WO2019142367A1 - サーミスタ素子及びその製造方法 - Google Patents

サーミスタ素子及びその製造方法 Download PDF

Info

Publication number
WO2019142367A1
WO2019142367A1 PCT/JP2018/002171 JP2018002171W WO2019142367A1 WO 2019142367 A1 WO2019142367 A1 WO 2019142367A1 JP 2018002171 W JP2018002171 W JP 2018002171W WO 2019142367 A1 WO2019142367 A1 WO 2019142367A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruo
intermediate layer
thermistor
layer
conductive intermediate
Prior art date
Application number
PCT/JP2018/002171
Other languages
English (en)
French (fr)
Inventor
岳洋 米澤
藤原 和崇
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020207017013A priority Critical patent/KR102352029B1/ko
Priority to PCT/JP2018/002171 priority patent/WO2019142367A1/ja
Priority to CN201880068544.8A priority patent/CN111247607A/zh
Priority to US16/962,349 priority patent/US11107611B2/en
Publication of WO2019142367A1 publication Critical patent/WO2019142367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a highly reliable thermistor element having a small change in resistance value even in a heat cycle test or the like, and a method of manufacturing the same.
  • a thermistor temperature sensor is adopted as a temperature sensor for automobile related technology, information equipment, communication equipment, medical equipment, housing equipment and the like.
  • Thermistor elements used in this thermistor temperature sensor are often used in severe environments, particularly where the temperature changes repeatedly and greatly.
  • a thermistor element conventionally, one in which an electrode is formed using a noble metal paste such as Au on a thermistor body is employed.
  • a film has a two-layer structure of an element electrode on a thermistor body and a cover electrode on the element electrode, and the element electrode includes a glass frit and RuO 2 (ruthenium dioxide).
  • a thermistor is described in which the cover electrode is a film formed of a paste containing a noble metal and a glass frit.
  • a paste containing a glass frit and RuO 2 is applied to the surface of the thermistor body and is baked to form an element electrode in the form of a film.
  • the element area is secured by this element electrode to maintain the electrical characteristics of the thermistor, and the electrical connection between the wiring and the element electrode by soldering is secured by the cover electrode of noble metal paste.
  • the present invention has been made in view of the above problems, and is capable of reducing the resistance and reducing the thickness of the conductive intermediate layer containing RuO 2 and suppressing the increase in the resistance value accompanying the peeling of the electrode. It is an object of the present invention to provide a thermistor element capable of providing
  • the present invention adopts the following configuration in order to solve the problems. That is, in the thermistor element according to the first aspect of the invention, the thermistor body formed of a thermistor material, the conductive intermediate layer formed on the thermistor body, and the electrode layer formed on the conductive intermediate layer And the conductive intermediate layer has an aggregation structure of RuO 2 particles in electrical contact with each other, and SiO 2 is interposed in the gaps of the aggregation structure, and the thickness is 100 to 1000 nm. It is characterized by
  • the conductive intermediate layer has an aggregation structure of RuO 2 particles in electrical contact with each other, and SiO 2 is interposed in the gap of the aggregation structure, and the thickness is 100 to 1000 nm.
  • Sufficient conductivity is ensured by the aggregation structure of RuO 2 particles in contact with each other, and SiO 2 interposed in the gap in the porous structure functions as a binder of the aggregation structure. Therefore, low resistance can be obtained even with a thin conductive intermediate layer, and an increase in resistance value can be suppressed even if peeling between the conductive intermediate layer and the electrode layer proceeds in a heat cycle test or the like.
  • the thermistor element according to the second aspect of the present invention is the thermistor element according to the first aspect of the present invention, wherein resistance at 25 ° C. before and after a heat cycle test in which 30 min at ⁇ 55 ° C. and 30 min at 200 ° C. It is characterized in that the rate of change of the value is less than 2.5%. That is, in this thermistor element, since the rate of change in resistance value at 25 ° C. is less than 2.5% before and after the heat cycle test, stable temperature measurement is possible even in a large temperature change environment, and high reliability Have sex.
  • an intermediate layer forming step of forming a conductive intermediate layer on a thermistor body formed of a thermistor material, and an electrode forming an electrode layer on the conductive intermediate layer Forming an RuO 2 layer by applying a RuO 2 dispersion containing RuO 2 particles and an organic solvent on the thermistor body and drying the intermediate layer forming step; the silica sol-gel solution containing SiO 2 and an organic solvent, water and acid was applied to RuO 2 layer on, the silica sol-gel was dried in a state impregnated with the conductive intermediate layer on the RuO 2 layer in And a forming step.
  • a RuO 2 dispersion liquid containing RuO 2 particles and an organic solvent is applied on the thermistor body and dried to form a RuO 2 layer in the intermediate layer formation step, As a result, a RuO 2 layer in which many RuO 2 particles are in close contact with each other is formed.
  • the silica sol-gel solution containing SiO 2 and an organic solvent, water and acid RuO 2 layer on coating, to form a conductive intermediate layer is dried in a state impregnated with silica sol liquid to RuO 2 layers in Therefore, it has an aggregation structure of RuO 2 particles in close contact with each other, the silica sol-gel solution intrudes into the gap, and after drying, SiO 2 intervenes in the gap.
  • the silica sol-gel solution is dried to form SiO 2 of high purity and is cured to secure the strength of the conductive intermediate layer, and also functions to firmly adhere the thermistor body to the conductive intermediate layer.
  • the glass frit interferes and the RuO 2 particles can not sufficiently adhere to each other, but in the present invention, the RuO 2 dispersion liquid not containing the glass frit
