crystal structure.
  • the tenth invention is Any of the first to ninth inventions, wherein the surface of the near-infrared absorbing material fine particles is coated with an oxide containing one or more elements selected from Si, Ti, Zr, and Al. A near-infrared absorbing material fine particle dispersion as described above.
  • the eleventh invention is The near-infrared absorbing material fine particle dispersion according to any one of the first to tenth inventions is molded into any one selected from a plate shape, a film shape, and a thin film shape. Absorber.
  • the twelfth invention A near-infrared absorber laminate, wherein the near-infrared absorber according to the eleventh invention is laminated on a substrate.
  • the thirteenth invention The near-infrared absorber according to the eleventh invention is present between two or more laminated plates selected from a plate glass, a plastic plate, and a plastic plate containing fine particles having a near-infrared absorbing function. This is a laminated structure for absorbing near infrared rays.
  • the fourteenth invention is
  • the near-infrared absorber laminate according to the twelfth invention is opposed to a laminated plate selected from a plate glass, a plastic plate, and a plastic plate containing fine particles having a near-infrared absorbing function, or a plate glass, a plastic plate, A near-infrared absorbing laminated structure which exists between two or more laminated plates selected from plastic plates containing fine particles having a near-infrared absorbing function.
  • the near-infrared absorbing material fine particle dispersion according to the present invention is compared with the near-infrared absorbing material fine particle dispersion, near-infrared absorber, near-infrared absorber laminate, and near-infrared absorbing laminated structure according to the prior art, Provided are a near-infrared absorbing material fine particle dispersion, a near-infrared absorber, a near-infrared absorber laminate, and a near-infrared absorbing laminated structure that can exhibit near-infrared absorption while ensuring transparency and have excellent optical properties. I can do it.
  • the near-infrared absorbing material fine particle dispersion according to the present invention includes a composite tungsten oxide fine particle and a silane compound in an acrylic resin.
  • the composite tungsten oxide fine particles subjected to mechanical pulverization according to predetermined conditions maintain a dispersed state in the acrylic resin containing the silane compound. It is what.
  • the near-infrared-absorbing material fine particle dispersion according to the present invention having the above configuration is provided with a near-infrared absorber having a shape such as a film or a thin film on a base material having a low heat-resistant temperature such as a resin material. Applications such as obtaining an absorbent laminate are possible. Furthermore, there is an advantage that the manufacturing apparatus is inexpensive because a large-sized apparatus is not required when manufacturing or forming the near-infrared absorber or the near-infrared absorber laminate.
  • the near-infrared absorbing material according to the present invention is a conductive material. However, since it is dispersed in the acrylic resin matrix as fine particles, each particle is dispersed in an isolated state. For this reason, the near-infrared absorbing material according to the present invention exhibits radio wave permeability and is versatile as various window materials.
  • the near-infrared absorber which concerns on this invention is formed in the shape in which the near-infrared absorptive material fine particle dispersion which concerns on this invention is selected in any shape selected from plate shape, film shape, and thin film shape.
  • the near-infrared absorber laminated body which concerns on this invention is a near-infrared material fine particle absorber laminated
  • the near-infrared absorbing laminated structure according to the present invention includes the near-infrared absorbing material fine particle dispersion according to the present invention in the form of a near-infrared absorber, and includes flat glass, a plastic plate, and fine particles having a solar radiation absorbing function.
  • a laminate present between two or more laminated plates selected from plastic plates, and a laminated plate selected from a near-infrared absorber laminate and plate glass, a plastic plate, and a plastic plate containing fine particles having a solar radiation absorbing function Is a combination.
  • Acrylic resin As an acrylic resin that is a solid medium according to the present invention, an acrylic ester having an alkyl group having 1 to 8 carbon atoms as the main raw material, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, if necessary, Examples thereof include polymers or copolymers using vinyl acetate, styrene, acrylic, nitrile, methacrylonitrile, or the like as a copolymerization component. Furthermore, an acrylic resin polymerized in multiple stages can also be used.
  • Silane compound The silane compound according to the present invention promotes the deagglomeration of the near-infrared absorbing material fine particles by mixing and melting and kneading the near-infrared absorbing material fine particles described later and the acrylic resin at the same time, The effect of ensuring the dispersion state of the near-infrared absorbing material fine particles in the acrylic resin is exhibited.
  • the near-infrared absorbing material fine particles described later, the silane compound, and the acrylic resin as the solid medium described above are uniformly mixed, and then melt-kneaded to obtain a near-infrared absorbing material fine particle dispersion.
  • the near-infrared absorbing material fine particle dispersion is molded to obtain a near-infrared absorber.
  • the addition amount of the silane compound is preferably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the near-infrared absorbing material fine particles. This is preferable from the viewpoint of obtaining the addition effect of the silane compound if the addition amount of the silane compound is 1 part by mass or more with respect to 100 parts by mass of the near-infrared absorbing material fine particles, and if it is 200 parts by mass or less, the silane compound is added. This is because it is preferable from the viewpoint of easy melt-kneading into an acrylic resin.
  • silane compound those having one or more functional groups selected from an amino group, an epoxy group, a mercapto group, a (meth) acryl group, a vinyl group, a phenyl group, an isocyanate group, and an imidazole group are preferable.
  • a silane compound it is preferable that it is 1 or more types selected from a silicone resin, a silane coupling agent, and an alkoxysilane compound.
  • the silane compound preferably used in the present invention will be described in the order of (1) silicone resin, (2) silane coupling agent, and (3) alkoxysilane compound.
  • the monomer unit constituting the silicone resin is represented by the general formula: R—SiO 1.6 (wherein R is a hydrogen atom or an organic group). It is preferable that The organic group is a hydrocarbon group represented by the general formula: —C n H m . Moreover, it is preferable that the weight average molecular weights of the said silicone resin are 1500-200000. When the weight average molecular weight of the silicone resin is 1500 or more, the near-infrared absorbing material fine particles can be sufficiently dispersed. On the other hand, when the weight average molecular weight is 200,000 or less, it can be easily contained in the acrylic resin.
  • silicone resin used in the present invention is a commercially available product, KR-480 (manufactured by Shin-Etsu Silicone), Z-6018, 220FLAK, FCA-107, 233FLAKE, 249FLAKE, SH6018FLAKE, 255FLAKE, 217FLAKE (above, manufactured by Toray Dow Corning), SILRES 603, SILRES 604, SILRES 605, SILRES H44, SILRES SY300, SILRES REN100, SILRES SY430, SILRES IC836 (manufactured by Asahi Kasei Wacker Silicone), TSR160 (manufactured by Momentive) and the like are preferable.
  • silane coupling agent used in the present invention is a commercial product, KBM-30, KBM-402, KBM-403, KBE-402, KBE-403, KBM-1043, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103P, KBM-573, KBM-575 (manufactured by Shin-Etsu Silicone) Etc. are preferred.
  • alkoxysilane compound used in the present invention includes, as specific examples of the alkoxysilane compound, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, trimethoxysilane, triethoxy Silane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane, isobutyl Triethoxysilane, sec-butyltriisopropoxysilane, tert-butyltrimethoxysilane, tert-butyltriethoxysilane, n
  • the alkoxysilane compounds used in the present invention are commercially available products such as KBM-13, KBM-22, KBM-103, KBE-13, KBE-22, KBE-103, KBM-3033, KBE-3033, KBM-3063, KBE-3063, KBE-3083, KBM-3103C, KBM-3066, KBM-7103 (Shin-Etsu Silicone), Z-2306, Z-6210, Z-6265, Z-6341, Z-6366, Z-6383 Z-6582, Z-6583, Z-6586, Z-6125 (above, manufactured by Toray Dow Corning) and the like are preferable.
  • composite tungsten oxide fine particles used in the near-infrared absorbing material fine particle dispersion according to the present invention have a general formula MxWyOz (where M element is H, He, alkali metal, alkaline earth metal, rare earth). Element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, One or more elements selected from Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I.
  • MxWyOz where M element is H, He, alkali metal, alkaline earth metal, rare earth.
  • W is tungsten
  • O oxygen
  • tungsten trioxide WO 3
  • the composite tungsten oxide is obtained by adding M element to the tungsten oxide.
  • free electrons are generated in the composite tungsten oxide, the free electron-derived absorption characteristics are expressed in the near-infrared region, and it is effective as a near-infrared absorbing material having a wavelength of around 1000 nm.
  • the near-infrared absorbing material fine particle dispersion according to the present invention contains the composite tungsten oxide as the infrared absorbing material fine particles, and the composite tungsten oxide absorbs near-infrared light and converts it into heat.
  • the near-infrared absorbing material fine particles according to the present invention preferably include composite tungsten oxide fine particles having a hexagonal crystal structure.
  • a more efficient near-infrared absorbing material can be obtained by using the composite tungsten oxide in combination with the above-described control of the amount of oxygen and addition of an element that generates free electrons.
  • the general formula of a near-infrared absorbing material that combines the control of the amount of oxygen and the addition of an M element that generates free electrons is expressed as MxWyOz (where M is the M element, W is tungsten, and O is oxygen. )
  • MxWyOz where M is the M element, W is tungsten, and O is oxygen.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe. Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S More preferably, the element is one or more elements selected from Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I.
  • the M element is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, More preferably, the element is at least one element selected from Nb, V, Mo, Ta, and Re.
  • the M element belongs to an alkali metal, an alkaline earth metal element, a transition metal element, a group 4B element, and a group 5B element. It is further preferable that
  • the M element Cs and Rb are most preferable.
  • the M element is not limited to the above Cs and Rb. Even if the M element is an element other than Cs or Rb, it may be present as an added M element in a hexagonal void formed by WO 6 units.
  • the present inventors have studied in consideration of further improving the near-infrared absorption function of the composite tungsten oxide fine particles, and have come up with a configuration in which the amount of free electrons contained is further increased. That is, as a measure for increasing the amount of free electrons, the inventors have conceived that a mechanical treatment is applied to the composite tungsten oxide fine particles to impart appropriate strain and deformation to the contained hexagonal crystals. In the hexagonal crystal given the appropriate strain and deformation, it is considered that the overlapping state of electron orbits in the atoms constituting the crystallite structure changes and the amount of free electrons increases.
  • the composite tungsten oxide fine particles are distorted into a crystal structure by pulverization under predetermined conditions.
  • the near-infrared absorbing material fine particles according to the present invention preferably have a particle diameter of 1 nm or more and 200 nm or less, but more preferably 100 nm or less.
  • the particle size is preferably 10 nm to 100 nm, more preferably 10 nm to 80 nm, still more preferably 10 nm to 60 nm, and most preferably 10 nm or more. 40 nm or less. It was found that the most excellent infrared absorption characteristics are exhibited when the particle diameter is in the range of 10 nm to 40 nm.
  • the particle diameter is the diameter of the individual near-infrared absorbing material fine particles that are not aggregated, that is, the average value of the primary particle diameter, and the near-infrared absorbing material fine particles contained in the near-infrared absorbing material fine particle dispersion described later.
  • the average particle diameter does not include the diameter of the aggregate of the composite tungsten oxide fine particles, and is different from the dispersed particle diameter.
  • the average particle diameter is calculated from an electron microscopic image of the near-infrared absorbing material fine particles.
  • the average particle diameter of the composite tungsten oxide fine particles contained in the infrared-absorbing material fine particle dispersion is 100 composite tungsten oxide fine particles from the transmission electron microscope image of the thinned sample of the composite tungsten oxide fine particles taken out by cross-section processing.
  • the primary particle diameter can be measured using an image processing apparatus, and the average value thereof can be calculated.
  • a microtome, a cross section polisher, a focused ion beam (FIB) apparatus, or the like can be used for cross-sectional processing for taking out the thinned sample.
  • FIB focused ion beam
  • the composite tungsten oxide fine particles are preferably single crystals. Confirm that the composite tungsten oxide fine particles are single crystals because no crystal grain boundaries are observed inside the fine particles and only uniform lattice fringes are observed in the electron microscope image obtained by a transmission electron microscope or the like. I can do it.
  • the volume ratio of the amorphous phase in the composite tungsten oxide fine particles is 50% or less.
  • the volume ratio of the amorphous phase can be confirmed by observing the ratio of the region in which the uniform lattice fringes are observed and the region in which the lattice fringes are unclear.
  • the volume ratio of the amorphous phase can often be calculated by paying attention to the outer peripheral portion of each fine particle.
  • the composite tungsten oxide has a thickness of 10% or less of the particle diameter.
  • the volume ratio of the amorphous phase in the fine particles is 50% or less.
  • the near-infrared absorbing material fine particle dispersion containing the composite tungsten oxide fine particles according to the present invention greatly absorbs light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, so that the transmission color tone changes from blue to green. There are many.
  • Near-infrared absorbing material fine particle dispersion and its manufacturing method needs to consider the aggregation of the near-infrared absorbing material fine particles. It is necessary to consider in.
  • the dispersed particle size of the near-infrared absorbing material fine particles can be selected depending on the purpose of use.
  • the above-mentioned dispersed particle size of the near-infrared absorbing material fine particles is a concept including the diameter of the aggregate of the composite tungsten oxide fine particles, and is a concept different from the above-described particle size of the near-infrared absorbing material according to the present invention. is there.
  • dispersed particle size 800 nm or less. This is because particles having a dispersed particle diameter smaller than 800 nm do not completely block light by scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. . In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles.
  • the dispersed particle diameter is preferably 200 nm or less, more preferably 10 nm or more and 200 nm or less, and further preferably 10 nm or more and 100 nm or less.
  • the dispersed particle size is small, it can be avoided that the infrared absorbing film becomes like frosted glass due to geometric scattering or Mie scattering, and clear transparency cannot be obtained. That is, when the dispersed particle diameter is 200 nm or less, the above-described geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained.
  • the scattered light is proportional to the six strips of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased. Furthermore, when the dispersed particle diameter is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 10 nm or more, industrial production is easy.
  • the haze value of the near-infrared absorbing material fine particle dispersion in which the near-infrared absorbing material fine particles are dispersed in the medium is set to 10% or less when the visible light transmittance is 85% or less. I can do it.
  • the haze can be set to 1% or less.
  • the dispersed particle size of the near-infrared absorbing fine particles according to the present invention is preferably 800 nm or less. This is because the near-infrared absorption of the composite tungsten oxide, which is a near-infrared-absorbing fine particle, is based on light absorption and scattering unique to nanoparticles called “localized surface plasmon resonance”. That is, when the dispersed particle diameter of the composite tungsten oxide is 800 nm or less, localized surface plasmon resonance occurs, and the near-infrared absorbing fine particles efficiently emit near-infrared rays irradiated to the near-infrared absorbing material fine particle dispersion according to the present invention. Easily absorbed and converted to thermal energy.
  • the dispersed particle diameter is 200 nm or less, the localized surface plasmon resonance is further enhanced, and the irradiated near infrared rays are absorbed more strongly, which is more preferable. Moreover, if the dispersed particle diameter of the near-infrared absorbing fine particles according to the present invention is 200 nm or less, the near-infrared absorbing characteristics and transparency can be maintained.
  • near-infrared absorbers produced by dispersing the fine particles in a suitable solid medium or on the surface of a solid medium are used for vacuum formation such as sputtering, vapor deposition, ion plating, and chemical vapor deposition (CVD).
  • vacuum formation such as sputtering, vapor deposition, ion plating, and chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • films made by dry methods such as film methods and films made by CVD methods and spray methods, it absorbs sunlight rays, especially light in the near infrared region more efficiently without using the buffering effect of light, At the same time, it has been found that light in the visible light region is transmitted.
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz according to the present invention includes a tungsten compound that is a starting material of tungsten oxide fine particles and a simple substance or a compound containing the M element. , 0.20 ⁇ x / y ⁇ 0.37, in a reducing gas atmosphere, a mixed gas atmosphere of reducing gas and inert gas, or in an inert gas atmosphere It can be produced by a solid phase reaction method in which heat treatment is performed.
  • the composite tungsten oxide fine particles obtained through the heat treatment and finely divided by pulverization or the like so as to have a predetermined particle diameter have sufficient near-infrared absorbing power and have preferable properties as near-infrared absorbing material fine particles. Have.
  • the tungsten compound as a starting material for obtaining the composite tungsten oxide fine particles represented by the general formula MxWyOz according to the present invention includes tungsten trioxide powder, tungsten dioxide powder, or a hydrate of tungsten oxide, or Tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and drying, or tungsten hexachloride dissolved in alcohol After that, any one selected from tungsten oxide hydrate powder obtained by adding water to precipitate and drying it, tungsten compound powder obtained by drying ammonium tungstate aqueous solution, or metal tungsten powder.
  • the above powder and the above A powder of elemental or compound containing an element can be used powder mixed at a ratio of 0.20 ⁇ x / y ⁇ 0.37.
