WO2019154145A1 - 具有特殊配方的发色膜、压力测试膜及其制备方法 - Google Patents

具有特殊配方的发色膜、压力测试膜及其制备方法 Download PDF

Info

Publication number
WO2019154145A1
WO2019154145A1 PCT/CN2019/073333 CN2019073333W WO2019154145A1 WO 2019154145 A1 WO2019154145 A1 WO 2019154145A1 CN 2019073333 W CN2019073333 W CN 2019073333W WO 2019154145 A1 WO2019154145 A1 WO 2019154145A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
chromonic
layer
water
added
Prior art date
Application number
PCT/CN2019/073333
Other languages
English (en)
French (fr)
Inventor
崔叶
刘亚军
李亚想
李娜
冉光念
曹雪
杨茉
杨伟
闫志鹏
Original Assignee
保定乐凯新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保定乐凯新材料股份有限公司 filed Critical 保定乐凯新材料股份有限公司
Priority to JP2020564995A priority Critical patent/JP7178123B2/ja
Priority to KR1020207026233A priority patent/KR102442123B1/ko
Publication of WO2019154145A1 publication Critical patent/WO2019154145A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/536Base coat plus clear coat type each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09D109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present disclosure relates to a chromonic film and a pressure test film, and more particularly to a chromonic film having a special formulation, a pressure test film, and a method of preparing the same.
  • the pressure test is mainly applied to various production processes such as lamination of printed circuit boards, confirmation and adjustment of pressure between rolls, lamination of liquid crystal glass panels, and assembly of engine cylinders, which have strict requirements on pressure.
  • the pressure tester is usually used for stress test, but the pressure test method is complicated in operation, the measurement result is hysteresis, the test accuracy and sensitivity are poor, and it is only applicable to the pressure test in a small area, and is not suitable for online pressure monitoring, and is not applicable. Pressure test with special shaped areas.
  • the prior art provides a pressure test film comprising a chromonic film material L containing microcapsules of a dye precursor and a chromogenic film material K containing a chromogenic compound.
  • the chromonic film material L and the chromogenic film material K are overlapped in a coating manner relative to each other, placed between the pressure receiving surfaces, and the microcapsules are broken when the pressure is greater than the breaking threshold, releasing the dye.
  • the dye is brought into contact with the color developing compound contained in the color developing film material K to cause a color forming reaction, and the pressure test can be completed by observing and measuring the concentration depth of the color forming region.
  • the present disclosure is based on the above requirements, improving the formulation of the chromonic layer such that the microcapsules are formed uniformly, and by ensuring a sufficient color development concentration by defining a ratio between the electron-donating leuco dye precursor and the solvent contained in the microcapsules. Under the premise, it is effective to avoid the defects that the color development is weak or even unusable due to the precipitation of the electron-donating leuco dye precursor under low-temperature use conditions.
  • a chromonic film comprising: a substrate, an undercoat layer sequentially laminated on the substrate, a textured layer, and a chromonic layer, the chromonic layer comprising the microcapsule
  • the microcapsule contains an electron donating leuco dye precursor.
  • the microcapsules are coated with a dye solution consisting of an electron-donating leuco dye precursor and a solvent, wherein each 100 parts of the dye solution contains 3 parts to 12 parts of an electron-donating leuco dye precursor.
  • a pressure test film comprising: a chromonic film layer comprising a chromonic film; and a chromogenic film layer containing an electron accepting compound Color developing materials.
  • a method of preparing a chromonic film comprising: preparing an undercoat layer slurry by dissolving an aqueous resin in water, adding an auxiliary agent and stirring uniformly; and adding a reactive diluent to the UV The resin is stirred evenly, and a photoinitiator or an auxiliary agent is added and stirred to form a slurry of the uneven structure layer; the oil phase is added to the water by a membrane emulsification method by disposing an oil phase and an aqueous phase containing an electron-donating leuco dye precursor.
  • a method of preparing a pressure test film comprising: preparing an undercoat layer slurry by dissolving an aqueous resin in water, adding an auxiliary agent and stirring uniformly; and adding a reactive diluent to the UV The resin is stirred evenly, and a photoinitiator or an auxiliary agent is added and stirred to form a slurry of the uneven structure layer; the oil phase is added to the water by a membrane emulsification method by disposing an oil phase and an aqueous phase containing an electron-donating leuco dye precursor.
  • the phase forms an emulsion, and then is added with a curing agent and stirred uniformly, and heated to 50 ° C for 4 hours to prepare a microcapsule dispersion, and then added with a binder and water and stirred to form a chromonic layer slurry; by adding activated clay
  • the water is stirred and pre-dispersed, and then sanded to form an active white clay aqueous dispersion, and then added with a binder to uniformly form a color developing layer slurry;
  • the base coating slurry is coated on the substrate, and then
  • the undercoat layer is sequentially coated with the uneven structure layer slurry and the chromonic layer slurry to obtain a chromonic film which can be used for the pressure test film, and the chromogenic layer slurry is coated on the substrate to obtain a display which can be used for the pressure test film.
  • Color film and will Said coloring film bonded to the color film to the film stress test.
  • the particle size of the microcapsules in the chromonic film material L of the pressure test film provided by the present disclosure is relatively uniform, and the coating is uniformly uniform without agglomeration, effectively avoiding agglomeration caused by large and small particles.
  • the critical pressure values between the microcapsules are relatively close, when the pressure value fluctuates very little during the stress test, it can also be displayed with the clearest and most obvious concentration difference, thereby realizing the large-area stress test environment. High sensitivity, high resolution testing.
  • the pressure test film provided by the present disclosure can effectively avoid the use condition at low temperature by ensuring a sufficient color development concentration by defining a ratio between the electron-donating leuco dye precursor contained in the microcapsule and the solvent. A defect in which hair color weakening or even unusable due to precipitation of an electron-donating leuco dye precursor.
  • FIG. 1 is a schematic structural view of a chromonic film material L according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a pressure test film according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a method of preparing a chromonic film according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart of a method of preparing a pressure test film in accordance with an embodiment of the present disclosure.
  • the chromonic film provided by the present disclosure is made of a chromonic film material L, and the chromonic film material L is composed of a chromonic film substrate 213, an undercoat layer 215, a textured layer 217, and a coloring layer 219. composition.
  • the undercoat layer 215, the uneven structure layer 217, and the coloring layer 219 are sequentially applied and adhered to the chromonic film substrate 213.
  • the structure and function of the undercoat layer 215, the relief structure layer 217, and the coloring layer 219 will be described in more detail below.
  • the pressure test film provided by the present disclosure is composed of a chromonic film layer containing a chromonic film material L and a color developing film layer containing a chromogenic film material K.
  • the constitution of the color developing film material L is as described above, and the color developing film material K is composed of the color developing film substrate 223 and the color developing layer 225.
  • the pressure test film is formed by overlapping the coloring layer 219 of the color developing film so as to face the coloring layer 225 of the color developing film.
  • the chromonic film material L and the chromogenic film material K may not be formed into a pressure test film at the time of manufacture, but may be separately manufactured and sold as a separate film, that is, a chromonic film and a chromogenic film, and in application.
  • a structure such as a pressure test film is formed (hereinafter, for the sake of explanation, it is still called Test the film for pressure).
  • a pressure P is applied between the photographic film pressure receiving surface 211 and the chromizing film pressure receiving surface 221, so that the microcapsules in the chromonic film are released by electron force release.
  • the color dye when the electron-donating leuco dye meets with the electron-accepting compound in the color-developing layer, and then determines the pressure P according to the degree of color formation, thereby achieving the purpose of testing the pressure using the pressure test film.
  • the substrate described herein includes a substrate 213 of a chromonic film and a substrate 223 of a chromogenic film.
  • a substrate suitable for the present disclosure may be selected from a substrate such as a plastic film, paper, synthetic paper, or the like.
  • the plastic film include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC).
  • Specific examples of the paper include high quality paper, coated paper, art paper, and the like.