  • SiO 2 as a binder is interposed in the gap between RuO 2 grains, thereby securing a large contact area of RuO 2 grains and melting it. Since the glass frit does not enter the contact surface of the RuO 2 particles to inhibit the contact to increase the resistance, the resistance of the conductive intermediate layer can be reduced.
  • a RuO 2 dispersion liquid having a viscosity lower than that of a paste is applied, a conductive intermediate layer thinner than that formed of a paste can be formed. Furthermore, since a RuO 2 layer in which many RuO 2 particles are in direct contact with the thermistor body is formed in advance, a low resistance conductive intermediate layer is obtained, and the resistance value is obtained even if the peeling of the electrode progresses in the heat cycle test. Can be suppressed.
  • the electrode forming step applies a noble metal paste containing a noble metal to the conductive intermediate layer, and heating the applied noble metal paste And b) baking to form the electrode layer of the noble metal. That is, the method of manufacturing the thermistor element includes the steps of applying a noble metal paste containing a noble metal to the conductive intermediate layer, and heating and baking the applied noble metal paste to form a noble metal electrode layer. Therefore, when baking the noble metal paste, the adhesion between RuO 2 particles becomes stronger.
  • the glass frit melts and penetrates into the gaps between RuO 2 particles that can not be filled with the silica sol-gel liquid, thereby firmly fixing the RuO 2 particles as a binder and obtaining a stable conductive intermediate layer. it can. Since the RuO 2 particles are firmly in close contact with each other by SiO 2 derived from the silica sol gel solution, even if the glass frit in the noble metal paste melts and penetrates into the RuO 2 particle gap, the contact between the RuO 2 particles is inhibited It will not be done.
  • a method of manufacturing a thermistor element according to a fifth invention is characterized in that, in the third or fourth invention, the thickness of the RuO 2 layer is set to 100 to 1000 nm. That is, in the method of manufacturing the thermistor element, since the thickness of the RuO 2 layer is set to 100 to 1000 nm, a thin film can be obtained as a conductive intermediate layer having a sufficient resistance value. If the thickness of the RuO 2 layer is less than 100 nm, the adhesion to the thermistor body and the resistance value may be insufficient. In addition, the thickness of the RuO 2 layer is up to 1000 nm to obtain sufficiently low resistance and adhesion, and it is necessary to use RuO 2 grains more than necessary to obtain a thickness greater than that, resulting in high cost. I will.
  • the conductive intermediate layer has an aggregation structure of RuO 2 particles in electrical contact with each other, and SiO 2 intervenes in the gaps of the aggregation structure, and the thickness is Since the thickness is 100 to 1000 nm, low resistance can be obtained even with a thin conductive intermediate layer, and an increase in resistance can be suppressed even if peeling of the electrode progresses in a heat cycle test or the like.
  • a RuO 2 dispersion liquid containing RuO 2 particles and an organic solvent is coated on a thermistor body and dried to form a RuO 2 layer, and further RuO 2 silica sol-gel solution containing SiO 2 and an organic solvent, water and acid coated on the second layer, since the silica sol-gel solution to form a conductive intermediate layer is dried while being penetrated into RuO 2 layers in, RuO
  • the RuO 2 layer in which the RuO 2 particles are in close contact with each other is formed in advance by the two dispersions, and SiO 2 of the silica sol-gel solution intervenes in the gaps of the RuO 2 particles to reduce the resistance of the conductive intermediate layer.
  • a thin and low-resistance conductive intermediate layer can be formed compared to the case of using a paste containing glass frit, cost reduction is possible, and electrode peeling in a heat cycle test or the like progresses.
  • a highly reliable device capable of suppressing an increase in resistance value can be obtained.
  • FIG. 6 is a cross-sectional view showing the step of the process in the embodiment of the thermistor element and the method for manufacturing the same according to the present invention.
  • it is a sectional view showing a thermistor element.
  • it is a typical expanded sectional view showing a thermistor element.
  • It is a SEM photograph which shows the cross section of a thermistor element in the Example of the thermistor element which concerns on this invention, and its manufacturing method.
  • it is a SEM photograph which shows the cross-sectional state before electrode layer formation.
  • it is a SEM photograph of a conductive intermediate layer which shows the surface state before electrode layer formation.
  • it is a graph which shows the resistance value change ((DELTA) R25) with respect to the heat cycle number which shows a heat cycle test result.
  • the thermistor device 1 of the present embodiment includes a thermistor body 2 formed of a thermistor material as shown in FIGS. 1 to 3, a conductive intermediate layer 4 formed on the thermistor body 2, and a conductive intermediate layer 4. And an electrode layer 5 formed thereon.
  • the conductive intermediate layer 4 has an aggregation structure of RuO 2 particles 3a in electrical contact with each other, and SiO 2 is interposed in a gap of the aggregation structure, and the thickness is 100 to 1000 nm. That is, the above aggregation structure is composed of RuO 2 particles electrically connected to each other in contact with each other, and SiO 2 is intruding into a gap partially generated in the aggregation structure.
  • the thermistor element 1 has a change rate of resistance value at 25 ° C. of less than 2.5% before and after a heat cycle test in which 30 cycles at ⁇ 55 ° C. and 30 minutes at 200 ° C. are repeated for 50 cycles. It is.
  • a RuO 2 dispersion containing RuO 2 particles 3 a and an organic solvent is applied onto the thermistor body 2 and dried to form a RuO 2 layer 3. forming a, as shown in FIG.
  • the thickness of the RuO 2 layer 3 is 100 to 1000 nm.
  • the thermistor body 2 for example, Mn-Co-Fe, Mn-Co-Fe-Al, Mn-Co-Fe-Cu or the like can be adopted.
  • the thickness of the thermistor body 2 is, for example, 200 ⁇ m.
  • the RuO 2 dispersion liquid is, for example, a RuO 2 ink in which RuO 2 particles 3 a and acetylacetone and ethanol as an organic solvent are mixed.
  • the above RuO 2 particles 3a have an average particle diameter of 10 to 100 nm, preferably about 50 nm.
