WO2019149074A1 - 一种晶片的黑化方法及黑化后晶片 - Google Patents

一种晶片的黑化方法及黑化后晶片 Download PDF

Info

Publication number
WO2019149074A1
WO2019149074A1 PCT/CN2019/072020 CN2019072020W WO2019149074A1 WO 2019149074 A1 WO2019149074 A1 WO 2019149074A1 CN 2019072020 W CN2019072020 W CN 2019072020W WO 2019149074 A1 WO2019149074 A1 WO 2019149074A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
blackening
wafer according
lithium niobate
reaction
Prior art date
Application number
PCT/CN2019/072020
Other languages
English (en)
French (fr)
Inventor
陈铭欣
王学武
Original Assignee
福建晶安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建晶安光电有限公司 filed Critical 福建晶安光电有限公司
Priority to JP2020560533A priority Critical patent/JP7163411B2/ja
Publication of WO2019149074A1 publication Critical patent/WO2019149074A1/zh
Priority to US16/941,095 priority patent/US12012669B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates

Definitions

  • the present invention relates to a method of fabricating a wafer, and more particularly to a method of blackening a wafer.
  • Lithium niobate 3 ⁇ 41 ⁇ 3, 1 ⁇ ) and lithium niobate ( ⁇ 03, 1 ⁇ ) crystals are typical multifunctional materials with excellent piezoelectric, ferroelectric, acousto-optic and electro-optic effects, thus becoming Surface acoustic wave (: 5 8 ⁇ ⁇ ) basic functional materials in the field of optical, optical, laser and optoelectronics.
  • Surface acoustic wave (: 5 8 ⁇ ⁇ ) basic functional materials in the field of optical, optical, laser and optoelectronics.
  • the high frequency 8 ⁇ ⁇ device under the 2.50, 30 standard has no other more advantageous materials to replace it.
  • the eight devices must be prepared by cutting, grinding, polishing, etc. after the lithium niobate (! ⁇ &03, hereinafter referred to as 1 ⁇ ) and lithium niobate (1 ⁇ 1 ⁇ 03, hereinafter referred to as 1 ⁇ ) crystals. Become ! ⁇ , 1 ⁇ wafer substrate, and then ! ⁇ , A metal comb electrode is prepared on the substrate by other processes such as sputtering or photolithography. However, as the frequency increases, 1 ⁇ , The metal comb electrode on the substrate needs to be thin and thin, so it is!
  • the X substrate has two major problems in the fabrication of the filter device, which will result in lower device yield and increased production cost.
  • the oxygen vacancy concentration in the X substrate is increased, which in turn reduces the resistivity, while the wafer is changed from white or light yellow to ⁇ 0 2019/149074 ⁇ (:17(: ⁇ 2019/072020
  • the color is opaque, usually gray or brownish black, so this reduction process is called “blackening”. This shows that: [ ⁇ , The blackening of the substrate can effectively reduce the resistivity and improve the resolution of the back-end pattern, which greatly increases the yield of the filter device, thereby reducing the manufacturing cost.
  • the blackening method of the substrate is Chinese patent 0X200480005133.2.
  • Japan Shin-Etsu Company proposes to carry out deep reduction treatment of lithium niobate, lithium niobate and hydrogen storage metal, and the deep reduction treatment needs to be treated in a circulating reducing gas or inert gas.
  • the lithium niobate crystal substrate is subjected to high-temperature deep reduction treatment to obtain a blackened substrate, and then the deep-reduced substrate and the to-be-processed
  • the substrate is alternately laminated and subjected to a reduction treatment method.
  • the high-priced lithium niobate crystal substrate is firstly formed into a blackened clip by high temperature, and the flatness of the substrate is required to be high, and it is required to be subjected to grinding processing, otherwise it is difficult to ensure two
  • the wafers can be closely adhered to each other and subjected to secondary reduction treatment, resulting in complicated processes, long process times, and high processing costs.
  • the same inventor Chinese patent 0X200 480027666.0 It is also proposed to use a mixed powder of eight 1 and eight 1203 to obtain a blackened lithium niobate crystal substrate after reduction heat treatment in an atmosphere of N2, 112, (0), etc.
  • the metal powder reduction process adjusts the proportion and uniformity of the mixed powder. Control has certain difficulty, and the preparation of mixed powder has a certain degree of influence on human health and work safety.
  • the present invention provides a solution to the technical problem in the background art, and discloses a method for fabricating a wafer.
  • the substrate and greatly reduced the resistivity of the ⁇ , and the pyroelectric properties, while having a uniform brown-black color, greatly improved the yield of the 5 ⁇ ⁇ filter device, thereby reducing the manufacturing cost.
  • a method for fabricating a wafer disclosed by the present invention comprising a lithium niobate wafer or a lithium niobate wafer, ⁇ 0 2019/149074 ⁇ (:17(: ⁇ 2019/072020
  • the method can increase the conductivity of the wafer.
  • the method performs a blackening reaction on the wafer through the reducing material in the chamber, and the chamber includes at least a melting point of less than 600° (the reducing material is not in direct contact with the wafer).
  • the blackening reaction is carried out in a high temperature environment, and the temperature in the high temperature environment is lower than the wafer Curie temperature.