  • Specific examples of the synthetic paper include synthetic papers formed of synthetic fibers such as polyethylene, polyamide, and polyethylene terephthalate, or synthetic papers formed by laminating them on one or both sides of paper. Paper, etc.
  • the present disclosure preferably has a PET of 50-125 [mu]m.
  • the undercoat layer 215 functions to improve adhesion of the textured structure layer 217 on the chromonic film substrate 213.
  • the undercoat layer 215 is usually composed of one or more aqueous resins including styrene-butadiene copolymer latex (SBR), acrylate latex, polyvinyl alcohol (PVA), gelatin, carboxymethyl group.
  • SBR styrene-butadiene copolymer latex
  • PVA polyvinyl alcohol
  • gelatin carboxymethyl group.
  • a synthetic or natural polymeric substance such as cellulose (CMC).
  • the present disclosure is preferably PVA and SBR.
  • the relief structure layer 217 functions to apply pressure to the microcapsules in the chromonic layer 219 after the pressure applied to the surface of the pressure test film is converted by area.
  • the textured structure layer 217 is composed of a UV resin, a reactive diluent, and a photoinitiator.
  • the UV resin in the uneven structure layer 217 is composed of two or more of the following UV resins, and the UV resin suitable for the present disclosure includes, but is not limited to, urethane acrylate, ring Oxy acrylate, aliphatic urethane acrylate, and the like.
  • the reactive diluent in the textured structure layer 217 is composed of two or more of the following reactive diluents, including but not limited to difunctional monomers such as tripropylene glycol diacrylate (TPGDA), dipropylene glycol double Acrylate (DPGDA), trifunctional monomers such as pentaerythritol triacrylate (PET3A), trimethylolpropane triacrylate (TMPTA), polyfunctional monomers such as dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate Ester (PET4A) and the like.
  • difunctional monomers such as tripropylene glycol diacrylate (TPGDA), dipropylene glycol double Acrylate (DPGDA), trifunctional monomers such as pentaerythritol triacrylate (PET3A), trimethylolpropane triacrylate (TMPTA), polyfunctional monomers such as dipentaerythritol
  • Photoinitiators include, but are not limited to, 1-hydroxycyclohexyl phenyl ketone (184), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO), 2-methyl-1-[ 4-Methylthiophenyl]-2-morphinyl-1-propanone (907) and the like.
  • the uneven structure layer 217 is disposed on the undercoat layer 215, and the uneven portion of the uneven structure layer 217 has at least two convex portions, and two adjacent convex portions
  • the linear distance L between them satisfies D50X0.2 ⁇ L ⁇ D50X0.8.
  • L ⁇ D50X0.2 because the spacing between adjacent convex portions is too small, the force area of the microcapsules cannot be effectively concentrated, and the pressure distribution under micro-pressure conditions cannot be measured.
  • L>D50X0.8 most of the microcapsules The pressure distribution measurement cannot be achieved because it is trapped in the gap between the adjacent convex portions and cannot be broken when the pressure is applied.
  • the shape of the protrusion in the relief structure layer 217 includes, but is not limited to, a shape of a cylinder, a cone, a cuboid, a cube, or the like.
  • the chromonic layer 219 comprises microcapsules, a binder, and an adjuvant comprising an electron donating leuco dye precursor.
  • the microcapsules of the present disclosure comprise at least two portions of an electron donating leuco dye precursor solution and a microcapsule wall.
  • the electron donating leuco dye precursor solution comprises at least one electron donating leuco dye precursor and at least one solvent.
  • the role of the electron donating leuco dye precursor is the primary coupler.
  • the electron-donating leuco dye precursor a known one can be used, such as a fluoran compound, a mercaptopeptide ketone compound, a rhodamine lactam compound, a spiropyran compound, or a phenothiazine compound.
  • Electron-donating leuco dye precursors suitable for use in the present disclosure include, but are not limited to, crystal violet lactone (CVL), leuco methylene blue (BLMB).
  • the solvent mainly serves to dissolve the electron-donating leuco dye precursor, and a known one can be used.
  • diarylalkanes such as 1-phenyl-1-dimethylphenylethane, diaryl olefins, alkylnaphthalenes such as diisopropylnaphthalene, aliphatic hydrocarbons such as isoalkanes, and corn oil
  • Natural animal and vegetable oils such as castor oil and rapeseed oil, mineral oil, etc.
  • the electron-donating leuco dye precursor solution contains 3 parts to 12 parts of an electron-donating leuco dye precursor per 100 parts of the dye solution, if given If the electronic leuco dye precursor is less than 3 parts, the coloring concentration is insufficient. If the electron-donating leuco dye precursor is higher than 12 parts, the electron-donating leuco dye precursor crystallizes in a low temperature environment, resulting in effective development. The color component is reduced.
  • a solvent having a lower boiling point may be added as a co-solvent as needed to better dissolve the electron-donating leuco dye precursor in a solvent.
  • Low boiling solvents suitable for use in the present disclosure include, but are not limited to, ketones such as acetone, methyl ethyl ketone, esters such as methyl acetate and ethyl acetate.
  • the wall material of the microcapsule may be a well-known water-insoluble and oil-insoluble substance such as polyurethaneurea, gelatin, melamine-formaldehyde resin, etc., and the present disclosure is preferably a polyurethaneurea.
  • the wall material of the microcapsules may be formed by a known method such as an interfacial polymerization method, an in-situ polymerization method, a coacervation method, or the like.
  • the wall material is preferably formed by interfacial polymerization.
  • the wall material consists at least of a reactive monomer and a curing agent.
  • Suitable reactive monomers for the microcapsule wall material include, but are not limited to, dicyclohexylmethane diisocyanate (HDI), hexamethylene diisocyanate (HMDI), trimethylolpropane adduct of hexamethylene diisocyanate, benzene A polyisocyanate oligomer such as a trimethylolpropane adduct of dimethic acid diisocyanate.
  • Curing agents suitable for the preparation of the microcapsule wall material include, but are not limited to, polyhydric hydroxy compounds such as aliphatic or aromatic polyols, polyamines such as triethylenetetramine, hexamethylenediamine, aliphatic polyamines, epoxy An alkane adduct such as a butylene oxide adduct of ethylenediamine may be used as long as it contains two or more -NH groups or -NH2 groups in the molecule.
  • the curing agent is preferably dissolved in water before use.
  • the span is less than 0.5, the manufacturing cost of the microcapsules increases sharply; if the span is larger than 1.2, the phenomenon of agglomeration of the size particles in the microcapsule system due to the difference in surface energy is prominent, which causes the pressure test film to cause coloration due to agglomeration during application. The density is uneven, resulting in reduced measurement accuracy.
  • the binder in the coloring layer may be a water-soluble polymer such as starch, CMC, or PVA.
  • the adjuvant includes at least an emulsifier including, but not limited to, an amphiphilic polymer such as PVA, CMC, starch, gelatin, etc., and PVA is preferred in the present disclosure.
  • an emulsifier including, but not limited to, an amphiphilic polymer such as PVA, CMC, starch, gelatin, etc., and PVA is preferred in the present disclosure.
  • the color developing layer 225 includes an electron accepting compound and a binder.
  • the electron-accepting compound is a main color developing agent, and the electron-accepting compound may be a known electron-accepting compound including an inorganic compound such as activated clay, kaolin, clay, or the like.
  • organic compounds such as: aromatic carboxylic acid metal salts, carboxylated terpene phenolic resin metal salts, phenolic resins, salicylates and derivatives thereof.
  • the function of the binder of the color developing layer 225 is to improve the adhesion of the electron-accepting compound to the color developing film substrate 223.
  • the adhesive to which the color developing layer 225 of the present disclosure is applied is composed of one or more of the following water-soluble adhesives including, but not limited to, SBR, acrylate latex, PVA, gum arabic, gelatin, CMC, and the like.
  • step S310 various pastes used for producing a coloring film, that is, a coloring film material L, are prepared.
  • the slurry includes at least an undercoat layer paste, a textured layer slurry, and a chromonic layer slurry.
  • the step S310 comprises preparing an undercoat slurry to be used by dissolving the aqueous resin in water, adding an auxiliary agent and stirring uniformly.
  • the step S310 further comprises forming a relief structure layer slurry to be used by adding a reactive diluent to the UV resin and stirring uniformly, adding a photoinitiator or an auxiliary agent and stirring.
  • the step S310 further includes preparing the microcapsules and formulating the chromonic layer slurry, wherein the preparing the microcapsules comprises emulsification of the water-oil mixture and forming the microcapsule wall material.
  • the oil phase is composed at least of the above-mentioned electron donating leuco dye precursor solution, a reaction monomer for synthesizing the microcapsule wall material, and the aqueous phase is composed of at least an emulsifier and water.
  • the emulsification process may employ a known emulsification method such as a mechanical stirring emulsification method, a homogeneous emulsification method, a phacoemulsification method, a membrane emulsification method, or the like.
