WO2019151169A1 - エンドミルおよび加工方法 - Google Patents

エンドミルおよび加工方法 Download PDF

Info

Publication number
WO2019151169A1
WO2019151169A1 PCT/JP2019/002632 JP2019002632W WO2019151169A1 WO 2019151169 A1 WO2019151169 A1 WO 2019151169A1 JP 2019002632 W JP2019002632 W JP 2019002632W WO 2019151169 A1 WO2019151169 A1 WO 2019151169A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
outer peripheral
end mill
blades
peripheral blade
Prior art date
Application number
PCT/JP2019/002632
Other languages
English (en)
French (fr)
Inventor
賢史朗 田牧
満広 横川
Original Assignee
三菱日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立ツール株式会社 filed Critical 三菱日立ツール株式会社
Priority to KR1020207022216A priority Critical patent/KR102365447B1/ko
Priority to US16/965,699 priority patent/US11471958B2/en
Priority to EP19748307.6A priority patent/EP3747580A4/en
Priority to CN201980010914.7A priority patent/CN111670081B/zh
Priority to JP2019563113A priority patent/JP6683299B2/ja
Publication of WO2019151169A1 publication Critical patent/WO2019151169A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C9/00Details or accessories so far as specially adapted to milling machines or cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/04Overall shape
    • B23C2200/0422Octagonal
    • B23C2200/0427Octagonal rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0421Cutting angles negative
    • B23C2210/0435Cutting angles negative radial rake angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/207Number of cutting edges eight