  • the high temperature ambient temperature is 350 to 600 ° (:, known to be higher than 600 ° (the reduction in a high temperature environment will destroy the piezoelectric characteristics of the material).
  • the blackening reaction is at a flow rate of The reducing gas atmosphere or an inert atmosphere is carried out.
  • the reducing gas atmosphere comprises one or a combination of hydrogen, carbon monoxide, and nitrous oxide.
  • the inert atmosphere comprises one or a combination of one or more of nitrogen, helium, argon, nitrogen, carbon dioxide.
  • the wafer stack is placed during the blackening reaction.
  • the wafer is in overlapping contact with the reductively treated material.
  • the reduced-treated substance includes one or a combination of any one of crystal, ceramic, and metal.
  • the reducing material comprises magnesium, wood pulp, cotton pulp, straw pulp, chitin, starch, protein, olefin, aromatic, sugar, powdered fiber, flaky fiber, strip fiber One or more of any combination.
  • the thickness of the sheet fibers is
  • the wafer obtained by the blackening method has an exposure wavelength of 300 to 90011111 in the photolithography process for fabricating the surface wave device, and the light transmittance uniformity is less than 15%.
  • the calculation method of the permeability uniformity is ((the maximum penetration rate - the minimum penetration rate) /
  • the light transmittance is less than 50% at an exposure wavelength of 300 to 90 ⁇ 11111.
  • the shorter the exposure wavelength used in the photolithography process the lower the transmittance to the wafer, but the equipment using a short wavelength is costly. If the transmittance of the wafer is made lower, the lithographic exposure wavelength may not be Short-wavelength light is required, which in turn reduces the cost of lithography. ⁇ 0 2019/149074 ⁇ :17 ⁇ 2019/072020
  • FIG. 1 is a schematic view of a blackening reaction of a wafer using a powdery reducing material
  • FIG. 2 is a schematic view showing a blackening reaction of a wafer using a plate-shaped reducing material
  • FIG 3 is a schematic view of the insertion of a reduced treated material between stacked wafers.
  • the present invention provides a blackening method for a wafer for fabricating a wafer having good conductivity, high degree of blackening, and uniform blackening.
  • the blackening method of the present invention for lithium niobate
  • the lithium niobate wafer is placed in the blackening reaction chamber, and a stabilizing compact 200 is disposed on the wafer 100.
  • the compact 200 prevents the stacked wafer 100 from swaying by gravity to cause misalignment.
  • the reducing material 300 is disposed on the compact 200, that is, the non-contact reduction of the reducing material 300 and the wafer 100 is achieved, and the alternative reducing material 300 includes magnesium, wood pulp, cotton pulp, straw pulp, chitin, starch, protein, Any combination of one or more of an olefin, an aromatic, a saccharide, a powdery fiber, a flaky fiber, and a strand fiber, the melting point of the reducing material 300 is less than 600° ( :. Heating the reaction chamber, the chamber The temperature is lower than the Curie temperature, and the temperature in the high temperature environment in the chamber is 350 to 600° (:, the reducing material 300 is carbonized or vaporized at a high temperature.
  • the reducing gas or the inert gas of 0.5 ⁇ 3171 ⁇ 11 is introduced, and the reducing gas includes hydrogen. , carbon monoxide, nitrous oxide, etc., and inert gases include nitrogen, helium, argon, nitrogen, carbon dioxide, and the like.
  • the present invention also tests the blackening effect of the direct contact between the reducing material 300 and the wafer 100.
  • the reducing material may change shape due to high temperature, resulting in uneven contact of the reducing material with the wafer, resulting in uneven blackening effect.
  • the reducing material is often opaque, which also causes the problem of misalignment of the wafer, causing chromatic aberration on the wafer, and the present invention mainly solves the technical problem.
  • sheet fibers are disposed on the compact 200, and the thickness of the sheet fibers is
  • the present invention provides other embodiments, based on the above solution, the substrate 400 and the wafer are sandwiched between the wafer 400 and the wafer, including crystals, ceramics, metals, etc., mainly from To speed up the reaction speed.
  • the reduced treated material 400 is sized to be adjacent to the wafer 100.
  • the present invention makes use of the spectral colorimeter above process wafer obtained color quantization, using his! ⁇ Value based on the degree of blackening, the conventional manufacturing process! ⁇ Value of from about 66 to 70, the process described above
  • the method is about 55 ⁇ 60, and the degree of blackening is increased by 15%.
  • the wafer has a light transmittance uniformity of less than 15% under the exposure wavelength of 300 90011111, and the blackening unevenness is hardly recognized from the naked eye.
  • the exposure wavelength of the wafer is 300-90 ⁇ 11111.
  • the light to wafer transmittance is less than 50%.
  • the core point of the present invention is that the reducing material 300 is in non-direct contact with the wafer 100 to maintain spatial isolation.
  • the reducing material 300 and the wafer 100 are The contact distance is guaranteed to be within. ⁇ 0 2019/149074 ⁇ (:17(: ⁇ 2019/072020