  • the emulsion is preferably prepared by a membrane emulsification method, and the aqueous solution of the curing agent is added and stirred uniformly, and the temperature is raised to 50 ° C for 4 hours to prepare a microcapsule dispersion, and the preparation color is prepared.
  • the layer slurry comprises adding a binder and water to the microcapsule dispersion and stirring to form a chromonic layer slurry for use.
  • step S320 the undercoat layer is applied onto the substrate by a known coating method such as wire bar, gravure coating, extrusion coating, reverse roll coating or the like and dried.
  • step S330 the wet coating of the uneven structure layer is applied on the undercoat layer by a known coating method such as wire bar, gravure coating, extrusion coating, reverse roll coating or the like to obtain a textured structure layer.
  • step S340 the coloring layer is applied onto the uneven structure layer by a known coating method such as slope coating or curtain coating, and dried to obtain a coloring film material according to the present disclosure.
  • FIG. 4 is a flow chart of a method of preparing a pressure test film in accordance with an embodiment of the present disclosure.
  • the preparation method of the pressure test film is basically the same as the preparation method of the chromonic film as shown in FIG. 3 except for the steps S410, S450 and S460, and therefore the same part will be referred to the description of FIG.
  • the step S410 in the pressure test film preparing method shown in FIG. 4 includes the content in step S310 shown in FIG.
  • a slurry for forming a chromogenic film material is prepared in step S410, the paste comprising at least a chromogenic layer slurry, and the chromogenic layer slurry is passed
  • the activated clay is added to water and stirred for pre-dispersion, and then sanded to obtain an aqueous dispersion of activated clay, and added with a binder to uniformly form a coloring layer slurry for use.
  • step S450 the coloring layer is applied onto the substrate by a known coating method such as wire bar, gravure coating, extrusion coating, reverse roll coating or the like, and dried to obtain the color developing film material. .
  • step S460 the obtained chromonic film material and chromogenic film material are bonded together or temporarily bonded together when they are used to form the pressure test film.
  • step S410 as shown in FIG. 4 with respect to step S310 shown in FIG. 3, and the content of step S450 shown in FIG. Together, a method for preparing a chromogenic film material can be formed.
  • the microcapsule emulsion is obtained by the membrane emulsification method, and then the curing agent aqueous solution is added to the obtained emulsion, and the temperature is raised to 50 ° C under stirring. After continuing to react for 4 hours, it was cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining a microcapsule dispersion containing an electron-donating leuco dye precursor.
  • a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain the pressure of the present disclosure.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film of the present disclosure was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • the aqueous phase solution was used as a continuous mobile phase of a membrane emulsifier, and the oil phase solution was used as a dispersed phase to obtain a microcapsule emulsion by a membrane emulsification method. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain the pressure of the present disclosure.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film of the present disclosure was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • the aqueous phase solution was used as a continuous mobile phase of a membrane emulsifier, and the oil phase solution was used as a dispersed phase to obtain a microcapsule emulsion by a membrane emulsification method. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film of the present disclosure was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • the aqueous phase solution was used as a continuous mobile phase of a membrane emulsifier, and the oil phase solution was used as a dispersed phase to obtain a microcapsule emulsion by a membrane emulsification method. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain the pressure of the present disclosure.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film of the present disclosure was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • the aqueous phase solution was used as a continuous mobile phase of a membrane emulsifier, and the oil phase solution was used as a dispersed phase to obtain a microcapsule emulsion by a membrane emulsification method. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain the pressure of the present disclosure.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film of the present disclosure was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • an aqueous phase solution was used as a continuous phase, and an oil phase solution was added under high-speed stirring at 750 rpm, and emulsified for 10 minutes to obtain a microcapsule emulsion. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 0.5 micron undercoat layer was sequentially coated on a 75 micron PET substrate using a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain a chromonic film material of a pressure test film.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • an aqueous phase solution was used as a continuous phase, and an oil phase solution was added under high-speed stirring at 950 rpm, and emulsified for 10 minutes to obtain a microcapsule emulsion. Then, an aqueous solution of a curing agent was added to the obtained emulsion, and the temperature was raised to 50 ° C under stirring, and the reaction was continued for 4 hours, and then cooled to room temperature and water was added to adjust the solid content to 30%, thereby obtaining an electron-donating leuco dye precursor. Microcapsule dispersion.
  • a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain a pressure test film.
  • Color film material On the 75 micron PET substrate, a 0.5 micron undercoat layer and a textured layer were sequentially coated with a wire bar, and a 12 micron chromonic layer was coated with a slope coater, dried, and wound to obtain a pressure test film. Color film material.
  • a 13 micron chromogenic layer was coated on a 75 micron PET substrate using a wire bar, and after drying, the chromogenic film material of the pressure test film was obtained.
  • the resulting chromonic film material was overlaid with the chromogenic film material in a manner opposite to the coating to test its properties.
  • microcapsule dispersion was taken and tested by a BT-9300ST laser particle size distribution analyzer to obtain a particle size distribution D50 and a particle size distribution span of the microcapsule dispersion.
  • the sheet coated with the undercoat layer and the uneven structure layer was taken, and the shortest distance between the five adjacent convex portions was measured under an electron microscope (SEM), and an average value was obtained to obtain an A value.
  • SEM electron microscope
  • the pressure test films obtained above were divided into two groups of I and II, and the following tests were carried out under conditions of 25 ° C and 10 ° C, respectively.
  • the above microcapsules are cut into a size of 3 cm ⁇ 3 cm, and then the chromonic sheet containing the electron-donating leuco dye precursor and the color developing sheet containing the electron-accepting compound are overlapped in a coating manner, and It is placed between two smooth planes, and the entire sheet is subjected to full coverage to make it saturated with color. Then, the two sheets that are overlapped are peeled off, and the color developing portion of the color developing sheet is measured by an X. rite color difference meter.
  • the initial concentration value OD0 of the non-color-developing portion of the color-developing sheet was measured by the same method using the concentration value OD1, and the actual color development density OD was obtained by using OD1-OD0.
  • ODI-ODII the difference ⁇ OD between the two groups of sheets at the same pressure at different temperatures can be obtained.
  • A (1.5 ⁇ OD, ⁇ OD ⁇ 0.2): no dye is precipitated at 10 ° C, and can be used normally;
  • the pressure test film obtained above was cut into a size of 20 cm ⁇ 20 cm, and then the color-developing sheet containing the electron-donating leuco dye precursor and the color-developing sheet containing the electron-accepting compound were overlapped in a coating manner. And placed between the two smooth planes, the entire sheet is fully covered and pressed to make it color, after which the overlapping two sheets are peeled off and randomly measured on the color developing sheet by X.rite color difference meter.
  • the color concentration value ODi of the different regions of the group is obtained, and the average value OD is obtained, and the maximum error value ⁇ OD is obtained, and the ⁇ OD is divided by the OD to obtain the percentage value X.
  • the pressure test film obtained above was cut into a size of 10 cm ⁇ 10 cm, and 5 regions were randomly taken, and the appearance of the microcapsules was observed by an electron microscope.
  • A The size particles spread evenly, without agglomeration
  • the pressure test film prepared by the technical solution of the present disclosure can meet the use requirements of the low temperature environment, and can Achieve high sensitivity, high resolution pressure distribution testing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Color Printing (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Adhesive Tapes (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本公开涉及一种发色膜和压力测试膜以及相应的制备方法。该发色膜包括:基材、依序层叠在基材上的底涂层、凹凸结构层和发色层,该发色层包含微胶囊,该微胶囊内包含有给电子性无色染料前体。采用特殊配方使得压力测试膜能够高灵敏、高分辨率且满足低温环境使用要求。

