WO2019140830A1 - 基于一阶动态滑模变结构的桥吊防摆方法 - Google Patents

基于一阶动态滑模变结构的桥吊防摆方法 Download PDF

Info

Publication number
WO2019140830A1
WO2019140830A1 PCT/CN2018/089510 CN2018089510W WO2019140830A1 WO 2019140830 A1 WO2019140830 A1 WO 2019140830A1 CN 2018089510 W CN2018089510 W CN 2018089510W WO 2019140830 A1 WO2019140830 A1 WO 2019140830A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
dynamic sliding
length
traction force
rope
Prior art date
Application number
PCT/CN2018/089510
Other languages
English (en)
French (fr)
Inventor
王天雷
耿爱农
李辛沫
周昌
吴耀炯
倪伟佃
何楚平
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Priority to DE112018006910.9T priority Critical patent/DE112018006910T5/de
Priority to US16/651,180 priority patent/US11524878B2/en
Publication of WO2019140830A1 publication Critical patent/WO2019140830A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the invention relates to the technical field of bridge cranes, in particular to a bridge crane anti-swing method based on a first-order dynamic sliding mode variable structure.
  • the bridge crane system is essentially a kind of complex underactuated nonlinear control system, which plays an irreplaceable role in modern industrial production. Due to its high theoretical value and practical value, domestic and foreign authors have never interrupted bridges. Research on crane positioning control problems.
  • variable rope length In the case of variable rope length, some researchers have adopted the layered sliding mode and time-varying sliding mode control method to realize the anti-rolling positioning control of the bridge crane under the condition of variable rope length, but the control rate design steps are cumbersome and not Consider the chattering phenomenon unique to sliding mode control.
  • an object of the present invention is to provide a bridge crane anti-swing method based on a first-order dynamic sliding mode variable structure, which can realize the anti-swing positioning control of the system, and can effectively weaken the chattering of the sliding mode variable structure control. phenomenon.
  • the bridge crane anti-swing method based on the first-order dynamic sliding mode variable structure comprises the following steps: S10, real-time monitoring parameters of the bridge crane system, and establishing a two-dimensional bridge crane system model, the two-dimensional bridge crane system model including weights and A bridge crane for lifting heavy objects, and a weight is connected to the overhead crane by a rope;
  • the position coordinates of the bridge crane and the weight are respectively determined as:
  • x M and y M are the X-axis coordinate and the Y-axis coordinate of the overhead crane, respectively, x m and y m are the X-axis coordinate and the Y-axis coordinate of the weight, respectively, and ⁇ is the swing angle when the weight swings, l is the length of the rope, x is the displacement in the horizontal direction when the weight is swung, and the displacement x, the length l and the swing angle ⁇ are the parameters of the bridge crane system that need real-time monitoring;
  • M is the mass of the bridge crane
  • f 1 is the horizontal traction force of the bridge crane
  • D is the drag coefficient
  • f 2 is the traction along the rope of the weight
  • m is the mass of the weight
  • the crane system control model includes a dynamic sliding surface s 1 of the crane position containing the dynamic change of the swing angle and a long dynamic slip of the rope containing the dynamic change of the rope length die face s 2, the position of the crane the s 1 and the dynamic sliding surface sliding surface dynamic cable length s 2 constructed by the following equation:
  • x d is the displacement reference value of the bridge crane, which is a constant
  • l d is the rope length reference value of the rope, which is a constant
  • a, b, c, d, a 1 and b 1 are constants greater than 0 ;
  • function I a bipolar Sigmoid function with the same definition as the symbol function sgn(s i );
  • step S30 according to the two-dimensional bridge crane system model, the second derivative formula of the displacement x, the length l, and the swing angle ⁇ is respectively obtained, including the following steps:
  • the crane system control model further includes a first linear operation module, a first controller, a second linear operation module, a second controller, a crane system module, and a first input for inputting the displacement reference value x d a module and a second input module for inputting a rope length reference value l d ;
  • the first input module, the first linear operation module, the crane position dynamic sliding surface s 1 , the first controller and the crane system module are sequentially connected, the crane system The module respectively outputs a swing angle ⁇ and a displacement x to the first linear operation module and the first input module;
  • the second input module, the second linear operation module, the rope length dynamic sliding surface s 2 , the second controller and the crane system module Connected in sequence, the crane system module feeds back the output length l to the second input module.
  • step S50 the exponential approach law control method and a dynamic sliding mode surface of a crane position a long dynamic sliding surface The relationship between:
  • step S60 the second derivative of the displacement x, the length l, and the swing angle ⁇ is combined with a dynamic sliding surface of the crane position a long dynamic sliding surface
  • the first derivative formula of the horizontal traction force f 1 and the rope traction force f 2 is obtained, including the following steps:
  • step S70 the integrator respectively disposed within the first and second controllers, the first and second controllers, respectively, to the cable car system module output level along the traction force and traction ropes f 1 f 2.
  • the invention has the beneficial effects of: monitoring the parameters of the bridge crane system in real time based on the first-order dynamic sliding mode variable structure bridge crane anti-swing method, and establishing a two-dimensional bridge crane system model according to the two-dimensional bridge crane system
  • the relevant parameters in the model respectively establish the second derivative formula of displacement x, length l and swing angle ⁇ , and then construct the control model of the crane system to establish the dynamic sliding surface s 1 of the crane position with dynamic change of the swing angle and the dynamic change of the rope length.
  • the long dynamic sliding surface s 2 of the rope is related to the displacement x, the length l and the swing angle ⁇ due to the relationship between the dynamic sliding surface s 1 of the crane position and the dynamic sliding surface s 2 of the rope length, so according to the position of the crane