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种晶片的黑化方法,晶片包括钽酸锂晶片或者铌酸锂晶片,该方法可使晶片的导电率增大,黑化程度更高且更均匀,该方法在高温环境中,将还原材料不与晶片直接接触进行黑化反应,解决了钽酸锂晶片或者铌酸锂晶片黑化效果不佳、黑化均匀度低的技术问题,得到低透光率,且透光率均匀分布。

Description

\¥0 2019/149074 卩(:17(:\2019/072020
1
一种晶片的黑化方法及黑化后晶片
技术领域
[0001] 本发明涉及一种晶片的制作方法, 具体涉及晶片的黑化方法。
背景技术
[0002] 钽酸锂 ¾1〇3, 1^)和铌酸锂 (〇 03, 1^) 晶体是比较典型的多功能材料 , 具有优良的压电、 铁电、 声光及电光效应, 因而成为表面声波(: 5八\¥)器件、 光 通讯、 激光及光电子领域中的基本功能材料。 广泛应用于谐振器、 滤波器、 换 能器等电子通讯器件的制造, 尤其以良好的机电耦合、 温度系数等综合性能而 被用于制造高频声表面波器件, 并应用于手机、 对讲机、 卫星通讯、 航空航天 等许多高端通讯领域。 目前在 2.50、 30标准下的高频 8 \¥器件还没有其他更具 有优势的材料可以替代它。
[0003] 八 器件的制备须先将钽酸锂(!^&03, 下文简称1^)和铌酸锂 (1^1^03, 下 文简称 1^) 晶体经过切割、 研磨、 抛光等多段工序后成为!^、 1^晶片基板, 再 于!^、
Figure imgf000003_0001
基板上透过溅镀法、 光刻等其他工序制备金属梳状电极。 然而随着频 率的提高, 1^、
Figure imgf000003_0002
基板上的金属梳状电极需将往薄且细趋势制备, 故于!^、
X基板于 5八\¥滤波器器件制作中出现两个主要问题, 将导致器件成品率降低、 增 加生产成本。
Figure imgf000003_0003
m3Qcm-m5Qcm), 故于 8 \¥滤波器器件制作中容易受温度变化差异在!^、 1^^基板表面积累大量的静电荷, 这些静电荷会在金属叉指电极间或晶片间自发 释放, 进而导致晶片开裂或金属叉指电极烧毁等问题;第二、 因!^、 1^基板高的 光透射率, 使得在 5八\¥滤波器器件制造工序之一的光刻工序中透过基板内的光 在基板背面反射并返回到表面, 产生降低所形成图案的分辨率的问题。
[0005] 经过学者研究发现, : [^、 1^晶体能透过还原处理来改变电阻率和颜色, 此还 原处理过程中!^、
Figure imgf000003_0004
基板中的氧会与气氛中的还原气体产生反应, 使其!^、
X基板中的氧空位浓度提高, 进而降低电阻率, 同时晶片由白色或淡黄色转变为 \¥0 2019/149074 卩(:17(:\2019/072020
2 有色不透明化, 通常会是灰色或棕黑色, 故将此还原处理称作为“黑化”。 由此可 知, :[^、
Figure imgf000004_0001
基板透过黑化可以有效降低电阻率及提高后段图案的分辨率, 使其 5八\¥滤波器器件良率大幅提升, 进而降低制造成本。
[0006]
Figure imgf000004_0002
基板黑化做法有中国专利 0X200480005133.2, 日本信越公司提出 将钽酸锂、 铌酸锂及储氢金属先进行深度还原处理, 深度还原处理需在流通的 还原性气体或惰性气体中对待处理的钽酸锂晶体基板进行高温深度还原处理后 获得黑化基板, 然后将深度还原处理过的基板与待处理的 1^、
Figure imgf000004_0003
基板交替层叠 进行还原处理的方法,此种工艺需要以高单价钽酸锂晶体基板先经高温制作成黑 化后的夹片, 且对基板平整度要求高, 需经过研磨加工, 否则难以保证两种晶 片能紧密贴合, 且还要经过二次还原处理, 导致工艺复杂、 制程时间长、 处理 成本高。