Description

具有特殊配方的发色膜、压力测试膜及其制备方法 技术领域
本公开涉及一种发色膜以及压力测试膜,特别涉及一种具有特殊配方的发色膜、压力测试膜及其制备方法。
背景技术
压力测试主要应用在印刷电路板的层压、辊间压力确认及调节、液晶玻璃面板的贴合、发动机气缸组装等对压力具有严格要求的各生产加工工序。通常采用压力测试仪进行压力测试,但是这种压力测试方法操作复杂,测量结果有迟滞性,测试精度和灵敏度差,仅适用小面积区域的压力测试,并不适用于压力在线监测,且不适用具有特殊形状区域的压力测试。
为此,现有技术提供了压力测试膜,所述压力测试膜包括含有染料前体的微胶囊的发色膜材料L和含有显色化合物的显色膜材料K。在使用过程中,将发色膜材料L与显色膜材料K以涂层相对方式重叠,置于受压面之间,当微胶囊受压大于其破裂临界值就会破裂,释放出染料,该染料与显色膜材料K包含的显色化合物接触,发生成色反应,通过对成色区域浓度深浅的观察及测量,即可完成对压力的测试。
然而由于其采用染料和显色化合物的材料的原因,在低温(例如15℃以下)压力测试环境下,这样的压力测试膜由于染料和显色膜材料的活性较差而不能较好地工作,而且,现有压力测试膜的发色膜材料L中微胶囊的粒度不能均匀分布,往往在发色膜上发生团聚,因而不能准备测定较大面积的压力环境下压力。
因此,需要一种在低温、大面积环境下测试压力的压力测试膜。
发明内容
本公开基于上述要求,改进了发色层的配方,使得微胶囊成形均匀,而且通过限定内包于微胶囊内的给电子性无色染料前体和溶剂之间的比例,在保证发色浓度充足的前提下,有效避免在低温使用条件下因给电子性无色染料前体析出而引起的发色弱化甚至不能使用的缺陷。
为此,根据本公开的一个方面,提供一种发色膜,其包括:基材、依序层叠在基材上的底涂层、凹凸结构层和发色层,该发色层包含微胶囊,该微胶囊内包含有给电子性无色染料前体。
优选地,所述微胶囊的粒度分布D50为5μm-15μm,并且粒度分布跨度span为0.5~1.2,该span=(D90-D10)/D50,其中D90表示微胶囊的累计粒度分布数达到90%时所对应的粒径,D50表示微胶囊的累计粒度分布数达到50%时所对应的粒径;而D10表示微胶囊的累计粒度分布数达到10%时所对应的粒径。
优选地,所述微胶囊内包有给电子性无色染料前体和溶剂组成的染料溶液,其中每100份的染料溶液含有3份~12份的给电子性无色染料前体。
根据本公开的另一个方面,提供一种压力测试膜,其包含:发色膜层,该发色膜层包含发色膜;以及显色膜层,该显色膜层含有受电子性化合物的显色材料。
根据本公开的一个方面,提供一种制备发色膜的方法,其包括:通过将水性树脂溶于水中,加入助剂并搅拌均匀,制成底涂层浆料;通过将活性稀释剂加入UV树脂并搅拌均匀,加入光引发剂或助剂并搅拌均匀制成凹凸结构层浆料;通过配置含有给电子性无色染料前体的油相和水相,采用膜乳化法将油相加入水相形成乳液,再加入固化剂搅拌均匀,并升温至50℃反应4小时后制成微胶囊分散液,再加入粘合剂和水并搅拌均匀制成发色层浆料;并且在基材上涂布底涂层浆料,再在底涂层上依次涂布凹凸结构层浆料、发色层浆料以得到可用于压力测试膜的发色膜。
根据本公开的一个方面,提供一种制备压力测试膜的方法,其包 括:通过将水性树脂溶于水中,加入助剂并搅拌均匀,制成底涂层浆料;通过将活性稀释剂加入UV树脂并搅拌均匀,加入光引发剂或助剂并搅拌均匀制成凹凸结构层浆料;通过配置含有给电子性无色染料前体的油相和水相,采用膜乳化法将油相加入水相形成乳液,再加入固化剂搅拌均匀,并升温至50℃反应4小时后制成微胶囊分散液,再加入粘合剂和水并搅拌均匀制成发色层浆料;通过将活性白土加入水中并搅拌进行预分散,然后用砂磨机砂磨制成活性白土水分散液,加入粘合剂搅拌均匀制成显色层浆料;在基材上涂布底涂层浆料,再在底涂层上依次涂布凹凸结构层浆料、发色层浆料以得到可用于压力测试膜的发色膜,在基材上涂布显色层浆料以得到可用于压力测试膜的显色膜;并且将所述发色膜与所述显色膜结合成所述压力测试膜。
实验表明,本公开所提供压力测试膜的发色膜材料L中微胶囊的粒度相对均一,涂布表观均匀无团聚,有效地避免了因大小粒子引起的团聚现象。同时,因微胶囊之间临界承压值较为接近,因此在压力测试时,当压力值波动很小时,也能够以最清晰、最明显的浓度差异被显示出来,从而实现在大面积压力测试环境下的高灵敏度、高分辨率测试。
另外,本公开所提供的压力测试膜通过限定内包于微胶囊内的给电子性无色染料前体和溶剂之间的比例,可以在保证发色浓度充足的前提下,有效避免在低温使用条件下因给电子性无色染料前体析出而引起的发色弱化甚至不能使用的缺陷。
附图说明
为了更好地理解本公开并且为了更清楚地描述如何实施本公开,现在参考附图以实例方式对本公开进行描述,在附图中:
图1是根据本公开的一个实施方案的发色膜材料L的结构示意图;
图2是根据本公开的一个实施方案的压力测试膜的结构示意图;
图3是根据本公开的一个实施方案的发色膜的制备方法的流程 图;以及
图4是根据本公开的一个实施方案的压力测试膜的制备方法的流程图。
具体实施方式
下面来详细描述实现本公开的具体实施方案。需要指出的是,以下描述仅仅是针对本公开内容的某些最佳示例的说明,而不应该用来限制本公开的范围。对本领域的技术人员来说,本公开的其他示例、特征、方面、实施方案和优点将从以下描述中变得显而易见。还应当理解的是,本公开文件中所述的构思、表述、实施方案、示例等中的任何一个或多个可以与本公开文件中所述的其他构思、表述、实施方案、示例等中的任何一个或多个相结合。因此,以下描述的教导、表述、实施例、示例等不应当被视为彼此独立。
另外,附图中的图示不是一定按比例绘制的,在一些情况下,本公开的特征可能在附图中被放大或缩小以便于理解本公开的内容。而且在附图中,相同的附图标记通常表示相同的特征。
图1是根据本公开的一个实施方案的发色膜的结构示意图。如图1所示,本公开提供的发色膜由发色膜材料L制成,而发色膜材料L由发色膜基材213、底涂层215、凹凸结构层217和发色层219组成。底涂层215、凹凸结构层217和发色层219依次涂布并附着在发色膜基材213上。底涂层215、凹凸结构层217和发色层219的结构和作用将在以下更详细地被描述。
图2是根据本公开的一个实施方案的压力测试膜的结构示意图。如图2所示,本公开提供的压力测试膜由含有发色膜材料L的发色膜层和含有显色膜材料K的显色膜层组成。发色膜材料L的构成如上所述,而显色膜材料K是由显色膜基材223和显色层225组成。该压力测试膜以发色膜的发色层219与显色膜的显色层225相对的方式重叠而形成。
需要指出的是,发色膜材料L和显色膜材料K也可以不在制造时 形成压力测试膜,而是以单独膜,即发色膜和显色膜的方式分别制造和销售,而在应用时,将由发色膜和显色膜以发色膜的发色层219与显色膜的显色层255相对的方式重叠起来形成压力测试膜那样的结构(以下为了说明起来方面,仍然称其为压力测试膜)。
另外,压力测试膜在应用时,通过在发色膜受压面211和显色膜受压面221之间施加压强P,使得发色膜中的微胶囊因受力破裂释放出给电子性无色染料,当该给电子性无色染料与显色层内受电子性化合物相遇即成色,然后根据成色程度来确定压强P的大小,从而实现利用压力测试膜测试压力的目的。
<基材>
这里所述的基材包括发色膜的基材213和显色膜的基材223。在本公开的一种实施方案中,适合本公开的基材可以选用塑料薄膜、纸、合成纸等基材。其中塑料薄膜具体的可以列举聚对苯二甲酸乙二醇酯(PET)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等。作为纸的具体例子,可以列举优质纸、涂布纸、美术纸等。作为合成纸的具体例子可以列举:由聚乙烯、聚酰胺、聚对苯二甲酸乙二醇酯等合成纤维形成的合成纸或将它们在纸的一个或者两个面上层叠而制成的合成纸等。本公开优选50-125μm的PET。
<底涂层215>
在根据本公开的一种实施方案中,所述底涂层215的作用是提高凹凸结构层217在发色膜基材213上的附着性。所述底涂层215通常由一种或多种水性树脂构成,水性树脂包括苯乙烯-丁二烯共聚物胶乳(SBR)、丙烯酸酯系胶乳、聚乙烯醇(PVA)、明胶、羧甲基纤维素(CMC)等合成或者天然高分子物质。本公开优选PVA和SBR。
<凹凸结构层217>
在根据本公开的一种实施方案中,所述凹凸结构层217的作用是将压力测试膜表面所承受的压强经过面积转化后施加于发色层219中的微胶囊上。所述凹凸结构层217由UV树脂、活性稀释剂和光引发剂组成。
在根据本公开的一种实施方案中,所述凹凸结构层217中UV树脂由以下UV树脂中的两种或两种以上构成,适用于本公开的UV树脂包括但不限于聚氨酯丙烯酸酯、环氧丙烯酸酯、脂肪族聚氨酯丙烯酸酯等。所述凹凸结构层217中活性稀释剂由以下活性稀释剂中的两种或两种以上构成,包括但不限于双官能基单体如二缩三丙二醇二丙烯酸酯(TPGDA)、二缩丙二醇双丙烯酸酯(DPGDA)、三官能基单体如季戊四醇三丙烯酸酯(PET3A)、三羟甲基丙烷三丙烯酸酯(TMPTA),多官能基单体如二季戊四醇六丙烯酸酯(DPHA)、季戊四醇四丙烯酸酯(PET4A)等。光引发剂包括但不限于1-羟基环己基苯基甲酮(184)、2,4,6-三甲基苯甲酰基-二苯基氧化膦(TPO)、2-甲基-1-[4-甲硫基苯基]-2-吗琳基-1-丙酮(907)等。
在根据本公开的一种实施方案中,所述凹凸结构层217设置于底涂层215之上,所述凹凸结构层217的凹凸部分具有至少2个以上凸部,且相邻两个凸部之间的直线距离L满足D50X0.2≤L≤D50X0.8。当L<D50X0.2,由于相邻凸部间距过小,不能对微胶囊受力面积进行有效集中,无法实现微压条件下的压力分布测定,若L>D50X0.8,则大部分微胶囊陷入相邻凸部之间的空隙内,受压时不能破裂发色,则无法实现压力分布测定。
在根据本公开的一种实施方案中,所述凹凸结构层217中凸部形状包括但不限于圆柱状、圆锥状、长方体、正方体等形状。
关于凹凸结构层的形成方式,可以参见本申请人的发明题目为“凹凸结构制备设备”的同日申请。
<发色层219>
在根据本公开的一种实施方案中,所述发色层219包含微胶囊、粘合剂及助剂,该微胶囊包含有给电子性无色染料前体。在根据本公开的一种实施方案中,本公开的微胶囊至少包含给电子性无色染料前体溶液和微胶囊壁两部分。
(给电子性无色染料前体溶液)
在根据本公开的一种实施方案中,所述给电子性无色染料前体溶 液包含至少一种给电子性无色染料前体和至少一种溶剂。其中给电子性无色染料前体的作用是主要的成色剂。给电子性无色染料前体可以使用公知的物质,如荧烷类化合物、吲哚基肽酮类化合物、罗丹明内酰胺类化合物、螺吡喃类化合物、吩噻嗪类化合物。适用于本公开的给电子性无色染料前体包括但不限于结晶紫内酯(CVL)、无色亚甲基蓝(BLMB)。
溶剂主要作用是溶解所述给电子性无色染料前体,可以使用公知的物质。例如:1-苯基-1-二甲基苯基乙烷等二芳基烷烃类、二芳基烯烃类、二异丙基萘等烷基萘类、异烷烃等脂肪族烃类、玉米油、蓖麻油、菜籽油等天然动植物油类、矿物油等。
在根据本公开的一种实施方案中,所述的给电子性无色染料前体溶液,每100份所述染料溶液中含有3份~12份的给电子性无色染料前体,若给电子性无色染料前体低于3份,则发色浓度不足,若给电子性无色染料前体高于12份,在低温环境下该给电子性无色染料前体会结晶析出,导致有效发色组分减少。
另,在根据本公开的一种实施方案中,根据需要,可以添加沸点较低的溶剂作为助溶剂,使给电子性无色染料前体在溶剂中更好的溶解。适用于本公开的低沸点溶剂包括但并不限于丙酮、甲乙酮等酮类、乙酸甲酯、乙酸乙酯等酯类。
(微胶囊壁材)
在根据本公开的一种实施方案中,所述微胶囊的壁材可以选用公知的不溶于水且不溶于油的物质,如:聚氨酯脲、明胶、三聚氰胺甲醛树脂等,本公开优选聚氨酯脲。
所述微胶囊的壁材的形成可以采用公知的方法,如界面聚合法、原位聚合法、凝聚法等。在根据本公开的一种实施方案中,优选用界面聚合法来形成壁材。
在根据本公开的一种实施方案中,所述壁材至少是由反应单体和固化剂组成。适用于所述微胶囊壁材的反应单体包括但不限于二环己基甲烷二异氰酸酯(HDI)、六亚甲基二异氰酸酯(HMDI)、己二 异氰酸酯的三羟甲基丙烷加成物、苯二甲撑二异氰酸酯的三羟甲基丙烷加成物等多异氰酸酯低聚物。适用于所述微胶囊壁材制备的固化剂包括但不限于多元羟基化合物如脂肪族或芳香族多元醇,多元胺如三乙烯四胺、六亚甲基二胺,脂肪族多元胺的环氧烷烃加成物如乙二胺的环氧丁烷加成物等,只要分子中含有2个及以上的–NH基或-NH2基的多元胺均可采用。在根据本公开的一种实施方案中优选将固化剂溶于水后再使用。