  • the tungsten compound which is a starting material for obtaining the composite tungsten oxide fine particles is a solution or a dispersion
  • each element can be easily and uniformly mixed.
  • the starting material of the composite tungsten oxide fine particles may be a powder obtained by mixing an alcohol solution of tungsten hexachloride or an ammonium tungstate aqueous solution with a solution of the compound containing the M element and then drying. preferable.
  • the starting material of the composite tungsten oxide fine particles is a dispersion in which tungsten hexachloride is dissolved in alcohol and then water is added to form a precipitate, and a simple substance or compound containing the M element It is also preferable that the powder is a powder that is mixed with a solution of the compound containing the element M and dried.
  • Examples of the compound containing element M include, but are not limited to, element Tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, and the like. However, what is necessary is just to become a solution form. Further, when the composite tungsten oxide fine particles are produced industrially, if a tungsten oxide hydrate powder or tungsten trioxide and an M element carbonate or hydroxide are used, the heat treatment and the like can be performed. It is a preferable production method without generating harmful gas.
  • heat treatment conditions for obtaining a composite tungsten oxide using a mixture of a tungsten compound, which is a starting material for obtaining composite tungsten oxide fine particles, and a compound containing the M element will be described.
  • the mixture as a starting material is heat-treated in a reducing gas atmosphere, a mixed gas atmosphere of a reducing gas and an inert gas, or an inert gas atmosphere.
  • a powder obtained by mixing a tungsten compound starting material and a simple substance or compound containing M element, or a solution or dispersion of the tungsten compound starting material and the M element is preferable to heat-treat the powder obtained by mixing the compound-containing compound solution or dispersion followed by drying at 100 ° C. or higher and 850 ° C. or lower in a reducing gas atmosphere.
  • a heat treatment temperature of 100 ° C. or higher is preferable because the reduction reaction proceeds sufficiently.
  • restoration does not advance too much and it is preferable.
  • the reducing gas is not particularly limited, but H 2 is preferable. In the case H 2 is used as the reducing gas, H 2 of the composition of the reducing atmosphere is preferably in 0.1% or more by volume, more preferably 2% or more is good by volume. If 0.1% or more with H 2 volume ratio, can proceed efficiently reduced.
  • the particles obtained here are further heat-treated at a temperature of 550 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere in order to improve crystallinity or remove the adsorbed reducing gas. That is good.
  • the heat treatment conditions in the inert gas atmosphere are preferably 550 ° C. or higher.
  • the composite tungsten compound starting material heat-treated at 550 ° C. or higher exhibits sufficient conductivity.
  • an inert gas, such as Ar, N 2 is as the inert gas.
  • the following heat treatment conditions can be proposed for producing a composite tungsten oxide with good crystallinity.
  • the heat treatment conditions differ depending on the starting material and the type of the target compound, and thus are not limited to the following methods.
  • the heat treatment temperature is preferably higher, and the reduction temperature varies depending on the starting material and the H 2 temperature during reduction, but is preferably 600 ° C. to 850 ° C. Further, the heat treatment temperature in the subsequent inert atmosphere is preferably 700 ° C. to 1200 ° C.
  • the firing treatment time may be appropriately selected depending on the temperature, but may be 5 minutes or more and 5 hours or less.
  • the composite tungsten oxide particles thus obtained are put together with an appropriate solvent into equipment selected from, for example, a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, etc.
  • the particles can be made finer.
  • 2.2 ⁇ z / y ⁇ 3.0 is set in the composite tungsten oxide.
  • the method for producing the composite tungsten oxide is not limited to the solid phase reaction method. It can also be manufactured by a thermal plasma method by setting appropriate manufacturing conditions.
  • the manufacturing conditions to be set as appropriate include, for example, the supply speed when supplying the raw material into the thermal plasma, the flow rate of the carrier gas used for supplying the raw material, the flow rate of the plasma gas that holds the plasma region, and just outside the plasma region. For example, the flow rate of the sheath gas.
  • the heat treatment step for obtaining composite tungsten oxide or composite tungsten oxide particles as described above may be referred to as a first step according to the present invention.
  • the bulk and particles of the composite tungsten oxide obtained in the heat treatment step are subjected to a near-infrared absorbing material fine particle dispersion described later in “5. Near-infrared absorbing material fine particle dispersion and manufacturing method thereof”. Is preferred.
  • the mixture is wet-pulverized to advance the near-infrared absorbing material into fine particles, and the near-infrared absorbing material fine particles A dispersion is obtained.
  • the solvent may be removed by a known method.
  • the bulk of composite tungsten oxide and particles can be made fine by dry type using a jet mill or the like.
  • pulverization conditions fine particle formation conditions
  • a jet mill that provides an appropriate air volume and processing time for the pulverization condition may be selected.
  • the step of obtaining the near-infrared absorbing material fine particles according to the present invention by making the composite tungsten oxide or the composite tungsten oxide particles into fine particles as described above may be referred to as a second step according to the present invention.
  • the surface of the near-infrared absorbing material fine particles which are the composite tungsten oxide fine particles obtained in the second step, is coated with an oxide containing one or more kinds of metals selected from Si, Ti, Zr, and Al. This is preferable from the viewpoint of improving the weather resistance.
  • the coating method is not particularly limited, it is possible to coat the surface of the near-infrared absorbing material fine particles by adding the above-described metal alkoxide to the solution in which the near-infrared absorbing material fine particles are dispersed.
  • the near-infrared ray according to the present invention is obtained by mixing and dispersing the composite tungsten oxide fine particles obtained in the first step in an appropriate solvent.
  • the said solvent is not specifically limited, What is necessary is just to select suitably according to the said binder, when you want to contain application
  • alcohols such as water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc.
  • organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, ketones such as isobutyl ketone, and aromatic hydrocarbons such as toluene can be used.
  • the pH may be adjusted by adding acid or alkali to the dispersion.
  • a resin monomer or oligomer may be used as the solvent.
  • various dispersants, surfactants, coupling agents and the like can of course be added.
  • the said dispersing agent, surfactant, and coupling agent can be selected according to a use, it is preferable to have an amine containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group. These functional groups have an effect of adsorbing to the surface of the surface-treated infrared absorbing material fine particles to prevent aggregation and uniformly disperse.
  • a polymer dispersant having any of these functional groups in the molecule is more preferable.
  • Preferable specific examples of the commercially available dispersant include SOLPERSE (registered trademark) 3000, 9000, 11200, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, 24000SC, 24000GR, 26000, manufactured by Lubrizol.
  • EFKA Additives EFKA (registered trademark) -4008, 4046, 4047, 4015, 4020, 4050, 4055, 4060, 4080, 4300, 4330, 4400, 4401, 4402, 4403, 4500, 4510, 4530, 4550, 4560, 4585, 4800, 5220, 6230, JONCRYL (registered trademark) -67, 678, 586, 611, 680, 682, 690, 819, JDX5050, etc.
  • EFKA registered trademark
  • the solvent is included in an amount of 80 parts by weight or more with respect to 100 parts by weight of the near-infrared absorbing material fine particles, the preservability as the dispersion is easily secured, and the subsequent near-infrared absorbing material fine particle dispersion Workability when producing a body can also be secured.
  • the method of dispersing the composite tungsten oxide fine particles in the solvent is a method of uniformly dispersing the fine particles in the dispersion, and the composite tungsten oxide fine particles have a particle size of 800 nm or less, preferably 200 nm or less, more preferably 10 nm. There is no particular limitation as long as it can be adjusted to 100 nm or less. Examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • the composite tungsten oxide particles are dispersed in the solvent, and at the same time, the fine particles are formed by collision of the composite tungsten oxide particles. Strain and deformation are imparted to the included hexagonal crystal structure, the state of overlap of electron orbits in the atoms constituting the crystallite structure changes, and the amount of free electrons increases.
  • the progress speed of atomization of the composite tungsten oxide particles varies depending on the apparatus constant of the pulverizer. Therefore, it is important to obtain a pulverization apparatus and pulverization conditions capable of giving a predetermined particle diameter to the composite tungsten oxide fine particles in advance by performing trial pulverization.
  • the pulverizing conditions fine particle forming conditions
  • the dispersion powder is a kind of dry solidified product of the near-infrared absorbing fine particle dispersion and contains the above-described dispersant. Therefore, the dispersion powder can be redispersed in the solvent by mixing with an appropriate solvent.
  • the state of the near-infrared absorbing material fine particle dispersion according to the present invention can be confirmed by measuring the dispersion state of the composite tungsten oxide fine particles when the composite tungsten oxide fine particles are dispersed in a solvent.
  • the composite tungsten oxide fine particles according to the present invention can be confirmed by sampling a sample from a liquid in which a fine particle and an aggregated state of fine particles are present in a solvent, and measuring the sample with various commercially available particle size distribution analyzers. I can do it.
  • the particle size distribution meter for example, a known measuring device such as ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method can be used.
  • the crystal structure of the composite tungsten oxide fine particles is obtained by performing X-ray diffraction measurement on the composite tungsten oxide fine particles obtained by removing the solvent of the near-infrared absorbing material fine particle dispersion.
  • the crystallite size of the near-infrared absorbing fine particles is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and still more preferably 10 nm to 70 nm.
  • the measurement of the crystallite diameter uses measurement of an X-ray diffraction pattern by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by a Rietveld method.
  • the X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer “X'Pert-PRO / MPD” manufactured by Spectris Corporation PANalytical.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is preferably 200 nm or less, and more preferably 100 nm or less. Furthermore, it is preferable that the composite tungsten oxide fine particles are uniformly dispersed. If the dispersed particle diameter of the composite tungsten oxide fine particles is preferably 200 nm or less, more preferably 10 nm or more and 200 nm or less, and further preferably 10 nm or more and 100 nm or less, the manufactured near-infrared absorber has a monotonous decrease in transmittance. It is because it can avoid becoming a gray thing.
  • the dispersed particle size of the near-infrared absorbing material fine particle dispersion according to the present invention is a single particle of the composite tungsten oxide fine particles dispersed in the near-infrared absorbing material fine particle dispersion or the near-infrared absorber and the composite tungsten oxide. It is a concept that means the particle size of aggregated particles in which product fine particles are aggregated.
  • the dispersion particle diameter of the composite tungsten oxide fine particles which are near-infrared absorbing material fine particles is a transmission type of a thinned sample taken out from the near-infrared absorbing material fine particle dispersion by cross-section processing.
  • the particle diameter of 100 composite tungsten oxide fine particles can be measured by using an image processing apparatus, and the average value can be calculated.
  • a microtome, a cross section polisher, a focused ion beam (FIB) apparatus, or the like can be used for cross-sectional processing for taking out the thinned sample.
  • the near-infrared absorbing material fine particle dispersion or the dispersed particle diameter of the composite tungsten oxide fine particles contained in the near-infrared absorber is a composite tungsten which is a near-infrared absorbing material fine particle dispersed in a solid medium as a matrix. It is an average value of the dispersed particle diameter of oxide fine particles.
  • the composite tungsten oxide fine particles aggregate to form coarse aggregates, and when a large number of the coarse particles exist, the coarse particles serve as a light scattering source.
  • the near-infrared absorbing material fine particle dispersion becomes a near-infrared absorbing film or a near-infrared absorbing material, haze increases, which may cause a decrease in visible light transmittance. Therefore, it is preferable to avoid the generation of coarse particles of the composite tungsten oxide fine particles.
  • the solvent may be removed by a known method, but the near-infrared absorbing material fine particle dispersion is preferably dried under reduced pressure. Specifically, the solvent component may be separated by drying the near-infrared absorbing material fine particle dispersion under reduced pressure while stirring. The pressure value at the time of depressurization in the drying process is appropriately selected.
  • the efficiency of removing the solvent from the near-infrared absorbing material fine particle dispersion is improved, and the near-infrared absorbing material fine particle dispersion according to the present invention is not exposed to high temperature for a long time. It is preferable that the near-infrared absorbing material fine particles dispersed in the dispersed powder do not aggregate. Furthermore, the productivity of the near-infrared absorbing material fine particles is increased, and it is easy to collect the evaporated solvent, which is preferable from the viewpoint of environmental considerations.
  • a vacuum fluidized dryer As equipment used for the drying process, from the viewpoint that heating and decompression are possible and mixing and recovery of the dispersed powder is easy, a vacuum fluidized dryer, a vacuum heated stirring lyker, a vibration fluidized dryer, a drum dryer, etc. Although preferable, it is not limited to these.
  • the near-infrared absorbing material fine particle dispersion according to the present invention includes the above-mentioned near-infrared absorbing material fine particles, the above-described silane compound, and an acrylic resin. And if the acrylic resin as a solid medium is included 80 parts by mass or more with respect to 100 parts by mass of the near-infrared absorbing material fine particles, a near-infrared absorbing material fine particle dispersion can be preferably formed.
  • the silane compound described in “2. Silane compound” is added.
  • the addition amount of a silane compound shall be 1 to 200 mass parts with respect to 100 mass parts of near-infrared absorption material microparticles
  • the near-infrared absorbing material fine particle dispersion according to the present invention is obtained by melt-kneading near-infrared absorbing material fine particles in a solid medium containing a silane compound.
  • the near-infrared absorbing material fine particle dispersion according to the present invention which is in the form of a masterbatch is added by adding an appropriate amount instead of the total amount of the solid medium to be added. It is also a preferable structure to manufacture.
  • a near-infrared absorbing material fine particle dispersion according to the present invention in the form of a masterbatch, a mixture of a silane compound-containing solid medium and near-infrared absorbing material fine particles is obtained using a vented uniaxial or biaxial extruder.
  • the infrared-absorbing material fine particle dispersion in the form of a masterbatch according to the present invention can be obtained.
  • Masterbatch pellets can be obtained by the most common method of cutting melt extruded strands. Accordingly, examples of the shape include a cylindrical shape and a prismatic shape. It is also possible to adopt a so-called hot cut method in which the molten extrudate is directly cut. In such a case, it is common to take a shape close to a sphere.
  • the master batch according to the present invention can take any form or shape.
  • the pellets of the master batch have the same form and shape as the pellets of the solid medium used for dilution.
  • the near-infrared absorbing material fine particle dispersion since the composite tungsten oxide fine particles maintain a dispersed state, the near-infrared absorbing material fine particle dispersion is a base material having a low heat resistance temperature such as a resin material. Therefore, there is an advantage that a large-sized device is not required when forming a near-infrared absorber and it is inexpensive.
  • the dispersion particle diameter of the composite tungsten oxide fine particles dispersed in the liquid or the near-infrared absorber-forming dispersion may be different. This is because when the near-infrared absorbing material fine particle dispersion is obtained from the near-infrared absorbing material fine particle dispersion or the near-infrared absorber forming dispersion, the composite tungsten oxide fine particles aggregated in the dispersion are aggregated. It is to be understood.
  • the near-infrared absorber according to the present invention is a near-infrared-absorbing material fine particle dispersion according to the present invention selected from a plate-like, film-like, and thin-film shape by a known method. It is molded into a shape.
  • the near-infrared absorbing material fine particle dispersion according to the present invention is in the form of a masterbatch, it is mixed with a predetermined amount of an acrylic resin medium as a solid medium by a known method, and a plate, film, It is molded into any shape selected from thin films.
  • the near-infrared absorber according to the present invention absorbs sunlight rays, particularly light in the near-infrared region more efficiently than the near-infrared absorber according to the prior art, and at the same time maintains high transmittance in the visible light region. Exhibits excellent optical properties. And the absorbed near infrared rays are converted into heat.
  • a near-infrared absorber having excellent near-infrared absorptivity can be obtained.
  • the near infrared absorptivity in the present invention is a concept that means that light having a wavelength of 780 nm to 1200 nm in the near infrared region is well absorbed.
  • sunlight is composed of various wavelengths, it can be broadly classified into ultraviolet rays, visible rays, and infrared rays, and it is known that infrared rays account for about 46%.
  • the near-infrared absorbing material fine particles according to the present invention greatly absorb light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm. Therefore, the near infrared absorptivity can be evaluated by the transmittance of sunlight, that is, the solar radiation transmittance. When the solar radiation transmittance is low, it can be judged that the near infrared absorptivity is excellent because it absorbs light in the near infrared region well.
  • the near-infrared absorber of the present invention when the near-infrared absorber of the present invention is formed into a film and pasted on a window, the penetration of solar heat into the room can be suppressed while maintaining the brightness of the room.
  • the near-infrared absorbing material fine particle dispersion according to the present invention is a masterbatch, it is mixed with a predetermined amount of an acrylic resin medium as a solid medium by a known method, and a plate shape, a film shape, a thin film shape by a known method.