[0007] 中国专利0 00410033600, 日本住友公司提出使用(:、 31粉或置于(:、 溶器 对胚料形式的钽酸锂晶体进行埋粉热处理, 同时还提出使用〇&、 八1、 II、 å!1及 的金属粉末对晶片形式的钽酸锂晶体进行埋粉热处理, 由于金属单质具有强的 还原性, 使得晶体容易过氧化或者破坏晶体压电特性。 同发明人中国专利 0X200 480027666.0又提出使用八1和八1203混合粉末, 在流动 N2, 112、 (:0等气氛中进行 还原热处理后获得黑化钽酸锂晶体基板。 此种金属粉末还原工艺对于混合粉末 调节比例及均匀性控制具有一定的难度,且调制混合粉末作业中对人体健康与作 业安全有一定程度的影响。
发明概述
技术问题
问题的解决方案
技术解决方案
[0008] 本发明提供了背景技术中的技术问题的解决方法, 本发明公开了一种晶片的制 作方法,
Figure imgf000004_0004
基板, 且大幅度降低!^、 的电阻率和减弱热释电性质, 同时具备均匀性的棕黑色颜色, 使 5 \¥滤 波器器件良率大幅提升, 进而降低制造成本。
[0009] 本发明公开的一种晶片的制作方法, 晶片包括钽酸锂晶片或者铌酸锂晶片, 该 \¥0 2019/149074 卩(:17(:\2019/072020
3 方法可使晶片的导电率增大, 该方法在腔室内通过还原材料对晶片进行黑化反 应, 腔室内至少包括熔点低于 600°(:的还原材料与晶片非直接接触。
[0010] 根据本发明, 优选的, 黑化反应在高温环境中进行, 高温环境的温度低于晶片 居里温度。
[0011] 根据本发明, 优选的, 高温环境温度为 350~600°(:, 已知的高于 600°(:高温环境 下进行还原将会破坏材料的压电特性。
[0012] 根据本发明, 优选的, 黑化反应在流量为
Figure imgf000005_0001
的还原气体气氛或惰性气 氛中进行。
[0013] 在本发明一些实施例中, 还原气体气氛包括氢气、 一氧化碳、 一氧化二氮中的 一种或者多种任意组合。
[0014] 在本发明的一些实施例中, 惰性气氛包括氮气、 氖气、 氩气、 氮气、 二氧化碳 中的一种或者多种任意组合。
[0015] 根据本发明, 优选的, 黑化反应过程中晶片堆叠放置。
[0016] 在本发明的一些实施例中, 晶片与还原处理过之物质重迭接触。
[0017] 在这些实施例中, 优选的, 还原处理过之物质包括晶体、 陶瓷、 金属中的一种 或者多种任意组合。
[0018] 根据本发明, 优选的, 还原材料包括镁、 木浆、 棉浆、 草浆、 甲壳质、 淀粉、 蛋白质、 烯烃、 芳香类、 糖类、 粉末状纤维、 片状纤维、 条状纤维中的一种或 者多种任意组合。
[0019] 在本发明的一些实施例中, 片状纤维的厚度为
Figure imgf000005_0002
[0020] 除了上述黑化方法, 通过上述黑化方法得到的晶片, 在制作表面波元件时的光 刻工序中, 其曝光波长为 300~90011111, 光穿透率均匀性小于 15%, 光穿透率均匀 性计算方式为((穿透率最大值-穿透率最小值)/
(穿透率最大值+穿透率最小值))*100%。
[0021] 在本发明的一些实施例中, 在曝光波长为 300~90〇11111, 光穿透率小于 50%。 对 光刻工艺来讲使用的曝光波长越短, 其对晶片的穿透率越低, 但使用波长短的 设备成本高昂, 若将晶片的穿透率做的越低, 光刻曝光波长可以不需要使用短 波光, 进而降低光刻成本。 \¥0 2019/149074 卩<:17 \2019/072020
4 发明的有益效果
有益效果
[0022] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0023] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0024] 图 1是采用粉末状还原材料对晶片进行黑化反应的示意图;
[0025] 图 2是采用板状还原材料对晶片进行黑化反应的示意图;
[0026] 图 3是在堆叠的晶片之间插入还原处理过之物质的示意图。
[0027] 图中标示: 100、 晶圆, 200、 压块, 300、 还原材料, 400、 还原处理过之物质