Definitions

  • the present invention relates to an end mill and a processing method using the end mill.
  • the present invention has been made in view of such circumstances, and is an end mill for use in contour processing, and is intended to provide an end mill that can reduce zero cut in finishing processing and increase processing accuracy.
  • An end mill includes a cylindrical shaft portion extending along a central axis, and a blade portion positioned on a tip side of the shaft portion, and the blade portion is larger than the shaft portion.
  • Eight outer peripheral blades having an outer diameter are provided along the circumferential direction, and the outer peripheral blades are spiral blades extending spirally around the central axis, and attention is paid to one of the eight outer peripheral blades.
  • n (L ⁇ tan ⁇ ) / (2 ⁇ a)
  • the end mill of the present invention employs a configuration in which excellent tool performance is reproduced when the depth of cut is shorter than the entire length of the outer peripheral blade. Specifically, it is configured such that particularly excellent tool performance is reproduced in contour line machining in which the depth of cut is half the total length of the outer peripheral blade.
  • n represented by the above formula represents the number of outer peripheral blades that are always in contact with the work material during cutting of the work material by the end mill. According to the above-described configuration, in the lower half region of the outer peripheral blade, approximately one outer peripheral blade is always in contact with the workpiece during cutting (the number of simultaneous contact blades in the lower half region is always substantially lower). 1).
  • the cutting resistance that the end mill receives from the work material increases or decreases. Thereby, there is a problem that the end mill vibrates and the machining accuracy is lowered. Since the lower half area of the outer peripheral blade has a large machining allowance, it is easy to amplify the vibration of the end mill when the number of simultaneous contact blades increases or decreases. Further, even when the number of simultaneous contact blades in the lower half region of the outer peripheral blade is always a natural number of 2 or more, the machining accuracy is lower than when the number of simultaneous contact blades is always approximately 1.
  • the number of simultaneous contact blades is always approximately 1, so that tool deflection is difficult to occur during processing, and end mill vibrations are suppressed. Surface processing accuracy can be increased.
  • the outer peripheral blade length can be secured long in the axial direction within a range that satisfies the above-described configuration, and a wider range can be processed in one step when performing contour line processing, resulting in a reduction in processing cost.
  • eight outer peripheral blades are provided.
  • the increase / decrease in cutting resistance when the peripheral blades contacting the work material are switched is suppressed. it can.
  • the increase / decrease width of the cutting resistance is reduced, the vibration of the end mill during cutting can be suppressed, and as a result, the machining accuracy can be increased.
  • the n may be 0.9 or more and 1.1 or less.
  • n is 0.95 or more and 1.05 or less.
  • M represented by the above formula represents the number of outer peripheral blades that always come into contact with the work material during the cutting of the work material by the end mill over the entire length of the outer peripheral blade.
  • the machining surface is mainly formed in the lower half region of the blade length, and then the lower half region is newly formed.
  • the upper half region of the blade length bends during machining of a smooth surface, and the region processed by the lower half region of the blade length can be processed again in the upper half region of the blade length.
  • a minute step is generated at the boundary of the cut in the depth direction due to the deflection of the end mill.
  • the region processed by the lower half of the blade length can be processed by aligning the blade length and the simultaneous contact blade using the upper half of the blade length in the next cutting.
  • the surface processed first with the lower half blade length can be exposed to the number of simultaneous contact blades of approximately 1 in the upper half region of the blade length in the next cut. Therefore, the processing accuracy of the processed surface is further increased, and a step generated at the boundary portion of the cut in the depth direction can be reduced.
  • the m may be 1.9 or more and 2.1 or less.
  • the processing accuracy of the processing surface can be increased.
  • m exceeds 2.1, or when m is less than 1.9, it is difficult to form a machined surface with sufficient machining accuracy because the vibration of the end mill during machining affects the machining accuracy. It becomes. That is, according to the above-described configuration, the processing accuracy of the processed surface can be sufficiently increased. More preferably, m is 1.95 or more and 2.05 or less.
  • an outer diameter D of the outer peripheral blade is 4 mm or more.
  • the outer diameter of the outer peripheral blade of the end mill of the present invention is 4 mm or more. Furthermore, the outer diameter of the outer peripheral blade is preferably 5 mm or more. Further, if the outer diameter is too large, it becomes difficult to manufacture as a solid end mill. Therefore, the outer diameter of the outer peripheral blade is preferably 30 mm or less.
  • the twist angle is preferably 35 ° or more and 40 ° or less.
  • the end mill having eight outer peripheral blades in which the simultaneous contact blade is always substantially 1 in the lower half region of the outer peripheral blade by setting the twist angle of the outer peripheral blade to 35 ° or more and 40 ° or less. Since the configuration of the outer peripheral blade is such that the blade length does not become too long, the rigidity of the tool is increased and the deflection of the tool is less likely to occur during machining. Thereby, the processing accuracy of the processing surface can be sufficiently increased without zero cut. Furthermore, it is preferable to set the twist angle of the outer peripheral blade to 37 ° or more and 39 ° or less.
  • the outer peripheral blade may have a positive rake face.
  • the outer peripheral blade since the outer peripheral blade has a positive type rake face, the outer peripheral edge is sharper than the case of having a negative type rake face. Thereby, the processing accuracy of the processing surface can be sufficiently increased without zero cut.
  • the outer peripheral blade may have a two-step flank.
  • the accuracy of the processed surface can be improved even when the feed amount of the end mill is increased as compared with the case where the flank has one stage. Thereby, the processing accuracy of the processing surface can be sufficiently increased without zero cut.
  • the processing method according to one embodiment of the present invention is a processing method using the above-described end mill, and performs contour line processing with the depth of cut as half the blade length.
  • the machining accuracy can be improved without zero cut.
  • an end mill for use in contour processing which can reduce the zero cut for obtaining dimensional accuracy and can increase the processing accuracy.
  • FIG. 1 is a mimetic diagram of an end mill of one embodiment.
  • FIG. 2 is a front view of the blade portion of the end mill according to the embodiment.
  • FIG. 3 is a plan view of a blade portion of an end mill according to an embodiment.
  • FIG. 4 is an enlarged cross-sectional view of an outer peripheral blade of the end mill according to the embodiment.
  • FIG. 5A is a diagram illustrating a procedure for contour processing of a wall surface using an end mill according to an embodiment, and illustrates a first step of contour processing.
  • FIG. 5B is a diagram showing a procedure of contour processing of a wall surface using the end mill of one embodiment, and shows the next step of FIG. 5A.
  • FIG. 5A is a diagram illustrating a procedure for contour processing of a wall surface using an end mill according to an embodiment, and illustrates a first step of contour processing.
  • FIG. 5B is a diagram showing a procedure of contour processing of a wall surface using the end mill of one embodiment, and shows the next
  • FIG. 5C is a diagram showing a procedure of contour processing of the wall surface using the end mill of one embodiment, and shows the next step of FIG. 5B.
  • FIG. 6 is a developed schematic view of the outer peripheral blade of one embodiment developed along the circumferential direction.
  • FIG. 7 shows the depth of the machined surface and the depth of the machined surface in the cutting tests of Test Example 1-1, Test Example 1-2, Test Example 1-3, Test Example 1-4, and Test Example 1-5. It is a graph which shows the relationship of the measurement result of the amount of collapse.
  • FIG. 8A is a graph showing the change in cutting resistance with time in the cutting test of Test Example 2-1.
  • FIG. 8B is a graph showing changes in cutting resistance with time in the cutting test of Test Example 2-2.
  • FIG. 1 is a schematic diagram of an end mill 1 according to an embodiment.
  • FIG. 2 is a front view of the blade portion 20 of the end mill 1.
  • FIG. 3 is a plan view of the blade portion 20 of the end mill 1.
  • the end mill 1 is a substantially cylindrical rod body that extends along an axial direction with an axis (center axis) O as a center.
  • the end mill 1 is made of a hard material such as a cemented carbide.
  • a direction parallel to the axis O of the end mill 1 is simply referred to as an axial direction.
  • a direction orthogonal to the axis O is referred to as a radial direction.
  • a direction around the axis O is referred to as a circumferential direction.
  • the direction in which the end mill 1 rotates during cutting is referred to as the tool rotation direction T.
  • a region on the tool rotation direction T side with respect to a specific part may be referred to as a rotation direction front side and a region opposite to the tool rotation direction T side may be referred to as a rotation direction rear side.
  • the end mill 1 of this embodiment is a square end mill.
  • the end mill 1 processes the standing wall by contour line processing.
  • the work material processed by the end mill 1 is, for example, a mold nesting for resin molding.
  • the end mill 1 has a shank part 12, a neck part (shaft part) 11, and a blade part 20.
  • the shank portion 12, the neck portion 11, and the blade portion 20 are arranged in this order along the axis O from the proximal end side toward the distal end side.
  • the shank portion 12 has a columnar shape extending along the axis O.
  • the shank portion 12 is gripped by the machine tool 9.
  • the end mill 1 is held by the machine tool 9 in the shank portion 12 and is rotated in the tool rotation direction T around the axis O.
  • the end mill 1 is used for cutting work (cutting work) of a work material such as a metal material. Further, the end mill 1 processes the workpiece by being fed by the machine tool 9 in the direction intersecting the axis O along with the rotation around the axis O.
  • the neck portion 11 has a columnar shape extending along the axis O.
  • the neck portion 11 is located on the tip side of the shank portion 12.
  • the outer diameter of the neck portion 11 is smaller than the outer diameter of the shank portion 12.
  • the neck portion 11 is a region facing a processed surface formed by contour processing using the end mill 1.
  • the blade portion 20 is located on the distal end side of the neck portion 11.
  • the blade portion 20 is provided with eight outer peripheral blades 21 and eight bottom blades 22 respectively connected to the outer peripheral blade 21 on the tip (lower end) side of the outer peripheral blade 21.
  • the eight outer peripheral blades 21 are arranged at equal intervals along the circumferential direction on the outer periphery of the blade portion 20. Further, the eight bottom blades 22 are arranged at equal intervals along the circumferential direction at the tip of the blade portion 20.
  • the gash 26 is provided between the eight bottom blades 22, respectively.
  • the eight bottom blades 22 are a center blade 22a that extends from the vicinity of the axis O toward the radially outer side, and a main bottom blade that is positioned radially outward from the center blade 22a and continues radially outward from the center blade 22a. 22b.