  • the organic solvent may contain a dispersant, and the dispersant is preferably of a polymer type having a plurality of adsorption groups.
  • the silica sol-gel solution is, for example, a mixed solution of SiO 2 , ethanol, water and nitric acid.
  • an organic solvent used for this silica sol-gel liquid you may employ
  • the acid used for the silica sol-gel solution functions as a catalyst for promoting the hydrolysis reaction, and an acid other than the above nitric acid may be adopted.
  • the noble metal paste is, for example, an Au paste containing a glass frit.
  • a RuO 2 dispersion liquid containing RuO 2 particles 3 a and an organic solvent is applied onto the thermistor body 2 and dried to form a RuO 2 layer 3.
  • the RuO 2 layer 3 in which the two grains 3a are in close contact with each other is formed.
  • a RuO 2 dispersion containing RuO 2 particles 3a is coated on the thermistor body 2 by spin coating or the like, and dried at 150 ° C. for 10 minutes, for example. Acetylacetone and ethanol in the RuO 2 dispersion Is evaporated to form the RuO 2 layer 3 in which the RuO 2 particles 3a are in contact with each other. At this time, fine gaps are generated other than the contact portion between the RuO 2 particles 3a.
  • a silica sol liquid conductive intermediate layer is dried while being permeated up in RuO 2 layer 3
  • the silica sol-gel solution intrudes into the gap, and after drying, SiO 2 intervenes in the gap.
  • the silica sol-gel solution is dried to form SiO 2 of high purity and is cured to ensure the strength of the conductive intermediate layer 4 and also function to firmly attach the thermistor body 2 and the conductive intermediate layer 4 to each other. .
  • the silica sol-gel solution in RuO 2 layer 3 penetrates into the fine gaps between RuO 2 particles 3a, for example 150 ° C., 10 min.
  • ethanol, water and nitric acid evaporate, and only SiO 2 remains in the gap.
  • SiO 2 functions as a binder of RuO 2 particles 3 a.
  • the conductive intermediate layer 4 in which SiO 2 is interposed is formed in the fine gap between the RuO 2 particles 3 a in contact with each other.
  • the adhesion between the RuO 2 particles 3a in contact with each other is increased by heating.
  • the glass frit melts and penetrates into the gaps between the RuO 2 particles 3a that can not be filled with the silica sol-gel solution.
  • the conductive intermediate layer 4 has an aggregation structure of RuO 2 particles 3a in electrical contact with each other, and SiO 2 intervenes in the gaps of the aggregation structure. Since the particle diameter is 100 to 1000 nm, sufficient conductivity is ensured by the aggregation structure of RuO 2 particles 3a in contact with each other, and SiO 2 interposed in the gaps in the porous structure functions as a binder for the aggregation structure ing. Therefore, low resistance can be obtained even with the thin conductive intermediate layer 4, and an increase in resistance value can be suppressed even if peeling between the conductive intermediate layer 4 and the electrode layer 5 proceeds in a heat cycle test or the like.
  • the thermistor element 1 of the present embodiment can measure the temperature stably even in a large temperature change environment since the rate of change in resistance value at 25 ° C. is less than 2.5% before and after the heat cycle test. Yes, it has high reliability.
  • the conductive intermediate layer 4 thinner than that of the paste can be formed. Furthermore, since the RuO 2 layer 3 in which many RuO 2 particles 3a are in direct contact with the thermistor body 2 is formed in advance, the low resistance conductive intermediate layer 4 is obtained, and peeling of the electrode progresses in the heat cycle test etc. Even in this case, the increase in resistance value can be suppressed.
  • the noble metal paste since the steps of applying a noble metal paste containing a noble metal to the conductive intermediate layer 4 and heating and baking the applied noble metal paste to form the electrode layer 5 of the noble metal, the noble metal paste is baked At the same time, the adhesion between the RuO 2 particles 3a becomes stronger. Further, since the SiO 2 penetrates melt in the gap of RuO 2 grains 3a each other could not filled with silica sol liquid, more firmly fixed to each other RuO 2 grains 3a as a binder, a stable conductive intermediate layer 4 You can get it.
  • the thickness of the RuO 2 layer 3 is set to 100 to 1000 nm, the conductive intermediate layer 4 having a sufficient resistance value can be obtained with a thin film. If the thickness of the RuO 2 layer 3 is less than 100 nm, the adhesion to the thermistor body 2 may be insufficient. In addition, the thickness of RuO 2 layer 3 is sufficient to obtain sufficient low resistance and adhesion up to 1000 nm, RuO 2 grain 3a will be used more than necessary to obtain a thickness exceeding that, which is expensive turn into.
  • FIG. 4 For the thermistor element 1 manufactured based on the above embodiment, an SEM photograph of a cross section is shown in FIG. 4, and an SEM photograph showing the cross sectional state before forming the electrode layer and the surface state of the conductive intermediate layer is shown in FIGS. Show. As can be seen from these photographs, the conductive intermediate layer is formed in a state where RuO 2 particles are in contact and in close contact with each other.
  • the chip shape having a dimension of 1.0 ⁇ 1.0 ⁇ 0.2 mm, that is, the entire size is 1.0 ⁇ 1.0 mm in plan view
  • the chip thermistor had a thickness of 0.2 mm.
  • the thermistor element 1 was mounted on a gold-metallized AlN substrate at a temperature of 325 ° C. in an N 2 flow using a foil-like Au—Sn solder.
  • the AlN substrate on which the thermistor element was mounted was fixed by an adhesive on a printed circuit board on which the wiring was made, and an evaluation circuit was formed by Au wire bonding to prepare a sample for evaluation.
  • the heat cycle test was performed for 30 minutes at -55 ° C and 30 minutes at 200 ° C, and was measured before and after the heat cycle test repeated 25 cycles and 50 cycles. , Table 1 and FIG. In this heat cycle test, it is carried out at normal temperature (25.degree. C.) for 3 minutes between 30 minutes at -55.degree. C. and 30 minutes at 200.degree.
  • Au paste was directly applied on the thermistor body and baked, and the results of the same tests were also conducted. Shown in. In addition, it measures about 20 elements in any of an Example and a comparative example, and it is the average value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thermistors And Varistors (AREA)