  • the horizontal traction force f 1 and the rope traction force f 2 obtained by the dynamic sliding surface s 1 and the rope length dynamic sliding surface s 2 are also related to the displacement x, the length l and the swing angle ⁇ , so when the pair of bridge cranes And the weights respectively apply an equivalent force opposite to the horizontal traction force f 1 and the direction along the rope traction force f 2 , so that when the bridge crane system is subjected to the anti-swing treatment, the displacement x, the length l and the swing angle ⁇ will correspondingly occur.
  • the neighborhood is the boundary layer of the sliding mode switching plane.
  • the quasi-sliding mode does not require the condition of the sliding mode, so the switching of the control structure on the switching surface is not required. Therefore, the chattering phenomenon can be fundamentally avoided or weakened.
  • Figure 1 is a schematic view of a two-dimensional bridge crane system model
  • FIG. 2 is a schematic diagram of a control model of a crane system.
  • the bridge crane anti-swing method based on the first-order dynamic sliding mode variable structure of the present invention for the control problem of the two-dimensional under-actuated bridge crane under the condition of variable rope length, will contain the dynamic change of the swing angle and the rope.
  • the parameters of the bridge crane system are first monitored in real time, and a two-dimensional bridge crane system model is established.
  • the position coordinates of the bridge crane 2 and the weight 1 are:
  • x M and y M are the X-axis coordinate and the Y-axis coordinate of the overhead crane 2, respectively, x m and y m are the X-axis coordinate and the Y-axis coordinate of the weight 1, respectively, and ⁇ is the weight 1 when the weight 1 is swung.
  • the swing angle, l is the length of the rope, and x is the displacement in the horizontal direction when the weight 1 is swung.
  • the displacement x, the length l and the swing angle ⁇ are the parameters of the bridge crane system that need real-time monitoring.
  • the Lagrangian equation of the two-dimensional bridge crane system model can be obtained as:
  • M is the mass of the overhead crane 2
  • f 1 is the horizontal traction force that the overhead crane 2 receives
  • D is the drag coefficient
  • f 2 is the rope traction force that the weight 1 receives
  • m is the mass of the weight 1.
  • the crane system control model includes a dynamic position of the crane position sliding surface s 1 containing the dynamic change of the swing angle, and the rope length dynamics including the dynamic change of the rope length.
  • a sliding surface s 2 a sliding surface s 2 , a first linear operation module 3 , a first controller 4 , a second linear operation module 5 , a second controller 6 , a crane system module 7 , a first input module for inputting a displacement reference value x d 8 and a second input module 9 for inputting a rope length reference value l d ;
  • the modules 7 are sequentially connected, and the crane system module 7 respectively feeds back the output swing angle ⁇ and the displacement x to the first linear operation module 3 and the first input module 8; the second input module 9, the second linear operation module 5, the rope length dynamic sliding mode
  • the surface s 2 , the second controller 6 and the crane system module 7 are connected in sequence, and the crane system module 7 feeds back the output length l to the second input module 9 .
  • the displacement x, the length l, the swing angle ⁇ , the horizontal traction force f 1 , and the traction force f 2 along the rope interact with each other, and the horizontal traction force f is applied to the overhead crane 2 and the weight 1 respectively.
  • the crane position dynamic sliding surface s 1 and the rope length dynamic sliding surface s 2 are constructed by the following formula:
  • x d is the displacement reference value of the overhead crane 2, which is a constant
  • l d is the rope length reference value of the rope, which is a constant
  • a, b, c, d, a 1 and b 1 are all greater than 0 constant
  • is a normal number, function Is a bipolar Sigmoid function with the same definition as the symbol function sgn(s i );
  • the first derivative formula of the horizontal traction force f 1 and the rope traction force f 2 can be obtained as:
  • the relationship between the displacement x, the length l, the swing angle ⁇ , the horizontal traction force f 1 , and the traction force f 2 along the rope is shown in the above equation. Since the integrator is provided in each of the first controller 4 and the second controller 6, the first controller 4 and the second controller 6 respectively output the horizontal traction force f 1 and the rope traction force f 2 to the crane system module 7, Therefore, the horizontal traction force f 1 and the first derivative of the rope traction force f 2 are integrated in the first controller 4 and the second controller 6, respectively, and converted into the horizontal traction force f 1 and the rope traction force f 2 , followed by the horizontal traction force.
  • the f 1 and the traction force f 2 along the rope are respectively input into the crane system module 7 to change the displacement x, the length l, and the swing angle ⁇ .
  • the displacement x, the length l, and the swing angle ⁇ feedback affect the horizontal traction force f 1 and along
  • the rope traction force f 2 is continuously circulated to adjust the horizontal traction force f 1 and the output value along the rope traction force f 2 , at this time, the bridge crane 2 and the weight are varied according to the horizontal traction force f 1 and the output value along the rope traction force f 2 1
  • the equivalent force acting opposite to the horizontal traction force f 1 and the direction along the rope traction force f 2 is respectively applied, thereby realizing the anti-swing positioning control of the overhead crane system.
  • the bipolar Sigmoid function can be guided compared to the conventional symbol function.
  • the transition is smooth, and the state point within a certain range is quickly attracted to a certain ⁇ neighborhood of the switching plane, and the neighborhood is the boundary layer of the sliding mode switching plane.
  • the quasi-sliding mode is not required to be satisfied.
  • the condition of the sliding mode is therefore not required to switch the control structure on the switching surface, so that the chattering phenomenon can be fundamentally avoided or weakened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种基于一阶动态滑模变结构的桥吊防摆方法,通过分别构建二维桥式吊车系统模型和吊车系统控制模型,将含有摆角动态变化和绳长动态变化的两个滑模面通过微分处理分别得到吊车位置动态滑模面s 1和绳长动态滑模面s 2,并且把二维桥式吊车系统模型中的位移x、长度l和摆角θ与吊车系统控制模型中的吊车位置动态滑模面s 1及绳长动态滑模面s 2进行结合,得到水平牵引力f 1、沿绳牵引力f 2和位移x、长度l、摆角θ之间的关系式,由于位移x、长度l、摆角θ与水平牵引力f 1、沿绳牵引力f 2的一阶导数有关,因此得到在时间上连续的动态滑模控制律,从而实现了对桥式吊车系统的防摆定位控制,并能有效的削弱滑模变结构控制的抖振现象。