  • the near-infrared absorbing material fine particles according to the present invention can be dispersed in a solid medium as a base material without going through a masterbatch.
  • the near-infrared absorbing material fine particles may be permeated from the surface of the solid medium together with 1 to 200 parts by mass of the silane compound with respect to 100 parts by mass of the near-infrared absorbing material fine particles.
  • the acrylic resin medium as a medium is melted at a temperature higher than its melting temperature, 1 to 200 parts by mass of the near-infrared absorbing material fine particles and 100 parts by mass of the near-infrared absorbing material fine particles It is also preferable to mix the compound and the acrylic resin medium.
  • a product obtained in this manner can be formed into a film or plate shape by a predetermined method to obtain a near-infrared absorber.
  • the acrylic resin, the near infrared absorbing material fine particle dispersion, and 1 to 200 parts by mass with respect to 100 parts by mass of the near infrared absorbing material fine particles The silane compound is mixed to obtain a mixture.
  • the near-infrared absorber can also be produced by evaporating the dispersion solvent from the obtained mixture and then heating to about 260 ° C., which is the melting temperature of the acrylic resin, melting the acrylic resin, mixing, and cooling.
  • a near-infrared absorber laminate is formed on the surface of a predetermined substrate.
  • the near-infrared absorber laminate according to the present invention can be produced by forming a near-infrared absorber on the surface of a predetermined substrate.
  • a base material of the said near-infrared absorber laminated body a film or a board may be sufficient as desired, and a shape is not limited.
  • the transparent substrate material PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluorine resin, and the like can be used according to various purposes.
  • glass other than resin can be used.
  • One of the near-infrared absorbing laminated structures according to the present invention is a near-infrared absorber molded using the near-infrared absorbing material fine particle dispersion according to the present invention. It exists between two or more laminated plates selected from a plate glass, a plastic plate, and a plastic plate containing fine particles having a near infrared absorption function. Also, one of the near infrared absorbing laminated structures according to the present invention is a laminated structure in which the near infrared absorbing laminate according to the present invention is selected from a plate glass, a plastic plate, and a plastic plate containing fine particles having a solar radiation absorbing function. It exists between two or more laminated plates selected from a plate facing the plate, or a plate glass, a plastic plate, and a plastic plate containing fine particles having solar radiation absorbing function.
  • near-infrared absorption-matched inorganic glass using inorganic glass as a transparent substrate can be obtained by pasting and integrating a plurality of opposing inorganic glasses with a near-infrared absorber sandwiched therebetween by a known method.
  • the obtained near-infrared absorbing inorganic glass can be used, for example, as a building material for roofing materials and window materials for carports, stadiums, shopping malls, airports and the like. It can also be used as automobile windows (roofs, quarter windows), automobile windshields, and the like.
  • the near-infrared absorber or near-infrared absorber laminate according to the present invention described above is sandwiched between two or more opposing transparent substrates, or the near-infrared absorber laminate according to the present invention is opposed to the transparent substrate.
  • the near infrared absorption laminated structure according to the present invention can be manufactured.
  • the transparent resin as the transparent substrate and using the inorganic glass described above, between two or more transparent substrates selected from plate glass, plastic, and plastic containing fine particles having a near infrared absorption function.
  • a near-infrared-absorbing laminated transparent base material can be obtained by sandwiching a near-infrared-absorbing film on the surface or by facing the near-infrared-absorbing material laminate according to the present invention to a transparent base material.
  • the application is the same as that of near-infrared absorbing laminated inorganic glass. Further, depending on the application, it can be used as a single near-infrared absorbing film. Furthermore, it is of course possible to use the near-infrared absorbing film on one side or both sides of a transparent base material such as inorganic glass or transparent resin and use it as a near-infrared absorbing laminate.
  • Summary Infrared-absorbing material fine particle dispersion, near-infrared absorber, near-infrared absorber laminate, and near-infrared-absorbing laminated structure according to the present invention are a near-infrared-absorbing material fine particle dispersion and a near-infrared absorber according to the prior art.
  • the laminated structure for absorbing near infrared rays it exhibited excellent optical characteristics such as more efficiently absorbing sunlight, particularly light in the near infrared region, and simultaneously maintaining high transmittance in the visible light region.
  • the near-infrared absorbing film formed on the substrate surface using the near-infrared absorbing material fine particle dispersion according to the present invention in which the near-infrared absorbing material fine particles are dispersed in the acrylic resin is formed by sputtering, vapor deposition, ion Compared to films produced by dry methods such as vacuum deposition methods such as the plating method and chemical vapor deposition method (CVD method), it absorbs sunlight rays, especially light in the near infrared region efficiently, and at the same time visible light. Excellent optical properties such as maintaining high transmittance in the region were exhibited.
  • the near-infrared absorber, the near-infrared absorber laminate, and the near-infrared absorbing laminated structure according to the present invention can be manufactured at low cost without using a large-scale device such as a vacuum device, and are industrially useful. It is.
  • the crystallite size contained in the fine particles was measured. Further, the dispersion particle diameter of the composite tungsten oxide fine particles in the near-infrared absorbing material fine particle dispersion according to the present invention is determined by the transmission electron microscope (HF manufactured by Hitachi, Ltd.) of the thinned sample of the near-infrared absorbing material fine particle dispersion. -2200) images (20,000 magnifications) were measured using image analysis.
  • the visible light transmittance and solar transmittance of the near-infrared absorbing acrylic resin molded article containing Cs tungsten oxide fine particles were measured in accordance with JIS R 3106: 1988 using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. Measured based on.
  • the haze value was measured based on JIS K 7136: 2000 using HM-150W manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Example 1 In 6.70 kg of water, 7.43 kg of cesium carbonate (Cs 2 CO 3 ) was dissolved to obtain a solution. The solution was added to 34.57 kg of tungstic acid (H 2 WO 4 ) and sufficiently stirred and mixed, and then dried with stirring to obtain a dried product (molar ratio of W and Cs was 1: 0.33). It is considerable.) The dried product was heated while supplying 5 volume% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C. for 5.5 hours, and then the supply gas was switched to N 2 gas only. Then, the temperature was lowered to room temperature to obtain Cs tungsten oxide particles a.
  • Cs 2 CO 3 cesium carbonate
  • Acrylic polymer dispersant having 15% by mass of Cs tungsten oxide particles a and a group containing an amine as a functional group an acrylic dispersant having an amine value of 48 mg KOH / g and a decomposition temperature of 250 ° C. (hereinafter referred to as “dispersant” a) ”) Weighed 60 g in total of 12% by mass and 73% by mass of toluene.
  • the weighed material is loaded into a paint shaker (manufactured by Asada Tekko Co., Ltd.) containing 240 g of 0.3 mm ⁇ ZrO 2 beads, and is pulverized and dispersed for 24 hours, whereby a near infrared absorbing material fine particle toluene dispersion (A-1 solution) ) Was prepared.
  • A-1 solution a near infrared absorbing material fine particle toluene dispersion
  • the dispersion particle diameter of the near-infrared absorbing material fine particles (Cs tungsten oxide fine particles a) in the liquid A-1 was 72.4 nm.
  • the crystallite diameter of the Cs tungsten oxide fine particles a in the dispersed powder after removing the solvent from the A-1 solution was 25 nm.
  • the obtained master batch (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with 0.045% by mass and the remaining methacrylic resin to obtain a mixture.
  • the obtained mixture was filled into an injection mold and molded into a plate-like thickness of 1 mm at 250 ° C. so that Cs tungsten oxide fine particles were uniformly dispersed throughout the acrylic resin.
  • Body e was obtained.
  • Table 1 shows the near-infrared absorbing material fine particles in the near-infrared absorber according to Example 1, the composition of the silane compound and the acrylic resin in the near-infrared absorber, the dispersed particle diameter of the near-infrared absorbing fine particles, and the plate thickness of the near-infrared absorber. It describes.
  • Example 2 The near-infrared absorber f according to Example 2 is operated in the same manner as in Example 1 except that the obtained mixture is filled in an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • Table 1 shows the near-infrared absorbing material fine particles in the near-infrared absorber according to Example 2, the composition of the silane compound and the acrylic resin in the near-infrared absorber, the dispersed particle diameter of the near-infrared absorbing fine particles, and the plate thickness of the near-infrared absorber. It describes.
  • Examples 1 to 24 and Comparative Examples 1 to 4 are similarly described in Table 1.
  • Table 1 shows the measurement results of the optical characteristics of the near-infrared absorber f according to Example 2.
  • the near-infrared absorbing material fine particles in the near-infrared absorber, the composition of the silane compound and the acrylic resin in the near-infrared absorber, the dispersed particle diameter of the near-infrared absorbing material fine particles, the near-infrared absorber plate The thickness and optical characteristics are shown in Table 1.
  • Example 17 to 24 and Comparative Examples 1 to 4 the composition of the near-infrared absorbing material fine particles in the near-infrared absorber, the composition of the silane compound and the acrylic resin in the near-infrared absorber, Table 2 shows the dispersed particle diameter of the infrared absorbing material fine particles, the plate thickness of the near infrared absorbing material, and the optical characteristics.
  • Example 3 The same operation as in Example 1 was conducted except that 0.094% by mass of the obtained master batch (Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with the remaining methacrylic resin.
  • the near-infrared absorber g was obtained.
  • the solar radiation transmittance was 35.1% when the visible light transmittance was 71.2%, and the haze value was 1. It was 8%.
  • Example 4 The near-infrared absorber h according to Example 4 is operated in the same manner as in Example 3 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber h according to Example 4 were measured, as shown in Table 1, the solar radiation transmittance was 24.6% when the visible light transmittance was 58.4%, and the haze value was 2. 7%.
  • Example 5 The obtained Cs tungsten oxide fine particle dispersion powder b (as Cs tungsten oxide fine particle Cs 0.33 WO 3 ) was 1.6% by mass, and silicone resin (217 FLAKE; manufactured by Toray Dow) was 0.32% by mass. And the remaining methacrylic resin were mixed to obtain a mixture. The obtained mixture is uniformly mixed using a blender, then melt kneaded at 260 ° C. using a twin screw extruder, the extruded strand is cut into pellets, and a master batch for a near infrared absorber is prepared. A near-infrared absorber i according to Example 5 was obtained in the same manner as in Example 1 except that it was obtained. When the optical characteristics of the near-infrared absorber i according to Example 5 were measured, as shown in Table 1, the solar radiation transmittance was 49.1% when the visible light transmittance was 80.0%, and the haze value was 1. 7%.
  • Example 6 The near-infrared absorber j according to Example 6 is operated in the same manner as in Example 5 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber j according to Example 6 were measured, as shown in Table 1, the solar radiation transmittance was 36.7% when the visible light transmittance was 71.7%, and the haze value was 2. It was 6%.
  • Example 7 The obtained master batch (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was absorbed by near infrared rays in the same manner as in Example 5 except that 0.094% by weight and the remaining methacrylic resin were mixed. Body k was obtained.
  • the optical characteristics of the near-infrared absorber k according to Example 7 were measured, as shown in Table 1, the solar radiation transmittance was 33.9% when the visible light transmittance was 69.5%, and the haze value was 2. It was 8%.
  • Example 8 The near-infrared absorber 1 was obtained in the same manner as in Example 7 except that the obtained mixture was filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C.
  • the optical characteristics of the near-infrared absorber 1 according to Example 8 were measured, as shown in Table 1, the solar radiation transmittance was 23.4% when the visible light transmittance was 56.2%, and the haze value was 4. 1%.
  • Example 9 The obtained Cs tungsten oxide fine particle dispersion powder b (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was 1.6% by mass, and a silane coupling agent (KBM-903, manufactured by Shin-Etsu Silicone) was added in an amount of 0.1% by mass. 32% by mass and the remaining methacrylic resin were mixed to obtain a mixture.
  • the obtained mixture is uniformly mixed using a blender, then melt kneaded at 260 ° C. using a twin screw extruder, the extruded strand is cut into pellets, and a master batch for a near infrared absorber is prepared.
  • a near-infrared absorber m according to Example 9 was obtained in the same manner as in Example 1 except that it was obtained.
  • the optical characteristics of the near-infrared absorber m according to Example 9 were measured, as shown in Table 1, the solar radiation transmittance was 50.9% when the visible light transmittance was 81.2%, and the haze value was 2. 0%.
  • Example 10 The near-infrared absorber n according to Example 10 is operated in the same manner as in Example 9 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber n according to Example 10 were measured, as shown in Table 1, the solar radiation transmittance was 35.5% when the visible light transmittance was 70.5%, and the haze value was 3. 0%.
  • Example 11 The near-infrared absorber as in Example 9 except that 0.094% by mass of the obtained master batch (Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with the remaining methacrylic resin. o was obtained.
  • the optical characteristics of the near-infrared absorber o according to Example 11 were measured, as shown in Table 1, the solar radiation transmittance was 33.3% when the visible light transmittance was 69.1%, and the haze value was 3. 3%.
  • Example 12 A near-infrared absorber p was obtained in the same manner as in Example 11 except that the obtained mixture was filled in an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C.
  • the optical characteristics of the near-infrared absorber p according to Example 12 were measured, as shown in Table 1, the solar radiation transmittance was 22.5% when the visible light transmittance was 55.4%, and the haze value was 4. It was 9%.
  • Example 13 The obtained Cs tungsten oxide fine particle dispersion powder b (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was 1.6% by mass, and a silane coupling agent (KBM-5103, manufactured by Shin-Etsu Silicone) was added in an amount of 0.1% by mass. 32% by mass and the remaining methacrylic resin were mixed to obtain a mixture.
  • the obtained mixture is uniformly mixed using a blender, then melt kneaded at 260 ° C. using a twin screw extruder, the extruded strand is cut into pellets, and a master batch for a near infrared absorber is prepared.
  • a near-infrared absorber q according to Example 13 was obtained in the same manner as in Example 1 except that it was obtained.
  • the optical characteristics of the near-infrared absorber q according to Example 13 were measured, as shown in Table 1, the solar radiation transmittance was 51.3% when the visible light transmittance was 80.9%, and the haze value was 1. It was 8%.
  • Example 14 The near-infrared absorber r according to Example 14 is operated in the same manner as in Example 13 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber r according to Example 14 were measured, as shown in Table 1, the solar radiation transmittance was 37.4% when the visible light transmittance was 72.0%, and the haze value was 2. It was 8%.
  • Example 15 The near-infrared absorber as in Example 13 except that 0.094% by mass of the obtained master batch (Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with the remaining methacrylic resin. s was obtained.
  • the optical characteristics of the near-infrared absorber s according to Example 15 were measured, as shown in Table 1, the solar radiation transmittance was 33.2% when the visible light transmittance was 69.2%, and the haze value was 3. 1%.
  • Example 16 A near-infrared absorber t was obtained in the same manner as in Example 15 except that the obtained mixture was filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C.
  • the optical characteristics of the near-infrared absorber t according to Example 16 were measured, as shown in Table 1, the solar radiation transmittance was 23.1% when the visible light transmittance was 55.8%, and the haze value was 4. It was 6%.
  • Example 17 The obtained Cs tungsten oxide fine particle dispersion powder b (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) is 1.6% by mass, and alkoxysilane (KBM-3063, manufactured by Shin-Etsu Silicone) is 0.32% by mass. % And the remaining methacrylic resin were mixed to obtain a mixture.
  • the obtained mixture is uniformly mixed using a blender, then melt kneaded at 260 ° C. using a twin screw extruder, the extruded strand is cut into pellets, and a master batch for a near infrared absorber is prepared.
  • a near-infrared absorber u according to Example 17 was obtained in the same manner as in Example 1 except that it was obtained.
  • the optical characteristics of the near-infrared absorbing polyacrylic resin molded article u according to Example 17 were measured, as shown in Table 2, the solar radiation transmittance was 50.1% when the visible light transmittance was 80.5%, and haze The value was 1.8%.
  • Example 18 The near-infrared absorber v according to Example 18 is operated in the same manner as in Example 17 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber v according to Example 18 were measured, as shown in Table 2, the solar radiation transmittance was 35.5% when the visible light transmittance was 70.9%, and the haze value was 2. It was 9%.
  • Example 19 Near-infrared absorption in the same manner as in Example 17 except that 0.094% by mass of the obtained master batch (Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with the remaining methacrylic resin. Body w was obtained.
  • the optical characteristics of the near-infrared absorber w according to Example 19 were measured, as shown in Table 2, the solar radiation transmittance was 33.4% when the visible light transmittance was 69.0%, and the haze value was 3. 1%.
  • Example 20 A near-infrared absorber x was obtained in the same manner as in Example 19 except that the obtained mixture was filled in an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C.
  • the optical characteristics of the near-infrared absorber x according to Example 20 were measured, as shown in Table 2, the solar radiation transmittance was 22.5% when the visible light transmittance was 55.2%, and the haze value was 4. 7%.