Abstract

RuOを含んだ導電性中間層の低抵抗化及び薄膜化が可能であると共に、電極の剥離に伴う抵抗値の増大を抑制することができるサーミスタ素子及びその製造方法を提供する。本発明に係るサーミスタ素子は、サーミスタ材料で形成されたサーミスタ素体2と、サーミスタ素体上に形成された導電性中間層4と、導電性中間層上に形成された電極層5とを備え、導電性中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、前記凝集構造の隙間にSiOが介在しており、厚さが100~1000nmである。

Description

サーミスタ素子及びその製造方法
 本発明は、ヒートサイクル試験等においても抵抗値の変化が少なく信頼性の高いサーミスタ素子及びその製造方法に関する。
 一般に、自動車関連技術、情報機器、通信機器、医療用機器、住宅設備機器等の温度センサとして、サーミスタ温度センサが採用されている。このサーミスタ温度センサに用いられるサーミスタ素子は、特に温度が繰り返し大きく変化する厳しい環境で使用される場合も多い。
 また、このようなサーミスタ素子では、従来、サーミスタ素体上にAu等の貴金属ペーストを用いて電極を形成しているものが採用されている。
 例えば、特許文献1では、電極がサーミスタ素体上の素子電極と該素子電極上のカバー電極との2層構造を有し、素子電極がガラスフリットとRuO(二酸化ルテニウム)とを含んだ膜であり、カバー電極が貴金属とガラスフリットとを含むペーストで形成された膜であるサーミスタが記載されている。このサーミスタでは、ガラスフリットとRuOとを含んだペーストをサーミスタ素体の表面に塗布し、これを焼き付け処理することで、膜状に素子電極を形成している。この素子電極によって電極面積を確保してサーミスタの電気的特性を維持させ、ハンダ付けによる配線と素子電極との電気的接続を貴金属ペーストのカバー電極により確保している。
特許第3661160号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、上記従来のサーミスタでは、ガラスフリットとRuO粒とを含んだペーストをサーミスタ素体の表面に塗布し、これを焼き付け処理することで、電極の中間層を形成しているため、RuO粒同士の間にガラスフリットが入り込み、RuO粒同士の電気的導通を阻害している部分が多く発生することで、中間層の抵抗値が増加してしまう不都合があった。このように抵抗値の高い中間層であるために、長時間使用によるヒートサイクルによって電極の剥離が進行することで、抵抗値が顕著に増大してしまう問題があった。さらに、RuO粒を含んだ粘度の高いペーストをサーミスタ素体の表面に塗布するため、厚膜の中間層しか形成できず、希少金属のRuを含むRuO粒の使用量が多くなってしまう問題もあった。
 本発明は、前述の課題に鑑みてなされたもので、RuOを含んだ導電性中間層の低抵抗化及び薄膜化が可能であると共に、電極の剥離に伴う抵抗値の増大を抑制することができるサーミスタ素子及びその製造方法を提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサーミスタ素子では、サーミスタ材料で形成されたサーミスタ素体と、前記サーミスタ素体上に形成された導電性中間層と、前記導電性中間層上に形成された電極層とを備え、前記導電性中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、前記凝集構造の隙間にSiOが介在しており、厚さが100~1000nmであることを特徴とする。
 このサーミスタ素子では、導電性中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、凝集構造の隙間にSiOが介在しており、厚さが100~1000nmであるので、互いに接触したRuO粒の凝集構造により十分な導電性が確保されていると共に、ポーラスな構造中の隙間に介在したSiOが凝集構造のバインダーとして機能している。したがって、薄い導電性中間層でも低抵抗が得られ、ヒートサイクル試験等において導電性中間層と電極層と間の剥離が進行しても、抵抗値の増大を抑制可能である。
 第2の発明に係るサーミスタ素子は、第1の発明において、−55℃で30minと、200℃で30minとを1サイクルとし、これを50サイクル繰り返したヒートサイクル試験前後で、25℃での抵抗値の変化率が2.5%未満であることを特徴とする。
 すなわち、このサーミスタ素子では、上記ヒートサイクル試験前後で、25℃での抵抗値の変化率が2.5%未満であるので、温度変化の大きい環境でも安定した温度測定が可能であり、高い信頼性を有している。
 第3の発明に係るサーミスタ素子の製造方法では、サーミスタ材料で形成されたサーミスタ素体上に導電性中間層を形成する中間層形成工程と、前記導電性中間層上に電極層を形成する電極形成工程とを有し、前記中間層形成工程が、RuO粒と有機溶媒とを含有したRuO分散液を前記サーミスタ素体上に塗布し、乾燥させてRuO層を形成する工程と、前記RuO層上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、前記RuO層中に前記シリカゾルゲル液を浸透させた状態で乾燥させ前記導電性中間層を形成する工程とを有していることを特徴とする。