发明实施例
本发明的实施方式
[0028] 下面便结合附图对本发明若干具体实施例作进一步的详细说明。 但以下关于实 施例的描述及说明对本发明保护范围不构成任何限制。
[0029] 应当理解, 本发明所使用的术语仅出于描述具体实施方式的目的, 而不是旨在 限制本发明。 进一步理解, 当在本发明中使用术语“包含”、 “包括”时, 用于表明 陈述的特征的存在, 而不排除一个或多个其他特征它们的组合的存在或增加。
[0030] 除另有定义之外, 本发明所使用的所有术语 (包括技术术语和科学术语) 具有 与本发明所属领域的普通技术人员通常所理解的含义相同的含义。 应进一步理 解, 本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相 关领域中的含义一致的含义, 并且不应以理想化或过于正式的意义来理解, 除 本发明中明确如此定义之外。 \¥0 2019/149074 卩(:17(:\2019/072020
5
[0031] 本发明提供了一种晶片的黑化方法, 用于制作导电率良好、 黑化程度高且黑化 均匀的晶片, 以晶圆为例, 本发明的黑化方法, 对钽酸锂或者铌酸锂晶圆放置 在黑化反应腔室内, 在晶圆 100上设置起稳定作用的压块 200, 压块 200主要通过 重力作用避免堆叠的晶圆 100晃动而出现错位。 在压块 200上设置还原材料 300, 即实现还原材料 300与晶圆 100非接触式还原, 可供选择的还原材料 300包括镁、 木浆、 棉浆、 草浆、 甲壳质、 淀粉、 蛋白质、 烯烃、 芳香类、 糖类、 粉末状纤 维、 片状纤维、 条状纤维中的一种或者多种任意组合, 还原材料 300的熔点低于 600° (:。 对反应腔室进行加热, 腔室内温度低于居里温度, 腔室内高温环境的温 度为 350~600° (:, 还原材料 300在高温中碳化或汽化。 通入 0.5~3171^11的还原气体 或惰性气体, 还原气体包括包括氢气、 一氧化碳、 一氧化二氮等, 而惰性气体 包括氮气、 氖气、 氩气、 氮气、 二氧化碳等。
[0032] 本发明还测试了还原材料 300与晶圆 100直接接触的黑化效果, 还原材料会因为 高温而产生形状变化, 导致还原物质跟晶圆接触不均匀, 产生不均匀的黑化效 果, 此外, 还原材料往往是不透明的, 也会产生晶片对位不齐的问题, 造成晶 片上的色差, 本发明主要解决了该技术问题。
[0033] 在一些实施例中, 在压块 200上设置片状纤维, 而片状纤维的厚度为
Figure imgf000007_0001
[0034] 本发明提供另一些实施例中, 该实施例在上述方案的基础上, 在晶圆与晶圆之 间夹持还原处理过之物质 400, 包括晶体、 陶瓷、 金属等等, 主要起到加快反应 速度的作用。
[0035] 在该实施例中, 还原处理过之物质 400尺寸与晶圆 100接近。
[0036] 本发明利用分光测色仪对上述工艺方法制得的晶圆进行颜色量化, 利用他的!^ 值可以判断黑化程度, 现有制程的!^值约在 66~70, 上述工艺方法约在 55~60, 黑 化程度提高了 15%作用。 此外, 在均匀性上, 晶片在曝光波长 300 90011111之下, 光穿透率均匀性小于 15%, 从肉眼基本无法识别出黑化不均匀的情况, 晶片在曝 光波长为 300~90〇11111之下, 光对晶片穿透率小于 50%。
[0037] 根据以上实施方案可以看出, 本发明的核心点在于还原材料 300与晶片 100非直 接接触, 保持空间上的隔离, 以上述还原材料 300的来看, 还原材料 300跟晶片 1 00的接触距离保证在 以内即可。 \¥0 2019/149074 卩(:17(:\2019/072020
6
[0038] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的技术人员 , 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