在根据本公开的一种实施方案中,所述微胶囊粒径分布特点为:粒度分布D50为5μm-15μm,粒度分布跨度span为0.5~1.2,这里,span=(D90-D10)/D50。若D50小于5μm,微胶囊承压临界值急剧增大,实际应用范围受限,且多数微胶囊会因为粒径较小陷入所述凸部结构之间的空隙,从而不能参与发色。若D50大于15μm,压力测试膜涂布表观变得不均匀。若span小于0.5,微胶囊制造成本急剧增加;若span大于1.2,微胶囊体系内大小粒子因表面能差异而发生团聚的现象凸显,这会导致压力测试膜在应用过程中,因团聚造成发色浓度深浅不均,从而导致测量精度降低。
(粘合剂和助剂)
在根据本公开的一种实施方案中,所述发色层中粘合剂可以选用淀粉、CMC、PVA等水溶性高分子。
在根据本公开的一种实施方案中,所述助剂至少包括乳化剂,所述乳化剂包括但不限于两亲性高分子如PVA、CMC、淀粉、明胶等,本公开优选PVA。
<显色层225>
在本公开的一种实施方案中,所述显色层225包含受电子性化合物和粘合剂。在本公开的一种实施方案中,所述受电子性化合物是主要的显色剂,而所述受电子性化合物可以采用公知受电子性化合物包括无机化合物如:活性白土、高岭土、粘土类等物质,有机化合物如:芳香族羧酸金属盐类、羧基化萜烯酚醛树脂金属盐类、酚醛树脂、水杨酸盐类及其衍生物等。
所述显色层225的粘合剂的作用是提高受电子性化合物在显色膜基材223上的附着性。适用本公开所述显色层225的粘合剂由以下水溶性粘合剂中的一种或多种构成,包括但不限于SBR、丙烯酸酯类胶乳、PVA、阿拉伯胶、明胶、CMC等。
图3是根据本公开的一个实施方案的发色膜的制备方法的流程图。如图3所示,根据本公开的一个实施方案,步骤S310中,制备制造发色膜即发色膜材料L所使用的各种浆料。所述浆料至少包括底涂层浆料、凹凸结构层浆料和发色层浆料。所述步骤S310包括通过将水性树脂溶于水中,加入助剂并搅拌均匀,制成底涂层浆料待用。所述步骤S310还包括通过将活性稀释剂加入UV树脂并搅拌均匀,加入光引发剂或助剂并搅拌均匀制成凹凸结构层浆料待用。所述步骤S310还包括制备微胶囊和配制发色层浆料,其中所述制备微胶囊包括乳化水油混合物并形成微胶囊壁材。油相至少是由上述给电子性无色染料前体溶液、用于合成微胶囊壁材的反应单体组成,而所述水相至少是由乳化剂、水组成。所述乳化过程可以采用公知的乳化方法,如机械搅拌乳化法、均质乳化法和超声乳化法、膜乳化法等。在根据本公开的一种实施方案中,优选采用膜乳化法制备乳液,再加入固化剂的水溶液搅拌均匀,并升温至50℃反应4小时后制成微胶囊分散液,而所述配制发色层浆料包括向微胶囊分散液中再加入粘合剂和水并搅拌均匀制成发色层浆料待用。
在步骤S320中,在基材上采用公知的丝棒、凹版涂布、挤压涂布、反转辊涂布等涂布方式涂布底涂层并干燥。
在步骤S330中,在底涂层之上采用公知的丝棒、凹版涂布、挤压涂布、反转辊涂布等涂布方式涂布凹凸结构层湿涂层以得到凹凸结构层。
在步骤S340中,在凹凸结构层上采用公知的坡流涂布、帘式涂布等涂布方式涂布发色层并干燥,得到本公开所述的发色膜材料。
图4是根据本公开的一个实施方案的压力测试膜的制备方法的流程图。如图4所示,压力测试膜的制备方法除了步骤S410、步骤S450 和步骤S460之外,与如图3所示的发色膜的制备方法基本相同,因此相同部分请参见图3的说明。而且,图4所示的压力测试膜制备方法中的步骤S410包括如图3所示的步骤S310中的内容。只不过在根据本公开的该实施方案,在步骤S410中增加了制备用于形成显色膜材料的浆料,所述浆料至少包括显色层浆料,所述显色层浆料通过将活性白土加入水中并搅拌进行预分散,然后用砂磨机砂磨制成活性白土水分散液,加入粘合剂搅拌均匀制成显色层浆料待用。
另外,在步骤S450中,在基材上采用公知的丝棒、凹版涂布、挤压涂布、反转辊涂布等涂布方式涂布显色层并干燥,得到所述显色膜材料。
然后,在步骤S460中,将所得到的发色膜材料和显色膜材料结合在一起或者在使用它们时临时结合在一起,形成所述压力测试膜。
需要指出的是,在根据本公开的一种实施方案中,如图4所示的步骤S410中相对于如图3所示的步骤S310增加的内容,与如图4所示的步骤S450的内容一起,可以形成用于制备显色膜材料的方法。
根据本公开的发色膜和压力测试膜的示例
下面结合具体实施方式对本公开作进一步的说明,但本公开并不限于此。
(示例1)
底涂层浆料制备
SBR                                      6kg
PVA217(10%)                            10kg
水                                      84kg
将6kg的SBR和10kg 10%的PVA217水溶液加入84kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000001
Figure PCTCN2019073333-appb-000002
将20kg环氧丙烯酸酯加入40kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入25kgPET3A和15kg DPHA,搅拌均匀后,加入3kg184和3kgTPO后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000003
将3.0kgCVL和2.4kgBLMB加入60kg二异丙基萘和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将12kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                  60kg
PVA217水溶液(10%)                  40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
三乙烯四胺                         5kg
水                                 20kg
以水相溶液作为膜乳化器的连续流动相,油相溶液作为分散相,采用膜乳化法得到微胶囊乳液,然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温 并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000004
将20kg10%的PVA205水溶液和30kg10%的CMC水溶液依次加入50kg30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000005
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kg SBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到本公开所述压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到本公开所述压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
(示例2)
底涂层浆料制备
SBR                            6kg
PVA217(10%)                  10kg
水                            84kg
将6kg的SBR和10kg 10%的PVA217水溶液加入84kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000006
将20kg环氧丙烯酸酯加入40kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入22kg PET3A和18kgDPHA,搅拌均匀后,加入3kg 907和3kg TPO后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000007
将4.4kg CVL和3.6kg BLMB加入60kg二异丙基萘和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将10kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                      60kg
PVA205水溶液(10%)                      40kg
将40kg 10%的PVA205水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
乙二胺的环氧丁烷加成物                  5kg
水                                      20kg
以水相溶液作为膜乳化器的连续流动相,油相溶液作为分散相,采用膜乳化法得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000008
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000009
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kgSBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到本公开所述压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到本公开所述压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
(示例3)
底涂层浆料制备
SBR                          5kg
PVA117(10%)                 15kg
水                           80kg
将5kg的SBR和15kg 10%的PVA117水溶液加入80kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000010
将20kg环氧丙烯酸酯加入40kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入25kg TPGDA和15kgDPHA,搅拌均匀后,加入3kg 184和3kg TPO后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000011
将1.5kg CVL和1.2kg BLMB加入60kg 1-苯基-1-二甲基苯基乙烷和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将8kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                     60kg
PVA217水溶液(10%)                     40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
六亚甲基二胺                            4kg
水                                     20kg
以水相溶液作为膜乳化器的连续流动相,油相溶液作为分散相,采用膜乳化法得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000012
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000013
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kg SBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、 凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到本公开所述压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到本公开所述压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
(示例4)
底涂层浆料制备
SBR                            5kg
PVA217(10%)                  15kg
水                            80kg