Description

基于一阶动态滑模变结构的桥吊防摆方法 技术领域
本发明涉及桥式起重机技术领域,尤其是一种基于一阶动态滑模变结构的桥吊防摆方法。
背景技术
桥式起重机系统本质上是一类复杂的欠驱动非线性控制系统,在现代化工业生产中发挥着不可替代的作用,鉴于其较高的理论价值和实用价值,国内外学者从未中断过桥式起重机摇定位控制问题的研究。
目前不少学者尝试将自适应控制、模糊控制以及神经网络与滑模控制结合起来进行优势互补,但所设计出的控制器较复杂、存在抖振、而且大都没有考虑变绳长。而针对变绳长的情况下,也有学者采用过分层滑模、时变滑模控制方法实现对变绳长情况下的桥式吊车防摇定位控制,但其控制率设计步骤比较繁琐且没有考虑到滑模控制所特有的抖振现象。
发明内容
为解决上述问题,本发明的目的在于提供一种基于一阶动态滑模变结构的桥吊防摆方法,能够实现系统的防摆定位控制,并能有效的削弱滑模变结构控制的抖振现象。
本发明解决其问题所采用的技术方案是:
基于一阶动态滑模变结构的桥吊防摆方法,包括以下步骤:S10、实时监测桥式吊车系统的参数,建立二维桥式吊车系统模型,二维桥式吊车系统模型包括重物和用于吊起重物的桥式吊车,重物与桥式吊车之间通过绳索连接;
S20、根据二维桥式吊车系统模型分别求得桥式吊车及重物的位置坐标为:
Figure PCTCN2018089510-appb-000001
其中,x M和y M分别为桥式吊车的X轴坐标和Y轴坐标,x m和y m分别为重物的X轴坐标和Y轴坐标,θ为重物进行摆动时的摆角,l为绳索的长度,x为重物进行摆动时处于水平方向上的位移,位移x、长度l和摆角θ即为需要实时监测的桥式吊车系统的参数;
S30、根据二维桥式吊车系统模型,分别得到位移x、长度l、摆角θ的二阶导数公式为:
Figure PCTCN2018089510-appb-000002
Figure PCTCN2018089510-appb-000003
Figure PCTCN2018089510-appb-000004
其中,M为桥式吊车的质量,f 1为桥式吊车受到的水平牵引力,D为阻力系数,f 2为重物受到的沿绳牵引力,m为重物的质量;
S40、构建与二维桥式吊车系统模型对应的吊车系统控制模型,吊车 系统控制模型之中包括含有摆角动态变化的吊车位置动态滑模面s 1和含有绳长动态变化的绳长动态滑模面s 2,吊车位置动态滑模面s 1和绳长动态滑模面s 2由以下公式进行构建:
Figure PCTCN2018089510-appb-000005
其中,x d为桥式吊车的位移参考值,为一常数;l d为绳索的绳长参考值,为一常数;a、b、c、d、a 1和b 1均为大于0的常数;
S50、利用指数趋近律控制法分别对吊车位置动态滑模面s 1和绳长动态滑模面s 2进行一阶求导,得到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000006
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000007
的公式分别为:
Figure PCTCN2018089510-appb-000008
S60、把位移x、长度l、摆角θ的二阶导数结合一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000009
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000010
得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式为:
Figure PCTCN2018089510-appb-000011
其中,λ为正常数,函数
Figure PCTCN2018089510-appb-000012
为双极性Sigmoid函数,与符号函数sgn(s i)具有相同的定义;
S70、利用积分器分别对水平牵引力f 1和沿绳牵引力f 2的一阶导数进行积分,并结合实时变化的位移x、长度l和摆角θ,循环调整输出水平牵引力f 1和沿绳牵引力f 2
S80、对桥式吊车及重物分别施加与水平牵引力f 1和沿绳牵引力f 2的方向相反的等值作用力,防止桥式吊车系统进行摆动。
进一步,步骤S30中,根据二维桥式吊车系统模型,分别得到位移x、长度l、摆角θ的二阶导数公式,包括以下步骤:
S31、根据位移x、长度l、摆角θ、水平牵引力f 1和沿绳牵引力f 2,得到二维桥式吊车系统模型的拉格朗日方程为:
Figure PCTCN2018089510-appb-000013
S32、根据二维桥式吊车系统模型的拉格朗日方程,得到其非线性动力学微分方程为:
Figure PCTCN2018089510-appb-000014
S33、对二维桥式吊车系统模型的非线性动力学微分方程进行形式转换,分别得到位移x、长度l、摆角θ的二阶导数公式。
进一步,步骤S40中,吊车系统控制模型还包括第一线性运算模 块、第一控制器、第二线性运算模块、第二控制器、吊车系统模块、用于输入位移参考值x d的第一输入模块和用于输入绳长参考值l d的第二输入模块;第一输入模块、第一线性运算模块、吊车位置动态滑模面s 1、第一控制器和吊车系统模块依次连接,吊车系统模块分别向第一线性运算模块和第一输入模块反馈输出摆角θ和位移x;第二输入模块、第二线性运算模块、绳长动态滑模面s 2、第二控制器和吊车系统模块依次连接,吊车系统模块向第二输入模块反馈输出长度l。
进一步,步骤S50中,指数趋近律控制法与一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000015
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000016
之间的关系式为:
Figure PCTCN2018089510-appb-000017
其中,
Figure PCTCN2018089510-appb-000018
进一步,步骤S60中,把位移x、长度l、摆角θ的二阶导数结合一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000019
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000020
得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式,包括以下步骤:
S61、把位移x、长度l和摆角θ的二阶导数分别代入到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000021
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000022
的公式之中,得到以下公式:
Figure PCTCN2018089510-appb-000023
S62、把位移x、长度l和摆角θ的二阶导数,以及指数趋近律控制法与一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000024
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000025
之间的关系式,分别代入到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000026
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000027
的公式之中,得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式。
进一步,步骤S70中,积分器分别设置于第一控制器和第二控制器之中,第一控制器和第二控制器分别向吊车系统模块输出水平牵引力f 1和沿绳牵引力f 2