 このサーミスタ素子の製造方法では、中間層形成工程において、RuO粒と有機溶媒とを含有したRuO分散液をサーミスタ素体上に塗布し、乾燥させてRuO層を形成するので、この時点で多くのRuO粒同士が互いに密着した状態のRuO層が形成される。さらに、RuO層上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、RuO層中にシリカゾルゲル液を浸透させた状態で乾燥させ導電性中間層を形成するので、互いに密着したRuO粒同士による凝集構造を有し、その隙間にシリカゾルゲル液が浸入し、乾燥後に前記隙間にSiOが介在する状態となる。シリカゾルゲル液は乾燥させることで純度の高いSiOとなって硬化し、導電性中間層の強度を担保するとともに、サーミスタ素体と導電性中間層とを強固に密着させる働きをする。したがって、ガラスフリットを含むRuOペーストで形成した従来の中間層では、ガラスフリットが邪魔してRuO粒同士が十分に密着できないのに対し、本願発明では、ガラスフリットを含まないRuO分散液で予めRuO粒同士が互いに密着したRuO層を形成した後に、バインダーとしてSiOをRuO粒の隙間に介在させることで、RuO粒同士の接触面積を多く確保し、かつ、融けたガラスフリットがRuO粒同士の接触面に入り込んで接触を阻害して高抵抗化することがないので、導電性中間層の低抵抗化を図ることができる。また、ペーストよりも粘度が低いRuO分散液を塗布するため、ペーストで形成するよりも薄い導電性中間層を形成することができる。さらに、サーミスタ素体に直接多くのRuO粒が密着したRuO層を予め形成するので、低抵抗の導電性中間層が得られ、ヒートサイクル試験において電極の剥離が進行しても、抵抗値の増大を抑制可能である。
 第4の発明に係るサーミスタ素子の製造方法は、第3の発明において、前記電極形成工程が、貴金属を含む貴金属ペーストを前記導電性中間層に塗布する工程と、塗布した前記貴金属ペーストを加熱して焼き付けて前記貴金属の前記電極層を形成する工程とを有していることを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、貴金属を含む貴金属ペーストを導電性中間層に塗布する工程と、塗布した貴金属ペーストを加熱して焼き付けて貴金属の電極層を形成する工程とを有しているので、貴金属ペーストを焼き付ける際に、RuO粒同士の密着がより強くなる。また、シリカゾルゲル液で埋めきれなかったRuO粒同士の隙間にガラスフリットが溶けて浸透することで、バインダーとしてより強固にRuO粒同士を固定し、安定した導電性中間層を得ることができる。なお、RuO粒同士はシリカゾルゲル液由来のSiOによって強固に密着しているため、貴金属ペースト中のガラスフリットが融けてRuO粒間隙に浸透しても、RuO粒同士の接触が阻害されることはない。
 第5の発明に係るサーミスタ素子の製造方法は、第3又は第4の発明において、前記RuO層の厚さを、100~1000nmとすることを特徴とする。
 すなわち、このサーミスタ素子の製造方法では、RuO層の厚さを、100~1000nmとするので、薄膜で十分な抵抗値の導電性中間層が得られる。なお、RuO層の厚さが100nm未満であると、サーミスタ素体との密着性や抵抗値が不十分になる場合がある。また、RuO層の厚さは1000nmまでで十分な低抵抗と密着性が得られ、それを超える厚さを得るには必要以上にRuO粒を使用することになり、高コストになってしまう。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係るサーミスタ素子によれば、導電性中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、凝集構造の隙間にSiOが介在しており、厚さが100~1000nmであるので、薄い導電性中間層でも低抵抗が得られ、ヒートサイクル試験等において電極の剥離が進行しても、抵抗値の増大を抑制可能である。
 また、本発明に係るサーミスタ素子の製造方法によれば、RuO粒と有機溶媒とを含有したRuO分散液をサーミスタ素体上に塗布し、乾燥させてRuO層を形成し、さらにRuO層上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、RuO層中にシリカゾルゲル液を浸透させた状態で乾燥させ導電性中間層を形成するので、RuO分散液で予めRuO粒同士が密着したRuO層が形成されると共に、シリカゾルゲル液のSiOがRuO粒の隙間に介在することで、導電性中間層の低抵抗化を図ることができる。
 したがって、ガラスフリットを含むペーストで形成するよりも薄く低抵抗な導電性中間層を形成することができ、低コスト化が可能であると共に、ヒートサイクル試験等において電極の剥離が進行しても、抵抗値の増大を抑制可能な高い信頼性を有した素子が得られる。
本発明に係るサーミスタ素子及びその製造方法の一実施形態において、工程順に示す断面図である。 本実施形態において、サーミスタ素子を示す断面図である。 本実施形態において、サーミスタ素子を示す模式的な拡大断面図である。 本発明に係るサーミスタ素子及びその製造方法の実施例において、サーミスタ素子の断面を示すSEM写真である。 本発明に係る実施例において、電極層形成前の断面状態を示すSEM写真である。 本発明に係る実施例において、電極層形成前の表面状態を示す導電性中間層のSEM写真である。 本発明に係る実施例において、ヒートサイクル試験結果を示すヒートサイクル数に対する抵抗値変化(ΔR25)を示すグラフである。