  • a central blade second surface 23a is provided on the rear side in the rotational direction of the central blade 22a.
  • a main bottom blade second surface 23b is provided on the rear side in the rotation direction of the main bottom blade 22b.
  • the center blade second surface 23a and the main bottom blade second surface 23b are formed continuously in the radial direction.
  • the center blade second surface 23 a and the main bottom blade second surface 23 b constitute a flank 23 of the bottom blade 22.
  • the width in the circumferential direction of the main bottom blade second surface 23b gradually decreases as it goes radially inward.
  • the circumferential width at the radially inner end of the main bottom blade second surface 23b is narrower than the circumferential width of the radially outer end of the central blade second surface 23a.
  • the circumferential width of the center blade second surface 23a gradually decreases as it goes radially inward.
  • a central groove 27 continuous with the gasche 26 is provided at the boundary between the central blade 22a and the central blade second surface 23a located on the front side in the rotational direction of the central blade 22a.
  • Each central groove 27 reaches the axis O on the radially inner side. According to the present embodiment, while the central groove 27 is formed on the front side in the rotational direction of the central blade 22a, it is possible to make it difficult for fine chips existing in the gash 26 to enter the central groove 27.
  • the outer peripheral blade 21 is a twisted blade that extends spirally around the axis O.
  • the outer peripheral blade 21 is spirally twisted at a constant twist angle ⁇ toward the tool rotation direction T from the proximal end side of the end mill 1 toward the distal end side.
  • the twist angles ⁇ of the eight outer peripheral blades 21 are the same angle. That is, the outer peripheral blade 21 of this embodiment is an equal lead.
  • the outer diameter D of the outer peripheral blade 21 is smaller than the outer diameter d of the neck 11. Thereby, it is suppressed that the neck part 11 interferes with the process surface formed by the contour process.
  • a chip discharge groove 24 is formed between the outer peripheral blades 21.
  • the plurality of chip discharge grooves 24 are formed at equal intervals in the circumferential direction.
  • the chip discharge groove 24 is helically twisted at a constant twist angle along the axial direction.
  • the twist angle of the chip discharge groove 24 coincides with the twist angle ⁇ of the outer peripheral blade 21.
  • the chip discharge groove 24 is rounded up to the outer periphery of the end mill 1 at the end portion on the proximal end side of the blade portion 20.
  • An outer peripheral blade 21 is formed on the edge of the chip discharge groove 24 on the rear side in the rotation direction. That is, the chip discharge groove 24 is located on the front side in the rotation direction of the outer peripheral blade 21.
  • the wall surface of the chip discharge groove 24 includes a bottom surface 24a and a rake surface 24b.
  • the bottom surface 24 a is a surface that faces radially outward with respect to the axis O in the chip discharge groove 24.
  • the rake face 24 b is a wall face facing the tool rotation direction T in the chip discharge groove 24.
  • the outer peripheral blade 21 is formed on the outer peripheral surface of the blade portion 20 at the intersecting ridge line between the rake surface 24 b and the flank 25.
  • the flank 25 is a surface adjacent to the chip discharge groove 24 on the rear side in the rotation direction.
  • the flank 25 extends in a row in the circumferential direction from the outer peripheral blade 21 toward the chip discharge groove 24 on the rear side in the rotational direction of the outer peripheral blade 21.
  • FIG. 4 is a schematic cross-sectional view schematically showing an enlarged cross section perpendicular to the axis O of the outer peripheral blade 21.
  • a work material to be cut by the outer peripheral blade 21 is shown.
  • the outer peripheral blade 21 of the present embodiment has two flank faces. That is, the flank 25 of the outer peripheral blade 21 has a first region 25a and a second region 25b arranged in the circumferential direction.
  • the first region 25a is located on the outer peripheral blade 21 side.
  • region 25b is located in the chip discharge groove 24 side.
  • the first region 25 a and the second region 25 b are each configured in a circular shape that is eccentric with respect to a virtual circle centered on the axis O in the cross section of the end mill 1.
  • the first region 25a and the second region 25b are configured in different circular shapes that are different from each other.
  • the clearance angle ⁇ of the first region 25a is, for example, 4 °
  • the clearance angle ⁇ of the second region 25b is, for example, 11 °. That is, the clearance angle ⁇ of the second region 25b is larger than the clearance angle ⁇ of the first region 25a.
  • the outer peripheral blade 21 since the outer peripheral blade 21 is configured with two flank surfaces, the outer peripheral blade 21 contacts the machining surface at the minute first flank surface (first region 25a) during cutting. Then rub the processed surface of the work material. Thereby, the damage
  • the clearance angle ⁇ of the first flank (first region 25a) is preferably 1 ° or more and 10 ° or less, and more preferably 4 ° ⁇ 1 °. If the angle of the first-stage flank (first region 25a) is too small, the cutting resistance increases and the processed surface may become rough. On the other hand, if the angle of the first-stage flank (first region 25a) is too large, cutting resistance can be suppressed, but the effect of rubbing the processed surface on the first-stage flank and smoothing the unevenness is reduced. . By setting the clearance angle ⁇ of the first flank (first region 25a) within the above range, the machining surface can be smoothed while cutting resistance is suppressed, and the dimensional accuracy of the machining surface is increased. Can do.
  • the clearance angle of the flank is measured at a cut surface perpendicular to the axis O.
  • a virtual circle connecting the tips of the outer peripheral blades is obtained, and the flank angle is obtained with respect to the tangent line of the virtual circle passing through the tips of the outer peripheral blades to be measured.
  • the width w of the first flank (first region 25a) is preferably 0.01 mm or more and 0.15 mm or less, and more preferably 0.03 ⁇ 0.01 mm.
  • the width w of the first flank (first region 25a) is measured at a cut surface perpendicular to the axis O.
  • a virtual circle connecting the tips of the outer peripheral blades is obtained, and the length dimension of the first region 25a in the tangential direction of the virtual circle passing through the tips of the outer peripheral blades to be measured is defined as a width w.
  • the outer peripheral blade 21 of the present embodiment has a positive type rake face 24b. That is, when viewed from the axial direction, the rake face 24b extends from the cutting edge of the outer peripheral blade 21 toward the opposite side of the tool rotation direction T with respect to the straight line connecting the cutting edge and the axis O. According to this embodiment, since the outer peripheral blade 21 has the positive type rake face 24b, the sharpness of the outer peripheral edge 21 is improved as compared with the case of having the negative type rake face. For this reason, the processing accuracy of the processed surface can be sufficiently increased.
  • FIG. 5A, FIG. 5B and FIG. 5C are diagrams showing a procedure of contour processing of the wall surface using the end mill 1.
  • FIG. 5A to 5C illustrate the steps of contour line processing. 5A to 5C, the blade length along the axial direction of the outer peripheral blade 21 is L.
  • contour line processing is performed with the depth of cut as half of the blade length L.
  • the outer peripheral blade 21 mainly forms a machining surface in the lower half region of the blade length L and performs machining again on the machining surface in the upper half region of the blade length L.
  • the outer diameter D of the outer peripheral blade is uniform over the entire length of the outer peripheral blade. For this reason, the machining allowance in processing by the upper half region of the blade length L is very small.
  • a minute step is generated at the boundary of the depth direction cut due to the deflection of the end mill.
  • the machining surface formed in the lower half region of the outer peripheral blade 21 is reworked in the upper half region. For this reason, the level
  • FIG. 6 is a developed schematic view of the outer peripheral blade 21 of the blade portion 20 developed along the circumferential direction.
  • the blade length along the axial direction of the outer peripheral blade 21 is L
  • the twist angle of the outer peripheral blade 21 is ⁇
  • the lower end 21b of the outer peripheral blade 21 is A circumferential distance between the outer peripheral blade 21 and the other outer peripheral blade 21 adjacent to the rear of the outer peripheral blade 21 in the tool rotation direction is defined as a.
  • the circumferential distance means an arc length extending in the circumferential direction around the axis O.
  • the blade length L along the axial direction of the outer peripheral blade 21 is an effective blade length of the outer peripheral blade 21 that substantially cuts the work material. That is, the blade length L means a length along the axial direction of a region having a constant outer diameter D larger than the neck portion 11 in the outer peripheral blade 21 extending spirally along the axial direction. Further, the upper end 21 a of the outer peripheral blade 21 means the upper end of a region where the outer diameter dimension D is maintained in the outer peripheral blade 21. Similarly, the lower end 21b of the outer peripheral blade 21 means the lower end of the region in which the outer diameter D is maintained in the outer peripheral blade 21.
  • the end mill 1 of this embodiment is a square end mill
  • the lower end 21b of the outer peripheral blade 21 is a connection part with the bottom blade 22.
  • the lower end 21b of the outer peripheral blade 21 is a connecting portion with an arc-shaped radius blade.
  • the blade length L along the axial direction and the twist angle ⁇ of the outer peripheral blade 21 are equal for all the outer peripheral blades 21.
  • the positions in the circumferential direction substantially coincide with each other.
  • the end mill 1 rotates around the axis O to cut the workpiece at the blade portion 20.
  • n represented by the above formula represents the number of outer peripheral blades 21 always in contact with the work material during cutting of the work material by the end mill 1 in the lower half region of the outer peripheral blade 21.
  • n represented by the above formula represents the number of outer peripheral blades 21 always in contact with the work material during cutting of the work material by the end mill 1 in the lower half region of the outer peripheral blade 21.
  • approximately one outer peripheral blade 21 always comes into contact with the work material in the lower half region of the outer peripheral blade 21 (the number of simultaneous contact blades in the lower half region is always constant). About 1).
  • the end mill 1 of the present embodiment is configured such that particularly excellent tool performance is reproduced when contour cutting is performed with the depth of cut in half as long as the blade length L. Accordingly, the lower half region of the outer peripheral blade 21 has a large machining allowance, which is a dominant factor in generating vibration, and it is important to have a configuration that suppresses vibration.
  • the cutting resistance that the end mill 1 receives from the work material increases or decreases. More specifically, the cutting resistance sharply decreases when the outer peripheral blade 21 is separated from the work material in the lower half region, and the cutting resistance increases rapidly when the outer peripheral blade 21 starts to contact the work material. To do. Thereby, there is a problem that the end mill vibrates and the machining accuracy is lowered. Further, even when the number of simultaneous contact blades in the lower half region is always a natural number of 2 or more, the machining accuracy is lower than when the number of simultaneous contact blades is always approximately 1.