本发明的有益效果是:基于一阶动态滑模变结构的桥吊防摆方法,实时监测桥式吊车系统的参数,并据此建立二维桥式吊车系统模型,根据二维桥式吊车系统模型中的相关参数分别建立位移x、长度l和摆角θ的二阶导数公式,接着构建吊车系统控制模型,建立含有摆角动态变化的吊车位置动态滑模面s 1和含有绳长动态变化的绳长动态滑模面s 2,由于吊车位置动态滑模面s 1和绳长动态滑模面s 2的公式之中与位移x、长度l和摆角θ具有关联性,所以根据吊车位置动态滑模面s 1和绳长动态滑模面s 2而得到的水平牵引力f 1和沿绳牵引力f 2也与位移x、长度l和摆角θ具有关联性,所以,当对桥式吊车及重物分别施加与水平牵引力f 1和沿绳牵引力f 2的方向相反的等值作用力,从而对桥式吊车系统进行防摆处理时,位移x、长度l和摆角θ会对应地发生变化,但由于得到的水平牵引力f 1和沿绳牵引力f 2结合实时变化的位移x、长度l和摆角θ,循环调整输出水平牵引力f 1和沿绳牵引力f 2,所以水平牵引力f 1和沿绳牵引力f 2会随着位移x、长度l和摆角 θ的变化而不断调整,从而实现对桥式吊车系统的防摆定位控制;此外,由于在水平牵引力f 1和沿绳牵引力f 2的一阶导数公式中采用了双极性Sigmoid函数代替传统的符号函数,而双极性Sigmoid函数较之传统的符号函数可导,因此能够过渡平滑,在一定范围内的状态点快速被吸引到切换面的某一Δ邻域内,而该邻域则是滑动模态切换面的边界层,在边界层内,准滑动模态不要求满足滑动模态的条件,因此不要求在切换面上进行控制结构的切换,因此能够从根本上避免或削弱了抖振现象。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是二维桥式吊车系统模型的示意图;
图2是吊车系统控制模型的示意图。
具体实施方式
参照图1-图2,本发明的基于一阶动态滑模变结构的桥吊防摆方法,针对变绳长条件下二维欠驱动桥式起重机的控制问题,将含有摆角动态变化和绳长动态变化的两个滑模面通过微分处理分别得到吊车位置动态滑模面s 1和绳长动态滑模面s 2,由于吊车位置动态滑模面s 1和绳长动态滑模面s 2与吊车系统控制模型的控制输入,即水平牵引力f 1和沿绳牵引力f 2的一阶导数有关,因此得到在时间上连续的动态滑模控制律,从而实现了对桥式吊车系统的防摆定位控制,并能有效的削弱滑模变结构控制的抖振现象。
具体地,首先实时监测桥式吊车系统的参数,并建立二维桥式吊车系统模型,参照图1,桥式吊车2及重物1的位置坐标为:
Figure PCTCN2018089510-appb-000028
其中,x M和y M分别为桥式吊车2的X轴坐标和Y轴坐标,x m和y m分别为重物1的X轴坐标和Y轴坐标,θ为重物1进行摆动时的摆角,l为绳索的长度,x为重物1进行摆动时处于水平方向上的位移,位移x、长度l和摆角θ即为需要实时监测的桥式吊车系统的参数。
接着,根据二维桥式吊车系统模型,可以得到二维桥式吊车系统模型的拉格朗日方程为:
Figure PCTCN2018089510-appb-000029
综合以上分析可得到二维桥式吊车系统模型的非线性动力学微分方程为:
Figure PCTCN2018089510-appb-000030
将上述非线性动力学微分方程进行形式转换,可以得到位移x、长度l、摆角θ的二阶导数公式为:
Figure PCTCN2018089510-appb-000031
Figure PCTCN2018089510-appb-000032
Figure PCTCN2018089510-appb-000033
其中,M为桥式吊车2的质量,f 1为桥式吊车2受到的水平牵引力,D为阻力系数,f 2为重物1受到的沿绳牵引力,m为重物1的质量。
接着,构建与二维桥式吊车系统模型对应的吊车系统控制模型,该吊车系统控制模型之中包括含有摆角动态变化的吊车位置动态滑模面s 1、含有绳长动态变化的绳长动态滑模面s 2、第一线性运算模块3、第一控制器4、第二线性运算模块5、第二控制器6、吊车系统模块7、用于输入位移参考值x d的第一输入模块8和用于输入绳长参考值l d的第二输入模块9;其中,第一输入模块8、第一线性运算模块3、吊车位置动态滑模面s 1、第一控制器4和吊车系统模块7依次连接,吊车系统模块7分别向第一线性运算模块3和第一输入模块8反馈输出摆角θ和位移x;第二输入模块9、第二线性运算模块5、绳长动态滑模面s 2、第二控制器6和吊车系统模块7依次连接,吊车系统模块7向第二输入模块9反馈输出长度l。根据吊车系统控制模型的结构可知,位移x、长度l、摆角θ与水平牵引力f 1、沿绳牵引力f 2之间相互影响,当对桥式吊车2及重物1分别施加与水平牵引力f 1和沿绳牵引力f 2的方向相反的等值作用力,从而对桥式吊车系统进行防摆处理时,位移x、长度l和摆角θ会对应地发生变化,此时,位移x、长度l和摆角θ反馈影响水平牵引力f 1和沿绳牵引力f 2的变化,因此,通过 循环调整输出水平牵引力f 1和沿绳牵引力f 2,从而实现对桥式吊车系统的防摆定位控制。
下面,对位移x、长度l、摆角θ与水平牵引力f 1、沿绳牵引力f 2之间的相互关系进行分析:
吊车位置动态滑模面s 1和绳长动态滑模面s 2由以下公式进行构建:
Figure PCTCN2018089510-appb-000034
其中,x d为桥式吊车2的位移参考值,为一常数;l d为绳索的绳长参考值,为一常数;a、b、c、d、a 1和b 1均为大于0的常数;
利用指数趋近律控制法分别对吊车位置动态滑模面s 1和绳长动态滑模面s 2进行一阶求导,得到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000035
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000036
的公式分别为:
Figure PCTCN2018089510-appb-000037
由于指数趋近律控制法与一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000038
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000039
之间的关系式为:
Figure PCTCN2018089510-appb-000040
其中,
Figure PCTCN2018089510-appb-000041
λ为正常数,函数
Figure PCTCN2018089510-appb-000042
为双极性Sigmoid函数,与符号函数sgn(s i)具有相同的定义;
因此,当把位移x、长度l和摆角θ的二阶导数分别代入到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000043
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000044
的公式之中,可以得到以下公式:
Figure PCTCN2018089510-appb-000045
接着,把位移x、长度l和摆角θ的二阶导数,以及指数趋近律控制法与一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000046
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000047
之间的关系式,分别代入到一介吊车位置动态滑模面
Figure PCTCN2018089510-appb-000048
和一介绳长动态滑模面
Figure PCTCN2018089510-appb-000049
的公式之中,可以得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式为:
Figure PCTCN2018089510-appb-000050
此时,上式中表明了位移x、长度l、摆角θ与水平牵引力f 1、沿绳牵引力f 2之间的相互影响的关系。由于第一控制器4和第二控制器6之中均设置有积分器,而第一控制器4和第二控制器6分别向吊车系统模块7输出水平牵引力f 1和沿绳牵引力f 2,因此,水平牵引力f 1和沿绳牵引力f 2的一阶导数分别在第一控制器4和第二控制器6之中 进行积分而转换成水平牵引力f 1和沿绳牵引力f 2,接着水平牵引力f 1和沿绳牵引力f 2分别输入到吊车系统模块7之中对位移x、长度l、摆角θ进行改变,此时,位移x、长度l、摆角θ反馈影响水平牵引力f 1和沿绳牵引力f 2,从而不断循环调整水平牵引力f 1和沿绳牵引力f 2的输出值,此时,根据水平牵引力f 1和沿绳牵引力f 2的输出值变化地对桥式吊车2及重物1分别施加与水平牵引力f 1和沿绳牵引力f 2的方向相反的等值作用力,从而实现对桥式吊车系统的防摆定位控制。
另外,由于在水平牵引力f 1和沿绳牵引力f 2的一阶导数公式中采用了双极性Sigmoid函数代替传统的符号函数,而双极性Sigmoid函数较之传统的符号函数可导,因此能够过渡平滑,在一定范围内的状态点快速被吸引到切换面的某一Δ邻域内,而该邻域则是滑动模态切换面的边界层,在边界层内,准滑动模态不要求满足滑动模态的条件,因此不要求在切换面上进行控制结构的切换,因此能够从根本上避免或削弱了抖振现象。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (6)