  • Example 21 The obtained Cs tungsten oxide fine particle dispersion powder b (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was 1.6% by mass, and alkoxysilane (KBM-7053, manufactured by Shin-Etsu Silicone) was 0.32% by mass. % And the remaining methacrylic resin were mixed to obtain a mixture.
  • the obtained mixture is uniformly mixed using a blender, then melt kneaded at 260 ° C. using a twin screw extruder, the extruded strand is cut into pellets, and a master batch for a near infrared absorber is prepared.
  • a near-infrared absorber y according to Example 21 was obtained in the same manner as in Example 1 except that it was obtained.
  • the optical properties of the near-infrared absorber y according to Example 21 were measured, as shown in Table 2, the solar radiation transmittance was 51.1% when the visible light transmittance was 81.2%, and the haze value was 1. It was 8%.
  • Example 22 The near-infrared absorber z according to Example 22 is operated in the same manner as in Example 21 except that the obtained mixture is filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. Got.
  • the optical characteristics of the near-infrared absorber z according to Example 22 were measured, as shown in Table 2, the solar radiation transmittance was 36.5% when the visible light transmittance was 72.5%, and the haze value was 2. It was 8%.
  • Example 23 The near-infrared absorber as in Example 21 except that 0.094% by mass of the obtained master batch (Cs tungsten oxide fine particles Cs 0.33 WO 3 ) was mixed with the remaining methacrylic resin. ⁇ was obtained.
  • the optical characteristics of the near-infrared absorber ⁇ according to Example 23 were measured, as shown in Table 2, the solar radiation transmittance was 34.4% when the visible light transmittance was 70.3%, and the haze value was 3. 0%.
  • Example 24 A near-infrared absorber ⁇ was obtained in the same manner as in Example 23 except that the obtained mixture was filled in an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C.
  • the optical characteristics of the near-infrared absorber ⁇ according to Example 24 were measured, as shown in Table 2, the solar radiation transmittance was 23.5% when the visible light transmittance was 56.3%, and the haze value was 4. 4%.
  • Comparative Example 1 When melt kneading at 260 ° C. using a twin-screw extruder, a near-infrared absorber m according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the alkoxysilane compound was not added.
  • the optical properties of the obtained near-infrared absorber ⁇ were measured, as shown in Table 2, the solar radiation transmittance was 51.2% and the haze value was 2.1% when the visible light transmittance was 80.4%. Met.
  • Comparative Example 2 A near-infrared absorber ⁇ was obtained in the same manner as in Comparative Example 1 except that the obtained mixture was filled into an injection mold and molded into a plate-like thickness of 2 mm at 250 ° C. The optical properties of the obtained near-infrared absorber n were measured. As shown in Table 2, the solar radiation transmittance was 37.4% and the haze value was 3.3% when the visible light transmittance was 71.4%. Met.
  • Comparative Example 3 A near-infrared absorber ⁇ was obtained in the same manner as in Comparative Example 1 except that 0.094% by mass of the obtained master batch (as Cs tungsten oxide fine particles Cs 0.33 WO 3 ) and methacrylic resin were mixed. It was.
  • the optical properties of the obtained near-infrared absorber o were measured, as shown in Table 2, the solar radiation transmittance was 33.5% and the haze value was 3.7% when the visible light transmittance was 68.5%. Met.
  • Comparative Example 4 A near-infrared absorber ⁇ was obtained in the same manner as in Comparative Example 3 except that the obtained mixture was filled in an injection mold and molded at 250 ° C. into a plate-like thickness of 2 mm.
  • the optical characteristics of the obtained near-infrared absorber were measured, as shown in Table 2, the solar radiation transmittance was 22.1% and the haze value was 5.7% when the visible light transmittance was 54.0%. there were.
  • Examples 9 to 16 and the near-infrared absorbers according to Comparative Examples 1 to 4 to which no silane compound was added were compared.
  • the vertical axis represents the solar transmittance and the horizontal axis represents the visible light transmittance.
  • Examples 1 to 4 are plotted with ⁇ and are connected with a thick solid line. Plotted with (1) and connected with a one-dot chain line, Examples 9 to 12 are plotted with x and connected with a long dashed line, Examples 13 to 16 are plotted with * and connected with a two-dot chain line, and Examples 17 to 20 are plotted with ⁇ FIG.
  • Examples 1 to 4 are plotted with ⁇ and connected with a thin solid line, the vertical axis represents haze value, and the horizontal axis
  • Examples 1 to 4 are plotted with ⁇ and connected with a thick solid line
  • Examples 5 to 8 are plotted with ⁇ and connected with a one-dot chain line, as in FIG.
  • Examples 13 to 16 are plotted with * and connected with a two-dot chain line
  • Examples 17 to 20 are 2 are plotted
  • Examples 21 to 24 are plotted with + and connected with a middle broken line
  • Comparative Examples 1 to 4 are plotted with ⁇ and are connected with a thin solid line.
  • the near-infrared absorbers according to Examples 1 to 4, Examples 5 to 8, Examples 9 to 12, Examples 13 to 16, Examples 17 to 20, and Examples 21 to 24 are compared. It was found that the solar radiation transmittance was equal or lower than that of the near-infrared absorbers according to Examples 1 to 4. Further, FIG. 2 also revealed that the near-infrared absorbers according to Examples 1 to 4 and Examples 5 to 8 had lower haze values than the near-infrared absorbers according to Comparative Examples 1 to 4. As described above, the near-infrared absorbers according to Examples 1 to 24 can exhibit near-infrared absorptivity while ensuring transparency as compared with the near-infrared absorbers according to Comparative Examples 1 to 4, and have excellent optical characteristics. It was confirmed that the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

従来の技術に係るタングステン酸化物や複合タングステン酸化物を含む近赤外線微粒子分散体、近赤外線吸収体および近赤外線吸収用合わせ構造体よりも高い近赤外線吸収性を発揮出来る、近赤外線吸収材料微粒子分散体、近赤外線吸収体および近赤外線吸収用合わせ構造体を提供する。アクリル樹脂中に、六方晶の結晶構造を含む複合タングステン酸化物微粒子と、シラン化合物とが、含まれていることを特徴とする近赤外線吸収材料微粒子分散体を提供する。

Description

近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体
 本発明は、可視光領域においては透明性を持ち近赤外線領域においては吸収性を持つ、近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体に関する。
 一般に、自由電子を含む材料は、太陽光線の領域周辺である波長200nmから2600nmの電磁波に対し、プラズマ振動による反射吸収応答を示すことが知られている。そして当該材料を構成する粉末の粒子を光の波長より小さい径を有する微粒子とすると、当該材料の可視光領域(波長380nmから780nm)における幾何学散乱が低減されて、可視光領域の透明性が得られることが知られている。
 尚、本発明において「透明性」とは、可視光領域の光に対して散乱が少なく、可視光の透過性が高いという意味で用いている。
 一方、出願人は特許文献1において、基板への成膜に際し大掛かりな製造設備を必要とせず、成膜後の高温熱処理も不要でありながら可視光線を透過し、近赤外線を効率よく遮蔽する、粒子径1nm以上800nmのタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を固体媒体に分散した赤外線遮蔽材料微粒子分散体を開示した。
WO2005/037932再公表特許公報
 しかしながら、本発明者らの更なる検討によると、特許文献1に記載の分散体では固体媒体中において近赤外線吸収材料微粒子が凝集し、透明性が低下してしまう場合があるという課題を知見した。
 本発明はこのような状況に鑑み、従来の技術に係るタングステン酸化物や複合タングステン酸化物を含む近赤外線微粒子分散体、近赤外線吸収体および近赤外線吸収用合わせ構造体よりも、優れた透明性を担保しながら高い近赤外線吸収性を発揮出来る、近赤外線吸収材料微粒子分散体、近赤外線吸収体および近赤外線吸収用合わせ構造体を提供することを目的とする。
 上述の課題を解決する為、本発明者らは研究を行った。そして、アクリル樹脂は、ガラスと同等またはそれ以上に透明性に優れ、耐候性、耐薬品性、光学特性にも優れるという理由から、アクリル樹脂中における近赤外線吸収材料微粒子の凝集を抑制する観点から研究を行い、当該研究の結果、アクリル樹脂中に、複合タングステン酸化物微粒子と、シラン化合物とが、含まれている近赤外線吸収材料微粒子分散体、当該近赤外線吸収材料微粒子分散体を用いた近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体の構成に想到し、本発明を完成したものである。
 すなわち、上述の課題を解決する為の第1の発明は、
 アクリル樹脂中に、複合タングステン酸化物微粒子と、シラン化合物と、が含まれていることを特徴とする近赤外線吸収材料微粒子分散体である。
 第2の発明は、
 前記シラン化合物が、シランカップリング剤、アルコキシシラン化合物、シリコーンレジンから選択されるいずれか1種類以上であることを特徴とする第1の発明に記載の近赤外線吸収材料微粒子分散体である。
 第3の発明は、
 前記シラン化合物が、アミノ基、エポキシ基、メルカプト基、(メタ)アクリル基、ビニル基、フェニル基、イソシアネート基、イミダゾール基から選択される1種類以上の官能基を有することを特徴とする第2の発明に記載の近赤外線吸収材料微粒子分散体である。
 第4の発明は、
 前記シリコーンレジンを構成するモノマー単位が、R-SiO1.6(但し、式中のRは、水素原子または有機基)と表記されることを特徴とする第2の発明に記載の近赤外線吸収材料微粒子分散体である。
 第5の発明は、
 前記シリコーンレジンの重量平均分子量が、1500以上200000以下であることを特徴とする第2または第4の発明に記載の近赤外線吸収材料微粒子分散体である。
 第6の発明は、
 前記複合タングステン酸化物微粒子の分散粒子径が、1nm以上200nm以下であることを特徴とする第1から第5の発明のいずれかに記載の近赤外線吸収材料微粒子分散体である。
 第7の発明は、
 前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記されることを特徴とする第1から第6の発明のいずれかに記載の近赤外線吸収材料微粒子分散体である。
 第8の発明は、
 前記M元素が、Cs、Rbから選択される1種類以上の元素であることを特徴とする第7の発明に記載の近赤外線吸収材料微粒子分散体である。
 第9の発明は、
 前記複合タングステン酸化物微粒子が、六方晶の結晶構造を有する複合タングステン酸化物微粒子を含むことを特徴とする第1から第8の発明のいずれかに記載の近赤外線吸収材料微粒子分散体である。
 第10の発明は、
 前記近赤外線吸収材料微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする第1から第9の発明のいずれかに記載の近赤外線吸収材料微粒子分散体である。
 第11の発明は、
 第1から第10の発明のいずれかに記載の近赤外線吸収材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかに成型されたものであることを特徴とする近赤外線吸収体である。
 第12の発明は、
 第11の発明に記載の近赤外線吸収体が、基材上に積層されたものであることを特徴とする近赤外線吸収物積層体である。
 第13の発明は、
 第11の発明に記載の近赤外線吸収体が、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在していることを特徴とする近赤外線吸収用合わせ構造体である。
 第14の発明は、
 第12の発明に記載の近赤外線吸収物積層体が、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される合わせ板と対向している、または、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される2枚以上の合わせ板間に存在していることを特徴とする近赤外線吸収用合わせ構造体である。
 本発明に係る近赤外線吸収材料微粒子分散体は、従来の技術に係る近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体と比較して、透明性を担保しながら近赤外線吸収性を発揮出来、優れた光学特性を有する近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体を提供することが出来る。
近赤外線吸収材料微粒子分散体における可視光透過率と日射透過率とのグラフである。 近赤外線吸収材料微粒子分散体における可視光透過率とヘイズ値とのグラフである。
 本発明に係る近赤外線吸収材料微粒子分散体は、アクリル樹脂中に、複合タングステン酸化物微粒子と、シラン化合物とを、含んでいるものである。