  • the number of simultaneous contact blades in the lower half region is always approximately 1, so that when one outer peripheral blade 21 is separated from the work material, the other outer peripheral blade 21 and the work material are substantially at the same time. Since it starts to contact, the vibration of the end mill 1 during processing can be suppressed, and the processing accuracy of the processed surface can be increased.
  • the blade length of the outer peripheral blade 21 can be secured long in the axial direction within the range satisfying the above-described configuration, and a wider range can be processed in one step when performing contour line processing, resulting in a reduction in processing cost. .
  • n represented by the above is preferably 0.9 or more and 1.1 or less.
  • the processing accuracy of the processing surface can be maximized.
  • n exceeds 1.1 or when n is less than 0.9, the vibration of the end mill 1 during processing affects the processing accuracy, and a processing surface with sufficient processing accuracy may be formed. It becomes difficult. That is, when n is 0.9 or more and 1.1 or less, the processing accuracy of the processed surface can be sufficiently increased.
  • n is more preferably 0.95 or more and 1.05 or less. By setting n to 0.95 or more and 1.05 or less, vibration of the end mill 1 can be more effectively suppressed.
  • m (L ⁇ tan ⁇ ) / a (Expression 2)
  • M represented by (Expression 2) represents the number of outer peripheral blades 21 that always contact the work material during the cutting of the work material by the end mill 1 over the entire length of the outer peripheral blade 21.
  • the blade length and the simultaneous contact blade are the same in the lower half and the upper half of the blade length L. Therefore, the processing accuracy of the processed surface is further increased, and a step generated at the boundary portion of the cut in the depth direction can be reduced.
  • m represented by the above is preferably 1.9 or more and 2.1 or less.
  • the processing accuracy of the processing surface can be increased.
  • m exceeds 2.1 or when m is less than 1.9, the vibration of the end mill 1 during processing affects the processing accuracy, and a processing surface with sufficient processing accuracy may be formed. It becomes difficult. That is, according to the above-described configuration, the processing accuracy of the processed surface can be sufficiently increased.
  • m is more preferably 1.95 or more and 2.05 or less. By setting n to 1.95 or more and 2.05 or less, vibration of the end mill 1 can be more effectively suppressed.
  • the blade portion 20 is provided with eight outer peripheral blades 21.
  • the number of simultaneous contact blades is always approximately 1, while the number of the outer peripheral blades 21 is increased so that the increase / decrease width of the cutting resistance when the outer peripheral blade 21 contacting the work material is switched is increased. Can be suppressed.
  • the cutting resistance can be increased or decreased to suppress the vibration of the end mill 1 during cutting, and as a result, the machining accuracy can be increased.
  • the outer diameter D of the outer peripheral blade 21 is preferably 4 mm or more.
  • the outer diameter D of the outer peripheral blade 21 is preferably 4 mm or more.
  • the outer diameter D of the outer peripheral blade 21 is preferably 5 mm or more.
  • the outer diameter D of the outer peripheral blade 21 is preferably 30 mm or less.
  • the core thickness of the end mill 1 in the cross section orthogonal to the axis O of the portion where the outer peripheral blade 21 is formed is equal to the outer diameter D of the outer peripheral blade 21 in the same cross section. It is preferably 75% or more and 85% or less.
  • the blade length L of the outer peripheral blade 21 is preferably 1.5 times or less, and 1.2 times or less the outer dimension D of the outer peripheral blade 21. It is more preferable that
  • the twist angle ⁇ is preferably 35 ° or more and 40 ° or less.
  • Test 1-5 Under the following conditions, finish cutting tests on the standing walls of Test Example 1-1, Test Example 1-2, Test Example 1-3, Test Example 1-4, and Test Example 1-5 were performed.
  • ⁇ Cover cut material DAC (H) 48HRC
  • End mill Outer diameter of outer peripheral edge ⁇ 6mm, core thickness 80%
  • Machine MAKINO V33 (HSK-F63)
  • Test Example 1-1 As the end mill used in Test Example 1-1, an end mill having a simultaneous contact blade of approximately 1 in the lower half region of the outer peripheral blade was used. Then, contour processing was performed with the depth of cut in the depth direction being half the blade length of the outer peripheral blade. Therefore, in Test Example 1-1, the machined surface cut with the lower half of the outer cutter was reworked with the upper half of the outer cutter. That is, in Test Example 1-1, cutting was performed at each step so that the number of simultaneous contact blades in the lower half and upper half regions of the outer peripheral blades was always approximately 1.
  • the end mill used in Test Example 1-1 has an outer peripheral blade length of 6 mm.
  • the outer peripheral edge of the end mill used in Test Example 1-1 has a two-step flank.
  • the end mill used in Test Example 1-1 has eight outer peripheral blades having an equal lead with a twist angle of 38 °.
  • the end mill used in Test Example 1-1 has a positive rake angle of the outer peripheral edge.
  • the blade length of the outer peripheral blade was set to half the blade length of the outer peripheral blade of the end mill used in Test Example 1-1.
  • contour processing was performed with the depth of cut in the entire cutting length of the outer peripheral blade. That is, in Test Example 1-2, cutting was performed at each step so that the number of simultaneous contact blades was always approximately 1 over the entire blade length.
  • the end mill used in Test Example 1-2 has a peripheral blade length of 3 mm.
  • the outer peripheral edge of the end mill used in Test Example 1-2 has a two-step flank.
  • the end mill used in Test Example 1-2 has eight outer peripheral blades having an equal lead with a twist angle of 38 °.
  • the end mill used in Test Example 1-2 has a positive type rake angle of the outer peripheral edge.
  • the blade length of the outer peripheral blade of the end mill used in Test Example 1-1 was doubled, and the number of simultaneous contact blades was approximately 2 in the lower half region of the outer peripheral blade. Then, contour processing was performed with the depth of cut in the depth direction being half the blade length of the outer peripheral blade. That is, in Test Example 1-3, each step was cut such that the number of simultaneous contact blades was always approximately 2.
  • the end mill used for Test Example 1-3 has a peripheral blade length of 12 mm.
  • the outer peripheral blade of the end mill used in Test Example 1-3 has a two-step flank.
  • the end mill used in Test Example 1-3 has eight outer peripheral blades having an equal lead with a twist angle of 38 °.
  • the end mill used in Test Example 1-3 has a positive rake angle on the outer peripheral edge.
  • the end mill used in Test Example 1-4 had a configuration in which the outer peripheral blade length was shortened similarly to Test Example 1-2, and the outer peripheral blade had one flank.
  • contour line machining was performed with the depth of cut as the total length of the outer peripheral edge. That is, contour processing was performed so that the number of simultaneous contact blades was approximately 1 over the entire length of the blade.
  • the outer peripheral edge of the end mill used in Test Example 1-4 has a one-step flank.
  • the end mill used in Test Example 1-4 has a peripheral blade length of 3 mm.
  • the end mill used in Test Example 1-4 has eight outer peripheral blades having an equal lead with a twist angle of 38 °.
  • the end mill used in Test Example 1-4 has a positive type with a rake angle of the outer peripheral edge.
  • the end mill used in Test Example 1-5 had a twist angle different from that of the end mill used in Test Example 1-1.
  • contour line machining was performed with the depth of cut as the total cutting length of the outer peripheral blade. That is, contour processing was performed so that the number of simultaneous contact blades was always approximately 1 throughout the blade length.
  • the end mill used in Test Example 1-5 has a peripheral blade length of 6 mm.
  • the outer peripheral edge of the end mill used in Test Example 1-5 has a two-step flank.
  • the end mill used in Test Example 1-5 has eight outer peripheral blades of equal leads with a twist angle of 21 °.
  • the rake angle of the outer peripheral blade has a positive type.
  • FIG. 7 shows the measurement of the depth of the processed surface and the amount of tilt of the processed surface in the cutting tests of Test Example 1-1, Test Example 1-2, Test Example 1-3, Test Example 1-4, and Test Example 1-5. It is a graph which shows the relationship of a result. As shown in FIG. 7, in Test Example 1-1, it can be confirmed that the amount of collapse is sufficiently small as compared with the other test examples.
  • Table 1 shows the evaluation results of the processed surfaces formed in the cutting tests of Test Example 1-1, Test Example 1-2, Test Example 1-3, Test Example 1-4, and Test Example 1-5.
  • Ra is the arithmetic average roughness of the machined surface
  • Rz is the maximum height of the machined surface.
  • the “appearance / glossiness” is the result of visual evaluation of the processed surface.
  • the “machining stripe” is a visual evaluation result of the state of equally spaced streaks formed due to each step of feeding in the depth direction.
  • the “falling accuracy” is an evaluation result based on the graph shown in FIG.
  • Cutting resistance is the evaluation result evaluated based on the measurement result of cutting resistance. In each item, A is the best, B is the next best, C is the next best, and D is not preferable.
  • Test Example 1-1 was excellent in tilt accuracy and surface properties, and zero cut for correction was unnecessary.
  • Test Examples 1-3 and 1-5 where the cutting depth is large, the tilting accuracy is poor, and an uncut amount of about 10 ⁇ m was confirmed even if zero cutting was performed 5 to 10 times as an additional step.
  • the falling accuracy was 5 ⁇ m or less, but the surface properties were deteriorated as compared with Test Example 1-1.
  • Test 2 showing the advantage of setting the number of outer peripheral blades to 8 will be described.
  • the cutting tests of Test Example 2-1 and Test Example 2-2 are performed under the following conditions.
  • ⁇ Cover cut material DAC (H) 48HRC
  • End mill Outer diameter of outer peripheral edge ⁇ 6mm
  • Machine MAKINO V33 (HSK-F63)
  • the end mill used in Test Example 2-1 has eight outer peripheral blades of equal leads, and the twist angle of the outer peripheral blade is 38 °.
  • the end mill used in Test Example 2-1 is an end mill having the same configuration as the end mill of Test Example 1-1 described above.
  • the end mill used in Test Example 2-2 has two outer peripheral blades of equal leads, and the twist angle of the outer peripheral blade is 72 °.
  • Other configurations of the end mill used in Test Example 2-2 are the same as those of the end mill in Test Example 2-1.
  • Test Example 2-1 and Test Example 2-2 the change in cutting resistance with time in a step (that is, the step shown in FIG. 5A) in which cutting is performed using only the lower half region of the outer peripheral edge in contour processing was measured.
  • FIG. 8A is a graph showing the change in cutting resistance with time in the cutting test of Test Example 2-1.
  • FIG. 8B is a graph showing changes in cutting resistance with time in the cutting test of Test Example 2-2.
  • the horizontal axis is time
  • the vertical axis is cutting force.
  • the scales on the horizontal axis are the same.
  • numerals are shown at points where the outer peripheral blades arranged in the circumferential direction start to contact each other.
  • the end mill vibrates due to the increase / decrease of the cutting resistance, and the machining accuracy decreases. That is, by using an end mill having eight outer peripheral blades used in Test Example 2-1, compared with an end mill using two outer peripheral blades (end mill of Test Example 2-2), the accuracy of the machining surface is improved. Can be increased.