  1. 基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:包括以下步骤:
    S10、实时监测桥式吊车系统的参数,建立二维桥式吊车系统模型,所述二维桥式吊车系统模型包括重物(1)和用于吊起所述重物(1)的桥式吊车(2),所述重物(1)与桥式吊车(2)之间通过绳索连接;
    S20、根据所述二维桥式吊车系统模型分别求得所述桥式吊车(2)及重物(1)的位置坐标为:
    Figure PCTCN2018089510-appb-100001
    其中,x M和y M分别为所述桥式吊车(2)的X轴坐标和Y轴坐标,x m和y m分别为所述重物(1)的X轴坐标和Y轴坐标,θ为所述重物(1)进行摆动时的摆角,l为所述绳索的长度,x为所述重物(1)进行摆动时处于水平方向上的位移,所述位移x、长度l和摆角θ即为需要实时监测的桥式吊车系统的参数;
    S30、根据所述二维桥式吊车系统模型,分别得到位移x、长度l、摆角θ的二阶导数公式为:
    Figure PCTCN2018089510-appb-100002
    Figure PCTCN2018089510-appb-100003
    Figure PCTCN2018089510-appb-100004
    其中,M为所述桥式吊车(2)的质量,f 1为所述桥式吊车(2)受到的水平牵引力,D为阻力系数,f 2为所述重物(1)受到的沿绳牵引力,m为所述重物(1)的质量;
    S40、构建与所述二维桥式吊车系统模型对应的吊车系统控制模型,所述吊车系统控制模型之中包括含有摆角动态变化的吊车位置动态滑模面s 1和含有绳长动态变化的绳长动态滑模面s 2,所述吊车位置动态滑模面s 1和绳长动态滑模面s 2由以下公式进行构建:
    Figure PCTCN2018089510-appb-100005
    其中,x d为所述桥式吊车(2)的位移参考值,为一常数;l d为所述绳索的绳长参考值,为一常数;a、b、c、d、a 1和b 1均为大于0的常数;
    S50、利用指数趋近律控制法分别对吊车位置动态滑模面s 1和绳长动态滑模面s 2进行一阶求导,得到一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100006
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100007
    的公式分别为:
    Figure PCTCN2018089510-appb-100008
    S60、把位移x、长度l、摆角θ的二阶导数结合一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100009
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100010
    得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式为:
    Figure PCTCN2018089510-appb-100011
    其中,λ为正常数,函数
    Figure PCTCN2018089510-appb-100012
    为双极性Sigmoid函数,与符号函数sgn(s i)具有相同的定义;
    S70、利用积分器分别对水平牵引力f 1和沿绳牵引力f 2的一阶导数进行积分,并结合实时变化的位移x、长度l和摆角θ,循环调整输出水平牵引力f 1和沿绳牵引力f 2
    S80、对所述桥式吊车(2)及重物(1)分别施加与水平牵引力f 1和沿绳牵引力f 2的方向相反的等值作用力,防止桥式吊车系统进行摆动。
  2. 根据权利要求1所述的基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:所述步骤S30中,根据所述二维桥式吊车系统模型,分别得到位移x、长度l、摆角θ的二阶导数公式,包括以下步骤:
    S31、根据位移x、长度l、摆角θ、水平牵引力f 1和沿绳牵引力f 2,得到所述二维桥式吊车系统模型的拉格朗日方程为:
    Figure PCTCN2018089510-appb-100013
    S32、根据所述二维桥式吊车系统模型的拉格朗日方程,得到其非线性动力学微分方程为:
    Figure PCTCN2018089510-appb-100014
    S33、对所述二维桥式吊车系统模型的非线性动力学微分方程进行形式转换,分别得到位移x、长度l、摆角θ的二阶导数公式。
  3. 根据权利要求1所述的基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:所述步骤S40中,所述吊车系统控制模型还包括第一线性运算模块(3)、第一控制器(4)、第二线性运算模块(5)、第二控制器(6)、吊车系统模块(7)、用于输入位移参考值x d的第一输入模块(8)和用于输入绳长参考值l d的第二输入模块(9);所述第一输入模块(8)、第一线性运算模块(3)、吊车位置动态滑模面s 1、第一控制器(4)和吊车系统模块(7)依次连接,所述吊车系统模块(7)分别向所述第一线性运算模块(3)和第一输入模块(8)反馈输出摆角θ和位移x;所述第二输入模块(9)、第二线性运算模块(5)、绳长动态滑模面s 2、第二控制器(6)和吊车系统模块(7)依次连接, 所述吊车系统模块(7)向所述第二输入模块(9)反馈输出长度l。
  4. 根据权利要求1所述的基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:所述步骤S50中,指数趋近律控制法与一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100015
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100016
    之间的关系式为:
    Figure PCTCN2018089510-appb-100017
    其中,
    Figure PCTCN2018089510-appb-100018
  5. 根据权利要求4所述的基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:所述步骤S60中,把位移x、长度l、摆角θ的二阶导数结合一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100019
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100020
    得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式,包括以下步骤:
    S61、把位移x、长度l和摆角θ的二阶导数分别代入到一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100021
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100022
    的公式之中,得到以下公式:
    Figure PCTCN2018089510-appb-100023
    S62、把位移x、长度l和摆角θ的二阶导数,以及指数趋近律控制法与一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100024
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100025
    之间的关系式,分别代入到一介吊车位置动态滑模面
    Figure PCTCN2018089510-appb-100026
    和一介绳长动态滑模面
    Figure PCTCN2018089510-appb-100027
    的公式之中,得到水平牵引力f 1和沿绳牵引力f 2的一阶导数公式。
  6. 根据权利要求3所述的基于一阶动态滑模变结构的桥吊防摆方法,其特征在于:所述步骤S70中,所述积分器分别设置于所述第一控制器(4)和第二控制器(6)之中,所述第一控制器(4)和第二控制器(6)分别向所述吊车系统模块(7)输出水平牵引力f 1和沿绳牵引力f 2
PCT/CN2018/089510 2018-01-22 2018-06-01 基于一阶动态滑模变结构的桥吊防摆方法 WO2019140830A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018006910.9T DE112018006910T5 (de) 2018-01-22 2018-06-01 Auf der variablen Struktur des dynamischen Gleitmoduls erster Ordnung basierendes Antipendelverfahren für einen Brückenkran
US16/651,180 US11524878B2 (en) 2018-01-22 2018-06-01 First-order dynamic sliding mode variable structure-based bridge crane anti-swing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810062153.7 2018-01-22
CN201810062153.7A CN108303883A (zh) 2018-01-22 2018-01-22 基于一阶动态滑模变结构的桥吊防摆方法