\¥0 2019/149074 卩(:17(:\2019/072020 7 权利要求书
[权利要求 1] 一种晶片的黑化方法, 晶片包括钽酸锂晶片或者铌酸锂晶片, 该方法 可使晶片的导电率增大, 该方法在腔室内通过还原材料对晶片进行黑 化反应, 其特征在于: 腔室内至少包括熔点低于 600° (:的还原材料与 晶片非直接接触。
[权利要求 2] 根据权利要求 1所述的一种晶片的黑化方法, 其特征在于: 黑化反应 在高温环境中进行, 高温环境的温度低于晶片居里温度。
[权利要求 3] 根据权利要求 1所述的一种晶片的黑化方法, 其特征在于: 黑化反应 在高温环境中进行, 高温环境的温度为 350~600° (:。
[权利要求 4] 根据权利要求 1所述的一种晶片的黑化方法, 其特征在于: 黑化反应 在流量为〇.5~3171^11的还原气体气氛或惰性气氛中进行。
[权利要求 5] 根据权利要求 4所述的一种晶片的黑化方法, 其特征在于: 还原气体 气氛包括氢气、 一氧化碳、 一氧化二氮中的一种或者多种任意组合。
[权利要求 6] 根据权利要求 4所述的一种晶片的黑化方法, 其特征在于: 惰性气氛 包括氮气、 氖气、 氩气、 氮气、 二氧化碳中的一种或者多种任意组合
[权利要求 7] 根据权利要求 1所述的一种晶片的黑化方法, 其特征在于: 黑化反应 过程中晶片堆叠放置。
[权利要求 8] 根据权利要求 7所述的一种晶片的黑化方法, 其特征在于: 晶片与还 原处理过之物质重迭接触。
[权利要求 9] 根据权利要求 8所述的一种晶片的黑化方法, 其特征在于: 还原处理 过之物质包括晶体、 陶瓷、 金属中的一种或者多种任意组合。
[权利要求 10] 根据权利要求 1~9中任意一项所述的一种晶片的黑化方法, 其特征在 于: 还原材料包括镁、 木浆、 棉浆、 草浆、 甲壳质、 淀粉、 蛋白质、 烯烃、 芳香类、 糖类、 粉末状纤维、 片状纤维、 条状纤维中的一种或 者多种任意组合。
[权利要求 11] 根据权利要求 10所述的一种晶片的黑化方法, 其特征在于: 片状纤维 的厚度为
Figure imgf000009_0001
\¥0 2019/149074 卩(:17(:\2019/072020
8
[权利要求 12] 一种黑化后晶片, 晶片材料包括钽酸锂或铌酸锂, 其特征在于: 光为 波长 300~90〇11111时, 对晶片的穿透率均匀性小于 15%。
[权利要求 13] 根据权利要求 12所述的一种黑化后晶片, 其特征在于: 光为波长 300~
90011111时, 对晶片穿透率小于 50%。
PCT/CN2019/072020 2018-02-02 2019-01-16 一种晶片的黑化方法及黑化后晶片 WO2019149074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020560533A JP7163411B2 (ja) 2018-02-02 2019-01-16 チップの黒化方法、及び黒化後のチップ
US16/941,095 US12012669B2 (en) 2018-02-02 2020-07-28 Method of processing a lithium tantalate and/or lithium niobate wafer by subjecting the wafer to heat and a reducing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810108099.5A CN110129891A (zh) 2018-02-02 2018-02-02 一种晶片的黑化方法及黑化后晶片
CN201810108099.5 2018-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/941,095 Continuation-In-Part US12012669B2 (en) 2018-02-02 2020-07-28 Method of processing a lithium tantalate and/or lithium niobate wafer by subjecting the wafer to heat and a reducing agent