Abstract

等高線加工に用いるエンドミルであって、刃長をできるだけ長く設定して加工コストを低減しつつ加工精度を高めることを目的とする。刃部には、軸部よりも大きい外径寸法の8つの螺旋状の外周刃が周方向に沿って設けられ、8つの外周刃のうち1つの外周刃に着目し、当該外周刃の軸方向に沿う刃長をL、当該外周刃のねじれ角をθ、当該外周刃の下端において当該外周刃と当該外周刃の工具回転方向後方に隣接する他の外周刃との周方向距離をaとした時、外周刃の下端から少なくとも刃長の半分の領域において、以下の式で表されるnが、8つの外周刃について全て略1である、エンドミル。n=(L×tanθ)/(2×a)

Description

エンドミルおよび加工方法
 本発明は、エンドミルおよび当該エンドミルを用いた加工方法に関する。
 本願は、2018年2月2日に、日本に出願された特願2018-017384号に基づき優先権を主張し、その内容をここに援用する。
 金型加工において、深い立壁(90°の壁)を切削加工する際に、刃長の長いエンドミルを用いると、エンドミルの剛性が不足して加工精度が低下する。このため、立壁の加工には、刃長の短いエンドミルを用いて軸方向へ段階的に移動しながら軸心と直角方向へ切削加工を用い、何段も繋ぎ合わせて切削加工する等高線加工が提案されている(例えば特許文献1)。
特開2000-334615号公報
 立壁の等高線加工において、深さ方向の切り込み量を外周刃の全長とすると、加工中に工具がたわみ易く、加工精度が低下し易い。そのため、高精度な仕上げ面品位を得るためには、何回もゼロカットを繰り返すため加工時間がかかり、結果的に加工コストが高くなってしまうという問題がある。また、深さ方向の切り込み量を小さくした場合には、エンドミルを軸方向に何度も移動させながら加工するため、加工時間が長くなり、結果的に加工コストが高くなってしまうという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、等高線加工に用いるエンドミルであって、仕上げ加工におけるゼロカットを低減でき、かつ、加工精度を高めることができるエンドミルの提供を目的の1つとする。
 本発明の一態様のエンドミルは、中心軸に沿って延びる円柱形状の軸部と、前記軸部の先端側に位置する刃部と、を備え、前記刃部には、前記軸部よりも大きい外径寸法の8つの外周刃が周方向に沿って設けられ、前記外周刃は、前記中心軸まわりに螺旋状に延びるねじれ刃であり、8つの前記外周刃のうち1つの外周刃に着目し、当該外周刃の軸方向に沿う刃長をL、当該外周刃のねじれ角をθ、当該外周刃の下端において当該外周刃と当該外周刃の工具回転方向後方に隣接する他の前記外周刃との周方向距離をaとした時、前記外周刃の下端から少なくとも前記刃長の半分の領域において、以下の式で表されるnが、8つの前記外周刃について全て略1である、エンドミル。
 n=(L×tanθ)/(2×a)
 本発明のエンドミルは、深さ方向の切り込み量を外周刃の全長よりも短くした場合に優れた工具性能が再現される構成を適用している。具体的には、深さ方向の切り込み量を外周刃の全長の半分とした等高線加工において特に優れた工具性能が再現される構成としている。上述の式で表されるnは、外周刃の下半分の領域において、エンドミルによる被削材の切削中に被削材に常に接触する外周刃の数を表す。上述の構成によれば、外周刃の下半分の領域において、切削加工中に、常に略1つの外周刃が被削材に接触することとなる(下半分の領域における同時接触刃数が常に略1)。エンドミルによる被削材の切削中に、同時接触刃数が増減すると、エンドミルが被削材から受ける切削抵抗が増減する。これにより、エンドミルが振動して加工精度が低下するという問題がある。外周刃の下半分の領域は、取り代が大きいため、同時接触刃数が増減するとエンドミルの振動を増幅しやすい。また、外周刃の下半分の領域の同時接触刃数が常に2以上の自然数である場合であっても、同時接触刃数が常に略1である場合と比較して、加工精度が低下する。取り代が大きい外周刃の下半分の領域において、同時接触刃数が常に略1となる構成とすることで、加工中に工具のたわみが発生し難く、かつ、エンドミルの振動が抑制され、加工面の加工精度を高めることができる。
 また、上述の構成を満たす範囲で、外周刃の刃長を軸方向に長く確保することができ、等高線加工を行う際の1ステップでより広範囲を加工でき、結果的に加工コストを低減できる。
 加えて、上述の構成によれば、8つの外周刃が設けられる。外周刃の下半分の領域において同時接触刃数が略1となる構成としつつ、外周刃の数を増加させることで、被削材に接触する外周刃が切り替わる際の切削抵抗の増減幅を抑制できる。外周刃を8つ設けることで、切削抵抗の増減幅は低減されるようになり、切削中のエンドミルの振動を抑制し、結果的に加工精度を高めることができる。
 また、上述のエンドミルにおいて、前記nが、0.9以上、1.1以下である、構成としてもよい。
 上述したように、外周刃の下半分の領域において同時接触刃数が、常に略1である場合(すなわちn≒1)に、加工面の加工精度を高めることができる。一方で、nが1.1を超える場合、又はnが0.9未満の場合、加工中のエンドミルの振動が加工精度に影響を与えて、十分な加工精度の加工面を形成することが困難となる。すなわち、上述の構成によれば、加工面の加工精度を十分に高めることができる。更に好ましくは、nが、0.95以上、1.05以下である。
 また、上述のエンドミルは、前記外周刃の全長において、以下の式で表されるmが、8つの前記外周刃について全て略2である、構成としてもよい。
m=(L×tanθ)/a
 上述の式で表されるmは、外周刃の全長において、エンドミルによる被削材の切削中に被削材に常に接触する外周刃の数を表す。上述の構成によれば、深さ方向の切り込み量を外周刃の全長の半分とした等高線加工において、刃長の下半分の領域で主に加工面を形成し、次いで、下半分の領域が新たな面を加工している最中に刃長の上半分の領域がたわみ、刃長の下半分の領域が加工した領域を刃長の上半分の領域で再度加工を行うことができる。従来のエンドミルを用いた等高線加工では、エンドミルのたわみに起因して、深さ方向の切り込みの境界部分に微小な段差が生じる。上述の構成によれば、刃長の下半分で加工した領域を、次の切り込みにおいて、刃長の上半分を用いて、刃長および同時接触刃を揃えて加工することができる。つまりは、最初に下半分の刃長で加工した面を次の切り込みにおいて刃長の上半分の領域で同時接触刃数が略1でさらうことができる。そのため、加工面の加工精度がより高まり、かつ、深さ方向の切り込みの境界部分に生じた段差も軽減させることができる。
 また、上述のエンドミルにおいて、前記mが、1.9以上、2.1以下である、構成としてもよい。
 上述したように、外周刃の全長において同時接触刃数が、常に略2である場合(すなわちm≒2)に、加工面の加工精度を高めることができる。一方で、mが2.1を超える場合、又はmが1.9未満の場合、加工中のエンドミルの振動が加工精度に影響を与えて、十分な加工精度の加工面を形成することが困難となる。すなわち、上述の構成によれば、加工面の加工精度を十分に高めることができる。更に好ましくは、mが、1.95以上、2.05以下である。
 また、上述のエンドミルにおいて、前記外周刃の外径寸法Dが、4mm以上とすることが好ましい。
 外周刃の外径寸法が小さくなると8枚刃を形成することが困難となる。そのため、8枚刃を前提としている本発明のエンドミルは、外周刃の外径寸法は4mm以上であることが好ましい。更には、外周刃の外径寸法は5mm以上が好ましい。また、外径寸法が大きくなり過ぎるとソリッドエンドミルとして製造が困難となる。そのため、外周刃の外径寸法は30mm以下が好ましい。
 上述のエンドミルにおいて、前記ねじれ角が、35°以上、40°以下とすることが好ましい。
 上述の構成によれば、外周刃のねじれ角を35°以上、40°以下とすることで、外周刃の下半分の領域において同時接触刃が常に略1になる8つの外周刃を有するエンドミルにおいて、刃長が長くなり過ぎない外周刃の構成になるため、工具の剛性が高まり加工中に工具のたわみが発生し難くなる。これにより、ゼロカット無しに加工面の加工精度を十分に高めることができる。更には、外周刃のねじれ角を37°以上、39°以下とすることが好ましい。
 上述のエンドミルにおいて、前記外周刃は、ポジティブタイプのすくい面を有する、構成としてもよい。
 上述の構成によれば、外周刃がポジティブタイプのすくい面を有するため、ネガタイプのすくい面を有する場合と比較して外周刃の切れ味が良くなる。これにより、ゼロカット無しに加工面の加工精度を十分に高めることができる。
 上述のエンドミルにおいて、前記外周刃が、2段の逃げ面を有する、構成としてもよい。
 上述の構成によれば、逃げ面が1段である場合と比較して、エンドミルの送り量を大きくした場合であっても、加工面の精度を向上できる。これにより、ゼロカット無しに加工面の加工精度を十分に高めることができる。
 本発明の一態様の加工方法は、上述のエンドミルを用いた加工方法であって、深さ方向の切り込み量を前記刃長の半分として等高線加工を行う。
 上述の構成によれば、ゼロカット無しに、加工精度を高めることができる。
 本発明によれば、等高線加工に用いるエンドミルであって、寸法精度を出すためのゼロカットを低減でき、かつ、加工精度を高めることができるエンドミルを提供できる。
図1は、一実施形態のエンドミルの模式図である。 図2は、一実施形態のエンドミルの刃部の正面図である。 図3は、一実施形態のエンドミルの刃部の平面図である。 図4は、一実施形態のエンドミルの外周刃の拡大断面図である。 図5Aは、一実施形態のエンドミルを用いた壁面の等高線加工の手順を示す図であり、等高線加工の最初のステップを示す。 図5Bは、一実施形態のエンドミルを用いた壁面の等高線加工の手順を示す図であり、図5Aの次のステップを示す。 図5Cは、一実施形態のエンドミルを用いた壁面の等高線加工の手順を示す図であり、図5Bの次のステップを示す。 図6は、一実施形態の外周刃を周方向に沿って展開した展開模式図である。 図7は、図7は、試験例1-1、試験例1-2、試験例1-3、試験例1-4および試験例1-5の切削試験において、加工面の深さと加工面の倒れ量の測定結果の関係を示すグラフである。 図8Aは、試験例2-1の切削試験における切削抵抗の経時変化を示すグラフである。 図8Bは、試験例2-2の切削試験における切削抵抗の経時変化を示すグラフである。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。なお、以下の説明で用いる図面は、特徴部分をわかりやすくするために、特徴とならない部分を便宜上省略して図示している場合がある。
 図1は、一実施形態のエンドミル1の模式図である。図2は、エンドミル1の刃部20の正面図である。図3は、エンドミル1の刃部20の平面図である。
 図1に示すように、エンドミル1は、軸線(中心軸)Oを中心として軸線方向に沿って延びる概略円柱の棒体である。エンドミル1は、超硬合金等の硬質材料から構成される。
 本明細書において、エンドミル1の軸線Oと平行な方向を単に軸線方向という。また、軸線Oに直交する方向を径方向という。また、軸線O周りに周回する方向を周方向という。周方向のうち、切削加工時にエンドミル1が回転する方向を工具回転方向Tという。また、以下の説明において、特定部位に対して工具回転方向T側の領域を回転方向前方側とよび工具回転方向T側と反対側の領域を回転方向後方側と呼ぶ場合がある。
 本実施形態のエンドミル1は、スクエアエンドミルである。エンドミル1は、等高線加工によって立壁の加工を行う。エンドミル1によって加工される被削材は、例えば樹脂成型用の金型の入れ子である。
 エンドミル1は、シャンク部12と、首部(軸部)11と、刃部20と、を有する。シャンク部12、首部11および刃部20は、基端側から先端側に向かって軸線Oに沿ってこの順で並ぶ。
 シャンク部12は、軸線Oに沿って延びる円柱状である。シャンク部12は、工作機械9に把持される。エンドミル1は、シャンク部12において工作機械9に把持され軸線O周りのうち工具回転方向Tに回転させられる。エンドミル1は、金属材料等の被削材の切削加工(転削加工)に使用される。また、エンドミル1は、工作機械9によって、軸線O周りの回転とともに、軸線Oに交差する方向に送りを与えられて被削材の加工を行う。
 首部11は、軸線Oに沿って延びる円柱状である。首部11は、シャンク部12の先端側に位置する。本実施形態において、首部11の外径は、シャンク部12の外径より小さい。首部11は、エンドミル1を用いた等高線加工により形成された加工面に対向する領域である。