Publications (1)

Publication Number Publication Date
WO2019140830A1 true WO2019140830A1 (zh) 2019-07-25

Family

ID=62866372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089510 WO2019140830A1 (zh) 2018-01-22 2018-06-01 基于一阶动态滑模变结构的桥吊防摆方法

Country Status (4)

Country Link
US (1) US11524878B2 (zh)
CN (1) CN108303883A (zh)
DE (1) DE112018006910T5 (zh)
WO (1) WO2019140830A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063092A1 (zh) * 2019-09-30 2021-04-08 五邑大学 一种桥吊滑模控制参数优化方法、装置、设备及存储介质
CN113311707A (zh) * 2021-05-26 2021-08-27 浙江理工大学 一种考虑桥式起重机干扰的连续滑模控制方法
CN114384800A (zh) * 2021-12-09 2022-04-22 上海工程技术大学 一种具有输入信号延时的未知非线性系统反推控制方法
CN115453870A (zh) * 2022-08-31 2022-12-09 南京工业大学 一种基于滑模理论的桥吊全局鲁棒抗扰控制方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108972560B (zh) * 2018-08-23 2021-11-09 北京邮电大学 一种基于模糊优化的欠驱动机械臂分层滑模控制方法
CN108828959A (zh) * 2018-08-30 2018-11-16 太原科技大学 一种新型的桥式起重机防摆与定位控制方法与装置
CN110526124B (zh) * 2019-08-30 2020-12-01 五邑大学 一种基于滑模面的桥吊防摆方法、装置、设备及存储介质
CN111142385A (zh) * 2020-01-03 2020-05-12 江南大学 基于滑模控制理论的桥式行吊系统控制方法
CN112051738B (zh) * 2020-08-31 2022-06-24 五邑大学 铸造起重机控制方法及装置、计算机可读存储介质
CN112068428B (zh) * 2020-08-31 2022-05-17 五邑大学 一种桥式吊车双摆PI型Terminal滑模控制器设计方法及系统
CN112061979B (zh) * 2020-08-31 2022-09-30 五邑大学 桥式吊车控制方法、运行控制装置及计算机可读存储介质
CN112051740A (zh) * 2020-08-31 2020-12-08 五邑大学 滑模控制器参数整定方法、参数整定装置及存储介质
CN112279093B (zh) * 2020-09-22 2023-02-03 武汉科技大学 一种吊车钢绳消谐防摆控制方法
CN112506192B (zh) * 2020-11-25 2022-07-15 哈尔滨工程大学 一种针对全回转推进器故障的动力定位船容错控制方法
CN112875509B (zh) * 2021-01-13 2022-02-22 南京工业大学 一种带负载升降运动的欠驱动塔式起重机定位消摆方法
CN112897338B (zh) * 2021-01-13 2023-08-01 南京工业大学 一种欠驱动双摆塔式起重机轨迹跟踪与摆动抑制控制方法
CN113213336A (zh) * 2021-04-26 2021-08-06 郑州比克智能科技有限公司 一种起重机吊钩定位及防摇装置
CN113200451B (zh) * 2021-04-30 2022-12-13 法兰泰克重工股份有限公司 一种防摇摆控制方法及行车
CN113321122B (zh) * 2021-05-07 2023-08-29 武汉理工大学 起重机双摆系统分层非奇异终端滑模控制方法
CN113321123B (zh) * 2021-05-07 2023-08-29 武汉理工大学 起重机双摆系统分层快速终端滑模控制方法
CN113325715B (zh) * 2021-06-10 2022-05-24 浙江理工大学 一种基于前馈控制的桥式起重机的全局连续滑模控制方法
CN113437912B (zh) * 2021-07-09 2022-11-01 中南大学 永磁同步电机的强鲁棒性模型预测控制方法及系统
CN114527647B (zh) * 2021-12-14 2022-09-30 哈尔滨理工大学 一种基于自适应滑模变结构的船用起重机减摆控制方法
CN114249242A (zh) * 2021-12-31 2022-03-29 深圳市汇川技术股份有限公司 吊重系统防摇的控制方法、设备和可读存储介质
CN114506769B (zh) * 2022-02-21 2023-02-28 山东大学 用于桥式吊车的消摆控制方法及系统
CN114545774B (zh) * 2022-02-22 2023-09-08 南京理工大学 一种基于固定时间扰动估计的塔吊防摆控制方法
CN115248557B (zh) * 2022-07-01 2024-09-03 海南大学 一种欠驱动桥式吊运机器人的高精度自主定位方法
CN118502248A (zh) * 2024-05-22 2024-08-16 兰州理工大学 基于数据驱动的五自由度天车自抗扰滑模控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275610A1 (en) * 2003-08-05 2008-11-06 Kazuhiko Terashima Crane and Controller Thereof
CN101441441A (zh) * 2007-11-21 2009-05-27 新乡市起重机厂有限公司 起重机智能防摇控制系统的设计方法
CN102030263A (zh) * 2010-12-17 2011-04-27 南开大学 基于运动规划的桥式吊车自适应控制方法
CN104129712A (zh) * 2014-07-10 2014-11-05 浙江工业大学 一种增强抗摆的桥式吊车调节控制方法
CN104555733A (zh) * 2014-12-26 2015-04-29 中联重科股份有限公司 吊重摆动控制方法、设备、系统以及工程机械