 上述の構成を有する本発明に係る近赤外線吸収材料微粒子分散体は、所定条件に係る機械的な粉砕を施された複合タングステン酸化物微粒子が、シラン化合物を含むアクリル樹脂中において分散状態を維持しているものである。当該構成を有する本発明に係る近赤外線吸収材料微粒子分散体は、樹脂材料等といった耐熱温度の低い基材材料上へ、フィルム状、薄膜状等の形状を有する近赤外線吸収体を設け、近赤外線吸収物積層体を得る等の応用が可能である。さらに、近赤外線吸収体や近赤外線吸収物積層体の製造や形成の際に大型の装置を必要としないので、製造装置が安価であるという利点がある。
 一方、本発明に係る近赤外線吸収材料は導電性材料であるが、微粒子としてアクリル樹脂のマトリックス中に分散しているので、粒子一個一個が孤立した状態で分散している。この為、本発明に係る近赤外線吸収材料は電波透過性を発揮し、各種の窓材等として汎用性を有する。
 また、本発明に係る近赤外線吸収体は、本発明に係る近赤外線吸収材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかの形状に形成されたものである。
 また、本発明に係る近赤外線吸収物積層体は、近赤外線材料微粒子吸収体が基材上に積層されているものである。
 そして、本発明に係る近赤外線吸収用合わせ構造体は、本発明に係る近赤外線吸収材料微粒子分散体が近赤外線吸収体の形状をとって、板ガラス、プラスチック板、日射吸収機能を有する微粒子を含むプラスチック板から選択される2枚以上の合わせ板間に存在しているもの、および、近赤外線吸収物積層体と板ガラス、プラスチック板、日射吸収機能を有する微粒子を含むプラスチック板から選択される合わせ板を組み合わせたものである。
 以下、本発明について、1.アクリル樹脂、2.シラン化合物、3.複合タングステン酸化物微粒子、4.複合タングステン酸化物微粒子の製造方法、5.近赤外線吸収材料微粒子分散液とその製造方法、6.近赤外線吸収材料微粒子分散体とその製造方法、7.近赤外線吸収体とその製造方法、8近赤外線吸収物積層体とその製造方法、9.近赤外線吸収用合わせ構造体とその製造方法、10.まとめ、の順で詳細に説明する。
1.アクリル樹脂
 本発明に係る固体媒体であるアクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて、炭素数1~8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリルにニトリル、メタクリロニトリルなどを共重合成分として用いた重合体または共重合体が挙げられる。さらに、多段で重合したアクリル樹脂を用いることもできる。
2.シラン化合物
 本発明に係るシラン化合物は、後述する近赤外線吸収材料微粒子とアクリル樹脂とを混合する際、同時に混合され溶融混練されることで、当該近赤外線吸収材料微粒子の解凝を促進し、さらに、当該近赤外線吸収材料微粒子のアクリル樹脂中における分散状態を担保する効果を発揮するものである。
 具体的には、後述する近赤外線吸収材料微粒子と、シラン化合物と、上述した固体媒体としてのアクリル樹脂とを均一に混合した後、溶融混練して近赤外線吸収材料微粒子分散体を得、得られた近赤外線吸収材料微粒子分散体を成型して近赤外線吸収体を得るものである。
 シラン化合物の添加量は、近赤外線吸収材料微粒子100質量部に対し、1質量部以上200質量部以下とすることが好ましい。
 これはシラン化合物の添加量を、近赤外線吸収材料微粒子100質量部に対し、1質量部以上とすれば当該シラン化合物の添加効果を得る観点から好ましく、200質量部以下とすれば当該シラン化合物をアクリル樹脂中へ容易に溶融混練する観点から好ましいからである。
 シラン化合物としては、アミノ基、エポキシ基、メルカプト基、(メタ)アクリル基、ビニル基、フェニル基、イソシアネート基、イミダゾール基から選択される1種類以上の官能基を有するものが好ましい。
 また、シラン化合物としては、シリコーンレジン、シランカップリング剤、アルコキシシラン化合物、から選択される1種類以上であることが好ましい。
 以下、本発明に好ましく用いられるシラン化合物について、(1)シリコーンレジン、(2)シランカップリング剤、(3)アルコキシシラン化合物、の順に説明する。
(1)シリコーンレジン
 本発明に用いるシリコーンレジンは、当該シリコーンレジンを構成するモノマー単位が、一般式:R-SiO1.6(但し、式中Rは水素原子または有機基である)と、表記されるものであることが好ましい。尚、有機基とは、一般式:-Cと表記される炭化水素基のことである。
 また、当該シリコーンレジンの重量平均分子量は、1500以上200000以下であることが好ましい。当該シリコーンレジンの重量平均分子量が1500以上あることにより、近赤外線吸収材料微粒子を十分に分散することが出来る。一方、重量平均分子量が200000以下あることによりアクリル樹脂中へ容易に含有させることが出来る。
 本発明に用いるシリコーンレジンは市販品であれば、KR-480(信越シリコーン製)、Z-6018、220FLAK、FCA-107、233FLAKE、249FLAKE、SH6018FLAKE、255FLAKE、217FLAKE(以上、東レダウコーニング製)、SILRES603、SILRES604、SILRES605、SILRES H44、SILRES SY300、SILRES REN100、SILRES SY430、SILRES IC836(以上、旭化成ワッカーシリコーン社製)、TSR160(モメンティブ社製)等、が好ましく挙げられる。
(2)シランカップリング剤
 本発明に用いるシランカップリング剤は市販品であれば、KBM-30、KBM-402、KBM-403、KBE-402、KBE-403、KBM-1043、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBM-903、KBE-903、KBE-9103P、KBM-573、KBM-575(以上、信越シリコーン製)等、が好ましく挙げられる。
(3)アルコキシシラン化合物
 本発明に用いるアルコキシシラン化合物は、アルコキシシラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリエトキシシラン、sec-ブチルトリイソプロポキシシラン、tert-ブチルトリメトキシシラン、tert-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、テキシルトリメトキシシラン、テキシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリ(2-メトキシメチル)シラン、エチニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、ベンジルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピトリ(3,3,3-トリフルオロエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルジ-n-ブトキシシラン、メチルプロピルジメトキシシラン、メチル-tert-ブチルジメトキシシラン、メチル-tert-ブチルジエトキシシラン、メチル-n-ヘキシルジメトキシシラン、メチルテキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、メチルビニルジメトキシシラン、アリルメチルジメトキシシラン、メチルフェニルジメトキシシラン、2-シアノエチルメチルジメトキシシラン、メチル-イソプロポキシジメトキシシラン、メチル-tert-ブトキシジメトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-tert-ブチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、ジアリルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメチルメトキシシラン、ジメチルエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルシクロヘキシルオキシシラン、トリメチルフェノキシシラン、イソプロピルジメチルエトキシシラン、tert-ブチルジメチルメトキシシラン、tert-ブチルジメチルエトキシシラン、tert-ブチルジメチルシクロヘキシルオキシシラン、tert-ブチルジメチルフェノキシシラン、ジメチルテキシルメトキシシラン、ジメチルテキシルエトキシシラン、ジメチルテキシルシクロヘキシルオキシシラン、ジメチルテキシルフェノキシシラン、シクロヘキシルジメチルメトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリエチルシクロヘキシルオキシシラン、トリエチルフェノキシシラン、トリイソプロピルメトキシシラン、トリシクロヘキシルメトキシシラン、トリフェニルメトキシシラン等、が挙げられる。
 本発明に用いるアルコキシシラン化合物は市販品であれば、KBM-13、KBM-22、KBM-103、KBE-13、KBE-22、KBE-103、KBM-3033、KBE-3033、KBM-3063、KBE-3063、KBE-3083、KBM-3103C、KBM-3066、KBM-7103(以上、信越シリコーン製)、Z-2306、Z-6210、Z-6265、Z-6341、Z-6366、Z-6383、Z-6582、Z-6583、Z-6586、Z-6125(以上、東レダウコーニング製)等、が好ましく挙げられる。
3.複合タングステン酸化物微粒子
 本発明に係る近赤外線吸収材料微粒子分散体に用いられる、複合タングステン酸化物微粒子は、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記されることを特徴とする。
 一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため近赤外線領域の吸収反射特性が少なく、赤外線吸収材料としては有効ではない。ここで、三酸化タングステンのタングステンに対する酸素の比率を3より低減することによって、当該タングステン酸化物中に自由電子が生成されることが知られている。
 さらに、当該タングステン酸化物へ、M元素を添加したものが、上記複合タングステン酸化物である。
 当該構成を採ることで、複合タングステン酸化物中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線吸収材料として有効なものとなる。本発明に係る近赤外線吸収材料微粒子分散体は赤外線吸収材料微粒子として、上記複合タングステン酸化物を含有しており、当該複合タングステン酸化物が近赤外線を吸収し、これを熱に変換することにより、近赤外線吸収性を備えている。
 尚、当該観点より、本発明に係る近赤外線吸収材料微粒子は六方晶の結晶構造を有する複合タングステン酸化物微粒子を含むことが好ましい。
 当該複合タングステン酸化物に対し、上述した酸素量の制御と、自由電子を生成する元素の添加とを併用することで、より効率の良い近赤外線吸収材料を得ることが出来る。具体的には、当該酸素量の制御と自由電子を生成するM元素の添加とを併用した近赤外線吸収材料の一般式を、MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、好ましくは0.20≦x/y≦0.37の関係を満たす複合タングステン酸化物である。
 ここで、M元素を添加された前記複合タングステン酸化物における、安定性の観点から、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素であることがより好ましい。
 さらに、M元素を添加された当該MxWyOzにおける安定性の観点から、M元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reから選択される1種類以上の元素であることがより好ましい。
 加えて、近赤外線吸収材料としての光学特性、耐候性を向上させる観点も考えると、前記M元素は、アルカリ金属、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることが、さらに好ましい。
 次に、当該MxWyOzにおいて酸素量の制御を示すz/yの値について説明する。MxWyOzで表記される赤外線吸収材料においても、z/yの値により、上述したWyOzで表記される近赤外線吸収材料と同様の機構が働くことに加え、z/y=3.0においても、上述したM元素の添加量による自由電子の供給があるため、2.2≦z/y≦3.0が好ましい。
 ここでM元素としては、CsとRbとが最も好ましい。尤も、M元素が上記CsやRbに限定される訳ではない。M元素がCsやRb以外の元素であっても、WO単位で形成される六角形の空隙に添加M元素として存在すれば良い。
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、0.001≦x/y≦1、好ましくは0.2≦x/y≦0.5、さらに好ましくは0.20≦x/y≦0.37、最も好ましくはx/y=0.33である。これは、理論上z/y=3のとき、x/y=0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられた為である。
 ここで、本発明者らは、複合タングステン酸化物微粒子の近赤外線吸収機能をより向上させることを考えて検討を重ね、含有される自由電子の量をより増加させる構成に想到した。
 即ち、当該自由電子量を増加させる方策として、当該複合タングステン酸化物微粒子へ機械的な処理を加え、含まれる六方晶へ適宜な歪や変形を付与することに想到したものである。当該適宜な歪や変形を付与された六方晶においては、結晶子構造を構成する原子における電子軌道の重なり状態が変化し、自由電子の量が増加するものと考えられる。
 そこで、焼成工程により生成した複合タングステン酸化物の微粒子から近赤外線吸収材料微粒子分散液を製造する際の分散工程において、複合タングステン酸化物の微粒子を所定条件下にて粉砕することにより結晶構造へ歪や変形を付与し、自由電子量を増加させて、複合タングステン酸化物微粒子の近赤外線吸収機能をさらに向上させることを研究した。
 そして、本発明に係る近赤外線吸収材料微粒子は、その粒子径が1nm以上200nm以下であることが好ましいが、100nm以下のものであることがさらに好ましいことを知見した。そして、より優れた近赤外線吸収特性を発揮させる観点から、当該粒子径は10nm以上100nm以下であるのが好ましく、より好ましくは10nm以上80nm以下、さらに好ましくは10nm以上60nm以下、最も好ましくは10nm以上40nm以下である。粒子径が10nm以上40nm以下の範囲であれば、最も優れた赤外線吸収特性が発揮されることを知見した。
 ここで、粒子径とは凝集していない個々の近赤外線吸収材料微粒子がもつ径、すなわち一次粒子径の平均値であり、後述する近赤外線吸収材料微粒子分散体に含まれる近赤外線吸収材料微粒子の平均粒子径であり、複合タングステン酸化物微粒子の凝集体の径を含むものではなく、分散粒子径とは異なるものである。
 尚、平均粒子径は近赤外線吸収材料微粒子の電子顕微鏡像から算出される。
 当該赤外線吸収材料微粒子分散体に含まれる複合タングステン酸化物微粒子の平均粒子径は、断面加工で取り出した複合タングステン酸化物微粒子の薄片化試料の透過型電子顕微鏡像から、複合タングステン酸化物微粒子100個の1次粒子径を、画像処理装置を用いて測定し、その平均値を算出することで求めることが出来る。当該薄片化試料を取り出すための断面加工には、ミクロトーム、クロスセクションポリッシャ、集束イオンビーム(FIB)装置等を用いることが出来る。
 さらに、複合タングステン酸化物微粒子は単結晶であることが好ましいことが知見された。
 複合タングステン酸化物微粒子が単結晶であることは、透過型電子顕微鏡等による電子顕微鏡像において、各微粒子内部に結晶粒界が観察されず、一様な格子縞のみが観察されることから確認することが出来る。また、複合タングステン酸化物微粒子においてアモルファス相の体積比率が50%以下であることは、同じく透過型電子顕微鏡像において、微粒子全体に一様な格子縞が観察され、格子縞が不明瞭な箇所が殆ど観察されないことから確認することが出来る。したがって、複合タングステン酸化物微粒子において、アモルファス相の体積比率は、微粒子中の一様な格子縞が観察される領域と格子縞が不明瞭な領域との比率を観察することにより、確認することができる。
 さらに、アモルファス相は各微粒子外周部に存在する場合が多いので、各微粒子外周部に着目することで、アモルファス相の体積比率を算出可能な場合が多い。例えば、真球状の複合タングステン酸化物微粒子において、格子縞が不明瞭なアモルファス相が当該微粒子外周部に層状に存在する場合、その粒子径の10%以下の厚さであれば、当該複合タングステン酸化物微粒子におけるアモルファス相の体積比率は、50%以下である。
 また、本発明に係る複合タングステン酸化物微粒子を含有する近赤外線吸収材料微粒子分散体は近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
 さらに、「6.近赤外線吸収材料微粒子分散体とその製造方法」にて後述する近赤外線吸収材料微粒子分散体における光散乱は、近赤外線吸収材料微粒子の凝集を考慮する必要があり、分散粒子径で検討する必要がある。そして当該近赤外線吸収材料微粒子の分散粒子径は、その使用目的によって、各々選定することが出来る。
 尚、上述した近赤外線吸収材料微粒子の分散粒子径とは、複合タングステン酸化物微粒子の凝集体の径を含む概念であり、上述した本発明に係る近赤外線吸収材料の粒子径とは異なる概念である。
 まず、透明性を保持した応用に使用する場合は、800nm以下の分散粒子径を有していることがさらに好ましい。これは、分散粒子径が800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することが出来るからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
 この粒子による散乱の低減を重視するとき、分散粒子径は好ましくは200nm以下、より好ましくは10nm以上200nm以下が良く、さらに好ましくは10nm以上100nm以下である。当該理由は、分散粒子径が小さければ、幾何学散乱若しくはミー散乱による、赤外線吸収膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避出来るからである。すなわち、分散粒子径が200nm以下になると、上述した幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は分散粒子径の6条に比例するため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が10nm以上であれば工業的な製造は容易である。
 上述した分散粒子径を800nm以下とすることにより、近赤外線吸収材料微粒子を媒体中に分散させた近赤外線吸収材料微粒子分散体のヘイズ値を、可視光透過率85%以下において10%以下にすることが出来る。特に、分散粒子径を100nm以下とすることにより、ヘイズを1%以下とすることが出来る。
 本発明に係る近赤外線吸収微粒子の分散粒子径は、800nm以下であることが好ましい。これは、近赤外線吸収微粒子である複合タングステン酸化物の近赤外線吸収が「局在表面プラズモン共鳴」と呼ばれるナノ粒子特有の光吸収、散乱に基づいていることによる。
 即ち、複合タングステン酸化物の分散粒子径が800nm以下のときに局在表面プラズモン共鳴が生じ、本発明に係る近赤外線吸収材料微粒子分散体に照射される近赤外線を、近赤外線吸収微粒子が効率的に吸収し、熱エネルギーに変換しやすくなる。
 分散粒子径が200nm以下であれば、局在表面プラズモン共鳴がさらに強くなり照射される近赤外線をより強力に吸収するため、より好ましい。
 また、本発明に係る近赤外線吸収微粒子の分散粒子径が200nm以下であれば、近赤外線吸収特性と透明性を保持することができる。
 さらに、当該微粒子を、適宜な固体媒体中または固体媒体表面に分散させて製造した近赤外線吸収体は、スパッタリング法、蒸着法、イオンプレーティング法及び科学気相法(CVD法)などの真空成膜法等の乾式法で作製した膜やCVD法やスプレー法で作製した膜と比較して、光の緩衝効果を用いずとも、太陽光線、特に近赤外線領域の光をより効率よく吸収し、同時に可視光領域の光を透過させることを知見したものである。
4.複合タングステン酸化物微粒子の製造方法
 本発明に係る前記一般式MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン酸化物微粒子の出発原料であるタングステン化合物と前記M元素を含有する単体または化合物とを、0.20≦x/y≦0.37の割合で混合した混合体を、還元性ガス雰囲気、もしくは、還元性ガスと不活性ガスとの混合ガス雰囲気中、または、不活性ガス雰囲気中で熱処理する固相反応法で製造することが出来る。当該熱処理を経て、所定の粒子径となるように粉砕処理等で微粒子化されて得られた複合タングステン酸化物微粒子は、十分な近赤外線吸収力を有し、近赤外線吸収材料微粒子として好ましい性質を有している。
 本発明に係る前記一般式MxWyOzで表記される複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物には、三酸化タングステン粉末、二酸化タングステン粉末、もしくはタングステン酸化物の水和物、もしくは、六塩化タングステン粉末、もしくはタングステン酸アンモニウム粉末、もしくは、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上の粉末と、前記M元素を含有する単体または化合物の粉末とを、0.20≦x/y≦0.37の割合で混合した粉末を用いることが出来る。