 図2および図3に示すように、刃部20は、首部11の先端側に位置する。刃部20には、8つの外周刃21と、外周刃21の先端(下端)側においてそれぞれ外周刃21と接続される8つの底刃22と、が設けられる。
 8つの外周刃21は、刃部20の外周において周方向に沿って等間隔に配置される。また、8つの底刃22は、刃部20の先端において周方向に沿って等間隔に配置される。
 図3に示すように、本実施形態のエンドミル1では、8つの底刃22の間に、それぞれギャッシュ26が設けられている。また、8つの底刃22は、軸線O付近から半径方向外周側へ向かう中心刃22aと、中心刃22aに対し径方向外側に位置し中心刃22aと連続して径方向外側に向かう主底刃22bと、を有する。中心刃22aの回転方向後方側には、中心刃二番面23aが設けられる。また、主底刃22bのの回転方向後方側には、主底刃二番面23bが設けられる。中心刃二番面23aと主底刃二番面23bとは、径方向に連続して形成されている。中心刃二番面23aおよび主底刃二番面23bは、底刃22の逃げ面23を構成する。
 主底刃二番面23bの周方向の幅は、径方向内側に向かうに従い、徐々に狭まる。主底刃二番面23bの径方向内端における周方向の幅は、中心刃二番面23aの径方向外端の周方向の幅よりも狭い。中心刃二番面23aの周方向の幅は、径方向内側に向かうに従い、徐々に狭まる。
 中心刃22aと当該中心刃22aの回転方向前方側に位置する中心刃二番面23aとの境界部には、ギャッシュ26に連続する中心溝27が設けられる。それぞれの中心溝27は、径方向内側で軸線Oに達する。本実施形態によれば、中心刃22aの回転方向前方側に中心溝27を形成しながらも、ギャッシュ26内に存在する微細な切屑が中心溝27内に入り込みにくい状態とすることができる。
 図2に示すように、外周刃21は、軸線Oまわりに螺旋状に延びるねじれ刃である。外周刃21は、エンドミル1の基端側から先端側に向かうに従い工具回転方向Tへ向かって一定のねじれ角θで螺旋状にねじれている。本実施形態において、8つの外周刃21のねじれ角θは、同角度である。すなわち、本実施形態の外周刃21は、等リードである。
 外周刃21の外径寸法Dは、首部11の外径寸法dより小さい。これにより、首部11が、等高線加工により形成された加工面に干渉することが抑制される。
 外周刃21同士の間には、切屑排出溝24が構成される。複数の切屑排出溝24は、周方向に等間隔に形成されている。切屑排出溝24は、軸方向に沿って一定のねじれ角で螺旋状にねじれている。切屑排出溝24のねじれ角は、外周刃21のねじれ角θと一致する。切屑排出溝24は、刃部20の基端側の端部において、エンドミル1の外周に切り上がっている。
 切屑排出溝24の回転方向後方側の端縁には、外周刃21が形成されている。すなわち、切屑排出溝24は、外周刃21の回転方向前方側に位置する。切屑排出溝24の壁面は、底面24aとすくい面24bとを含む。底面24aは、切屑排出溝24において軸線Oに対し径方向外側を向く面である。また、すくい面24bは、切屑排出溝24において工具回転方向Tを向く壁面である。
 外周刃21は、刃部20の外周面において、すくい面24bと逃げ面25との交差稜線に形成されている。逃げ面25は、切屑排出溝24に対し回転方向後方側に隣接する面である。逃げ面25は、外周刃21の回転方向後方側において外周刃21から切屑排出溝24に向かって周方向に1連なりに延びる。
 図4は、外周刃21の軸線Oに直交する断面を拡大して模式的に示す断面模式図である。なお、図4において、外周刃21によって切削される被削材を図示する。
 本実施形態の外周刃21は、2段の逃げ面を有する。すなわち、外周刃21の逃げ面25は、周方向に沿って並ぶ第1領域25aおよび第2領域25bを有する。第1領域25aは、外周刃21側に位置する。また、第2領域25bは、切屑排出溝24側に位置する。第1領域25aおよび第2領域25bは、それぞれエンドミル1の横断面において、軸線Oを中心とする仮想円に対して偏心する円形状に構成されている。第1領域25aと第2領域25bとは、それぞれ互いに異なる偏心する円形状に構成されている。外周刃21の逃げ面25において、第1領域25aの逃げ角βは、例えば4°であり、第2領域25bの逃げ角γは、例えば11°である。すなわち、第2領域25bの逃げ角γは、第1領域25aの逃げ角βより大きい。
 本実施形態によれば、外周刃21が、2段の逃げ面で構成されるため、外周刃21は、切削加工時に微小な1段目の逃げ面(第1領域25a)において加工面に接触して被削材の加工面を擦る。これにより、加工面に形成された傷や凹凸を平滑にでき、加工面精度を向上させることができる。
 1段目の逃げ面(第1領域25a)の逃げ角βは、1°以上10°以下とすることが好ましく、4°±1°の範囲とすることがより好ましい。1段目の逃げ面(第1領域25a)の角度を小さくしすぎると、切削抵抗が高まり、加工面が粗くなる虞がある。一方で、1段目の逃げ面(第1領域25a)の角度を大きくしすぎると、切削抵抗を抑制できるが、1段目の逃げ面において加工面を擦り凹凸を平滑にする効果が小さくなる。1段目の逃げ面(第1領域25a)の逃げ角βを上述の範囲とすることで、切削抵抗を抑制しつつ加工面を平滑にすることができ、また加工面の寸法精度を高めることができる。
 なお、本明細書において、逃げ面の逃げ角は、軸線Oに直交する切断面において測定される。測定時には、まず外周刃の先端を結ぶ仮想円を求め、測定対象の外周刃の先端を通過する仮想円の接線に対して、逃げ面の角度を求める。
 また、1段目の逃げ面(第1領域25a)の幅wは、0.01mm以上0.15mm以下とすることが好ましく、0.03±0.01mmの範囲とすることがより好ましい。1段目の逃げ面(第1領域25a)の幅wを上述の範囲とすることで、逃げ面25の被削材に対する接触面積を小さくすることができ、切削抵抗を抑制しつつ加工面を平滑にすることができ、また加工面の寸法精度を高めることができる。
 なお、本明細書において、1段目の逃げ面(第1領域25a)の幅wは、軸線Oに直交する切断面において測定される。測定時には、まず外周刃の先端を結ぶ仮想円を求め、測定対象の外周刃の先端を通過する仮想円の接線方向における第1領域25aの長さ寸法を幅wとする。
 図4に示すように、本実施形態の外周刃21は、ポジティブタイプのすくい面24bを有する。すなわち、軸方向から見て、すくい面24bは、外周刃21の刃先から、刃先と軸線Oとを結ぶ直線に対して、工具回転方向Tの反対側に向かって延びる。本実施形態によれば、外周刃21がポジティブタイプのすくい面24bを有するため、ネガタイプのすくい面を有する場合と比較して外周刃21の切れ味が良くなる。このため、加工面の加工精度を十分に高めることができる。
 図5A、図5Bおよび図5Cは、エンドミル1を用いた壁面の等高線加工の手順を示す図である。図5A~図5Cは、等高線加工の各ステップを図示したものである。なお、図5A~5Cにおいて、外周刃21の軸方向に沿う刃長をLとする。
 本実施形態の加工方法では、深さ方向の切り込み量を刃長Lの半分として等高線加工を行う。エンドミル1による等高線加工において、外周刃21は、刃長Lの下半分の領域で主に加工面を形成し、刃長Lの上半分の領域で加工面に対して再度加工を行う。
外周刃の外径寸法Dは、外周刃の全長において一様である。このため、刃長Lの上半分の領域による加工における取り代は、微小なものとなる。
 一般的にエンドミルを用いた等高線加工では、エンドミルのたわみに起因して、深さ方向の切り込みの境界部分に微小な段差が生じる。本実施形態によれば、外周刃21の下半分の領域で形成した加工面を、上半分の領域において再加工する。このため、深さ方向の切り込みの境界部分に生じた段差を、刃長の上半分の領域による再加工により軽減させることができる。結果的に、エンドミル1によって加工精度を高めた加工面を形成できる。
 図6は、刃部20の外周刃21を周方向に沿って展開した展開模式図である。
 ここで、8つの外周刃21のうち1つの外周刃に着目し、当該外周刃21の軸方向に沿う刃長をL、当該外周刃21のねじれ角をθ、当該外周刃21の下端21bにおいて当該外周刃21と当該外周刃21の工具回転方向後方に隣接する他の外周刃21との周方向距離をaとする。なお、ここで周方向距離とは、軸線Oを中心として周方向に延びる円弧長を意味する。
 外周刃21の軸方向に沿う刃長Lとは、実質的に被削材の切削を行う外周刃21の有効刃長である。すなわち、刃長Lとは、軸方向に沿って螺旋状に延びる外周刃21のうち、首部11より大径の一定の外径寸法Dを有する領域の軸方向に沿う長さを意味する。また、外周刃21の上端21aは、外周刃21において外径寸法Dを維持する領域の上端を意味する。同様に、外周刃21の下端21bとは、外周刃21において外径寸法Dを維持する領域の下端を意味する。なお、本実施形態のエンドミル1は、スクエアエンドミルであるため、外周刃21の下端21bは、底刃22との接続部である。エンドミル1がラジアスエンドミルである場合は、外周刃21の下端21bは、円弧状のラジアス刃との接続部である。
 本実施形態において、全ての外周刃21について、その工具回転方向後方に隣接する他の外周刃21との周方向距離aは等しく、a=Dπ/8である。同様に、本実施形態において、全ての外周刃21について、軸方向に沿う刃長Lおよび外周刃21のねじれ角θは、等しい。
 本実施形態のエンドミル1は、外周刃21の下端21bから少なくとも刃長の半分(L/2)の領域において、以下の(式1)で表されるnが8つの外周刃21について全て略1である。
  n=(L×tanθ)/(2×a)   …(式1)
 ここで、周方向において互いに隣り合う一対の外周刃21に着目する。(式1)においてn=1となるエンドミル1は、工具回転方向前方の一方の外周刃21の軸方向の中間点21cと、工具回転方向T後方に隣接する他方の外周刃21の下端21bとの周方向の位置が、略一致する。エンドミル1は、軸線O周りに回転させて刃部20において被削材の切削加工を行う。(式1)において、n=1となるエンドミル1は、刃部20の位相に関わらず、外周刃21の下半分の領域において8つの外周刃21のうち何れか1つの外周刃21が常に被削材と接触する。
 すなわち、上述の式で表されるnは、外周刃21の下半分の領域においてエンドミル1による被削材の切削中に被削材に常に接触する外周刃21の数を表す。本実施形態によれば、切削加工中に、外周刃21の下半分の領域において常に略1つの外周刃21が被削材に接触することとなる(下半分の領域における同時接触刃数が常に略1)。
 上述したように、本実施形態のエンドミル1は、深さ方向の切り込み量を刃長Lの半分として等高線加工を行った場合に、特に優れた工具性能が再現される構成としている。したがって、外周刃21の下半分の領域は、取り代が大きいため、振動発生の支配的な要因となっており、振動を抑制する構成とすることが重要である。
 エンドミル1による被削材の切削中に、下半分の領域における同時接触刃数が増減すると、エンドミル1が被削材から受ける切削抵抗が増減する。より具体的には、下半分の領域において外周刃21が被削材から離れた際に切削抵抗が急激に減少し、外周刃21が被削材に接触し始める際に切削抵抗が急激に増加する。これにより、エンドミルが振動して加工精度が低下するという問題がある。また、下半分の領域における同時接触刃数が常に2以上の自然数である場合であっても、同時接触刃数が常に略1である場合と比較して、加工精度が低下する。
 本実施形態によれば、下半分の領域における同時接触刃数を常に略1とすることで、1つの外周刃21が被削材から離れると略同時に、他の外周刃21が被削材と接触し始めるため、加工中のエンドミル1の振動を抑制し、加工面の加工精度を高めることができる。
 また、上述の構成を満たす範囲で、外周刃21の刃長を軸方向に長く確保することができ、等高線加工を行う際の1ステップでより広範囲を加工でき、結果的に加工コストを低減できる。
 本実施形態のエンドミル1において、上記(式1)で表されるnは、0.9以上、1.1以下とすることが好ましい。上述したように、下半分の領域における同時接触刃数が、常に略1である場合(すなわちn≒1)に、加工面の加工精度を最も高めることができる。一方で、nが1.1を超える場合、又はnが0.9未満の場合、加工中のエンドミル1の振動が加工精度に影響を与えて、十分な加工精度の加工面を形成することが困難となる。すなわち、nを0.9以上、1.1以下とすることで、加工面の加工精度を十分に高めることができる。また、nを0.95以上、1.05以下とすることがより好ましい。nを0.95以上、1.05以下とすることで、エンドミル1の振動をより効果的に抑制できる。