CN106865416A (zh) * 2017-04-20 2017-06-20 中南大学 一种桥式起重机行走过程中的自动防摆控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1255484B (it) * 1992-08-04 1995-11-06 Ansaldo Spa Metodo per la determinazione dell'angolo di inclinazione di una fune,e dispositivo antipendolamento per il controllo di tale angolo in un organo di sollevamento
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
ES2260313T3 (es) * 2000-10-19 2006-11-01 Liebherr-Werk Nenzing Gmbh Grua o excavadora para el volteado de una carga suspendida de un cable portacarga con amortiguacion de la oscilacion de la carga.
US6904353B1 (en) * 2003-12-18 2005-06-07 Honeywell International, Inc. Method and system for sliding mode control of a turbocharger
US7367464B1 (en) * 2007-01-30 2008-05-06 The United States Of America As Represented By The Secretary Of The Navy Pendulation control system with active rider block tagline system for shipboard cranes
US8235229B2 (en) * 2008-01-31 2012-08-07 Georgia Tech Research Corporation Methods and systems for double-pendulum crane control
EP2562125B1 (en) * 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Crane control apparatus
FI20115922A0 (fi) * 2011-09-20 2011-09-20 Konecranes Oyj Nosturin ohjaus
CN103023412A (zh) * 2012-11-18 2013-04-03 空军工程大学 一种基于动态终端滑模变结构的永磁容错电机暂态控制方法
CN104120712A (zh) * 2013-04-28 2014-10-29 杨哲 一种地下连续墙的施工方法
FI20155599A (fi) * 2015-08-21 2017-02-22 Konecranes Global Oy Nostolaitteen ohjaaminen
CN105152020B (zh) * 2015-09-30 2017-03-22 山东大学 带有跟踪误差约束的桥式吊车自适应跟踪控制器及方法
FR3056976B1 (fr) * 2016-10-05 2018-11-16 Manitowoc Crane Group France Procede de commande de grue anti-ballant a filtre du troisieme ordre
CN106885416A (zh) * 2017-01-03 2017-06-23 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN106959610B (zh) * 2017-04-05 2019-05-10 山东大学 桥式吊车系统apd-smc控制器、桥式吊车系统及控制方法
US20180339196A1 (en) * 2017-05-26 2018-11-29 Cleveland State University Powered machine and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275610A1 (en) * 2003-08-05 2008-11-06 Kazuhiko Terashima Crane and Controller Thereof
CN101441441A (zh) * 2007-11-21 2009-05-27 新乡市起重机厂有限公司 起重机智能防摇控制系统的设计方法
CN102030263A (zh) * 2010-12-17 2011-04-27 南开大学 基于运动规划的桥式吊车自适应控制方法
CN104129712A (zh) * 2014-07-10 2014-11-05 浙江工业大学 一种增强抗摆的桥式吊车调节控制方法
CN104555733A (zh) * 2014-12-26 2015-04-29 中联重科股份有限公司 吊重摆动控制方法、设备、系统以及工程机械
CN106865416A (zh) * 2017-04-20 2017-06-20 中南大学 一种桥式起重机行走过程中的自动防摆控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063092A1 (zh) * 2019-09-30 2021-04-08 五邑大学 一种桥吊滑模控制参数优化方法、装置、设备及存储介质
CN113311707A (zh) * 2021-05-26 2021-08-27 浙江理工大学 一种考虑桥式起重机干扰的连续滑模控制方法
CN113311707B (zh) * 2021-05-26 2022-08-05 浙江理工大学 一种考虑桥式起重机干扰的连续滑模控制方法
CN114384800A (zh) * 2021-12-09 2022-04-22 上海工程技术大学 一种具有输入信号延时的未知非线性系统反推控制方法
CN114384800B (zh) * 2021-12-09 2023-09-12 上海工程技术大学 一种具有输入信号延时的未知非线性系统反推控制方法
CN115453870A (zh) * 2022-08-31 2022-12-09 南京工业大学 一种基于滑模理论的桥吊全局鲁棒抗扰控制方法
CN115453870B (zh) * 2022-08-31 2023-06-30 南京工业大学 一种基于滑模理论的桥吊全局鲁棒抗扰控制方法