Publications (1)

Publication Number Publication Date
WO2019149074A1 true WO2019149074A1 (zh) 2019-08-08

Family

ID=67477938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072020 WO2019149074A1 (zh) 2018-02-02 2019-01-16 一种晶片的黑化方法及黑化后晶片

Country Status (4)

Country Link
US (1) US12012669B2 (zh)
JP (1) JP7163411B2 (zh)
CN (1) CN110129891A (zh)
WO (1) WO2019149074A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552755A (ja) * 2020-09-28 2022-12-20 福建晶安光電有限公司 チップの黒化方法、黒化後のチップ、及び表面弾性波濾波器
CN117403326A (zh) * 2023-12-13 2024-01-16 天通控股股份有限公司 一种钽酸锂黑化晶片的退白方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035486A1 (zh) * 2019-08-26 2021-03-04 福建晶安光电有限公司 一种钽酸锂晶片及其黑化方法
CN110760934B (zh) * 2019-11-27 2023-12-29 成都泰美克晶体技术有限公司 一种钽酸锂晶片黑化装置及其使用方法
CN112760595A (zh) * 2020-12-22 2021-05-07 上海复存信息科技有限公司 一种实现铌酸锂晶体表面导电的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754014A (zh) * 2003-03-06 2006-03-29 信越化学工业株式会社 钽酸锂晶体的制造方法
CN105463581A (zh) * 2015-11-30 2016-04-06 上海召业申凯电子材料有限公司 钽酸锂晶体基片的黑化处理方法
CN106283196A (zh) * 2016-08-16 2017-01-04 上海召业申凯电子材料有限公司 高导电性钽酸锂晶体基片的黑化处理方法
CN106591951A (zh) * 2017-02-15 2017-04-26 宁夏钜晶源晶体科技有限公司 钽酸锂晶片的还原方法
CN106929916A (zh) * 2017-04-21 2017-07-07 中国电子科技集团公司第二十六研究所 一种铌酸锂黑片的制作方法
CN107099847A (zh) * 2017-05-24 2017-08-29 成都泰美克晶体技术有限公司 一种钽酸锂基片黑化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893515B1 (en) * 1997-07-25 2003-11-26 Crystal Technology, Inc. Preconditioned crystals of lithium niobate and lithium tantalate and methods of preparing the same
US20040222273A1 (en) * 2002-06-28 2004-11-11 Galambos Ludwig L. Method and apparatus for increasing bulk conductivity of a ferroelectric material
JP3938147B2 (ja) * 2003-04-08 2007-06-27 住友金属鉱山株式会社 タンタル酸リチウム基板およびその製造方法
JP4063191B2 (ja) * 2003-10-16 2008-03-19 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法
US7309392B2 (en) * 2003-11-25 2007-12-18 Sumitomo Metal Mining Co., Ltd. Lithium niobate substrate and method of producing the same
JP4301564B2 (ja) * 2004-04-27 2009-07-22 株式会社山寿セラミックス 圧電性酸化物単結晶の帯電抑制処理方法、および帯電抑制処理装置
JP4482761B2 (ja) 2005-05-19 2010-06-16 信越化学工業株式会社 タンタル酸リチウム結晶の製造方法
JP2007176715A (ja) 2005-12-27 2007-07-12 Sumitomo Metal Mining Co Ltd タンタル酸リチウム基板の製造方法
JP4995847B2 (ja) * 2009-01-27 2012-08-08 信越化学工業株式会社 タンタル酸リチウム結晶の製造方法
CN106544735A (zh) * 2016-12-06 2017-03-29 中国电子科技集团公司第二十六研究所 一种钽酸锂黑片的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754014A (zh) * 2003-03-06 2006-03-29 信越化学工业株式会社 钽酸锂晶体的制造方法
CN105463581A (zh) * 2015-11-30 2016-04-06 上海召业申凯电子材料有限公司 钽酸锂晶体基片的黑化处理方法
CN106283196A (zh) * 2016-08-16 2017-01-04 上海召业申凯电子材料有限公司 高导电性钽酸锂晶体基片的黑化处理方法
CN106591951A (zh) * 2017-02-15 2017-04-26 宁夏钜晶源晶体科技有限公司 钽酸锂晶片的还原方法
CN106929916A (zh) * 2017-04-21 2017-07-07 中国电子科技集团公司第二十六研究所 一种铌酸锂黑片的制作方法
CN107099847A (zh) * 2017-05-24 2017-08-29 成都泰美克晶体技术有限公司 一种钽酸锂基片黑化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552755A (ja) * 2020-09-28 2022-12-20 福建晶安光電有限公司 チップの黒化方法、黒化後のチップ、及び表面弾性波濾波器
JP7371125B2 (ja) 2020-09-28 2023-10-30 福建晶安光電有限公司 チップの黒化方法、黒化後のチップ、及び表面弾性波濾波器
CN117403326A (zh) * 2023-12-13 2024-01-16 天通控股股份有限公司 一种钽酸锂黑化晶片的退白方法
CN117403326B (zh) * 2023-12-13 2024-02-20 天通控股股份有限公司 一种钽酸锂黑化晶片的退白方法