 また、上述のエンドミル1は、外周刃21の全長において、以下の(式2)で表されるmが、8つの外周刃21について全て略2である。
m=(L×tanθ)/a   …(式2)
 (式2)で表されるmは、外周刃21の全長において、エンドミル1による被削材の切削中に被削材に常に接触する外周刃21の数を表す。このような構成とすることで、深さ方向の切り込み量を外周刃21の全長の半分とした等高線加工において、刃長Lの下半分の領域で主に加工面を形成し、次いで、加工面に対して刃長Lの上半分の領域で再度加工を行うことができる。従来のエンドミルを用いた等高線加工では、エンドミルのたわみに起因して、深さ方向の切り込みの境界部分に微小な段差が生じる。上述の構成によれば、刃長Lの下半分と上半分とにおいて、刃長および同時接触刃が同じとなる。そのため、加工面の加工精度がより高まり、かつ、深さ方向の切り込みの境界部分に生じた段差も軽減させることができる。
 本実施形態のエンドミル1において、上記(式2)で表されるmは、1.9以上、2.1以下とすることが好ましい。上述したように、外周刃21の全長において同時接触刃数が、常に略2である場合(すなわちm≒2)に、加工面の加工精度を高めることができる。一方で、mが2.1を超える場合、又はmが1.9未満の場合、加工中のエンドミル1の振動が加工精度に影響を与えて、十分な加工精度の加工面を形成することが困難となる。すなわち、上述の構成によれば、加工面の加工精度を十分に高めることができる。また、mを1.95以上、2.05以下とすることがより好ましい。nを1.95以上、2.05以下とすることで、エンドミル1の振動をより効果的に抑制できる。
 また、本実施形態によれば、刃部20には8つの外周刃21が設けられる。外周刃21の下半分の領域において同時接触刃数を常に略1としつつ、外周刃21の数を増加させることで、被削材に接触する外周刃21が切り替わる際の切削抵抗の増減幅を抑制できる。外周刃21を8つ設けることで、切削抵抗の増減幅をして、切削中のエンドミル1の振動を抑制し、結果的に加工精度を高めることができる。
 エンドミル1において、外周刃21の外径寸法Dは、4mm以上とすることが好ましい。外周刃21の外径寸法Dが小さくなると8枚刃を形成することが困難となる。そのため、8枚刃を前提としている本実施形態のエンドミル1は、外周刃21の外径寸法Dは4mm以上であることが好ましい。更には、外周刃21の外径寸法Dは5mm以上が好ましい。また、外径寸法Dが大きくなり過ぎるとソリッドエンドミルとして製造が困難となる。そのため、外周刃21の外径寸法Dは、30mm以下が好ましい。
 エンドミル1の剛性を高めて加工精度を十分に高めるため、外周刃21が形成された部分の軸線Oに直交する断面におけるエンドミル1の芯厚は、同じ断面における外周刃21の外径寸法Dの75%以上85%以下であることが好ましい。また、エンドミル1の剛性を高めて加工精度を十分に高めるため、外周刃21の刃長Lは、外周刃21の外形寸法Dの1.5倍以下であることが好ましく、1.2倍以下であることがより好ましい。
 エンドミル1において、ねじれ角θが、35°以上、40°以下とすることが好ましい。外周刃21のねじれ角θを35°以上、40°以下とすることで、外周刃の下半分の領域において同時接触刃が常に略1になる8つの外周刃21を有するエンドミル1において、刃長Lが長くなり過ぎない外周刃21の構成になるため、エンドミル1の剛性が高まり加工中にエンドミル1のたわみが発生し難くなる。これにより、ゼロカット無しに加工面の加工精度を十分に高めることができる。同様の理由から、外周刃21のねじれ角を37°以上、39°以下とすることがより好ましい。
 以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(試験1)
 以下の条件において、試験例1-1、試験例1-2、試験例1-3、試験例1-4および試験例1-5の立壁における仕上げ加工の切削試験を行った。
・被削材:DAC(H)48HRC
・エンドミル:外周刃の外径寸法Φ6mm、芯厚80%
・機械:MAKINO V33(HSK-F63)
・切削条件:回転数n=2650回転/分
      送り速度Vf=636mm/分
      取りしろ0.1mm
      加工深さ40mm
      ダウンカット
      ドライ-エアブロー加工
 試験例1-1に用いるエンドミルは、外周刃の下半分の領域で同時接触刃が略1としたエンドミルを用いた。そして、深さ方向の切り込み量を外周刃の刃長の半分として等高線加工を行った。したがって、試験例1-1では、外周刃の下半分で切削した加工面を、外周刃の上半分で再加工した。すなわち、試験例1-1では、外周刃の下半分および上半分の領域の同時接触刃数がそれぞれ常に略1となるように各ステップの切削を行った。
 試験例1-1に用いるエンドミルは、外周刃の刃長6mmを有する。
 試験例1-1に用いるエンドミルの外周刃は、2段の逃げ面を有する。
 試験例1-1に用いるエンドミルは、ねじれ角が38°の等リードの8つの外周刃を有する。
 試験例1-1に用いるエンドミルは、外周刃のすくい角がポジティブタイプを有する。
 試験例1-2に用いるエンドミルは、外周刃の刃長を、試験例1-1に用いるエンドミルの外周刃の刃長の半分とした。そして、試験例1-2では、深さ方向の切り込み量を外周刃の全刃長として等高線加工を行った。すなわち、試験例1-2では、刃長の全域において、同時接触刃数が常に略1となるように各ステップの切削を行った。
 試験例1-2に用いるエンドミルは、外周刃の刃長3mmを有する。
 試験例1-2に用いるエンドミルの外周刃は、2段の逃げ面を有する。
 試験例1-2に用いるエンドミルは、ねじれ角が38°の等リードの8つの外周刃を有する。
 試験例1-2に用いるエンドミルは、外周刃のすくい角がポジティブタイプを有する。
 試験例1-3に用いるエンドミルは、試験例1-1で用いるエンドミルの外周刃の刃長を倍として、外周刃の下半分の領域で同時接触刃数を略2とした。そして、深さ方向の切り込み量を外周刃の刃長の半分として等高線加工を行った。すなわち、試験例1-3では、同時接触刃数がそれぞれ常に略2となるように各ステップの切削を行った。
 試験例1-3に用いるエンドミルは、外周刃の刃長12mmを有する。
 試験例1-3に用いるエンドミルの外周刃は、2段の逃げ面を有する。
 試験例1-3に用いるエンドミルは、ねじれ角が38°の等リードの8つの外周刃を有する。
 試験例1-3に用いるエンドミルは、外周刃のすくい角がポジティブタイプを有する。
 試験例1-4に用いるエンドミルは、試験例1-2と同様に外周刃の刃長を短くし、更に外周刃が1段の逃げ面を有する構成とした。そして、試験例1-4では、深さ方向の切り込み量を外周刃の全刃長として等高線加工を行った。すなわち、刃長の全域において、同時接触刃数が略1となるよう等高線加工を行った。
 ただし、試験例1-4に用いるエンドミルの外周刃は、1段の逃げ面を有する。
 試験例1-4に用いるエンドミルは、外周刃の刃長3mmを有する。
 試験例1-4に用いるエンドミルは、ねじれ角が38°の等リードの8つの外周刃を有する。
 試験例1-4に用いるエンドミルは、外周刃のすくい角がポジティブタイプを有する。
 試験例1-5に用いるエンドミルは、試験例1-1で用いるエンドミルと異なるねじれ角とした。そして、試験例1-5では、深さ方向の切り込み量を外周刃の全刃長として等高線加工を行った。すなわち、刃長の全域において、同時接触刃数が常に略1となるよう等高線加工を行った。
 試験例1-5に用いるエンドミルは、外周刃の刃長6mmを有する。
 試験例1-5に用いるエンドミルの外周刃は、2段の逃げ面を有する。
 試験例1-5に用いるエンドミルは、ねじれ角が21°の等リードの8つの外周刃を有する。
 試験例1-5に用いるエンドミルは、外周刃のすくい角がポジティブタイプを有する。
 図7は、試験例1-1、試験例1-2、試験例1-3、試験例1-4および試験例1-5の切削試験において、加工面の深さと加工面の倒れ量の測定結果の関係を示すグラフである。図7に示すように、試験例1-1では、他の試験例と比較して倒れ量が十分に少ないことが確認できる。
 以下の表1は、試験例1-1、試験例1-2、試験例1-3、試験例1-4および試験例1-5の切削試験において形成された加工面の評価結果である。
 表1において、「Ra」は加工面の算術平均粗さであり、「Rz」は加工面の最大高さである。また、「外観・光沢感」は、加工面の目視による評価結果である。「加工スジ」は、深さ方向の送りの各ステップに起因して形成される等間隔な筋の状態の目視による評価結果である。「倒れ精度」は、図7に示すグラフを基にした評価結果である。切削抵抗は、切削抵抗の測定結果を基に、評価した評価結果である。なお、各項目において、Aが最も良く、Bが次に良く、Cがさらに次に良く、Dが好ましくない状態であったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果からも、試験例1-1における加工面が、他の試験例における加工面と比較して最も優れていることが確認できる。
 試験例1-1は、倒れ精度も面性状も優れており、補正のためのゼロカットは不要であった。切り込み量が大きい試験例1-3、1-5では、倒れ精度が悪く、追加工程として、ゼロカットを5~10回行っても、10μm程度の削り残り量が確認された。試験例1-2、1-4は倒れ精度は5μm以下におさまったが、試験例1-1に比べて面性状が悪化した。
(試験2)
 次に、外周刃の刃数を8とすることの優位性を示す試験2について説明する。
 以下の条件において、試験例2-1および試験例2-2の切削試験を行う。
・被削材:DAC(H)48HRC
・エンドミル:外周刃の外径寸法Φ6mm
・機械:MAKINO V33(HSK-F63)
・切削条件:回転数n=2650回転/分
      送り速度Vf=636mm/分
      取りしろ0.1mm
      ダウンカット
      ドライ-エアブロー加工
 試験例2-1に用いるエンドミルは、等リードの8つの外周刃を有し、外周刃のねじれ角は、38°である。試験例2-1に用いるエンドミルは、上述した試験例1-1のエンドミルと同じ構成のエンドミルである。
 一方で試験例2-2に用いるエンドミルは、等リードの2つの外周刃を有し、外周刃のねじれ角は、72°である。試験例2-2に用いるエンドミルのその他の構成は、試験例2-1のエンドミルと同様である。
 試験例2-1および試験例2-2では、等高線加工において、外周刃の下半分の領域だけを用いて切削するステップ(すなわち、図5Aに示すステップ)における切削抵抗の経時変化を測定した。
 図8Aは、試験例2-1の切削試験における切削抵抗の経時変化を示すグラフである。図8Bは、試験例2-2の切削試験における切削抵抗の経時変化を示すグラフである。図8Aおよび図8Bの横軸は時間であり、縦軸は切削抵抗である。図8Aおよび図8Bにおいて、横軸のスケールは一致している。なお、図8Aおよび図8Bのグラフ中において、周方向に並ぶ外周刃がそれぞれ接触し始めたポイントに数字を記載した。
 図8Aおよび図8Bに示すように、試験例2-1および試験例2-2において、1つの外周刃が被削材から離間するとともに他の外周刃が被削材に接触し始める瞬間に切削抵抗が高まる。切削抵抗の絶対値に着目すると、試験例2-1の切削抵抗の絶対値は、試験例2-2の切削抵抗の絶対値より大きい。これは、試験例2-1のエンドミルは、試験例2-2のエンドミルと比較して、ねじれ角が小さいことに起因すると考えられる。しかしながら、切削抵抗の増減の幅に着目すると、試験例2-1の切削抵抗の増減幅は、試験例2-2の切削抵抗の増減幅と比較して小さい。切削抵抗の増減幅が大きくなると、切削抵抗の増減に起因してエンドミルが振動し加工精度が低下する。すなわち、試験例2-1に用いる8つの外周刃を備えたエンドミルを用いることで、2つの外周刃を用いるエンドミル(試験例2-2のエンドミル)と場合と比較して、加工面の精度を高めることができる。
 以上に、本発明の実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 1…エンドミル
 11…首部(軸部)
 20…刃部
 21…外周刃
 21b…下端
 22…底刃
 24b…すくい面
 25…逃げ面
 a…周方向距離
 d,D…外径寸法
 L…刃長
 O…軸線(中心軸)
 T…工具回転方向
 θ…ねじれ角