将5kg的SBR和15kg 10%的PVA217水溶液加入80kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000014
将25kg环氧丙烯酸酯加入35kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入20kg PET3A和20kgPET4A,搅拌均匀后,加入3kg 184和3kg 907后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000015
将3.0kg CVL和2.4kg BLMB加入60kg二异丙基萘和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将7.5kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                     60kg
PVA217水溶液(10%)                     40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
三乙烯四胺                               4kg
水                                      20kg
以水相溶液作为膜乳化器的连续流动相,油相溶液作为分散相,采用膜乳化法得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000016
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000017
Figure PCTCN2019073333-appb-000018
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kg SBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到本公开所述压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到本公开所述压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
(示例5)
底涂层浆料制备
SBR                           6kg
PVA117(10%)                  10kg
水                            84kg
将6kg的SBR和10kg 10%的PVA117水溶液加入84kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000019
将30kg环氧丙烯酸酯加入30kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入30kgDPGDA和10kgPET4A,搅拌均匀后,加入2.5kg 184和4kg TPO后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000020
将2.0kg CVL和1.6kg BLMB加入60kg 1-苯基-1-二甲基苯基乙烷和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将12kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                     60kg
PVA217水溶液(10%)                     40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
三乙烯四胺                                5kg
水                                       20kg
以水相溶液作为膜乳化器的连续流动相,油相溶液作为分散相,采用膜乳化法得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000021
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固 含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000022
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kg SBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到本公开所述压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到本公开所述压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
与现有发色膜和压力测试膜的比较结果
(比较例1)
底涂层浆料制备
SBR                           6kg
PVA217(10%)                 10kg
水                           84kg
将6kg的SBR和10kg 10%的PVA217水溶液加入84kg水中,搅拌均匀后制成底涂层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000023
Figure PCTCN2019073333-appb-000024
将5.0kg CVL和3.8kg BLMB加入60kg二异丙基萘和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将12kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                     60kg
PVA217水溶液(10%)                     40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
三乙烯四胺                              5kg
水                                     20kg
采用机械乳化法,以水相溶液作为连续相,在750rpm高速搅拌状态下加入油相溶液,并乳化10分钟,得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000025
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
显色层分散液的制备
Figure PCTCN2019073333-appb-000026
Figure PCTCN2019073333-appb-000027
将10kg活性白土加入30kg水中,采用砂磨机砂磨分散得到活性白土水分散液,再加入2kg SBR和2kg明胶,搅拌均匀,得到显色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
(比较例2)
底涂层浆料制备
SBR                            5kg
PVA217(10%)                   15kg
水                             80kg
将5kg的SBR和15kg 10%的PVA217水溶液加入80kg水中,搅拌均匀后制成底涂层浆料待用。
凹凸结构层涂布液制备
Figure PCTCN2019073333-appb-000028
将20kg环氧丙烯酸酯加入40kg聚氨酯丙烯酸酯中,搅拌均匀,再依次加入25kg PET3A和15kgDPHA,搅拌均匀后,加入3kg 184和3kg TPO后,充分搅拌均匀后制备得到凹凸结构层浆料待用。
微胶囊及其分散液的制作
油相溶液的制备:
Figure PCTCN2019073333-appb-000029
将6.5kg CVL和5.4kg BLMB加入60kg二异丙基萘中和5kg甲乙酮中,搅拌至完全溶解后,得到染料溶液待用,将12kg己二异氰酸酯的三羟甲基丙烷加成物加入上述染料溶液中,充分搅拌均匀得到油相溶液待用。
水相溶液的制备:
水                                     60kg
PVA217水溶液(10%)                     40kg
将40kg 10%的PVA217水溶液加入60kg水中,搅拌均匀后得到水相溶液待用。
固化剂水溶液
三乙烯四胺                              5kg
水                                     20kg
采用机械乳化法,以水相溶液作为连续相,在950rpm高速搅拌状态下加入油相溶液,并乳化10分钟,得到微胶囊乳液。然后,向所得乳液中加入固化剂水溶液,在搅拌状态下升温至50℃,并持续反应4小时后,冷却至室温并加水调整固含量为30%,从而得到包含给电子性无色染料前体的微胶囊分散液。
发色层分散液的制备
Figure PCTCN2019073333-appb-000030
将20kg 10%的PVA205水溶液和30kg 10%的CMC水溶液依次加入50kg 30%的微胶囊分散液中,搅拌均匀后,加入33kg水调整固含量为15%得到发色层分散液待用。
在75微米的PET基材上依次使用丝棒涂布0.5微米的底涂层、凹凸结构层,使用坡流涂布机涂布12微米发色层,干燥、收卷,得到压力测试膜的发色膜材料。
在75微米的PET基材上使用丝棒涂布13微米的显色层,干燥收卷后得到压力测试膜的显色膜材料。将所得发色膜材料与显色膜材料以涂层相对的方式重叠测试其性能。
表1:各示例的性能测试数据表
Figure PCTCN2019073333-appb-000031
表中,各项性能的测试方法如下:
1.粒度分布的测试方法
取微胶囊分散液,采用BT-9300ST型激光粒度分布仪测试,得到微胶囊分散液的粒度分布D50和粒度分布跨度span。
2.A值的测试方法
取涂有底涂层和凹凸结构层的片材,在电子显微镜(SEM)下测量5组相邻凸部间的最短距离,并求得平均值,得到A值。
3.低温发色适用性的测试方法
将以上所得的压力测试膜分为Ⅰ、Ⅱ两组,分别在25℃条件下和10℃条件下进行如下测试。首先将上述微胶囊裁切为3cm×3cm大小,随后将含有给电子性无色染料前体的发色片材和含有受电子性化合物的显色片材以涂层相对的方式重叠,并将其放置在两光滑平面之间,向整个片材进行全覆盖施压使其饱和发色,随后,将重叠的两片材剥离,采用X.rite色差仪测定显色片材上显色部分的浓度值OD1,采用相同方法测得显色片材未显色部分的初始浓度值OD0,用OD1-OD0即得到实际显色浓度OD。用ODⅠ-ODⅡ即可得到在不同温度下两组片材在相同压力下显色浓度之差ΔOD。
评价标准
A(1.5≤OD,ΔOD≤0.2):10℃下染料无析出,可以正常使用;
B(1.3≤OD<1.5,0.2<ΔOD≤0.4):10℃下染料轻微析出,不影响使用;
C(OD<1.3,ΔOD>0.4):10℃下染料严重析出,不能正常使用;
4.测试灵敏度测试方法
将以上所得的压力测试膜裁切为20cm×20cm大小,随后将含有给电子性无色染料前体的发色片材和含有受电子性化合物的显色片材以涂层相对的方式重叠,并将其放置在两光滑平面之间,向整个片材进行全覆盖施压使其发色,之后,将重叠的两片材剥离,采用X.rite色差仪在显色片材上随机测定5组不同区域的显色浓度值ODi,求得平均值OD,并求得最大误差值ΔOD,另ΔOD除以OD即可得到百分比数值X。
A(X≤5%):边界清晰可辨,测试灵敏度高;
B(5%<X≤10%):边界清晰度可以接受,测试灵敏度可以接受;
C(10%<X):边界较为模糊,测试灵敏度差;
5.表观均匀度测试方法
将以上所得的压力测试膜裁切为10cm×10cm大小,随机取5个区域,适用电子显微镜观察微胶囊表观。
A:大小粒子铺展均匀,无团聚现象;
B:大小粒子铺展基本均匀,无明显团聚现象;
C:大小粒子铺展不够均匀,小粒子向大粒子靠拢形成岛状结构;
由表中的测试结果可以看出,低温发色适用性、测试灵敏度和表观均匀度均优于比较例,因此采用本公开技术方案制备的压力测试膜能够满足低温环境的使用要求,且能够实现高灵敏度、高分辨率压力分布测试。
本公开不限于附图中所示并在说明书中描述的实施方案。上述描述仅仅是说明性的,而不限制本公开的范围。从上述说明出发,落入本公开的构思和范围内的许多变型将是显而易见的。