 以下、本発明に係るサーミスタ素子及びその製造方法の一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
 本実施形態のサーミスタ素子1は、図1から図3に示すようにサーミスタ材料で形成されたサーミスタ素体2と、サーミスタ素体2上に形成された導電性中間層4、導電性中間層4上に形成された電極層5とを備えている。
 上記導電性中間層4は、電気的に互いに接触したRuO粒3aによる凝集構造を有し、凝集構造の隙間にSiOが介在しており、厚さが100~1000nmである。すなわち、上記凝集構造は、互いに接触して電気的に導通したRuO粒で構成され、凝集構造中に部分的に生じている隙間にSiOが入り込んでいる。
 このサーミスタ素子1は、−55℃で30minと、200℃で30minとを1サイクルとし、これを50サイクル繰り返したヒートサイクル試験前後で、25℃での抵抗値の変化率が2.5%未満である。
 本実施形態のサーミスタ素子1の製造方法は、図1に示すように、サーミスタ材料で形成されたサーミスタ素体2上に導電性中間層4を形成する中間層形成工程と、導電性中間層4上に電極層5を形成する電極形成工程とを有している。
 上記中間層形成工程は、図1の(a)に示すように、RuO粒3aと有機溶媒とを含有したRuO分散液をサーミスタ素体2上に塗布し、乾燥させてRuO層3を形成する工程と、図1の(b)に示すように、RuO層3上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、RuO層3中にシリカゾルゲル液を浸透させた状態で乾燥させ導電性中間層4を形成する工程とを有している。
 上記電極形成工程では、貴金属を含む貴金属ペーストを導電性中間層4に塗布する工程と、図1の(c)に示すように、塗布した貴金属ペーストを加熱して焼き付けて貴金属の電極層5を形成する工程とを有している。
 なお、上記RuO層3の厚さは、100~1000nmとされる。
 上記サーミスタ素体2としては、例えばMn−Co−Fe,Mn−Co−Fe−Al,Mn−Co−Fe−Cu等が採用可能である。このサーミスタ素体2の厚さは、例えば200μmである。
 上記RuO分散液は、例えばRuO粒3aと、有機溶媒としてアセチルアセトンとエタノールとを混合したRuOインクである。
 上記RuO粒3aは、その平均粒径が10~100nmのものが使用されるが、特に50nm程度のものが好ましい。
 有機溶媒には分散剤を含んでもよく、分散剤としては吸着基を複数持つポリマー型のものが好ましい。
 上記シリカゾルゲル液は、例えばSiOとエタノールと水と硝酸との混合液である。なお、このシリカゾルゲル液に用いる有機溶媒としては、上記エタノール以外の他の有機溶媒を採用しても構わない。また、シリカゾルゲル液に用いる酸は、加水分解反応を促進する触媒として機能し、上記硝酸以外の酸を採用しても構わない。
 上記貴金属ペーストは、例えばガラスフリットを含有したAuペーストである。
 上記中間層形成工程では、RuO粒3aと有機溶媒とを含有したRuO分散液をサーミスタ素体2上に塗布し、乾燥させてRuO層3を形成するので、この時点で多くのRuO粒3a同士が互いに密着した状態のRuO層3が形成される。
 具体的には、RuO粒3aを含有したRuO分散液をサーミスタ素体2上にスピンコート等で塗布し、例えば150℃,10minで乾燥させると、RuO分散液中のアセチルアセトンとエタノールとは蒸発してRuO粒3a同士が互いに接触した状態のRuO層3が形成される。このとき、RuO粒3a同士の接触部分以外には、微細な隙間が生じている。
 次に、RuO層3上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、RuO層3中にシリカゾルゲル液を浸透させた状態で乾燥させ導電性中間層4を形成すると、互いに密着したRuO粒3a同士による凝集構造を有し、その隙間にシリカゾルゲル液が浸入し、乾燥後に前記隙間にSiOが介在する状態となる。シリカゾルゲル液は乾燥させることで純度の高いSiOとなって硬化し、導電性中間層4の強度を担保するとともに、サーミスタ素体2と導電性中間層4とを強固に密着させる働きをする。
 具体的には、RuO層3上にシリカゾルゲル液をスピンコート等で塗布すると、RuO層3中にシリカゾルゲル液がRuO粒3a間の微細な隙間に浸透し、例えば150℃,10minで乾燥させることでエタノールと水と硝酸とが蒸発し、隙間内にSiOだけが残存する。このとき、SiOがRuO粒3aのバインダーとして機能する。このように、互いに接触しているRuO粒3a間の微細な隙間にSiOが介在した導電性中間層4が形成される。
 この後、導電性中間層4上に貴金属ペーストを塗布し、例えば850℃,10minで焼き付け処理を行うと、加熱によって接触しているRuO粒3a同士の密着性が高くなる。また、シリカゾルゲル液で埋めきれなかったRuO粒3a同士の隙間にもガラスフリットが溶けて浸透する。
 このようにして、図2及び図4に示すように、Auの電極層5が導電性中間層4上に形成されたサーミスタ素子1が作製される。