Also Published As

Publication number Publication date
DE112018006910T5 (de) 2020-10-01
US20200270103A1 (en) 2020-08-27
US11524878B2 (en) 2022-12-13
CN108303883A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019140830A1 (zh) 基于一阶动态滑模变结构的桥吊防摆方法
CN110275435B (zh) 基于观测器的多单臂机械手输出一致自适应命令滤波控制方法
CN108803344B (zh) 一种基于模态切换的机器人双边遥操作对称预测控制方法
CN106647271B (zh) 基于神经网络理论的非线性系统自适应比例积分控制方法
CN112817231A (zh) 一种具有强鲁棒性的机械臂高精度跟踪控制方法
CN106315414A (zh) 基于滑模面的桥式吊车控制方法
CN108584700B (zh) 起重机自适应pid闭环防摇控制方法
Song et al. Online optimal event-triggered H∞ control for nonlinear systems with constrained state and input
Zhao et al. The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm
CN106406097B (zh) 多机械臂系统的分布式自适应协调控制方法
CN103095204A (zh) 伺服电机抗干扰补偿控制系统及控制方法
CN112147887B (zh) 一种基于模糊滑模控制的桥式起重机定位消摆方法
CN104834218B (zh) 一种平行单级双倒立摆的动态面控制器结构及设计方法
WO2009067952A1 (fr) Procédé de commande de technique et son dispositif
Wang et al. A novel anti-swing positioning controller for two dimensional bridge crane via dynamic sliding mode variable structure
CN110589684A (zh) 起重机防摇摆驱动控制方法
CN107765548B (zh) 基于双观测器的发射平台高精度运动控制方法
Miao et al. Artificial-neural-network-based optimal Smoother design for oscillation suppression control of underactuated overhead cranes with distributed mass beams
CN114706310A (zh) 一种带输入死区的单连杆式机器人固定时间稳定控制方法
KR100960304B1 (ko) 크레인 제어 장치 및 방법
CN112061979B (zh) 桥式吊车控制方法、运行控制装置及计算机可读存储介质
Wang et al. Based on the two-dimensional air resistance bridge crane anti-swing control research
Yang et al. Research on manipulator trajectory tracking based on adaptive fuzzy sliding mode control
CN109176529A (zh) 一种空间机器人协调运动的新型自适应模糊控制方法
Mahamood Improving the Performance of Adaptive PDPID Control of Two-Link Flexible Robotic Manipulator with ILC.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901726

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18901726

Country of ref document: EP

Kind code of ref document: A1