Also Published As

Publication number Publication date
US20200354855A1 (en) 2020-11-12
CN110129891A (zh) 2019-08-16
JP2021511283A (ja) 2021-05-06
JP7163411B2 (ja) 2022-10-31
US12012669B2 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2019149074A1 (zh) 一种晶片的黑化方法及黑化后晶片
CN109417376B (zh) 表面声波器件用复合基板及其制造方法和使用该复合基板的表面声波器件
CN105463581B (zh) 钽酸锂晶体基片的黑化处理方法
US10862447B2 (en) Method for processing a lithium tantalate crystal substrate
CN106048735B (zh) 一种钽酸锂或铌酸锂晶体基片黑化方法
JP3938147B2 (ja) タンタル酸リチウム基板およびその製造方法
CN101608342B (zh) 一种处理铌酸锂或钽酸锂晶片的方法
US11021810B2 (en) Lithium tantalate single crystal substrate, bonded substrate, manufacturing method of the bonded substrate, and surface acoustic wave device using the bonded substrate
JP2011135245A (ja) 弾性波デバイスとこれを用いた電子機器、及び弾性波デバイスの製造方法
EP3525347A1 (en) Composite substrate and method of manufacturing composite substrate
CN106283196A (zh) 高导电性钽酸锂晶体基片的黑化处理方法
US20180048283A1 (en) Lithium tantalate single crystal substrate, bonded substrate, manufacturing method of the bonded substrate, and surface acoustic wave device using the bonded substrate
JP6025179B2 (ja) 弾性表面波素子用タンタル酸リチウム単結晶基板の製造方法
CN108060459A (zh) 一种钽酸锂晶体基片黑化方法
JP5892552B2 (ja) 弾性表面波素子用タンタル酸リチウム単結晶基板の製造方法及びその弾性表面波素子用タンタル酸リチウム単結晶基板
JP7205694B2 (ja) ニオブ酸リチウム基板の製造方法
KR20220127927A (ko) 접합체
JP2020011874A (ja) タンタル酸リチウム基板の製造方法
JP7319592B2 (ja) タンタル酸リチウム基板の製造方法
CN109505011A (zh) 一种声表面波器件用压电晶片及其制备方法
WO2021035486A1 (zh) 一种钽酸锂晶片及其黑化方法
JP7279395B2 (ja) ニオブ酸リチウム基板の製造方法
CN209619506U (zh) 一种声表面波器件用压电晶片
WO2020027075A1 (ja) 複合基板、圧電素子および複合基板の製造方法
JP2007176715A (ja) タンタル酸リチウム基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747357

Country of ref document: EP

Kind code of ref document: A1