 さらに、当該複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物が、溶液または分散液であると、各元素は容易に均一混合可能となる。
 当該観点より、複合タングステン酸化物微粒子の出発原料が、六塩化タングステンのアルコール溶液またはタングステン酸アンモニウム水溶液と、前記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることがさらに好ましい。
 同様の観点より、複合タングステン酸化物微粒子の出発原料が、六塩化タングステンをアルコール中に溶解させた後、水を添加して沈殿を生成させた分散液と、前記M元素を含有する単体または化合物の粉末、または、前記M元素を含有する化合物の溶液とを、混合した後、乾燥した粉末であることも好ましい。
 前記M元素を含有する化合物としては、M元素のタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであればよい。さらに、当該複合タングステン酸化物微粒子を工業的に製造する場合に、タングステン酸化物の水和物粉末や三酸化タングステンと、M元素の炭酸塩や水酸化物とを用いると、熱処理等の段階で有害なガス等が発生することが無く、好ましい製造法である。
 ここで、複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物と、前記M元素を含有する化合物との混合体を用い、複合タングステン酸化物を得る熱処理条件について説明する。
 まず出発原料である上記混合体を、還元性ガス雰囲気中、または、還元性ガスと不活性ガスとの混合ガス雰囲気中、または、不活性ガス雰囲気中にて熱処理する。
 熱処理条件は、還元性雰囲気中の熱処理条件として、まず、タングステン化合物出発原料とM元素を含有する単体または化合物とを混合した粉末、または、上記タングステン化合物出発原料の溶液または分散液と上記M元素を含有する化合物の溶液または分散液とを混合したのち乾燥して得られた粉末を還元性ガス雰囲気中にて100℃以上850℃以下で熱処理することが好ましい。熱処理温度が100℃以上であれば還元反応が十分に進行し好ましい。また、850℃以下であれば還元が進行し過ぎることがなく好ましい。還元性ガスは、特に限定されないがHが好ましい。また還元性ガスとしてHを用いる場合には、還元雰囲気の組成としてのHは、体積比で0.1%以上あることが好ましく、さらに好ましくは体積比で2%以上が良い。Hが体積比で0.1%以上であれば、効率よく還元を進めることができる。
 次いで、必要に応じて、結晶性の向上や、吸着した還元性ガスの除去のために、ここで得られた粒子を、さらに不活性ガス雰囲気中で550℃以上1200℃以下の温度で熱処理することが良い。不活性ガス雰囲気中における熱処理条件としては550℃以上が好ましい。550℃以上で熱処理された複合タングステン化合物出発原料は十分な導電性を示す。また、不活性ガスとしてはAr、N等の不活性ガスを用いることが良い。結晶性の良好な複合タングステン酸化物の作製には、以下の熱処理条件が提案できる。但し、出発原料や、目的とする化合物の種類により熱処理条件は異なるので、下記の方法に限定されない。
 結晶性の良好な複合タングステン酸化物を製造する場合には、熱処理温度は高い方が好ましく、還元温度は出発原料や還元時のH温度によって異なるが、600℃~850℃が好ましい。さらに、その後の不活性雰囲気での熱処理温度は、700℃~1200℃が好ましい。
 これらの焼成の処理時間は温度に応じて適宜選択すればよいが、5分間以上5時間以下でよい。このようにして得られた複合タングステン酸化物粒子を、適宜な溶媒とともに、例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどから選ばれる器材に投入して湿式粉砕して当該複合タングステン酸化物粒子をより微粒子化することができる。
 当該熱処理により、複合タングステン酸化物において2.2≦z/y≦3.0とする。
 一方、複合タングステン酸化物の製造方法は、固相反応法に限定されない。適宜な製造条件を設定することにより、熱プラズマ法でも製造することが出来る。当該適宜に設定すべき製造条件として、例えば、熱プラズマ中に原料供給する際の供給速度、原料供給に用いるキャリアガスの流量、プラズマ領域を保持するプラズマガスの流量、および、プラズマ領域のすぐ外側を流すシースガスの流量等、が挙げられる。
 以上説明した、複合タングステン酸化物や複合タングステン酸化物粒子を得る熱処理工程を、本発明に係る第1の工程と記載する場合がある。
 上記熱処理工程で得られた複合タングステン酸化物のバルク体や粒子の微粒子化は、「5.近赤外線吸収材料微粒子分散液とその製造方法」にて後述する近赤外線吸収材料微粒子分散液を経ることが好ましい。当該複合タングステン酸化物粒子を適宜な溶媒と混合し、近赤外線吸収材料微粒子の分散液を得る過程で、当該混合物を湿式粉砕して近赤外線吸収材料の微粒子化を進めながら、近赤外線吸収材料微粒子分散液を得る。当該近赤外線吸収材料微粒子分散液から近赤外線吸収材料微粒子を得るには、公知の方法で溶媒を除去すればよい。
 また、複合タングステン酸化物のバルク体や粒子の微粒子化は、ジェットミルなどを用いる乾式の微粒子化も可能である。ただし、乾式の微粒子化であっても、得られる複合タングステン酸化物の粒子へ所定の粒子径を付与出来る粉砕条件(微粒子化条件)を定めることはもちろんである。例えば、ジェットミルを用いるならば、適切な粉砕条件となる風量や処理時間となるジェットミルを選択すればよい。
 以上説明した、複合タングステン酸化物や複合タングステン酸化物粒子を微粒子化して、本発明に係る近赤外線吸収材料微粒子を得る工程を、本発明に係る第2の工程と記載する場合がある。
 上述の第2の工程にて得られた複合タングステン酸化物微粒子である近赤外線吸収材料微粒子の表面をSi、Ti、Zr、Alから選択される一種類以上の金属を含有する酸化物で被覆することは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該近赤外線吸収材料微粒子を分散した溶液中へ、上述した金属のアルコキシドを添加することで、近赤外線吸収材料微粒子の表面を被覆することが可能である。
5.近赤外線吸収材料微粒子分散液とその製造方法
 上述したように、第1の工程にて得られた複合タングステン酸化物微粒子を、適宜な溶媒中に混合・分散したものが、本発明に係る近赤外線吸収材料微粒子分散液である。当該溶媒は特に限定されるものではなく、塗布・練り込み条件、塗布・練り込み環境、さらに、無機バインダーや樹脂バインダーを含有させたいときは、当該バインダーに合わせて適宜選択すればよい。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。
 また所望により、当該分散液へ酸やアルカリを添加してpH調整をしてもよい。
 さらに、当該溶媒には、樹脂のモノマーやオリゴマーを用いてもよい。
 一方、分散液中における上記複合タングステン酸化物微粒子の分散安定性を一層向上させるために、各種の分散剤、界面活性剤、カップリング剤などの添加も勿論可能である。
 当該分散剤、界面活性剤、カップリング剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、表面処理赤外線吸収材料微粒子の表面に吸着して凝集を防ぎ、均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤は、さらに好ましい。
 市販の分散剤における好ましい具体例としては、ルーブリゾール社製SOLSPERSE(登録商標)3000、9000、11200、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000SC、24000GR、26000、27000、28000、31845、32000、32500、32550、32600、33000、33500、34750、35100、35200、36600、37500、38500、39000、41000、41090、53095、55000、56000、76500等;
 ビックケミー・ジャパン(株)製Disperbyk(登録商標)-101、103、107、108、109、110、111、112、116、130、140、142、145、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、2000、2001、2020、2025、2050、2070、2095、2150、2155、Anti-Terra(登録商標)-U、203、204、BYK(登録商標)-P104、P104S、220S、6919等;
 エフカアディティブズ社製 EFKA(登録商標)-4008、4046、4047、4015、4020、4050、4055、4060、4080、4300、4330、4400、4401、4402、4403、4500、4510、4530、4550、4560、4585、4800、5220、6230、BASFジャパン(株)社製JONCRYL(登録商標)-67、678、586、611、680、682、690、819、JDX5050等;
 大塚化学株式会社製のTERPLUS(登録商標)MD1000、D1180、D1330等;
 三菱ケミカル社製のダイヤナール(登録商標)BR-87、116等;
 東亞合成(株)製アルフォン(登録商標)UC-3000、UF-5022、UG-4010、UG-4035、UG-4070等;
 味の素ファインテクノ(株)製アジスパー(登録商標)PB-711、PB-821、PB-822、等を使用することが出来る。
 また、市販の液状や顆粒状のアクリル樹脂やメタクリル樹脂を用いることも有益である。
 尚、当該近赤外線吸収材料微粒子分散液において、近赤外線吸収材料微粒子100重量部に対し溶媒を80重量部以上含めば、分散液としての保存性を担保し易く、その後の近赤外線吸収材料微粒子分散体を作製する際の作業性も確保出来る。
 複合タングステン酸化物微粒子の溶媒への分散方法は、微粒子を分散液中へ均一に分散する方法であって、当該複合タングステン酸化物微粒子の粒子径が800nm以下、好ましくは200nm以下、さらに好ましくは10nm以上100nm以下に調製で出来るものであれば、特に限定されない。例えば、ビ-ズミル、ボ-ルミル、サンドミル、ペイントシェーカー、超音波ホモジナイザ-などが挙げられる。
 これらの器材を用いた機械的な分散処理工程によって、複合タングステン酸化物微粒子の溶媒中への分散と同時に複合タングステン酸化物粒子同士の衝突などにより微粒子化が進むとともに、当該複合タングステン酸化物粒子に含まれる六方晶の結晶構造へ歪や変形を付与し、当該結晶子構造を構成する原子における電子軌道の重なり状態が変化して、自由電子量の増加が進行する。
 尚、当該複合タングステン酸化物粒子の微粒子化の進行速度は、粉砕装置の装置定数により異なる。従って、予め、試験的な粉砕を実施して、複合タングステン酸化物微粒子に所定の粒子径を付与出来る粉砕装置、粉砕条件を求めておくことが肝要である。
 尚、近赤外線吸収材料微粒子分散液を経て近赤外線吸収材料微粒子の微粒子化を行い、その後、溶媒を除去して近赤外線吸収材料微粒子の分散粉を得る場合であっても、所定の粒子径を付与出来る、粉砕条件(微粒子化条件)を定めることは勿論である。当該分散粉は近赤外線吸収微粒子分散液の乾燥固化物の一種であり、上述した分散剤を含んでいる為、適宜な溶媒と混合することで、当該溶媒中に再分散させることが出来る。
 本発明に係る近赤外線吸収材料微粒子分散液の状態は、複合タングステン酸化物微粒子を溶媒中に分散した時の複合タングステン酸化物微粒子の分散状態を測定することで確認することが出来る。例えば、本発明に係る複合タングステン酸化物微粒子が、溶媒中において微粒子および微粒子の凝集状態として存在する液から試料をサンプリングし、市販されている種々の粒度分布計で測定することで確認することが出来る。粒度分布計としては、例えば、動的光散乱法を原理とした大塚電子(株)社製ELS-8000等の公知の測定装置を用いることが出来る。
 また、複合タングステン酸化物微粒子の結晶構造は、近赤外線吸収材料微粒子分散液の溶媒を除去して得られる複合タングステン酸化物微粒子について、X線回折測定を行うことにより当該微粒子に含まれる結晶構造を特定することができる。
 優れた近赤外線吸収特性を発揮させる観点から、近赤外線吸収微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、さらに好ましくは10nm以上70nm以下である。結晶子径の測定は、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析とを用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」等を用いて行うことができる。
 複合タングステン酸化物微粒子の分散粒子径は、光学特性の観点から好ましくは200nm以下、より好ましくは100nm以下まで、十分細かいことが好ましい。さらに、当該複合タングステン酸化物微粒子は均一に分散していることが好ましい。
 複合タングステン酸化物微粒子の分散粒子径が好ましくは200nm以下、より好ましくは10nm以上200nm以下、さらに好ましくは10nm以上100nm以下であれば、製造される近赤外線吸収体が、単調に透過率の減少した灰色系のものになってしまうのを回避出来るからである。
 尚、本発明に係る近赤外線吸収材料微粒子分散体の分散粒子径とは、近赤外線吸収材料微粒子分散体または近赤外線吸収体中に分散した、複合タングステン酸化物微粒子の単体粒子および当該複合タングステン酸化物微粒子が凝集した凝集粒子の粒子径を意味する概念である。
 本発明に係る近赤外線吸収材料微粒子分散体における、近赤外線吸収材料微粒子である複合タングステン酸化物微粒子の分散粒子径は、近赤外線吸収材料微粒子分散体から断面加工で取り出した薄片化試料の透過型電子顕微鏡像より、複合タングステン酸化物微粒子100個の粒子径を、画像処理装置を用いて測定し、その平均値を算出することで求めることが出来る。
 当該薄片化試料を取り出すための断面加工には、ミクロトーム、クロスセクションポリッシャ、集束イオンビーム(FIB)装置等を用いることが出来る。尚、近赤外線吸収材料微粒子分散体または近赤外線吸収体に含まれる複合タングステン酸化物微粒子の分散粒子径とは、マトリックスである固体媒体中で分散している、近赤外線吸収材料微粒子である複合タングステン酸化物微粒子の分散粒子径の平均値である。
 一方、近赤外線吸収材料微粒子分散液において、複合タングステン酸化物微粒子が凝集して粗大な凝集体となり、当該粗大化した粒子が多数存在すると、当該粗大粒子が光散乱源となる。この結果、当該近赤外線吸収材料微粒子分散液が、近赤外線吸収膜や近赤外線吸収体となったときに曇り(ヘイズ)が大きくなり、可視光透過率が減少する原因となることがある。従って、複合タングステン酸化物微粒子の粗大粒子生成を回避することが好ましい。
 得られた近赤外線吸収材料微粒子分散液から近赤外線吸収材料微粒子を得るには、公知の方法で溶媒を除去すればよいが、近赤外線吸収材料微粒子分散液を減圧乾燥することが好ましい。具体的には、近赤外線吸収材料微粒子分散液を撹拌しながら減圧乾燥し、溶媒成分を分離すればよい。乾燥工程の減圧の際の圧力値は適宜選択される。
 当該減圧乾燥法を用いることで、近赤外線吸収材料微粒子分散液からの溶媒の除去効率が向上するとともに、本発明に係る近赤外線吸収材料微粒子分散粉が長時間高温に曝されることがないので、当該分散粉中に分散している近赤外線吸収材料微粒子の凝集が起こらず好ましい。さらに近赤外線吸収材料微粒子の生産性も上がり、蒸発した溶媒を回収することも容易で、環境的配慮からも好ましい。
 乾燥工程に用いる設備としては、加熱および減圧が可能で、当該分散粉の混合や回収がし易いという観点から、真空流動乾燥機、真空加熱撹拌ライカイ機、振動流動乾燥機、ドラム乾燥機等が好ましいが、これらに限定されない。
6.近赤外線吸収材料微粒子分散体とその製造方法
 本発明に係る近赤外線吸収材料微粒子分散体は、上記近赤外線吸収材料微粒子と、上述したシラン化合物と、アクリル樹脂とを含む。
 そして、近赤外線吸収材料微粒子100質量部に対し、固体媒体としてのアクリル樹脂を80質量部以上含めば、近赤外線吸収材料微粒子分散体を好ましく形成できる。
 当該近赤外線吸収材料微粒子を固体媒体としてのアクリル樹脂に混合して、溶融混練する際には、「2.シラン化合物」にて説明したシラン化合物を添加する。
 尚、シラン化合物の添加量は、近赤外線吸収材料微粒子100質量部に対し、1質量部以上200質量部以下とすることが好ましい。
 そして、本発明に係る近赤外線吸収材料微粒子分散体は、シラン化合物を含有させた固体媒体へ、近赤外線吸収材料微粒子を溶融混練させたものである。
 さらに、本発明に係る近赤外線吸収材料微粒子分散体において、添加すべき固体媒体の全量ではなく一部の適宜量加えることで、マスターバッチの形である本発明に係る近赤外線吸収材料微粒子分散体を製造することも好ましい構成である。
 マスターバッチの形である本発明に係る近赤外線吸収材料微粒子分散体を製造する場合、シラン化合物を含有させた固体媒体と近赤外線吸収材料微粒子との混合物をベント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することにより、本発明に係るマスターバッチの形の赤外線吸収材料微粒子分散体を得ることができる。
 マスターバッチのペレットは、最も一般的な溶融押出されたストランドをカットする方法により得ることができる。従って、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。かかる場合には球状に近い形状をとることが一般的である。
 このように本発明に係るマスターバッチは、いずれの形態または形状を採り得るものである。尤も、後述する近赤外線吸収体を成形するときに、当該マスターバッチのペレットは、希釈に使用される固体媒体のペレットと同一の形態および形状を有していることが好ましい。
 本発明に係る近赤外線吸収材料微粒子分散体中において、複合タングステン酸化物微粒子は分散状態を維持しているので、当該近赤外線吸収材料微粒子分散体は、樹脂材料等の耐熱温度の低い基材材料への適用が可能であり、近赤外線吸収体形成の際に大型の装置を必要とせず安価であるという利点がある。
 尚、近赤外線吸収材料微粒子分散体の固体媒体のマトリックス中に分散した複合タングステン酸化物微粒子の平均粒子径と、当該近赤外線吸収材料微粒子分散体を形成するのに用いた近赤外線吸収材料微粒子分散液中や近赤外線吸収体形成用分散液中に分散した、複合タングステン酸化物微粒子の分散粒子径とが異なる場合がある。これは、近赤外線吸収材料微粒子分散液や近赤外線吸収体形成用分散液から、近赤外線吸収材料微粒子分散体を得る際に、当該分散液中で凝集していた複合タングステン酸化物微粒子の凝集が解される為である。
7.近赤外線吸収体とその製造方法
 本発明に係る近赤外線吸収体は、本発明に係る近赤外線吸収材料微粒子分散体を、公知の方法により板状、フィルム状、薄膜状から選択されるいずれかの形状に成型したものである。一方、本発明に係る近赤外線吸収材料微粒子分散体がマスターバッチの形の場合は、公知の方法で所定量の固体媒体であるアクリル樹脂媒体と混合し、公知の方法により板状、フィルム状、薄膜状から選択されるいずれかの形状に成型したものである。
 本発明に係る近赤外線吸収体は、従来の技術に係る近赤外線吸収体と比較して、太陽光線、特に近赤外線領域の光をより効率よく吸収し、同時に可視光領域の高透過率を保持する優れた光学特性を発揮する。そして、吸収された近赤外線は熱に変換される。
 本発明に係る近赤外線吸収材料微粒子分散体を用いることで、近赤外線吸収性に優れた近赤外線吸収体を得ることができる。
 ここで、本発明において近赤外線吸収性とは、近赤外線領域にある波長780nm~1200nmの光をよく吸収することを意味する概念である。
 太陽光線は様々な波長から構成されているが、大きく紫外線、可視光線、赤外線に分類することが出来、中でも赤外線が約46%を占めていることが知られている。そして本発明に係る近赤外線吸収材料微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する。
 従って、近赤外線吸収性は太陽光線の透過率、すなわち日射透過率で評価することが出来る。日射透過率が低い場合には、近赤外領域の光をよく吸収していることから、近赤外線吸収性が優れていると判断出来る。
 この結果、例えば本発明の近赤外線吸収体をフィルム状にし、窓に貼った場合、室内の明るさを保持したまま、日射熱の室内への侵入を抑制することができる。
 以上、本発明に係る近赤外線吸収材料微粒子分散体がマスターバッチである場合、公知の方法で所定量の固体媒体であるアクリル樹脂媒体と混合し、公知の方法により板状、フィルム状、薄膜状から選択されるいずれかの形状に成型する方法について説明したが、本発明に係る近赤外線吸収材料微粒子を、マスターバッチを経ずに基材である固体媒体中に分散させることも可能である。
 近赤外線吸収材料微粒子を固体媒体中に分散させるには、当該近赤外線吸収材料微粒子100質量部に対し1質量部以上200質量部以下のシラン化合物と共に固体媒体表面から浸透させても良いが、固体媒体であるアクリル樹脂媒体を、その溶融温度以上に温度を上げて溶融させた後、近赤外線吸収材料微粒子と、当該近赤外線吸収材料微粒子100質量部に対し1質量部以上200質量部以下のシラン化合物と、アクリル樹脂媒体とを混合することも好ましい。このようにして得られたものを所定の方法でフィルムや板(ボード)状に形成し、近赤外線吸収体を得ることが出来る。