Claims (8)

  1. 一种发色膜,其包括:基材、依序层叠在基材上的底涂层、凹凸结构层和发色层,该发色层包含微胶囊,该微胶囊内包含有给电子性无色染料前体。
  2. 根据权利要求1所述的发色膜,其中所述微胶囊的粒度分布D50为5μm-15μm,并且粒度分布跨度span为0.5~1.2,该span=(D90-D10)/D50,其中D90表示微胶囊的累计粒度分布数达到90%时所对应的粒径,D50表示微胶囊的累计粒度分布数达到50%时所对应的粒径;而D10表示微胶囊的累计粒度分布数达到10%时所对应的粒径。
  3. 根据权利要求1所述的发色膜,其中所述微胶囊内包有给电子性无色染料前体和溶剂组成的染料溶液,其中每100份的染料溶液含有3份~12份的给电子性无色染料前体。
  4. 根据权利要求1-3任一项所述的发色膜,其中所述给电子性无色染料前体选自荧烷类化合物、吲哚基肽酮类化合物、罗丹明内酰胺类化合物、螺吡喃类化合物或吩噻嗪类化合物;所述溶剂选自二芳基烷烃类、二芳基烯烃类、烷基萘类、脂肪族烃类、天然动植物油类或矿物油。
  5. 根据权利要求4所述的发色膜,其中所述给电子性无色染料前体选自结晶紫内酯或无色亚甲基蓝;所述溶剂选自1-苯基-1-二甲基苯基乙烷、二异丙基萘、异烷烃、玉米油、蓖麻油或菜籽油。
  6. 一种压力测试膜,其包含:
    发色膜层,该发色膜层包含根据权利要求1-5中任一项所述的发色膜;以及
    显色膜层,该显色膜层含有受电子性化合物的显色材料。
  7. 一种制备权利要求1-5中任一项所述的发色膜的方法,其包括:
    通过将水性树脂溶于水中,加入助剂并搅拌均匀,制成底涂层浆料;
    通过将活性稀释剂加入UV树脂并搅拌均匀,加入光引发剂或助剂并搅拌均匀制成凹凸结构层浆料;
    通过配置含有给电子性无色染料前体的油相和水相,采用膜乳化法将油相加入水相形成乳液,再加入固化剂搅拌均匀,并升温至50℃反应4小时后制成微胶囊分散液,再加入粘合剂和水并搅拌均匀制成发色层浆料;并且
    在基材上涂布底涂层浆料,再在底涂层上依次涂布凹凸结构层浆料、发色层浆料以得到可用于压力测试膜的发色膜。
  8. 一种制备权利要求6所述的压力测试膜的方法,其包括:
    通过将水性树脂溶于水中,加入助剂并搅拌均匀,制成底涂层浆料;
    通过将活性稀释剂加入UV树脂并搅拌均匀,加入光引发剂或助剂并搅拌均匀制成凹凸结构层浆料;
    通过配置含有给电子性无色染料前体的油相和水相,采用膜乳化法将油相加入水相形成乳液,再加入固化剂搅拌均匀,并升温至50℃反应4小时后制成微胶囊分散液,再加入粘合剂和水并搅拌均匀制成发色层浆料;
    通过将活性白土加入水中并搅拌进行预分散,然后用砂磨机砂磨制成活性白土水分散液,加入粘合剂搅拌均匀制成显色层浆料;
    在基材上涂布底涂层浆料,再在底涂层上依次涂布凹凸结构层浆料、发色层浆料以得到可用于压力测试膜的发色膜,并且在基材上涂布显色层浆料以得到可用于压力测试膜的显色膜;并且
    将所述发色膜与所述显色膜结合成所述压力测试膜。
PCT/CN2019/073333 2018-02-11 2019-01-28 具有特殊配方的发色膜、压力测试膜及其制备方法 WO2019154145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020564995A JP7178123B2 (ja) 2018-02-11 2019-01-28 特別な配合を有する発色フィルム、圧力試験フィルム及びその製造方法
KR1020207026233A KR102442123B1 (ko) 2018-02-11 2019-01-28 특정 포뮬라를 갖는 발색성 필름, 압력 시험 필름 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810143412.9A CN110144056B (zh) 2018-02-11 2018-02-11 具有特殊配方的发色膜、压力测试膜及其制备方法
CN201810143412.9 2018-02-11