Claims (11)

  1.  中心軸に沿って延びる円柱形状の軸部と、
     前記軸部の先端側に位置する刃部と、を備え、
     前記刃部には、前記軸部よりも大きい外径寸法の8つの外周刃が周方向に沿って設けられ、
     前記外周刃は、前記中心軸まわりに螺旋状に延びるねじれ刃であり、
     8つの前記外周刃のうち1つの外周刃に着目し、当該外周刃の軸方向に沿う刃長をL、当該外周刃のねじれ角をθ、当該外周刃の下端において当該外周刃と当該外周刃の工具回転方向後方に隣接する他の前記外周刃との周方向距離をaとした時、前記外周刃の下端から少なくとも前記刃長の半分の領域において、以下の式で表されるnが、8つの前記外周刃について全て略1である、
    エンドミル。
     n=(L×tanθ)/(2×a)
  2.  前記nが、0.9以上、1.1以下である、
    請求項1に記載のエンドミル。
  3.  前記外周刃の全長において、以下の式で表されるmが、8つの前記外周刃について全て略2である、
    請求項1に記載のエンドミル。
    m=(L×tanθ)/a
  4.  前記mが、1.9以上、2.1以下である、
    請求項3に記載のエンドミル。
  5.  前記外周刃の外径寸法が、4mm以上である。
    請求項1~4の何れか一項に記載のエンドミル。
  6.  前記ねじれ角が、35°以上、40°以下である、
    請求項1~5の何れか一項に記載のエンドミル。
  7.  前記外周刃は、ポジティブタイプのすくい面を有する、
    請求項1~5の何れか一項に記載のエンドミル。
  8.  前記外周刃が、2段の逃げ面を有する、
    請求項1~7の何れか一項に記載のエンドミル。
  9.  前記刃部には、8つの前記外周刃に加えて、先端に設けられ前記中心軸側から径方向外側に延びる8つの底刃と、前記外周刃と前記底刃との間を滑らかに繋ぐ8つのラジアス刃と、が設けられ、
     前記刃部の最先端点は、前記ラジアス刃と前記外周刃の境界と前記ラジアス刃と前記底刃の境界との間において、前記ラジアス刃に位置する、
    請求項1~8の何れか一項に記載のエンドミル。
  10.  深さ方向の切り込み量を刃長の半分として等高線加工を行う、
    請求項1~9の何れか一項に記載のエンドミル。
  11.  請求項1~10の何れか一項に記載のエンドミルを用いた加工方法であって、
     深さ方向の切り込み量を前記刃長の半分として等高線加工を行う、
    加工方法。
PCT/JP2019/002632 2018-02-02 2019-01-28 エンドミルおよび加工方法 WO2019151169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207022216A KR102365447B1 (ko) 2018-02-02 2019-01-28 엔드 밀 및 가공 방법
US16/965,699 US11471958B2 (en) 2018-02-02 2019-01-28 End mill and machining method
EP19748307.6A EP3747580A4 (en) 2018-02-02 2019-01-28 END MILL AND MACHINING PROCESS
CN201980010914.7A CN111670081B (zh) 2018-02-02 2019-01-28 立铣刀及加工方法
JP2019563113A JP6683299B2 (ja) 2018-02-02 2019-01-28 エンドミルおよび加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018017384 2018-02-02
JP2018-017384 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151169A1 true WO2019151169A1 (ja) 2019-08-08

Family

ID=67478128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002632 WO2019151169A1 (ja) 2018-02-02 2019-01-28 エンドミルおよび加工方法

Country Status (6)

Country Link
US (1) US11471958B2 (ja)
EP (1) EP3747580A4 (ja)
JP (1) JP6683299B2 (ja)
KR (1) KR102365447B1 (ja)
CN (1) CN111670081B (ja)
WO (1) WO2019151169A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320391B2 (ja) * 2019-06-28 2023-08-03 株式会社Subaru エンドミル及び穿孔方法
CN114535676B (zh) * 2022-02-28 2023-08-29 广东鼎泰高科技术股份有限公司 一种可抑制毛刺的加工刀具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631519A (ja) * 1992-07-14 1994-02-08 Nisshin Kogu Kk エンドミル
JP2000334615A (ja) 1999-05-28 2000-12-05 Osg Corp エンドミル
JP2003260607A (ja) * 2002-03-08 2003-09-16 Hitachi Tool Engineering Ltd インサート
JP2004034171A (ja) * 2002-06-28 2004-02-05 Mitsubishi Materials Kobe Tools Corp エンドミル加工方法
JP2009056533A (ja) * 2007-08-31 2009-03-19 Hitachi Tool Engineering Ltd ロングネックラジアスエンドミル
JP2018017384A (ja) 2016-07-29 2018-02-01 豊生ブレーキ工業株式会社 デュオサーボ式ドラムブレーキ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217382A (en) * 1964-01-13 1965-11-16 Illinois Tool Works High speed rotary file
FR2561149B1 (fr) * 1984-03-16 1988-03-25 Roy Bernard Fraise en carbure de tungstene ou materiau analogue
US5176476A (en) * 1987-09-30 1993-01-05 The Boeing Company Router cutting bit
JP2724485B2 (ja) * 1988-12-28 1998-03-09 日立ツール株式会社 ニューセラミックスソリッドエンドミル
US5049009A (en) * 1990-08-21 1991-09-17 The Weldon Tool Company Improved cutting tool
JPH04304918A (ja) 1991-03-29 1992-10-28 Nisshin Kogu Kk エンドミル
JPH08112712A (ja) * 1994-10-17 1996-05-07 Hitachi Tool Eng Ltd フライス工具
JPH09300119A (ja) * 1996-05-16 1997-11-25 Toyota Motor Corp 切削用工具
JP2001287114A (ja) * 2000-04-10 2001-10-16 Nachi Fujikoshi Corp 超硬エンドミル
JP4936495B2 (ja) * 2000-10-27 2012-05-23 株式会社不二越 超硬エンドミル
DE20021264U1 (de) * 2000-12-15 2001-04-05 Fette Wilhelm Gmbh Schaftfräser für die Bearbeitung von Werkstücken aus Nichteisenmetall oder Kunststoff
US6991409B2 (en) * 2002-12-24 2006-01-31 Niagara Cutter Rotary cutting tool
US20060067797A1 (en) * 2004-09-28 2006-03-30 Calamia Guy A End mill
JP4831568B2 (ja) 2005-01-28 2011-12-07 株式会社不二越 エンドミル、加工装置、切削方法及び、加工物
JP2007030074A (ja) * 2005-07-25 2007-02-08 Mitsubishi Materials Kobe Tools Corp ラジアスエンドミル及び切削加工方法
US8414228B2 (en) * 2006-01-04 2013-04-09 Sgs Tool Company Rotary cutting tool
US20070297864A1 (en) * 2006-06-23 2007-12-27 De Boer Tools Inc. Fluted Rotary Cutting Tool
JP5277890B2 (ja) 2008-11-17 2013-08-28 三菱マテリアル株式会社 エンドミルおよびその製造方法
US8366354B2 (en) * 2009-02-20 2013-02-05 Kennametal Inc. Rotary cutting tool with chip breaker pattern
US20120039677A1 (en) * 2010-08-11 2012-02-16 Kennametal Inc. Contour end mill
CN101983811B (zh) 2010-11-30 2012-07-25 株洲钻石切削刀具股份有限公司 不等螺旋角立铣刀
US8647025B2 (en) * 2011-01-17 2014-02-11 Kennametal Inc. Monolithic ceramic end mill
CN104640658B (zh) 2012-07-27 2016-08-17 日立工具股份有限公司 多刃立铣刀
US8858128B2 (en) 2012-11-14 2014-10-14 Iscar, Ltd. Corner radius end mill
IL232079B (en) * 2014-04-10 2018-05-31 Hanita Metal Works Ltd A cutting tool with improved chip removal capability and a method for its preparation
US10118236B2 (en) * 2014-09-26 2018-11-06 Kennametal Inc. Rotary cutting tool
JP2016074061A (ja) 2014-10-07 2016-05-12 三菱マテリアル株式会社 ラジアスエンドミル
JP6477015B2 (ja) 2015-02-27 2019-03-06 三菱マテリアル株式会社 ラジアスエンドミル
US9862038B2 (en) * 2015-04-10 2018-01-09 Kennametal Inc. Rotary cutting tool with unequal indexing, alternating helix angle and varying helix angle along length of cut
US9884379B1 (en) * 2017-03-07 2018-02-06 Iscar, Ltd. Ceramic face mill with circular arc profile for machining Inconel
CN107363312B (zh) * 2017-09-11 2019-04-23 大连理工大学 用于碳纤维复合材料高速铣削的带端刃立铣刀
CN109352838A (zh) * 2018-09-27 2019-02-19 基准精密工业(惠州)有限公司 圆鼻刀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631519A (ja) * 1992-07-14 1994-02-08 Nisshin Kogu Kk エンドミル
JP2000334615A (ja) 1999-05-28 2000-12-05 Osg Corp エンドミル
JP2003260607A (ja) * 2002-03-08 2003-09-16 Hitachi Tool Engineering Ltd インサート
JP2004034171A (ja) * 2002-06-28 2004-02-05 Mitsubishi Materials Kobe Tools Corp エンドミル加工方法
JP2009056533A (ja) * 2007-08-31 2009-03-19 Hitachi Tool Engineering Ltd ロングネックラジアスエンドミル
JP2018017384A (ja) 2016-07-29 2018-02-01 豊生ブレーキ工業株式会社 デュオサーボ式ドラムブレーキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3747580A4

Also Published As

Publication number Publication date
EP3747580A4 (en) 2021-11-03
CN111670081B (zh) 2023-06-23
KR20200102499A (ko) 2020-08-31
EP3747580A1 (en) 2020-12-09
JP6683299B2 (ja) 2020-04-15
JPWO2019151169A1 (ja) 2020-02-27
US20200353544A1 (en) 2020-11-12
US11471958B2 (en) 2022-10-18
KR102365447B1 (ko) 2022-02-18
CN111670081A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
JP6221660B2 (ja) ラフィングエンドミル
JP2009056533A (ja) ロングネックラジアスエンドミル
WO2015104732A1 (ja) エンドミル
WO2019151169A1 (ja) エンドミルおよび加工方法
JP7125611B2 (ja) エンドミル
JP4125909B2 (ja) スクエアエンドミル
JPS6040328B2 (ja) 切削工具
WO2019244361A1 (ja) テーパエンドミル
JP6060027B2 (ja) 切削工具およびその設計方法
JP7100245B2 (ja) エンドミル
JP2010240818A (ja) ニック付きエンドミル
JP5492357B2 (ja) クリスマスカッタ
JP5645333B2 (ja) クリスマスカッタ
JP7303464B2 (ja) エンドミル
JP6602148B2 (ja) エンドミル
JP2020040179A (ja) リブ溝の壁面の加工方法およびテーパエンドミル
JP2013013962A (ja) Cbnエンドミル
JP5895654B2 (ja) エンドミル
JP3891727B2 (ja) エンドミル
JP2020082208A (ja) 切削用インサート、刃先交換式回転切削工具及び刃先交換式回転切削工具の使用方法
JP6892037B1 (ja) エンドミル
JP7152673B2 (ja) リブ溝の壁面の加工方法およびテーパエンドミル
JP7391904B2 (ja) 切削用インサート及び刃先交換式回転切削工具
JPH0631519A (ja) エンドミル
JP7100238B2 (ja) テーパエンドミルおよびリブ溝の壁面の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748307

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019563113

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022216

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748307

Country of ref document: EP

Effective date: 20200902