 さらに、アクリル樹脂媒体に近赤外線吸収材料微粒子を分散する方法として、まずアクリル樹脂と、近赤外線吸収材料微粒子分散液と、当該近赤外線吸収材料微粒子100質量部に対し1質量部以上200質量部以下のシラン化合物とを混合して混合物を得る。得られた混合物から分散溶媒を蒸発させた後、アクリル樹脂の溶融温度である260℃程度に加熱して、アクリル樹脂を溶融させ混合し冷却することでも近赤外線吸収体の作製が可能である。
8.近赤外線吸収物積層体とその製造方法
 本発明に係る近赤外線吸収物積層体は、近赤外線吸収体が、所定の基材の表面に形成されたものである。
 本発明に係る近赤外線吸収物積層体は、所定の基材の表面に近赤外線吸収体を形成することで製造することが出来る。
 当該近赤外線吸収物積層体の基材としては、所望によりフィルムでもボードでも良く、形状は限定されない。透明基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、ふっ素樹脂等が、各種目的に応じて使用可能である。また、樹脂以外ではガラスを用いることができる。
9.近赤外線吸収用合わせ構造体およびその製造方法
 本発明に係る近赤外線吸収用合わせ構造体の一つは、本発明に係る近赤外線吸収材料微粒子分散体を用いて成形された近赤外線吸収体が、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される2枚以上の合わせ板間に存在しているものである。
 また、本発明に係る近赤外線吸収用合わせ構造体の一つは、本発明に係る近赤外線吸収物積層体が、板ガラス、プラスチック板、日射吸収機能を有する微粒子を含むプラスチック板から選択される合わせ板と対向したもの、または、板ガラス、プラスチック板、日射吸収機能を有する微粒子を含むプラスチック板から選択される2枚以上の合わせ板間に存在しているものである。
 本発明に係る近赤外線吸収体を用いた近赤外線吸収合わせ透明基材には、様々な形態がある。
 例えば、透明基材として無機ガラスを用いた近赤外線吸収合わせ無機ガラスは、近赤外線吸収体を挟み込んで存在させた対向する複数枚の無機ガラスを、公知の方法で張り合わせ一体化することによって得られる。得られた近赤外線吸収合わせ無機ガラスは、例えば、カーポート、スタジアム、ショッピングモール、空港などの屋根材、窓材等の建材として使用することが出来る。また、自動車の窓(ルーフ、クオーターウィンドウ)、自動車のフロントガラス等としても使用出来る。
 上述した本発明に係る近赤外線吸収体や近赤外線吸収物積層体を、2枚以上の対向する透明基材の間に挟み込んだり、本発明に係る近赤外線吸収物積層体を透明基材と対向させることで、本発明に係る近赤外線吸収用合わせ構造体を製造することが出来る。
 透明基材として透明樹脂を用い、上述した無機ガラスを用いた場合と同様に、板ガラス、プラスチック、近赤外線吸収機能を有する微粒子を含むプラスチックから選ばれる2枚以上の、対向する透明基材の間に近赤外線吸収膜を挟み込んだり、本発明に係る近赤外線吸収物積層体を透明基材と対向させることで、近赤外線吸収合わせ透明基材を得ることが出来る。用途は、近赤外線吸収合わせ無機ガラスと同様である。
 また、用途によっては、近赤外線吸収膜単体として使用することも可能である。さらに、無機ガラスや透明樹脂等の透明基材の片面または両面に、当該近赤外線吸収膜を存在させて近赤外線吸収物積層体として使用することも、勿論可能である。
10.まとめ
 本発明に係る赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体は、従来の技術に係る近赤外線吸収材料微粒子分散体、近赤外線吸収体および近赤外線吸収用合わせ構造体と比較して、太陽光線、特に近赤外線領域の光をより効率よく吸収し、同時に可視光領域の高透過率を保持する等、優れた光学特性を発揮した。
 そして、近赤外線吸収材料微粒子がアクリル樹脂中に分散している本発明に係る近赤外線吸収材料微粒子分散体を用いて基材表面に成膜した近赤外線吸収膜は、スパッタリング法、蒸着法、イオンプレーティング法及び化学気相法(CVD法)などの真空成膜法等の乾式法で作製した膜に比較しても、太陽光線、特に近赤外線領域の光を効率よく吸収し、同時に可視光領域の高透過率を保持する等、優れた光学特性を発揮した。
 また、本発明に係る近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体は、真空装置等の大掛かりな装置を使用することなく安価に製造可能であり、工業的に有用である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 本発明に係る複合タングステン酸化物微粒子の結晶子径の測定には、近赤外線吸収材料微粒子分散液から溶媒を除去して得られる複合タングステン酸化物微粒子分散粉を用いた。そして当該複合タングステン酸化物微粒子のX線回折パターンを、粉末X線回折装置(スペクトリス株式会社PANalytical製X’Pert-PRO/MPD)を用いて粉末X線回折法(θ-2θ法)により測定した。得られたX線回折パターンとリートベルト法による解析とから、当該微粒子に含まれる結晶子径を測定した。
 また、本発明に係る近赤外線吸収材料微粒子分散体における複合タングステン酸化物微粒子の分散粒子径は、近赤外線吸収材料微粒子分散体の薄片化試料の透過型電子顕微鏡(日立製作所(株)社製 HF-2200)像(2万倍)から画像解析を用いて測定した。
 さらに、Csタングステン酸化物微粒子を含んだ近赤外線吸収アクリル樹脂成形体の可視光透過率および日射透過率は、日立製作所(株)製の分光光度計U-4100を用い、JIS R 3106:1988に基づいて測定した。また、ヘイズ値は村上色彩技術研究所(株)社製HM-150Wを用い、JIS K 7136:2000に基づいて測定した。
(実施例1)
 水6.70kgに、炭酸セシウム(CsCO)7.43kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)34.57kgに添加して十分撹拌混合した後、撹拌しながら乾燥して乾燥物を得た(WとCsとのモル比が1:0.33相当である。)。当該乾燥物を、Nガスをキャリア-とした5体積%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した、その後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsタングステン酸化物粒子aを得た。
 当該Csタングステン酸化物粒子a15質量%と、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、「分散剤a」と記載する。)12質量%と、トルエン73質量%とを合計60g秤量した。当該秤量物を、0.3mmφZrOビ-ズを240g入れたペイントシェーカー(浅田鉄工社製)に装填し、24時間粉砕・分散処理することによって近赤外線吸収材料微粒子トルエン分散液(A-1液)を調製した。
 A-1液における近赤外線吸収材料微粒子(Csタングステン酸化物微粒子a)の分散粒子径は72.4nmであった。
 ここで、A-1液から溶媒を除去した後の分散粉におけるCsタングステン酸化物微粒子aの結晶子径は25nmであった。
 一方、A-1液に分散剤aを20g加え、近赤外線吸収材料微粒子トルエン分散液(A-2液)を得た。
 A-2液から真空加熱撹拌ライカイ機(石川製)を用いて、溶媒除去をおこない、Csタングステン酸化物微粒子分散粉bを得た。得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、アルコキシシラン化合物(KBM-103、信越シリコーン製)を0.32質量%と、残部のメタクリル樹脂とを混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用い260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得た。当該マスターバッチの薄片化試料から、近赤外線吸収体における分散粒子径を測定した。
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.045質量%と、残部のメタクリル樹脂とを混合して混合物を得た。得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ1mmに成形することで、Csタングステン酸化物微粒子がアクリル樹脂全体へ均一に分散した実施例1に係る近赤外線吸収体eを得た。
 当該実施例1に係る近赤外線吸収体における近赤外線吸収材料微粒子、近赤外線吸収体におけるシラン化合物およびアクリル樹脂の組成、近赤外線吸収材料微粒子の分散粒子径、近赤外線吸収体のプレート厚みを表1に記載する。
 得られた実施例1に係る近赤外線吸収体eの光学特性を測定したところ、表1に示すように、可視光透過率81.6%のときの日射透過率は51.6%、ヘイズ値は1.1%であった。
 当該実施例1に係る近赤外線吸収体eの光学特性の測定結果を表1に記載する。
(実施例2)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例1と同様に操作して、実施例2に係る近赤外線吸収体fを得た。
 当該実施例2に係る近赤外線吸収体における近赤外線吸収材料微粒子、近赤外線吸収体におけるシラン化合物およびアクリル樹脂の組成、近赤外線吸収材料微粒子の分散粒子径、近赤外線吸収体のプレート厚みを表1に記載する。以下、実施例3~24、比較例1~4においても、同様に表1に記載する。
 実施例2に係る近赤外線吸収体fの光学特性を測定したところ、表1に示すように、可視光透過率74.2%のときの日射透過率は39.2%、ヘイズ値は1.7%であった。
 当該実施例2に係る近赤外線吸収体fの光学特性の測定結果を表1に記載する。
 以下、実施例3~16においては、近赤外線吸収体における近赤外線吸収材料微粒子、近赤外線吸収体におけるシラン化合物およびアクリル樹脂の組成、近赤外線吸収材料微粒子の分散粒子径、近赤外線吸収体のプレート厚みおよび光学特性を表1に記載し、実施例17~24、比較例1~4においては、近赤外線吸収体における近赤外線吸収材料微粒子、近赤外線吸収体におけるシラン化合物およびアクリル樹脂の組成、近赤外線吸収材料微粒子の分散粒子径、近赤外線吸収体のプレート厚みおよび光学特性を表2に記載する。
(実施例3)
 前記得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%と、残分のメタクリル樹脂とを混合したことを除き、実施例1と同様に操作して、近赤外線吸収体gを得た。
 実施例3に係る近赤外線吸収体gの光学特性を測定したところ、表1に示すように、可視光透過率71.2%のときの日射透過率は35.1%、ヘイズ値は1.8%であった。
(実施例4)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例3と同様に操作して、実施例4に係る近赤外線吸収体hを得た。
 実施例4に係る近赤外線吸収体hの光学特性を測定したところ、表1に示すように、可視光透過率58.4%のときの日射透過率は24.6%、ヘイズ値は2.7%であった。
(実施例5)
 前記得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、シリコーンレジン(217FLAKE;東レ・ダウ製)を0.32質量%と、残分のメタクリル樹脂とを混合して混合物を得た。得られた混合物を、ブレンダーを用いて均一に混合した後、二軸押出機を用いて260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得たことを除き、実施例1と同様に操作して、実施例5に係る近赤外線吸収体iを得た。
 実施例5に係る近赤外線吸収体iの光学特性を測定したところ、表1に示すように、可視光透過率80.0%のときの日射透過率は49.1%、ヘイズ値は1.7%であった。
(実施例6)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例5と同様に操作して、実施例6に係る近赤外線吸収体jを得た。
 実施例6に係る近赤外線吸収体jの光学特性を測定したところ、表1に示すように、可視光透過率71.7%のときの日射透過率は36.7%、ヘイズ値は2.6%であった。
(実施例7)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094重質量%と、残分のメタクリル樹脂とを混合したことを除き、実施例5と同様に近赤外線吸収体kを得た。
 実施例7に係る近赤外線吸収体kの光学特性を測定したところ、表1に示すように、可視光透過率69.5%のときの日射透過率は33.9%、ヘイズ値は2.8%であった。
(実施例8)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例7と同様に近赤外線吸収体lを得た。
 実施例8に係る近赤外線吸収体lの光学特性を測定したところ、表1に示すように、可視光透過率56.2%のときの日射透過率は23.4%、ヘイズ値は4.1%であった。
(実施例9)
 前記得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、シランカップリング剤(KBM-903、信越シリコーン製)を0.32質量%と、残分のメタクリル樹脂とを混合して混合物を得た。得られた混合物を、ブレンダーを用いて均一に混合した後、二軸押出機を用いて260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得たことを除き、実施例1と同様に操作して、実施例9に係る近赤外線吸収体mを得た。
 実施例9に係る近赤外線吸収体mの光学特性を測定したところ、表1に示すように、可視光透過率81.2%のときの日射透過率は50.9%、ヘイズ値は2.0%であった。
(実施例10)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例9と同様に操作して、実施例10に係る近赤外線吸収体nを得た。
 実施例10に係る近赤外線吸収体nの光学特性を測定したところ、表1に示すように、可視光透過率70.5%のときの日射透過率は35.5%、ヘイズ値は3.0%であった。
(実施例11)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%と、残分のメタクリル樹脂とを混合したことを除き、実施例9と同様に近赤外線吸収体oを得た。
 実施例11に係る近赤外線吸収体oの光学特性を測定したところ、表1に示すように、可視光透過率69.1%のときの日射透過率は33.3%、ヘイズ値は3.3%であった。
(実施例12)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例11と同様に近赤外線吸収体pを得た。
 実施例12に係る近赤外線吸収体pの光学特性を測定したところ、表1に示すように、可視光透過率55.4%のときの日射透過率は22.5%、ヘイズ値は4.9%であった。
(実施例13)
 前記得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、シランカップリング剤(KBM-5103、信越シリコーン製)を0.32質量%と、残分のメタクリル樹脂とを混合して混合物を得た。得られた混合物を、ブレンダーを用いて均一に混合した後、二軸押出機を用いて260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得たことを除き、実施例1と同様に操作して、実施例13に係る近赤外線吸収体qを得た。
 実施例13に係る近赤外線吸収体qの光学特性を測定したところ、表1に示すように、可視光透過率80.9%のときの日射透過率は51.3%、ヘイズ値は1.8%であった。
(実施例14)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例13と同様に操作して、実施例14に係る近赤外線吸収体rを得た。
 実施例14に係る近赤外線吸収体rの光学特性を測定したところ、表1に示すように、可視光透過率72.0%のときの日射透過率は37.4%、ヘイズ値は2.8%であった。
(実施例15)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%と、残分のメタクリル樹脂とを混合したことを除き、実施例13と同様に近赤外線吸収体sを得た。
 実施例15に係る近赤外線吸収体sの光学特性を測定したところ、表1に示すように、可視光透過率69.2%のときの日射透過率は33.2%、ヘイズ値は3.1%であった。
(実施例16)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例15と同様に近赤外線吸収体tを得た。
 実施例16に係る近赤外線吸収体tの光学特性を測定したところ、表1に示すように、可視光透過率55.8%のときの日射透過率は23.1%、ヘイズ値は4.6%であった。
(実施例17)
 前記得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、アルコキシシラン(KBM-3063、信越シリコーン製)を0.32質量%と、残分のメタクリル樹脂とを混合して混合物を得た。得られた混合物を、ブレンダーを用いて均一に混合した後、二軸押出機を用いて260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得たことを除き、実施例1と同様に操作して、実施例17に係る近赤外線吸収体uを得た。
 実施例17に係る近赤外線吸収ポリアクリル樹脂成形体uの光学特性を測定したところ、表2に示すように、可視光透過率80.5%のときの日射透過率は50.1%、ヘイズ値は1.8%であった。
(実施例18)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例17と同様に操作して、実施例18に係る近赤外線吸収体vを得た。
 実施例18に係る近赤外線吸収体vの光学特性を測定したところ、表2に示すように、可視光透過率70.9%のときの日射透過率は35.5%、ヘイズ値は2.9%であった。
(実施例19)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%%と、残分のメタクリル樹脂とを混合したことを除き、実施例17と同様に近赤外線吸収体wを得た。
 実施例19に係る近赤外線吸収体wの光学特性を測定したところ、表2に示すように、可視光透過率69.0%のときの日射透過率は33.4%、ヘイズ値は3.1%であった。
(実施例20)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例19と同様に近赤外線吸収体xを得た。
 実施例20に係る近赤外線吸収体xの光学特性を測定したところ、表2に示すように、可視光透過率55.2%のときの日射透過率は22.5%、ヘイズ値は4.7%であった。
(実施例21)
 前記得られたCsタングステン酸化物微粒子分散粉b(Csタングステン酸化物微粒子Cs0.33WOとして)を1.6質量%と、アルコキシシラン(KBM-7053、信越シリコーン製)を0.32質量%と、残分のメタクリル樹脂とを混合して混合物を得た。得られた混合物を、ブレンダーを用いて均一に混合した後、二軸押出機を用いて260℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収体用のマスターバッチを得たことを除き、実施例1と同様に操作して、実施例21に係る近赤外線吸収体yを得た。
 実施例21に係る近赤外線吸収体yの光学特性を測定したところ、表2に示すように、可視光透過率81.2%のときの日射透過率は51.1%、ヘイズ値は1.8%であった。
(実施例22)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例21と同様に操作して、実施例22に係る近赤外線吸収体zを得た。
 実施例22に係る近赤外線吸収体zの光学特性を測定したところ、表2に示すように、可視光透過率72.5%のときの日射透過率は36.5%、ヘイズ値は2.8%であった。
(実施例23)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%と、残分のメタクリル樹脂とを混合したことを除き、実施例21と同様に近赤外線吸収体αを得た。
 実施例23に係る近赤外線吸収体αの光学特性を測定したところ、表2に示すように、可視光透過率70.3%のときの日射透過率は34.4%、ヘイズ値は3.0%であった。
(実施例24)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、実施例23と同様に近赤外線吸収体βを得た。
 実施例24に係る近赤外線吸収体βの光学特性を測定したところ、表2に示すように、可視光透過率56.3%のときの日射透過率は23.5%、ヘイズ値は4.4%であった。
(比較例1)
 二軸押出機を用いて260℃で溶融混練する際に、アルコキシシラン化合物を添加しなかった以外は実施例1と同様にして、比較例1に係る近赤外線吸収体mを得た。
 得られた近赤外線吸収体γの光学特性を測定したところ、表2に示すように、可視光透過率80.4%のときの日射透過率は51.2%、ヘイズ値は2.1%であった。