Publications (1)

Publication Number Publication Date
WO2019154145A1 true WO2019154145A1 (zh) 2019-08-15

Family

ID=67548198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073333 WO2019154145A1 (zh) 2018-02-11 2019-01-28 具有特殊配方的发色膜、压力测试膜及其制备方法

Country Status (4)

Country Link
JP (1) JP7178123B2 (zh)
KR (1) KR102442123B1 (zh)
CN (1) CN110144056B (zh)
WO (1) WO2019154145A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002060A (en) * 1974-10-29 1977-01-11 Fuji Photo Film Co., Ltd. Pressure measurement sheet and method of using the same
CN102032964A (zh) * 2009-09-29 2011-04-27 张美超 感压膜及其使用方法
US20140216162A1 (en) * 2011-09-12 2014-08-07 Del Monte Corporation Sensor for High Pressure Processing of Articles
CN104713669A (zh) * 2015-04-08 2015-06-17 京东方科技集团股份有限公司 一种感压膜及其制作方法
CN108373548A (zh) * 2018-02-11 2018-08-07 保定乐凯新材料股份有限公司 具有凹凸结构的发色膜、压力测试膜及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238278A (en) * 1975-09-22 1977-03-24 Fuji Photo Film Co Ltd Recording sheet
JPH06331467A (ja) * 1993-05-19 1994-12-02 Fujitsu Ltd 圧力測定フィルムと圧力測定方法
JPH07237351A (ja) * 1994-02-28 1995-09-12 New Oji Paper Co Ltd 感熱記録体
JP2001270223A (ja) 2000-03-23 2001-10-02 Toyobo Co Ltd インクジェット記録用シート
JP4073017B2 (ja) 2003-04-15 2008-04-09 株式会社リコー 感熱記録材料
JP2005153240A (ja) 2003-11-21 2005-06-16 Fuji Photo Film Co Ltd マイクロカプセル及びそれを用いた感熱記録材料
JP4986750B2 (ja) * 2007-07-11 2012-07-25 富士フイルム株式会社 圧力測定用材料
JP5142640B2 (ja) * 2007-09-07 2013-02-13 富士フイルム株式会社 圧力測定用材料
JP5258238B2 (ja) 2007-09-13 2013-08-07 富士フイルム株式会社 凹凸シート及び圧力測定方法
JP5142646B2 (ja) * 2007-09-13 2013-02-13 富士フイルム株式会社 圧力測定方法
JP5020037B2 (ja) 2007-11-26 2012-09-05 富士フイルム株式会社 圧力分布測定方法
JP2012251291A (ja) 2011-05-31 2012-12-20 Fujifilm Corp 下地コンクリート表面の凹凸記録方法及び凹凸評価方法
TWD148294S (zh) * 2011-09-09 2012-07-21 艾恩特精密工業股份有限公司 通訊連接插座1
CN202805823U (zh) * 2012-08-28 2013-03-20 上海所克净化材料有限公司 一种压力显色塑料膜片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002060A (en) * 1974-10-29 1977-01-11 Fuji Photo Film Co., Ltd. Pressure measurement sheet and method of using the same
CN102032964A (zh) * 2009-09-29 2011-04-27 张美超 感压膜及其使用方法
US20140216162A1 (en) * 2011-09-12 2014-08-07 Del Monte Corporation Sensor for High Pressure Processing of Articles
CN104713669A (zh) * 2015-04-08 2015-06-17 京东方科技集团股份有限公司 一种感压膜及其制作方法
CN108373548A (zh) * 2018-02-11 2018-08-07 保定乐凯新材料股份有限公司 具有凹凸结构的发色膜、压力测试膜及其制备方法

Also Published As

Publication number Publication date
JP2021513476A (ja) 2021-05-27
CN110144056A (zh) 2019-08-20
JP7178123B2 (ja) 2022-11-25
KR20200119857A (ko) 2020-10-20
KR102442123B1 (ko) 2022-09-08
CN110144056B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019154148A1 (zh) 具有凹凸结构的发色膜、压力测试膜及其制备方法
TWI396836B (zh) 壓力測定用材料
JP6698967B2 (ja) 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット
US4262936A (en) Color developing ink containing aliphatic esters with 8-25 carbon atoms
TWI428577B (zh) 壓力測定用材料
KR101497737B1 (ko) 압력 측정용 재료
KR900000964B1 (ko) 마이크로캡슐을 함유한 수성 도포제 및 이 도포제를 사용한 복사 및/또는 기록 재료
GB1581757A (en) Coating compositions and the utilisation thereof
NO793243L (no) Trykkfoelsomt kopieringsmateriale.
CN105256660A (zh) 隐形图案防伪纸
WO2018221168A1 (ja) 圧力測定用材料
WO2019154145A1 (zh) 具有特殊配方的发色膜、压力测试膜及其制备方法
JP5258236B2 (ja) 圧力測定用材料
WO2019154147A1 (zh) 凹凸结构制备设备
TWI842080B (zh) 壓力測定用材料及壓力測定用材料組
JPH0478435A (ja) マイクロカプセル及びその製造方法
CN116082688A (zh) 一种压力测试用发色膜
JP2007237418A (ja) 感熱記録媒体の製造方法
JP2007118619A (ja) 感熱記録媒体およびその製造方法
JPH0342273A (ja) 感圧記録用顕色シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026233

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19751714

Country of ref document: EP

Kind code of ref document: A1