 このように本実施形態のサーミスタ素子1では、導電性中間層4が、電気的に互いに接触したRuO粒3aによる凝集構造を有し、凝集構造の隙間にSiOが介在しており、厚さが100~1000nmであるので、互いに接触したRuO粒3aの凝集構造により十分な導電性が確保されていると共に、ポーラスな構造中の隙間に介在したSiOが凝集構造のバインダーとして機能している。したがって、薄い導電性中間層4でも低抵抗が得られ、ヒートサイクル試験等において導電性中間層4と電極層5と間の剥離が進行しても、抵抗値の増大を抑制可能である。
 さらに、本実施形態のサーミスタ素子1は、上記ヒートサイクル試験前後で、25℃での抵抗値の変化率が2.5%未満であるので、温度変化の大きい環境でも安定した温度測定が可能であり、高い信頼性を有している。
 また、本実施形態のサーミスタ素子の製造方法では、ガラスフリットを含まないRuO分散液で予めRuO粒3a同士が互いに密着したRuO層3を形成した後に、バインダーとしてSiOをRuO粒3aの隙間に介在させることで、RuO粒3a同士の接触面積を多く確保し、かつ、融けたガラスプリットがRuO粒3a同士の接触面に入り込んで接触を阻害して高抵抗化することがないので、導電性中間層4の低抵抗化を図ることができる。なお、ガラスフリットを含むRuOペーストで形成した従来の中間層では、ガラスフリットが邪魔してRuO粒3a同士が十分に密着できない。
 また、本実施形態のサーミスタ素子の製造方法では、ペーストよりも粘度が低いRuO分散液を塗布するため、ペーストで形成するよりも薄い導電性中間層4を形成することができる。さらに、サーミスタ素体2に直接多くのRuO粒3aが密着したRuO層3を予め形成するので、低抵抗の導電性中間層4が得られ、ヒートサイクル試験等において電極の剥離が進行しても、抵抗値の増大を抑制可能である。
 また、貴金属を含む貴金属ペーストを導電性中間層4に塗布する工程と、塗布した貴金属ペーストを加熱して焼き付けて貴金属の電極層5を形成する工程とを有しているので、貴金属ペーストを焼き付ける際に、RuO粒3a同士の密着がより強くなる。また、シリカゾルゲル液で埋めきれなかったRuO粒3a同士の隙間にSiOが溶けて浸透することで、バインダーとしてより強固にRuO粒3a同士を固定し、安定した導電性中間層4を得ることができる。
 さらに、RuO層3の厚さを、100~1000nmとするので、薄膜で十分な抵抗値の導電性中間層4が得られる。なお、RuO層3の厚さが100nm未満であると、サーミスタ素体2との密着性が不十分になる場合がある。また、RuO層3の厚さは1000nmまでで十分な低抵抗と密着性が得られ、それを超える厚さを得るには必要以上にRuO粒3aを使用することになり、高コストになってしまう。
 上記実施形態に基づいて作製したサーミスタ素子1について、断面のSEM写真を図4に示すと共に、電極層形成前の断面状態及び導電性中間層の表面状態を示すSEM写真を図5及び図6に示す。
 これらの写真からわかるように、RuO粒同士が接触及び密着した状態で導電性中間層を形成している。
 また、作製したサーミスタ素子1の実施例は、寸法を1.0×1.0×0.2mmとしたチップ状、すなわち全体のサイズが、平面視で1.0×1.0mmであると共に、厚さが0.2mmのチップサーミスタとした。
 このサーミスタ素子1について、金メタライズされたAlN基板に箔状のAu−Snはんだを用いてNフロー中、325℃の条件で実装した。このサーミスタ素子を実装したAlN基板を配線がなされたプリント基板上に接着剤で固定し、Auワイヤーボンディングによって評価回路を形成し、評価用のサンプルとした。
 ヒートサイクル試験は、−55℃で30minと、200℃で30minとを1サイクルとし、これを25サイクル及び50サイクル繰り返したヒートサイクル試験前後で測定した、25℃における抵抗値の変化率の結果を、表1及び図7に示す。このヒートサイクル試験では、−55℃で30minと200℃で30minとの間に、常温(25℃)で3minを挟んで行っている。
 なお、比較例として、本発明の導電性中間層を採用せず、サーミスタ素体上にAuペーストを直接塗布し、焼き付け処理したものを同様に、試験を行った結果も、表1及び図7に示す。なお、実施例、比較例のいずれも素子20個について測定し、その平均値である。
 これらのヒートサイクル試験の結果からわかるように比較例では、いずれも抵抗値が著しく増大しているのに対し、上記製法による導電性中間層を採用した本発明の実施例では、いずれも抵抗率の変化が僅かであった。これはヒートサイクル試験によって電極の剥離が拡がって電極の剥離率が高くなるのに伴って、比較例では、抵抗値が高い中間層を有しているために、抵抗値が顕著に増大しているのに対し、本発明の実施例では、電極の剥離が生じても、導電性中間層が低抵抗であるために抵抗値の増大が抑制されているものと考えられる。これらの試験結果は、電極の剥離率の変化に伴う抵抗率変化のシミュレーション結果とも合致している。
Figure JPOXMLDOC01-appb-T000001
 なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 1…サーミスタ素子、2…サーミスタ素体、3…RuO層、3a…RuO粒、4…導電性中間層、5…電極層