(比較例2)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、比較例1と同様に近赤外線吸収体δを得た。
 得られた近赤外線吸収体nの光学特性を測定したところ、表2に示すように、可視光透過率71.4%のときの日射透過率は37.4%、ヘイズ値は3.3%であった。
(比較例3)
 得られたマスターバッチ(Csタングステン酸化物微粒子Cs0.33WOとして)を0.094質量%と、メタクリル樹脂とを混合したことを除き、比較例1と同様に近赤外線吸収体εを得た。
 得られた近赤外線吸収体oの光学特性を測定したところ、表2に示すように、可視光透過率68.5%のときの日射透過率は33.5%、ヘイズ値は3.7%であった。
(比較例4)
 前記得られた混合物を射出成形金型に充填し、250℃でプレート状の厚さ2mmに成形したことを除き、比較例3と同様に近赤外線吸収体ζを得た。
 得られた近赤外線吸収体の光学特性を測定したところ、表2に示すように、可視光透過率54.0%のときの日射透過率は22.1%、ヘイズ値は5.7%であった。
(まとめ)
 以上、説明した実施例、比較例の結果から、アルコキシシラン化合物(KBM-103、KBM-3063、KBM-7103;信越シリコーン製)を添加した実施例1~4、17~24に係る近赤外線吸収体と、シリコーンレジン(217FLAKE;東レ・ダウ製)を添加した実施例5~8に係る近赤外線吸収体と、シランカップリング剤(KBM-903、KBM-5103;信越シリコーン製)を添加した実施例9~16に係る近赤外線吸収体、および、シラン化合物を添加しない比較例1~4に係る近赤外線吸収体との光学的特性を比較した。
 尚、当該光学的特性比較の便宜の為、縦軸に日射透過率、横軸に可視光透過率をとり、実施例1~4を◆でプロットし太実線で結び、実施例5~8を■でプロットし1点鎖線で結び、実施例9~12を×でプロットし長破線で結び、実施例13~16を*でプロットし2点鎖線で結び、実施例17~20を●でプロットし短破線で結び、実施例21~24を+でプロットし中破線で結び、比較例1~4を▲でプロットし細実線で結んだグラフである図1、縦軸にヘイズ値、横軸に可視光透過率をとり、図1と同様に、実施例1~4を◆でプロットし太実線で結び、実施例5~8を■でプロットし1点鎖線で結び、実施例9~12を×でプロットし長破線で結び、実施例13~16を*でプロットし2点鎖線で結び、実施例17~20を●でプロットし短破線で結び、実施例21~24を+でプロットし中破線で結び、比較例1~4を▲でプロットし細実線で結んだグラフである図2を作成した。
 図1より、実施例1~4、実施例5~8、実施例9~12、実施例13~16、実施例17~20、および、実施例21~24に係る近赤外線吸収体は、比較例1~4に係る近赤外線吸収体と比較して、日射透過率が同等または低いことが判明した。さらに、図2より、実施例1~4および実施例5~8に係る近赤外線吸収体は、比較例1~4に係る近赤外線吸収体と比較して、ヘイズ値が低いことも判明した。
 以上より、実施例1~24に係る近赤外線吸収体は、比較例1~4に係る近赤外線吸収体と比較して、透明性を担保しながら近赤外線吸収性を発揮出来、優れた光学特性を有することが確認できた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002

Claims (14)

  1.  アクリル樹脂中に、複合タングステン酸化物微粒子と、シラン化合物と、が含まれていることを特徴とする近赤外線吸収材料微粒子分散体。
  2.  前記シラン化合物が、シランカップリング剤、アルコキシシラン化合物、シリコーンレジンから選択されるいずれか1種類以上であることを特徴とする請求項1に記載の近赤外線吸収材料微粒子分散体。
  3.  前記シラン化合物が、アミノ基、エポキシ基、メルカプト基、(メタ)アクリル基、ビニル基、フェニル基、イソシアネート基、イミダゾール基から選択される1種類以上の官能基を有することを特徴とする請求項2に記載の近赤外線吸収材料微粒子分散体。
  4.  前記シリコーンレジンを構成するモノマー単位が、R-SiO1.6(但し、式中のRは、水素原子または有機基)と表記されることを特徴とする請求項2に記載の近赤外線吸収材料微粒子分散体。
  5.  前記シリコーンレジンの重量平均分子量が、1500以上200000以下であることを特徴とする請求項2または4に記載の近赤外線吸収材料微粒子分散体。
  6.  前記複合タングステン酸化物微粒子の分散粒子径が、1nm以上200nm以下であることを特徴とする請求項1から5のいずれかに記載の近赤外線吸収材料微粒子分散体。
  7.  前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記されることを特徴とする請求項1から6のいずれかに記載の近赤外線吸収材料微粒子分散体。
  8.  前記M元素が、Cs、Rbから選択される1種類以上の元素であることを特徴とする請求項7に記載の近赤外線吸収材料微粒子分散体。
  9.  前記複合タングステン酸化物微粒子が、六方晶の結晶構造を有する複合タングステン酸化物微粒子を含むことを特徴とする請求項1から8のいずれかに記載の近赤外線吸収材料微粒子分散体。
  10.  前記複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする請求項1から9のいずれかに記載の近赤外線吸収材料微粒子分散体。
  11.  請求項1から10のいずれかに記載の近赤外線吸収材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかに成型されたものであることを特徴とする近赤外線吸収体。
  12.  請求項11に記載の近赤外線吸収体が、基材上に積層されたものであることを特徴とする近赤外線吸収物積層体。
  13.  請求項11に記載の近赤外線吸収体が、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在していることを特徴とする近赤外線吸収用合わせ構造体。
  14.  請求項12に記載の近赤外線吸収物積層体が、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される合わせ板と対向している、または、板ガラス、プラスチック板、近赤外線吸収機能を有する微粒子を含むプラスチック板から選択される2枚以上の合わせ板間に存在していることを特徴とする近赤外線吸収用合わせ構造体。
PCT/JP2019/003656 2018-02-08 2019-02-01 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体 WO2019155999A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19750968.0A EP3761082A4 (en) 2018-02-08 2019-02-01 MICROPARTICLE DISPERSION FOR NEAR INFRARED RAY ABSORPTION MATERIAL, NEAR INFRARED RAY ABSORBER, NEAR INFRARED RAY ABSORPTION LAMINATE, COMBINED STRUCTURE FOR NEAR INFRARED RAY ABSORPTION
CN201980012355.3A CN111699421B (zh) 2018-02-08 2019-02-01 近红外线吸收材料微粒分散体、近红外线吸收体、近红外线吸收物叠层体以及近红外线吸收用夹层结构体
JP2019570722A JP7259769B2 (ja) 2018-02-08 2019-02-01 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体
KR1020207023247A KR102575326B1 (ko) 2018-02-08 2019-02-01 근적외선 흡수 재료 미립자 분산체, 근적외선 흡수체, 근적외선 흡수물 적층체 및 근적외선 흡수용 접합 구조체
US16/968,714 US20210070961A1 (en) 2018-02-08 2019-02-01 Near-infrared absorbing material fine particle dispersion body, near-infrared absorbing body, near-infrared absorbing substance laminated body and combined structure for near infrared absorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021100 2018-02-08
JP2018021100 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019155999A1 true WO2019155999A1 (ja) 2019-08-15

Family

ID=67549414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003656 WO2019155999A1 (ja) 2018-02-08 2019-02-01 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体

Country Status (7)

Country Link
US (1) US20210070961A1 (ja)
EP (1) EP3761082A4 (ja)
JP (1) JP7259769B2 (ja)
KR (1) KR102575326B1 (ja)
CN (1) CN111699421B (ja)
TW (1) TWI825069B (ja)
WO (1) WO2019155999A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255859A1 (en) * 2021-06-03 2022-12-08 Kristalbond Technologies Sdn Bhd A transparent film-forming composition for producing a near-infrared shielding coating and a method of producing thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2005232334A (ja) * 2004-02-20 2005-09-02 Toyo Ink Mfg Co Ltd 無機化合物樹脂分散体、成形ペレット及び成形品
JP2011080003A (ja) * 2009-10-09 2011-04-21 Sumitomo Dow Ltd 電磁波吸収性フィラーおよびそれからなる電磁波吸収性樹脂組成物
JP2014094493A (ja) * 2012-11-08 2014-05-22 Sumitomo Metal Mining Co Ltd 透明樹脂積層体とその製造方法、ならびに熱線遮蔽機能を有するプライマー層形成用のプライマー液
US20150030802A1 (en) * 2013-07-23 2015-01-29 Industrial Technology Research Institute Infrared absorption material, method for fabricating the same, and thermal isolation structure employing the same
JP2016155256A (ja) * 2015-02-23 2016-09-01 コニカミノルタ株式会社 遮熱フィルム、およびその製造方法
CN107083101A (zh) * 2017-03-03 2017-08-22 厦门纳诺泰克科技有限公司 一种含钨金属氧化物纳米颗粒分散体及其制备方法
JP6269805B1 (ja) * 2016-12-27 2018-01-31 住友大阪セメント株式会社 分散液、塗布液、及び熱線遮蔽フィルム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907750A (en) * 1970-03-03 1975-09-23 Owens Illinois Inc Reaction products of silicon monoxide and olefins and methods of making the same
WO2005078012A2 (en) * 2004-02-18 2005-08-25 Huntsman Advanced Materials (Switzerland) Gmbh Fire retardant compositions using siloxanes
WO2008149974A1 (ja) * 2007-06-08 2008-12-11 Bridgestone Corporation 近赤外線遮蔽体、これを用いた積層体及びディスプレイ用光学フィルタ
JP2009224591A (ja) * 2008-03-17 2009-10-01 Dainippon Printing Co Ltd 電磁波遮蔽フィルタ、及び画像表示装置
JP2009271515A (ja) * 2008-04-11 2009-11-19 Bridgestone Corp 近赤外線遮蔽体、及びこれを用いたディスプレイ用光学フィルタ
WO2010074831A1 (en) * 2008-12-16 2010-07-01 Dow Corning Corporation Preparation of siloxanes
EP2404752A4 (en) * 2009-03-06 2013-10-09 Bridgestone Corp LAMINATE FOR HEAT RADIATION SHIELDING AND LAMINATED GLASS FOR HEAT RADIATION SHIELDING
JP6059513B2 (ja) * 2012-11-14 2017-01-11 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
TW201410613A (zh) * 2013-06-18 2014-03-16 Taiflex Scient Co Ltd 可塑化隔熱組成物、透明隔熱中間膜及包含其之透明隔熱夾層板
CN104341000B (zh) * 2013-08-05 2017-09-29 北京化工大学 纳米掺杂vib族金属氧化物颗粒或其分散体的制备方法和用途
WO2017002763A1 (ja) * 2015-06-30 2017-01-05 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、自動車、建造物、分散体、混合組成物、および分散体の製造方法、分散液、分散液の製造方法
WO2017073691A1 (ja) * 2015-10-30 2017-05-04 住友金属鉱山株式会社 粘着剤層、近赤外線遮蔽フィルム、合わせ構造体、積層体、及び粘着剤組成物
MX2018011190A (es) * 2016-03-16 2019-05-16 Sumitomo Metal Mining Co Cuerpo de dispersion de particulas finas de material de proteccion de infrarrojo cercano, cuerpo de proteccion de infrarrojo cercano y estructura laminada de proteccion de infrarrojo cercano y metodo de produccion de los mismos.
JP7249954B2 (ja) * 2017-05-05 2023-03-31 ダウ シリコーンズ コーポレーション ヒドロシリル化硬化性シリコーン樹脂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2005232334A (ja) * 2004-02-20 2005-09-02 Toyo Ink Mfg Co Ltd 無機化合物樹脂分散体、成形ペレット及び成形品
JP2011080003A (ja) * 2009-10-09 2011-04-21 Sumitomo Dow Ltd 電磁波吸収性フィラーおよびそれからなる電磁波吸収性樹脂組成物
JP2014094493A (ja) * 2012-11-08 2014-05-22 Sumitomo Metal Mining Co Ltd 透明樹脂積層体とその製造方法、ならびに熱線遮蔽機能を有するプライマー層形成用のプライマー液
US20150030802A1 (en) * 2013-07-23 2015-01-29 Industrial Technology Research Institute Infrared absorption material, method for fabricating the same, and thermal isolation structure employing the same
JP2016155256A (ja) * 2015-02-23 2016-09-01 コニカミノルタ株式会社 遮熱フィルム、およびその製造方法
JP6269805B1 (ja) * 2016-12-27 2018-01-31 住友大阪セメント株式会社 分散液、塗布液、及び熱線遮蔽フィルム
CN107083101A (zh) * 2017-03-03 2017-08-22 厦门纳诺泰克科技有限公司 一种含钨金属氧化物纳米颗粒分散体及其制备方法

Also Published As

Publication number Publication date
EP3761082A1 (en) 2021-01-06
CN111699421B (zh) 2023-03-24
TW201936763A (zh) 2019-09-16
TWI825069B (zh) 2023-12-11
EP3761082A4 (en) 2022-01-26
KR102575326B1 (ko) 2023-09-06
KR20200118056A (ko) 2020-10-14
US20210070961A1 (en) 2021-03-11
JP7259769B2 (ja) 2023-04-18
CN111699421A (zh) 2020-09-22
JPWO2019155999A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5228376B2 (ja) 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材
JP4655105B2 (ja) 紫外線遮蔽透明樹脂成形体およびその製造方法
JP6825619B2 (ja) 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法
WO2017104854A1 (ja) 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法
WO2010055570A1 (ja) 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
JP5120661B2 (ja) 合わせ構造体
JP7276159B2 (ja) 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体
TWI824074B (zh) 表面處理紅外線吸收微粒子粉末、使用該表面處理紅外線吸收微粒子之紅外線吸收微粒子分散液、紅外線吸收微粒子分散體及紅外線吸收基材
WO2019155999A1 (ja) 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体
JP4487787B2 (ja) 日射遮蔽用ホウ化物微粒子、このホウ化物微粒子を用いた日射遮蔽体形成用分散液および日射遮蔽体、並びに日射遮蔽用ホウ化物微粒子の製造方法および日射遮蔽体形成用分散液の製造方法
TW201946876A (zh) 經表面處理之紅外線吸收微粒子分散液及紅外線吸收透明基材
JP6949304B2 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
JP7338237B2 (ja) 赤外線吸収ランプおよび赤外線吸収ランプカバー
JP2009144037A (ja) 樹脂添加用タングステン酸化物微粒子分散体、タングステン酸化物微粒子分散塩化ビニル樹脂成形体およびタングステン酸化物微粒子分散塩化ビニル樹脂成形体の製造方法
JP2021008377A (ja) 表面処理赤外線吸収微粒子粉末、表面処理赤外線吸収微粒子分散液、表面処理赤外線吸収微粒子分散体、および、表面処理赤外線吸収微粒子粉末の製造方法
JP2023002077A (ja) 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体
CN116670072A (zh) 热射线屏蔽树脂片材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750968

Country of ref document: EP

Effective date: 20200908