Claims (5)

  1.  サーミスタ材料で形成されたサーミスタ素体と、
     前記サーミスタ素体上に形成された導電性中間層と、
     前記導電性中間層上に形成された電極層とを備え、
     前記導電性中間層が、電気的に互いに接触したRuO粒による凝集構造を有し、前記凝集構造の隙間にSiOが介在しており、厚さが100~1000nmであることを特徴とするサーミスタ素子。
  2.  請求項1に記載のサーミスタ素子において、
     −55℃で30minと、200℃で30minとを1サイクルとし、これを50サイクル繰り返したヒートサイクル試験前後で、25℃での抵抗値の変化率が2.5%未満であることを特徴とするサーミスタ素子。
  3.  サーミスタ材料で形成されたサーミスタ素体上に導電性中間層を形成する中間層形成工程と、
     前記導電性中間層上に電極層を形成する電極形成工程とを有し、
     前記中間層形成工程が、RuO粒と有機溶媒とを含有したRuO分散液を前記サーミスタ素体上に塗布し、乾燥させてRuO層を形成する工程と、
     前記RuO層上にSiOと有機溶媒と水と酸とを含有したシリカゾルゲル液を塗布し、前記RuO層中に前記シリカゾルゲル液を浸透させた状態で乾燥させ前記導電性中間層を形成する工程とを有していることを特徴とするサーミスタ素子の製造方法。
  4.  請求項3に記載のサーミスタ素子の製造方法において、
     前記電極形成工程が、貴金属を含む貴金属ペーストを前記導電性中間層に塗布する工程と、
     塗布した前記貴金属ペーストを加熱して焼き付けて前記貴金属の前記電極層を形成する工程とを有していることを特徴とするサーミスタ素子の製造方法。
  5.  請求項3に記載のサーミスタ素子の製造方法において、
     前記RuO層の厚さを、100~1000nmとすることを特徴とするサーミスタ素子の製造方法。
PCT/JP2018/002171 2018-01-17 2018-01-17 サーミスタ素子及びその製造方法 WO2019142367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207017013A KR102352029B1 (ko) 2018-01-17 2018-01-17 서미스터 소자 및 그 제조 방법
PCT/JP2018/002171 WO2019142367A1 (ja) 2018-01-17 2018-01-17 サーミスタ素子及びその製造方法
CN201880068544.8A CN111247607A (zh) 2018-01-17 2018-01-17 热敏电阻元件及其制造方法
US16/962,349 US11107611B2 (en) 2018-01-17 2018-01-17 Thermistor element and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002171 WO2019142367A1 (ja) 2018-01-17 2018-01-17 サーミスタ素子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019142367A1 true WO2019142367A1 (ja) 2019-07-25

Family

ID=67301795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002171 WO2019142367A1 (ja) 2018-01-17 2018-01-17 サーミスタ素子及びその製造方法

Country Status (4)

Country Link
US (1) US11107611B2 (ja)
KR (1) KR102352029B1 (ja)
CN (1) CN111247607A (ja)
WO (1) WO2019142367A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590004B2 (ja) * 2018-01-15 2019-10-16 三菱マテリアル株式会社 サーミスタ素子及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124101A (ja) * 1984-07-13 1986-02-01 住友金属鉱山株式会社 厚膜導電ペ−スト
JPS6295805A (ja) * 1985-10-22 1987-05-02 株式会社村田製作所 サ−ミスタ
JPH05190091A (ja) * 1992-01-14 1993-07-30 Asahi Glass Co Ltd 導電膜及び低反射導電膜及びその製造方法
JPH09186002A (ja) * 1995-12-28 1997-07-15 Ooizumi Seisakusho:Kk サーミスタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292801A (ja) * 1989-05-08 1990-12-04 Hitachi Ltd 厚膜抵抗体ペースト及び厚膜抵抗体
JP2002124403A (ja) * 2000-08-10 2002-04-26 Nippon Soken Inc 耐還元性サーミスタ素子とその製造方法および温度センサ
JP2007141881A (ja) * 2005-11-14 2007-06-07 Oizumi Seisakusho:Kk サーミスタの電極構造
US8628695B2 (en) * 2008-04-18 2014-01-14 E I Du Pont De Nemours And Company Surface-modified ruthenium oxide conductive material, lead-free glass(es), thick film resistor paste(s), and devices made therefrom
JP6590004B2 (ja) * 2018-01-15 2019-10-16 三菱マテリアル株式会社 サーミスタ素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124101A (ja) * 1984-07-13 1986-02-01 住友金属鉱山株式会社 厚膜導電ペ−スト
JPS6295805A (ja) * 1985-10-22 1987-05-02 株式会社村田製作所 サ−ミスタ
JPH05190091A (ja) * 1992-01-14 1993-07-30 Asahi Glass Co Ltd 導電膜及び低反射導電膜及びその製造方法
JPH09186002A (ja) * 1995-12-28 1997-07-15 Ooizumi Seisakusho:Kk サーミスタ
JP3661160B2 (ja) 1995-12-28 2005-06-15 株式会社大泉製作所 サーミスタ

Also Published As

Publication number Publication date
KR102352029B1 (ko) 2022-01-14
US20200343026A1 (en) 2020-10-29
US11107611B2 (en) 2021-08-31
CN111247607A (zh) 2020-06-05
KR20200105819A (ko) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6365603B2 (ja) サーミスタ素子及びその製造方法
TWI783108B (zh) 熱阻器元件及其製造方法
WO2019142367A1 (ja) サーミスタ素子及びその製造方法
TWI742227B (zh) 熱敏電阻元件及其製造方法
JP2006332284A (ja) 電子部品および電子部品の製造方法
JP2008166666A (ja) セラミック電子部品
JPS6142406B2 (ja)
JPH1074419A (ja) チップ抵抗体の端子電極用導電性ペースト組成物
JPS6215777A (ja) フイルム状コネクタ及びその製造方法
JPH10144501A (ja) チップ抵抗器及びその製造方法
JP2006229036A (ja) 回路基板及び回路基板製造方法
KR20230148463A (ko) 전도성 접합 필름, 그 제조방법 및 이를 이용한 접합 방법
JPS6032722Y2 (ja) 厚膜サ−ミスタ
JPH01232714A (ja) 固体電解コンデンサ
JPH10312903A (ja) 温度センサ
TW202046345A (zh) 熱敏電阻之製造方法及熱敏電阻
JPH02265233A (ja) 固体電解コンデンサ
JP2001237137A (ja) 積層コンデンサ及びそのための外部電極導体ペースト
KR20120055254A (ko) 칩 저항기용 전극 페이스트 및 이를 이용한 칩 저항기 제조 방법
JPH02264417A (ja) 固体電解コンデンサ
JPH04148522A (ja) タンタル固体電解コンデンサ
JPH0376564B2 (ja)
JPH0650705B2 (ja) 誘電体用電極組成物
JP2000277891A (ja) 回路基板
JPH0311601A (ja) 抵抗体基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP