WO2019132407A1 - 수소화 반응용 촉매 및 이의 제조방법 - Google Patents

수소화 반응용 촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2019132407A1
WO2019132407A1 PCT/KR2018/016310 KR2018016310W WO2019132407A1 WO 2019132407 A1 WO2019132407 A1 WO 2019132407A1 KR 2018016310 W KR2018016310 W KR 2018016310W WO 2019132407 A1 WO2019132407 A1 WO 2019132407A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
hydrogenation
sulfur
aromatic
Prior art date
Application number
PCT/KR2018/016310
Other languages
English (en)
French (fr)
Inventor
전봉식
명완재
박우진
정의근
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to EP18895225.3A priority Critical patent/EP3733288A4/en
Priority to US16/956,929 priority patent/US11987659B2/en
Priority to JP2020550578A priority patent/JP7431169B2/ja
Priority to CN201880078348.9A priority patent/CN111491727B/zh
Publication of WO2019132407A1 publication Critical patent/WO2019132407A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F240/00Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof

Definitions

  • the present invention relates to a catalyst for hydrogenation reaction, and more particularly to a catalyst for hydrogenation which comprises sulfur as a cocatalyst to change the relative hydrogenation rate of olefins and aromatics during the hydrogenation reaction of an unsaturated hydrocarbon compound containing an aromatic group
  • a catalyst for hydrogenation which selectively hydrogenates olefins and a process for producing the same.
  • Lower olefins i.e., ethylene, propylene, butylene and butadiene
  • aromatics i.e., benzene, toluene and xylene
  • Thermal cracking, or steam pyrolysis is a major type of process for forming these materials, typically in the presence of steam and in the absence of oxygen.
  • the feedstock may include petroleum gases and distillates such as naphtha, kerosene, and gas oil.
  • the petroleum resin may contain unsaturated bonds in a part, and the quality may be deteriorated. At this time, when the hydrogenation process for adding hydrogen is carried out, the unsaturated bonds are removed to brighten the color and reduce the characteristic odor of the petroleum resin, thereby improving the quality.
  • the petroleum resin from which the unsaturated bond is removed is colorless and transparent and is referred to as a water white resin and is distributed as a high-grade resin excellent in heat and ultraviolet stability.
  • the petroleum resin copolymerized with C5 oil and C9 oil and the DCPD copolymer is composed of ethylene-vinyl acetate (EVA), styrene-isoprene-styrene (SIS), styrene-butadiene-styrene And the compatibility with the same styrene series polymer is controlled. Therefore, in the hydrogenation reaction of petroleum resin, it is necessary to selectively hydrogenate the olefin portion of the resin in order to control the aromatic content and make it into a water-white resin.
  • EVA ethylene-vinyl acetate
  • SIS styrene-isoprene-styrene
  • SIS styrene-butadiene-styrene
  • U.S. Patent No. 5,223,470 discloses a nickel catalyst containing sulfur supported on an alumina (Al 2 O 3 ) support, but not a catalyst for aromatic / olefin selective hydrogenation, And the present invention is different from the present invention.
  • U.S. Patent No. 4,328,090 discloses Ni-Mo containing sulfur supported on ⁇ -Al 2 O 3 or a Ni-Mo catalyst containing sulfur, which relates to a catalyst for hydrogenating a petroleum resin, And does not contain tungsten (W) or molybdenum (Mo) in the present invention.
  • W tungsten
  • Mo molybdenum
  • 3,687,989 discloses a catalyst containing Ni 3 S 2 , WS 2 and MoS 2 , which is used for hydrogenation of fatty or fatty acid. It is only disclosed for olefin hydrogenation, and is not an aromatic / And its components are different from those of the invention.
  • Korean Patent Laid-Open No. 10-2010-0100834 describes the use of a catalyst containing nickel and sulfur for selective hydrogenation, but it does not disclose the kind of carrier, powder form, and the fact that sulfur is used as an accelerator .
  • Japanese Patent Application Laid-Open No. 10-0502865 describes a hydrogenation catalyst in which nickel and sulfur are supported on a silica or alumina support. However, there is no mention of the fact that sulfur is included as a promoter, and powder form and aromatic / olefin selective hydrogenation.
  • the present inventors have developed a nickel catalyst having copper and sulfur as cocatalysts through research, solving the problem of selective hydrogenation of aromatics / olefins not solved in the above literature,
  • a hydrogenation method with high aromatics / olefin hydrogenation selectivity was established.
  • a water white resin can be easily obtained by using the catalyst thus developed.
  • the present invention aims at solving all of the above problems.
  • Another object of the present invention is to provide a catalyst for hydrogenation which selectively hydrogenates olefins by changing the relative hydrogenation rate of olefins and aromatics during hydrogenation of an unsaturated hydrocarbon compound containing an aromatic group by including sulfur as a cocatalyst, Method.
  • Another object of the present invention is to provide a catalyst for hydrogenation reaction which can selectively control the aromatic content of an unsaturated hydrocarbon including an aromatic group by selectively hydrogenating an olefin and a method for producing the same.
  • Another object of the present invention is to provide a catalyst for hydrogenation reaction and a method for producing the same, which can control the aromatic content of the unsaturated hydrocarbon compound containing an aromatic group and easily produce a water-white resin.
  • the characteristic structure of the present invention is as follows.
  • the catalyst for hydrogenation according to the present invention is a catalyst comprising nickel, a cocatalyst and a carrier, wherein the cocatalyst includes copper and sulfur, the carrier is at least one selected from silica and alumina,
  • the crystal size is 1 to 10 nm and is characterized by having an average particle size of 1 to 20 mu m.
  • the nickel may be included in an amount of 40 to 80 parts by weight based on 100 parts by weight of the total composition, and the copper may be included in an amount of 0.1 to 5 parts by weight. And the molar ratio of sulfur to nickel is 1: 0.02 to 0.2.
  • the hydrogen adsorption amount per weight of the nickel is 0.01 to 0.5 (mmol-H 2 / g-Ni).
  • the method for preparing a catalyst for hydrogenation comprises the steps of: preparing a first solution by adding nickel and copper compound and carrier powder into distilled water and dissolving the same; Adding the primary solution into a precipitation vessel, stirring the solution and raising the temperature to 50 to 120 ⁇ ; Adding a pH adjusting agent and a solution containing sulfur to the heated primary solution for 30 minutes to 2 hours to prepare a secondary solution to form a precipitate on which Ni is deposited through precipitation; Washing and filtering the precipitate, and heating the precipitate at 100 to 200 ° C for 5 to 24 hours to produce a dried material; And reducing the dried material to a temperature of 200 to 500 ° C. in a hydrogen atmosphere to produce a reduced product.
  • the hydrogenation reaction catalyst prepared according to the present invention is used to selectively hydrogenate an unsaturated hydrocarbon-containing olefin containing an aromatic group.
  • the hydrogenated petroleum resin produced by the selective hydrogenation method has an APHA value of 30 or less.
  • the catalyst for hydrogenation reaction according to the present invention and the method for producing the same are capable of selectively hydrogenating olefins by greatly reducing the aromatic hydrogenation rate of the unsaturated hydrocarbon compound containing an aromatic group relative to the olefin by including sulfur as a cocatalyst .
  • the present invention has an effect of controlling the aromatic content of an unsaturated hydrocarbon compound containing an aromatic group by selectively hydrogenating the olefin.
  • the present invention has an effect that a water-white resin can be easily produced by controlling an aromatic content in a hydrogenation reaction of a petroleum resin.
  • the catalyst for hydrogenation according to the present invention is a catalyst comprising nickel, a cocatalyst and a carrier, wherein the cocatalyst includes copper and sulfur, the carrier is at least one selected from silica and alumina,
  • the crystal size is preferably 1 to 10 nm, more preferably 3 to 7 nm. If the average crystal size of the nickel is out of the above range, the catalyst activity may be lowered.
  • the catalyst according to the present invention may have an average particle size of 1 to 20 mu m, more preferably 3 to 10 mu m. When the average particle size of the catalyst is less than the above range, there is a possibility that the catalyst has a poor filtration property.
  • the nickel may be contained in an amount of 40 to 80 parts by weight based on 100 parts by weight of the total catalyst composition. Preferably 50 to 70 parts by weight, and more preferably 55 to 65 parts by weight. If the nickel content is less than the above range, the catalyst activity may be deteriorated, and if it exceeds this range, the dispersibility may be deteriorated and the catalyst activity may be lowered.
  • the copper may be contained in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total catalyst composition. Preferably 0.2 to 2 parts by weight, more preferably 0.5 to 1 part by weight. If the copper content is less than the above range, the reduction of nickel may decrease and the activity of the catalyst may be lowered.
  • the molar ratio of sulfur to nickel may range from 1: 0.02 to 0.2. Preferably from 1: 0.04 to 0.15, more preferably from 1: 0.05 to 0.1. If the content of sulfur is less than the above range, the selectivity of the hydrogenation catalyst may be deteriorated. If the content of sulfur is less than the above range, the catalyst activity may be lowered.
  • the source of nickel is a nickel chloride precursor that includes metal salts such as nitrates, acetates, sulfates, chlorides, and the like, most preferably a chloride.
  • the copper precursor may be at least one selected from the group consisting of nitrate, acetate, sulfate, chloride and hydroxide
  • the sulfur precursor may be at least one selected from alkali metal sulfides, thiophenes and mercaptans.
  • the catalyst for hydrogenation according to the present invention is characterized in that the adsorption amount of hydrogen per weight of nickel contained in the catalyst is 0.01 to 0.5 (mmol-H 2 / g-Ni).
  • both olefins and aromatics contained in an unsaturated hydrocarbon compound containing an aromatic group can be hydrogenated through a catalytic reaction, so that a catalyst capable of selectively hydrogenating olefins to control aromatic content in the petroleum resin is required do.
  • a nickel-based catalyst it is known that the aromatics of the resin are hydrogenated together to make it difficult to control the aromatic content of the petroleum resin.
  • the selective hydrogenation catalyst according to an embodiment of the present invention includes sulfur as a promoter, thereby greatly reducing the aromatic hydrolysis rate of the unsaturated hydrocarbon compound containing an aromatic group to the olefin, Hydrogenation can be effected.
  • a nickel compound and a cocatalyst are mixed in a solvent, the solid carrier is suspended therein, and a nickel compound and a cocatalyst are formed into a precipitate to be immersed in the carrier.
  • the carrier may be at least one selected from the group consisting of porous silica (SiO 2 ) and alumina (Al 2 O 3 ).
  • the catalyst for hydrogenation according to an embodiment of the present invention can hydrogenate a petroleum resin comprising C5 or C9 petroleum fractions and by-products and a combination thereof through distillation, pretreatment, and polymerization.
  • the temperature for hydrogenation of the unsaturated hydrocarbon compound containing an aromatic group may be 100 to 400 ⁇ , preferably 200 to 300 ⁇ , and the pressure may be 1 to 200 bar, preferably 30 to 100 bar.
  • the hydrogenation time may vary mainly depending on the temperature, the amount of the catalyst and the degree of hydrogenation.
  • the hydrogenation reaction may be carried out in various reactors, but preferably in a continuous stirred reactor (CSTR), a loop reactor, an autoclave reactor or the like according to a mixing method.
  • CSTR continuous stirred reactor
  • the method for preparing a catalyst for hydrogenation comprises the steps of: preparing a first solution by adding nickel and copper compound and carrier powder into distilled water and dissolving the same; Adding the primary solution into a precipitation vessel, stirring the solution and raising the temperature to 50 to 120 ⁇ ; Adding a pH adjusting agent and a solution containing sulfur to the heated primary solution for 30 minutes to 2 hours to prepare a secondary solution to form a precipitate on which Ni is deposited through precipitation; And washing and filtering the precipitate and heating the precipitate at 100 to 200 ° C for 5 to 24 hours to produce a dried product; And reducing the dried material to a temperature of 200 to 500 ° C. in a hydrogen atmosphere to produce a reduced product.
  • the method may further include a step of reducing the dried material in a hydrogen atmosphere and calcining the dried material at a temperature of 200 to 500 ° C. in an air atmosphere before producing the reduced material.
  • the reduction temperature may exhibit optimal activity at 200 to 500 ° C, preferably 300 to 450 ° C, more preferably 370 to 430 ° C, as described above.
  • the precipitation may be carried out in an environment of pH 7 or more by the addition of bases or electrochemical means, preferably pH 7 to 9.
  • bases or electrochemical means preferably pH 7 to 9.
  • a basic compound may be added for the base addition, and the basic addition may include, but is not limited to, sodium carbonate, sodium hydroxide, sodium hydrogencarbonate or a hydrate thereof, preferably sodium carbonate or a hydrate thereof have.
  • the catalyst according to the invention may be in the form of powders, particles, granules, preferably in the form of powders.
  • the method for preparing a catalyst for hydrogenation according to the present invention can optimize the surface area, pore structure and size according to the carrier and can be reduced even at a low temperature due to a high content of nickel, , And further, side reactions of nickel and the carrier can be suppressed.
  • the hydrogenated petroleum resin produced by the selective hydrogenation method has an APHA value of 30 or less.
  • APHA color is also known as the Hazen scale or Platinum-Cobalt (Pt / Co) scale and is the color standard analysis method (ASTM D1209), which is named after the American Public Health Association. Analyze.
  • the benchmark is the Platinum-Cobalt Stock Solution, which is equivalent to APHA 500.
  • the color is expressed as a numerical value subdivided into 1 to 500 levels using a standard solution diluted quantitatively. D.I water used as diluent here corresponds to APHA 0. Since the APHA Color has a correlation with the Yellowness Index, the APHA Color Standard Curve of the Standard Solution for Yellowness can be used to obtain the APHA Color value of the measurement sample.
  • the hydrogenated petroleum resin has an APHA value of 30 or less and an aromatic / olefin hydrogenation ratio of 0.1 to 1.0.
  • the petroleum resin having a water- white resin.
  • the slurry was washed with about 1.5 L of distilled water, filtered, and then dried in a drying oven at 120 ° C. for 12 hours or more. This was subdivided and reduced to a temperature of 400 ° C in a hydrogen atmosphere. After reduction, the powders were immobilized by using a nitrogen gas mixture containing 1% oxygen to prepare a hydrogenation catalyst.
  • the nickel content of the passivated catalyst was 63.8% by weight of the catalyst, 0.87% of copper, and 2.8% of sulfur, and the average size of the nickel crystals was measured to be 5.1 nm.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • the nickel content of the passivated catalyst was 62.1% based on the catalyst weight, the copper content was 0.84%, the sulfur content was 2.5%, and the average size of the nickel crystals was measured to be 5.0 nm.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • the nickel content of the immobilized catalyst was 62.1% based on the weight of the catalyst, the copper content was 0.86%, the sulfur content was 2.2%, and the average size of the nickel crystals was 4.1 nm.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • Hydrogenation catalyst was prepared in the same manner as in Example 1, except that the calcination step was changed to a calcination step before reduction in a hydrogen atmosphere.
  • the firing was carried out in a muffle box furnace, and the dried powder was subdivided and then air flow 1000 mL / min, heating rate 5 400 / min < / RTI > Lt; 0 > C for 3 hours.
  • the recovery rate of the calcined powder was 80%.
  • the calcined powder was subdivided and then reduced to a temperature of 400 DEG C in a hydrogen atmosphere. After reduction, powders were passivated using a nitrogen mixed gas containing 1% oxygen to prepare a hydrogenation catalyst.
  • the nickel content of the immobilized catalyst was 62.4% based on the weight of the catalyst, the copper content was 0.85%, the sulfur content was 2.9%, and the average size of the nickel crystals was measured to be 4.2 nm.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • Precipitation / washing / filtration / drying / reduction were carried out in the same manner as in Example 1, except that only sodium carbonate solution except sodium sulfide was used as a precipitant in order to prepare a catalyst having no sulfur.
  • the nickel content of the passivated catalyst was 63.2% based on the weight of the catalyst and the content of copper was 0.89%, and the average size of the nickel crystals was measured to be 5.7 nm.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • a commercial catalyst in the form of a powder in which palladium was supported on a carbon support in an amount of 5 wt% was purchased and used for selective hydrogenation.
  • the catalyst has an average size of 10 mu m and is in powder form with a BET specific surface area of 1,190 m < 2 > / g and a total pore volume of 1.1 cm < 3 > / g.
  • the hydrogenation reaction for the activity test of the catalyst proceeded at a temperature of 230 ° C.
  • the activity test of the catalyst was carried out using the catalyst applied to Comparative Example 2. [ The hydrogenation reaction for the activity test proceeded at a temperature of 270 < 0 > C.
  • a 300 ml autoclave containing a hollow shaft stirrer and having a stirring speed of 1600 rpm was used.
  • Examples 1 to 4 prepared according to the present invention exhibited the same or higher levels of palladium catalyst and aromatic / olefin hydrogenation selectivity of Comparative Examples 2 and 3, Respectively.
  • the catalyst for hydrogenation reaction according to the present invention and the method for producing the same according to the present invention include sulfur as a cocatalyst to greatly reduce the aromatic hydrotreating rate of the unsaturated hydrocarbon compound containing an aromatic group to olefin, It is effective.
  • the present invention can control the aromatic content of unsaturated hydrocarbons including aromatic groups by selectively hydrogenating the olefins.
  • the present invention has the effect of facilitating the production of a water-white resin by controlling the aromatic content in the hydrogenation reaction of an unsaturated hydrocarbon compound containing an aromatic group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 수소화 반응용 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 황을 조촉매로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀과 방향족의 상대적 수소화 속도를 변화시켜 올레핀을 선택적으로 수소화하는 수소화 반응용 촉매 및 이의 제조방법에 관한 것이다.

Description

수소화 반응용 촉매 및 이의 제조방법
본 발명은 수소화 반응용 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 황을 조촉매로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀과 방향족의 상대적 수소화 속도를 변화시켜 올레핀을 선택적으로 수소화하는 수소화 반응용 촉매 및 이의 제조방법에 관한 것이다.
저급 올레핀(즉, 에틸렌, 프로필렌, 부틸렌 및 부타디엔) 및 방향족 화합물(즉, 벤젠, 톨루엔 및 크실렌)은 석유화학 및 화학산업에서 광범위하게 사용되는 기본적인 중간물질이다. 열 크래킹, 또는 스팀 열분해는 전형적으로 스팀의 존재 하에서, 그리고 산소의 부재 하에서, 이들 물질을 형성시키기 위한 공정의 주요 유형이다. 공급원료는 나프타, 케로센 및 가스 오일과 같은 석유 가스 및 증류물을 포함할 수 있다. 이때, 나프타 등을 열분해함으로써, 에틸렌, 프로필렌, 부탄 및 부타디엔을 포함한 C4 유분, 분해 가솔린(벤젠, 톨루엔 및 크실렌을 포함), 분해 케로신(C9 이상 유분), 분해 중유(에틸렌 잔유(bottom oil)) 및 수소 가스와 같은 물질을 생성할 수 있고, 유분 등으로부터 중합하여 석유수지를 제조할 수 있다.
그러나, 석유수지는 일부에 불포화 결합을 포함하여 품질이 떨어질 수 있다. 이 때, 수소를 첨가하는 수소화 공정을 거치면 불포화 결합이 제거되어 색이 밝아지고 석유수지 특유의 냄새가 줄어드는 등 품질을 개선시킬 수 있다. 또한, 불포화 결합이 제거된 석유수지는 무색, 투명하여 water white 수지로 불리며 열 및 자외선 안정성 등이 뛰어난 고급수지로 유통되고 있다.
C5 유분과 C9 유분 및 디싸이클로펜타디엔(DCPD) 등이 공중합된 석유수지는 방향족 함량에 따라 ethylene-vinyl acetate (EVA), styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS) 등과 같은 styrene 계열 고분자와의 상용성이 조절되는 특징을 갖는다. 따라서, 석유수지의 수소화 반응 시, 방향족 함량을 제어하며 water-white 수지로 만들기 위해서는 수지의 올레핀 부분을 선택적으로 수소화하는 것이 필요시 된다.
따라서 불포화된 석유수지 공급 원료를 수소화시키기 위해 다양한 촉매가 연구되어 왔으며, 특히 방향족 불포화 탄화수소에서 올레핀을 선택적으로 수소화하기 위해서는 팔라듐(Pd), 백금(Pt) 등의 귀금속 촉매를 사용하는 것으로 알려져 있으며, 팔라듐 촉매가 다른 금속 촉매에 비해 활성 및 선택성이 우수하여 선택적 수소화 촉매로 사용되고 있다. 그러나, 팔라듐계 촉매는 수소화를 액체상의 존재하에서 실시하는 경우 팔라듐이 손실되고 Pd 착체 화합물이 형성된다는 문제가 있다. 그 밖에 Ni 계열 촉매를 사용하는 경우 방향족이 함께 수첨되어 방향족 그룹을 포함하는 불포화 탄화수소의 선택적 수소화 반응에 사용하기 어려운 문제가 있다.
이와 같은 문제를 해결하기 위해 미국등록특허 제5,223,470호에는 알루미나(Al2O3) 담체에 담지된 황을 포함하는 니켈 촉매에 대해 개시되어 있으나, 방향족/올레핀 선택수첨 용도의 촉매가 아니고, 구리를 포함하고 있지 않아 본 발명과 구성요소가 다르다. 미국등록특허 제4,328,090호에는 γ-Al2O3에 담지된 황을 포함하는 Ni-W또는 황을 포함하는 Ni-Mo촉매로서, 석유수지를 수소화하는 촉매에 관한 것이나, 방향족/올레핀 선택수첨 용도의 촉매가 아니며, 본 발명에서는 텅스텐(W) 또는 몰리브덴(Mo)을 포함하지 않으므로 상이하다. 미국등록특허 제3,687,989호에는 Ni3S2, WS2 및 MoS2를 포함하는 촉매로서, fat 또는 fatty acid수첨 용도에 관한 것으로 올레핀 수첨에 대해서만 제시되어 있을 뿐, 방향족/올레핀 선택수첨 용도가 아니고 본 발명과는 그 구성요소가 상이하다.
또한, 수소화 촉매로 활성금속을 실리카, 알루미나 또는 활성 탄소 등에 담지한 형태가 다양하게 연구되어 왔다.
한국공개특허 제10-2010-0100834호에는 니켈과 유황을 포함하는 촉매를 선택적 수소화에 사용하는 것을 기재하고 있으나, 담지체의 종류와 분말 형태, 그리고 황이 촉진제로 이용되는 것에 관한 기재가 되어 있지 않다. 일본공개특허 평10-0502865에는 니켈과 황이 실리카 또는 알루미나 담체에 담지된 수소화 촉매에 관해 기재하고 있으나, 황이 촉진제로 포함되는 것과 분말상 형태 및 방향족/올레핀 선택수첨에 관한 기재가 없다.
이에 본 발명자들은 연구를 통해 구리 및 황을 조촉매로 포함하는 구성의 니켈 촉매를 개발하여 상기 문헌에서 해결되지 않은 방향족/올레핀의 선택적 수소화 문제를 해결하면서도 간단한 공정을 통해 촉매를 제조할 수 있고, 제조된 촉매를 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소화 반응에 적용할 경우 방향족/올레핀 수첨 선택성이 높은 수소화 방법을 확립하였다. 또한, 이와 같이 개발된 촉매를 사용하여 용이하게 water white 수지를 확보할 수 있다.
본 발명은 상술한 문제점을 모두 해결하는 것을 목적으로 한다.
본 발명의 다른 목적은 황을 조촉매로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀과 방향족의 상대적 수소화 속도를 변화시켜 올레핀을 선택적으로 수소화하는 수소화 반응용 촉매 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 올레핀을 선택적으로 수첨함으로써, 방향족 그룹을 포함하는 불포화 탄화수소의 방향족 함량을 조절할 수 있는 수소화 반응용 촉매 및 이의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소화 반응 시 방향족 함량을 제어하며, water-white 수지를 용이하게 제조할 수 있는 수소화 반응용 촉매 및 이의 제조방법을 제공하는 것이다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명에 따른 수소화 반응용 촉매는 니켈, 조촉매 및 담체를 포함하는 촉매에 있어서, 상기 조촉매는 구리 및 황을 포함하며, 상기 담체는 실리카 및 알루미나 중에서 선택된 1종 이상이고, 상기 니켈의 평균 결정크기는 1 내지 10 nm이고, 1 내지 20㎛의 평균 입자크기를 가지는 것을 특징으로 한다.
상기 니켈은 전체 조성물 100 중량부에 대하여 40 내지 80 중량부로 포함하고, 상기 구리는 0.1 내지 5 중량부로 포함할 수 있다. 상기 니켈에 대한 상기 황의 몰비(mole ratio)는 1:0.02 내지 0.2으로 포함하는 것을 특징으로 한다.
상기 니켈 무게당 수소 흡착량이 0.01 내지 0.5 (mmol-H2/g-Ni)인 것을 특징으로 한다.
본 발명에 따른 수소화 반응용 촉매의 제조방법은 니켈, 구리 화합물 및 담체 분말을 증류수에 넣고 용해하여 1차 용액을 제조하는 단계; 상기 1차 용액을 침전 용기에 넣고 교반하며 50 내지 120 ℃로 승온하는 단계; 상기 승온된 1차 용액에 pH 조절제 및 황을 포함하는 용액을 30분 내지 2시간 동안 주입하여 2차 용액을 제조하여 침전을 통해 Ni이 담지된 침전물을 형성하는 단계; 상기 침전물을 세척 및 여과한 후 100 내지 200 ℃에서 5 내지 24시간 가열하여 건조물을 제조하는 단계; 및 상기 건조물을 수소 분위기에서 200 내지 500 ℃의 온도로 환원하여 환원물을 제조하는 단계를 포함하는 것을 특징으로 한다.
상기 건조물을 수소 분위기에서 환원하기 전에 200 내지 500 ℃의 온도로 공기 분위기에서 소성하는 단계를 더 포함할 수 있다.
상기 환원물을 0.1 내지 20 % 산소가 포함된 질소 혼합가스로 부동화하여 분말 촉매를 제조하는 단계를 더 포함할 수 있다.
상기 침전은 7 내지 9의 pH에서 이루어지는 것을 특징으로 한다.
본 발명에 따라 제조된 수소화 반응용 촉매를 사용하여 방향족 그룹을 포함하는 불포화 탄화수소의 올레핀을 선택적으로 수첨하는 것을 특징으로 하는 선택적 수소화 방법이다.
상기 선택적 수소화 방법으로 제조되는 수소첨가된 석유수지는 30 이하의 APHA값을 갖는 것을 특징으로 한다.
본 발명에 따른 수소화 반응용 촉매 및 이의 제조방법은 황을 조촉매로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀 대비 방향족 수첨속도를 크게 감소시켜 올레핀을 선택적으로 수소화하는 효과가 있다.
그리고, 본 발명은 올레핀을 선택적으로 수첨함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 방향족 함량을 조절할 수 있는 효과가 있다.
또한, 본 발명은 석유수지의 수소화 반응 시 방향족 함량을 제어하여 water-white 수지를 용이하게 제조할 수 있는 효과가 있다.
도 1은 실시예 및 비교예의 방향족/올레핀 수첨 선택도를 나타낸 그래프이다.
도 2는 실시예 및 비교예의 수첨 후 APHA 값을 나타낸 그래프이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
본 발명에 따른 수소화 반응용 촉매는 니켈, 조촉매 및 담체를 포함하는 촉매에 있어서, 상기 조촉매는 구리 및 황을 포함하며, 상기 담체는 실리카 및 알루미나 중에서 선택된 1종 이상이고, 상기 니켈의 평균 결정크기는 1 내지 10 nm이고, 더욱 바람직하게는 3 내지 7 nm인 것이 좋다. 상기 니켈의 평균 결정크기가 상기 범위를 벗어나는 경우 촉매 활성을 떨어뜨리는 문제가 생길 수 있다. 또한, 본 발명에 따른 촉매는 평균 입자크기가 1 내지 20㎛이고, 더욱 바람직하게는 3 내지 10㎛ 일 수 있다. 촉매의 평균 입자크기가 상기 범위 미만인 경우 촉매의 여과성이 부족할 우려가 있으며, 상기 범위 초과의 경우 촉매의 활성이 떨어지는 문제가 있을 수 있다.
상기 니켈은 전체 촉매 조성물 100 중량부에 대하여 40 내지 80 중량부로 포함할 수 있다. 바람직하게는 50 내지 70 중량부, 더욱 바람직하게는 55 내지 65중량부로 포함할 수 있다. 니켈 함량이 상기 범위 미만인 경우 촉매 활성이 떨어질 수 있고, 초과인 경우 분산성이 떨어져 촉매 활성이 낮아지는 문제가 생길 수 있다.
상기 구리는 전체 촉매 조성물 100 중량부에 대하여 0.1 내지 5 중량부로 포함할 수 있다. 바람직하게는 0.2 내지 2 중량부, 더욱 바람직하게는 0.5 내지 1 중량부로 포함할 수 있다. 구리 함량이 상기 범위 미만인 경우 니켈의 환원도 감소로 촉매 활성이 떨어질 수 있고, 초과인 경우 활성 금속 표면의 니켈 비율 감소로 인해 활성이 저하될 수 있다.
상기 니켈에 대한 상기 황의 몰비(mole ratio)는 1:0.02 내지 0.2로 포함할 수 있다. 바람직하게는 1:0.04 내지 0.15, 더욱 바람직하게는 1:0.05 내지 0.1로 포함할 수 있다. 황의 함량이 상기 범위 미만인 경우 수소화 촉매의 선택성이 떨어질 수 있고, 초과인 경우 촉매 활성이 낮아지는 문제가 생길 수 있다.
상기 니켈의 공급원은 질산염, 아세트산염, 황산염, 염화물 등과 같은 금속 염들을 포함하며 가장 바람직하게는 염화물을 포함하는 염화니켈 전구체이다.
또한, 구리 전구체는 질산염, 아세트산염, 황산염, 염화물 및 수산화물 중에서 선택된 적어도 1종 이상의 형태를 사용할 수 있고, 황 전구체는 알칼리 금속 황화물, 티오펜 및 머캡탄 중에서 선택된 적어도 1종 이상을 사용할 수 있다.
본 발명에 따른 수소화 반응용 촉매는 촉매에 포함된 니켈 무게당 수소 흡착량이 0.01 내지 0.5 (mmol-H2/g-Ni)인 것을 특징으로 한다.
일반적으로 수소첨가 반응 시 방향족 그룹을 포함하는 불포화 탄화수소 화합물 내에 포함된 올레핀 및 방향족 모두 촉매 반응을 통해 수소화 될 수 있기 때문에 석유수지 내 방향족 함량 조절을 위해 올레핀을 선택적으로 수소화할 수 있는 촉매가 필요시 된다. 니켈 계열의 촉매를 사용하는 경우 수지의 방향족이 함께 수첨되어 석유수지의 방향족 함량을 조절하기 어려운 것으로 알려져 있다.
그러나, 본 발명의 일 실시예에 따른 선택적 수소화 촉매는 황을 조촉매(promoter)로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀 대비 방향족 수첨속도를 크게 감소시켜 올레핀을 선택적으로 수소화시킬 수 있는 효과가 있다.
본 발명의 일 실시예에 따른 수소화 반응용 촉매는 니켈 화합물 및 조촉매가 용매 중에 혼합된 후 여기에 고체 담체를 현탁시켜 니켈 화합물 및 조촉매가 침전체를 형성하여 상기 담체에 침적될 수 있다. 상기 담체는 다공성 실리카(SiO2) 및 알루미나(Al2O3) 중에서 선택된 1종 이상일 수 있다.
또한, 본 발명의 일 실시예에 따른 수소화 반응용 촉매는 증류, 전처리 및 중합을 통해 C5 또는 C9 석유 분획 및 부산물 및 이들의 조합물로 이루어진 석유수지를 수소화할 수 있다.
방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소화 반응 시 온도는 100 내지 400 ℃, 바람직하게는 200 내지 300 ℃일 수 있고, 압력은 1 내지 200 bar, 바람직하게는 30 내지 100 bar일 수 있다. 수소화 시간은 주로 온도, 촉매의 양 및 수소화 정도에 따라 달라질 수 있다. 그리고, 수소화 반응은 다양한 반응기에서 수행될 수 있으나, 바람직하게는 혼합 방식에 따라 연속교반반응기(CSTR), 루프(loop) 반응기, 오토클레이브(autoclave) 반응기 등에서 수행될 수 있다.
본 발명에 따른 수소화 반응용 촉매의 제조방법은 니켈, 구리 화합물 및 담체 분말을 증류수에 넣고 용해하여 1차 용액을 제조하는 단계; 상기 1차 용액을 침전 용기에 넣고 교반하며 50 내지 120 ℃로 승온하는 단계; 상기 승온된 1차 용액에 pH 조절제 및 황을 포함하는 용액을 30분 내지 2시간 동안 주입하여 2차 용액을 제조하여 침전을 통해 Ni이 담지된 침전물을 형성하는 단계; 및 상기 침전물을 세척 및 여과한 후 100 내지 200 ℃에서 5 내지 24시간 가열하여 건조물을 제조하는 단계; 및 상기 건조물을 수소 분위기에서 200 내지 500 ℃의 온도로 환원하여 환원물을 제조하는 단계를 포함하는 것을 특징으로 한다.
상기 건조물을 수소 분위기에서 환원하여 환원물을 제조하기 전에 200 내지 500 ℃의 온도로 공기 분위기에서 소성하는 단계를 선택적으로 더 포함할 수 있다.
상기 환원물을 0.1 내지 20 %의 산소가 포함된 질소 혼합가스로 부동화하여 분말 촉매를 제조하는 단계를 더 포함할 수 있다.
아울러, 환원온도는 전술한 바와 같이 200 내지 500 ℃, 바람직하게는 300 내지 450 ℃, 보다 더 바람직하게는 370 내지 430 ℃일 때 최적의 활성을 나타낼 수 있다.
또한, 상기 침전은 염기 첨가 또는 전기화학적 수단으로 pH 7 이상의 환경에서 이루어질 수 있으며, 바람직하게는 pH 7 내지 9 일 수 있다. 이때, 염기 첨가를 위해 염기성 화합물을 첨가할 수 있으며, 염기성 첨가물은 탄산나트륨, 수산화나트륨, 탄산수소나트륨 또는 그 수화물을 포함할 수 있으나, 이에 제한되지 않으며, 바람직하게는 탄산나트륨 또는 그 수화물을 포함할 수 있다.
본 발명에 따른 촉매는 분말, 입자, 과립의 형태일 수 있으며, 바람직하게는 분말의 형태이다.
본 발명에 따른 수소화 반응용 촉매의 제조방법은 담체에 따라 표면적, 기공 구조 및 크기를 최적화할 수 있고, 니켈의 함량이 높아 낮은 온도에서도 환원이 가능할 뿐 아니라 활성이 우수하며 균일하게 분산될 수 있으며, 나아가 니켈과 담체의 부반응을 억제할 수 있다.
또한, 본 발명에 따라 제조된 구리 및 황을 조촉매로 포함하는 니켈 담지 촉매를 사용하여 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 올레핀 대비 방향족 수첨속도를 크게 감소시킴으로써, 올레핀을 선택적으로 수첨할 수 있는 선택적 수소화 방법을 특징으로 한다.
상기 선택적 수소화 방법으로 제조된 수첨된 석유수지는 30 이하의 APHA값을 가지는 것을 특징으로 한다.
APHA color는 Hazen scale 또는 Platinum-Cobalt (Pt/Co) scale이라고도 하며, 미국 공중보건협회(American Public Health Association)에서 이름을 가져온 색깔 표준 분석 방법(ASTM D1209)으로 수첨 석유수지의 색깔을 APHA 값으로 분석한다.
기준이 되는 것은 Platinum-Cobalt Stock Solution으로 이는 APHA 500에 해당된다. 이를 정량적으로 희석한 Standard Solution을 이용하여 1 내지 500의 단계로 세분화한 수치로서 색을 표현한다. 여기서 희석제로 사용되는 D.I water는 APHA 0에 해당된다. APHA Color는 특히 황변 지수(Yellowness Index)와 상관 관계가 있으므로, Yellowness에 대한 Standard Solution의 APHA Color Standard Curve을 이용하면 측정 시료의 APHA Color 값을 얻을 수 있다.
본 발명의 선택적 수소화 방법에 따라 수첨된 석유수지는 APHA값이 30이하 값을 가지고, 방향족/올레핀 수첨비율이 0.1 내지 1.0인 것을 특징으로 하며, 수첨된 석유수지의 색깔 및 냄새가 거의 사라진 water-white 수지인 것을 특징으로 한다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
<실시예>
실시예 1
200 m2/g의 표면적과 28 nm의 기공크기를 갖는 다공성 실리카 분말 1 g과 염화니켈 (243 g/l 니켈) 및 염화구리 (2.2 g/l 구리)를 증류수에 용해한 용액 50 ml를 침전용기에 넣고 교반하며 80 ℃로 승온하였다. 80 ℃ 도달 후 황/니켈 몰비가 0.09가 되도록 탄산나트륨 (175 g/l) 및 황화나트륨(15 g/l)이 포함된 용액 40 ml를 syringe pump를 이용하여 1시간 이내 모두 주입하였다. 침전 완료 후 슬러리의 pH는 7.7 이었으며, 이를 약 1.5 L의 증류수로 세척 및 여과한 다음 건조 오븐을 이용하여 120 ℃에서 12시간 이상 건조하였다. 이를 소분한 다음 수소 분위기에서 400 ℃의 온도로 환원하였다. 환원 후 분말을 1% 산소가 포함된 질소 혼합가스를 이용하여 부동화하여 수소화 촉매를 제조하였다.
부동화된 촉매의 니켈 함량은, 촉매의 중량을 기준으로 63.8%, 구리의 함량은 0.87%, 황의 함량은 2.8% 이었으며, 니켈 결정의 평균 크기는 5.1 nm로 측정되었다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
실시예 2
수첨촉매의 황/니켈 몰비가 0.075이 되도록 침전제인 탄산나트륨 (175 g/l) 및 황화나트륨(12.5 g/l)이 포함된 용액 40 ml를 syringe pump를 이용하여 1시간 이내 모두 주입하였다. 침전 완료 후 슬러리의 pH는 7.6 이었다. 세척 및 여과, 건조 등 나머지 방법은 실시예 1과 동일한 방법으로 제조하였다.
부동화된 촉매의 니켈 함량은, 촉매의 중량을 기준으로 62.1%, 구리의 함량은 0.84%, 황의 함량은 2.5% 이었으며, 니켈 결정의 평균 크기는 5.0 nm로 측정되었다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
실시예 3
수첨촉매의 황/니켈 몰비가 0.06이 되도록 침전제인 탄산나트륨 (175 g/l) 및 황화나트륨(10 g/l)이 포함된 용액 40 ml를 syringe pump를 이용하여 1시간 이내 모두 주입하였다. 침전 완료 후 슬러리의 pH는 7.7 이었다. 세척 및 여과, 건조 등 나머지 방법은 실시예 1과 동일한 방법으로 제조하였다.
부동화된 촉매의 니켈 함량은, 촉매의 중량을 기준으로 62.1%, 구리의 함량은 0.86%, 황의 함량은 2.2% 이었으며, 니켈 결정의 평균 크기는 4.1 nm로 측정되었다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
실시예 4
수소 분위기에서 환원하기 전 소성 단계를 포함하는 것으로 변경한 것을 제외하고 실시예 1과 동일한 방법으로 수소화 촉매를 제조하였다. 소성은 머플 박스퍼니스에서 수행하였으며, 건조한 분말을 소분한 다음, air flow 1000 mL/min, heating rate 5 ℃/min 조건에서 400 ℃까지 승온한 후 3시간 유지하였다. 소성이 끝난 분말의 회수율은 80% 이었다. 이어서 소성한 분말을 소분한 다음, 수소 분위기에서 400 ℃의 온도로 환원하였다. 환원 후 분말은 1% 산소가 포함된 질소 혼합가스를 이용하여 부동화하여 수소화 촉매를 제조하였다. 부동화된 촉매의 니켈 함량은, 촉매의 중량을 기준으로 62.4%, 구리의 함량은 0.85%, 황의 함량은 2.9% 이었으며, 니켈 결정의 평균 크기는 4.2 nm로 측정되었다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
비교예 1
황이 없는 촉매를 제조하기 위해 침전제 중에 황화나트륨을 제외한 탄산나트륨 용액만을 사용하여 실시예 1과 동일한 방법으로 침전/세척/여과/건조/환원을 순차적으로 수행하였다.
200 m2/g의 표면적과 28 nm의 기공크기를 갖는 다공성 실리카 분말 1 g과 염화니켈 (243 g/l 니켈) 및 염화구리 (2.2 g/l 구리)를 증류수에 용해한 용액 50 ml를 침전용기에 넣고 교반하며 80 ℃로 승온하였다. 80 ℃ 도달 후 탄산나트륨 (175 g/l) 이 포함된 용액 40 ml를 syringe pump를 이용하여 1시간 이내 모두 주입하였다. 침전 완료 후 슬러리의 pH는 7.8 이었으며, 이를 약 1.5 L의 증류수로 세척 및 여과한 다음 건조 오븐을 이용하여 120 ℃에서 12시간 이상 건조하였다. 이를 소분한 다음 수소 분위기에서 400 ℃의 온도로 환원한 후 1% 산소가 포함된 질소 혼합가스를 이용하여 부동화하여 수소화 촉매를 제조하였다.
부동화된 촉매의 니켈 함량은, 촉매의 중량을 기준으로 63.2%, 구리의 함량은 0.89%이었으며, 니켈 결정의 평균 크기는 5.7 nm로 측정되었다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
비교예 2
팔라듐이 탄소 지지체 위에 5wt% 담지된 분말 형태의 상용촉매를 구입하여 선택수첨에 이용하였다. 촉매는 평균 크기 10 ㎛ 를 가지며, BET 비표면적 1,190 m2/g, 전체 기공부피 1.1 cm3/g 를 가지는 분말 형태이다. 촉매의 활성 테스트를 위한 수첨반응은 230 ℃의 온도에서 진행하였다.
비교예 3
비교예 2에 적용한 촉매를 이용하여 촉매의 활성 테스트를 진행하였다. 활성 테스트를 위한 수첨반응은 270 ℃의 온도에서 진행하였다.
하기의 표 1에서는 실시예 1 내지 4 및 비교예 1 내지 3의 촉매 조성물 내 니켈(Ni)의 함량, 조촉매 종류와 함량을 나타냈다.
Ni/Si mole ratio S/Ni mole ratio Pd/C weight ratio 수소 흡착량(mmol-H2/g-Ni)
실시예 1 3.2 0.09 - 0.020
실시예 2 3.2 0.075 - 0.041
실시예 3 3.1 0.06 - 0.087
실시예 4 3.1 0.09 - 0.023
비교예 1 3.2 0.00 - 0.982
비교예 2 - 0.00 0.05 -
비교예 3 - 0.00 0.05 -
<실험예> 촉매의 활성 테스트 (Activity Test)
Hollow shaft 교반기를 포함하고 1600 rpm의 교반 속도를 갖는 300 ml 오토클레이브를 이용하였다.
비수첨 석유수지를 Exxsol™ D40에 30 중량%로 용해한 용액 75 g을 230 ℃, 90 bar에서 석유수지 질량 대비 0.5 내지 2% 촉매를 첨가하여 수소화하였으며, 색상은 ASTM D1209로 측정하였다. 석유수지 내 올레핀 함량에 크게 비례하는 석유수지의 색깔(APHA 값)은 수첨 전 750이었으며, 석유수지의 색깔이 30 이하 일 때, 석유수지의 색깔 및 냄새가 거의 사라진 water-white 수지가 되며, 이때 잔류하는 올레핀 함량(NMR %area)은 0.1% 미만이게 된다.
즉, APHA 값이 30 이하일 때까지 수소화 반응을 진행하면, 잔류하는 올레핀이 거의 없으며, 이때까지 수첨된 방향족의 양을 측정하여 방향족/올레핀 수첨 선택도를 비교할 수 있는데 이 값을 측정하여 촉매 활성을 비교하였고, 하기의 표 2에 나타내었다.
반응온도(℃) Catalyst (kg-cat/kg-resin) 방향족/올레핀 수첨비율 수첨 후 석유수지 APHA값
실시예 1 230 0.02 0.3 23
실시예 2 230 0.02 0.5 18
실시예 3 230 0.02 0.8 20
실시예 4 230 0.02 0.3 15
비교예 1 230 0.01 2.2 21
비교예 2 230 0.001 0.3 49
비교예 3 270 0.001 0.3 16
상기 표 2와 도면 1 및 2를 참조하면, 본 발명에 따라 황을 조촉매로 포함하는 실시예 1 내지 4의 경우 방향족/올레핀 수첨 선택성이 비교예 1에 비해 현저히 우수함을 확인하였다. 또한, 방향족/올레핀 수첨 선택도는 첨가한 황의 함량을 통해 조절할 수 있음을 확인하였다.
또한, 본 발명에 따라 제조된 실시예 1 내지 4는 비교예 2 및 3의 팔라듐 촉매와 방향족/올레핀 수첨 선택도에 있어 동등 이상의 수준을 보였고, 특히 비교예 3에 비해 낮은 온도에서도 활성화가 잘 이루어짐을 확인하였다.
본 발명에 따른 수소화 반응용 촉매 및 이의 제조방법은 황을 조촉매로 포함함으로써, 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소첨가 반응 시 올레핀 대비 방향족 수첨속도를 크게 감소시켜 올레핀을 선택적으로 수첨이 가능한 효과가 있다.
또한, 본 발명은 올레핀을 선택적으로 수첨함으로써, 방향족 그룹을 포함하는 불포화 탄화수소의 방향족 함량을 조절할 수 있다.
또한, 본 발명은 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 수소화 반응 시 방향족 함량을 제어하여 water-white 수지를 용이하게 제조할 수 있는 효과가 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (11)

  1. 니켈, 조촉매 및 담체를 포함하는 촉매에 있어서,
    상기 조촉매는 구리 및 황을 포함하며,
    상기 담체는 실리카 및 알루미나 중에서 선택된 1종 이상이고,
    상기 니켈의 평균 결정크기는 1 내지 10 nm이고, 1 내지 20㎛의 평균 입자크기를 가지는 것을 특징으로 하는 수소화 반응용 촉매.
  2. 제1항에 있어서,
    상기 니켈은 전체 조성물 100 중량부에 대하여 40 내지 80 중량부로 포함하고, 상기 구리는 0.1 내지 5 중량부로 포함하며,
    상기 니켈에 대한 상기 황의 몰비(mole ratio)는 1:0.02 내지 0.2으로 포함하는 것을 특징으로 하는 수소화 반응용 촉매.
  3. 제1항에 있어서,
    상기 니켈 무게당 수소 흡착량이 0.01 내지 0.5 (mmol-H2/g-Ni)인 것을 특징으로 하는 수소화 반응용 촉매.
  4. (a) 니켈, 구리 화합물 및 담체 분말을 증류수에 넣고 용해하여 1차 용액을 제조하는 단계;
    (b) 상기 1차 용액을 침전 용기에 넣고 교반하며 50 내지 120 ℃로 승온하는 단계;
    (c) 상기 승온된 1차 용액에 pH 조절제 및 황을 포함하는 용액을 30분 내지 2시간 동안 주입하여 2차 용액을 제조하여 침전을 통해 Ni이 담지된 침전물을 형성하는 단계;
    (d) 상기 침전물을 세척 및 여과한 후 100 내지 200 ℃에서 5 내지 24시간 가열하여 건조물을 제조하는 단계; 및
    (e) 상기 건조물을 수소 분위기에서 200 내지 500 ℃의 온도로 환원하여 환원물을 제조하는 단계를 포함하는 것을 특징으로 하는 수소화 반응용 촉매의 제조방법.
  5. 제4항에 있어서,
    상기 (d)단계에서 건조물을 200 내지 500 ℃의 온도로 공기 분위기에서 소성하는 단계를 더 포함하는 것을 특징으로 하는 수소화 반응용 촉매의 제조방법.
  6. 제4항에 있어서,
    상기 (e)단계에서 환원물을 0.1 내지 20 % 산소가 포함된 질소 혼합가스로 부동화하여 분말 촉매를 제조하는 단계를 더 포함하는 것을 특징으로 하는 수소화 반응용 촉매의 제조방법.
  7. 제4항에 있어서,
    상기 침전은 7 내지 9의 pH에서 이루어지는 것을 특징으로 하는 수소화 반응용 촉매의 제조방법.
  8. 제4항 내지 제7항 중 어느 한 항에 따라 제조된 수소화 반응용 촉매를 사용하여 방향족 그룹을 포함하는 불포화 탄화수소 화합물의 올레핀을 선택적으로 수첨하는 것을 특징으로 하는 수소화 방법.
  9. 제8항에 따른 수소화 방법으로 제조된 선택적으로 수소첨가된 석유수지.
  10. 제9항에 있어서,
    상기 석유수지는 30 이하의 APHA값을 갖는 것을 특징으로 하는 선택적으로 수소첨가된 석유수지.
  11. 제9항에 있어서,
    상기 석유수지는 방향족/올레핀 수첨비율이 0.1 내지 1.0인 것을 특징으로 하는 선택적으로 수소첨가된 석유수지.
PCT/KR2018/016310 2017-12-29 2018-12-20 수소화 반응용 촉매 및 이의 제조방법 WO2019132407A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18895225.3A EP3733288A4 (en) 2017-12-29 2018-12-20 HYDROGENATION REACTION CATALYST AND MANUFACTURING METHOD FOR IT
US16/956,929 US11987659B2 (en) 2017-12-29 2018-12-20 Hydrogenation reaction catalyst and preparation method therefor
JP2020550578A JP7431169B2 (ja) 2017-12-29 2018-12-20 水素化反応用触媒及びその製造方法
CN201880078348.9A CN111491727B (zh) 2017-12-29 2018-12-20 氢化反应用催化剂及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170183458A KR102300823B1 (ko) 2017-12-29 2017-12-29 수소화 반응용 촉매 및 이의 제조방법
KR10-2017-0183458 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019132407A1 true WO2019132407A1 (ko) 2019-07-04

Family

ID=67063940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016310 WO2019132407A1 (ko) 2017-12-29 2018-12-20 수소화 반응용 촉매 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11987659B2 (ko)
EP (1) EP3733288A4 (ko)
JP (1) JP7431169B2 (ko)
KR (1) KR102300823B1 (ko)
CN (1) CN111491727B (ko)
WO (1) WO2019132407A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164925A (zh) * 2018-12-31 2021-07-23 韩华思路信株式会社 氢化反应用催化剂及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300826B1 (ko) * 2018-12-28 2021-09-09 한화솔루션 주식회사 수소화 반응용 촉매 및 이의 제조방법
KR20210001783A (ko) * 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화반응용 니켈 촉매 및 그 제조방법
KR102528310B1 (ko) * 2019-06-28 2023-05-02 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
KR102695439B1 (ko) * 2020-12-10 2024-08-13 한화솔루션 주식회사 수첨 석유수지의 연속적 제조 방법
KR102687289B1 (ko) * 2020-12-10 2024-07-19 한화솔루션 주식회사 수첨 석유수지의 연속적 제조 방법
KR102695438B1 (ko) * 2020-12-10 2024-08-13 한화솔루션 주식회사 수첨 석유수지의 연속적 제조 방법
CN112916013B (zh) * 2021-02-07 2023-04-25 河南天宁新材料科技有限公司 一种镍基埃洛石纳米管氢化催化剂及其制备和应用
KR20240024500A (ko) * 2022-08-17 2024-02-26 한화솔루션 주식회사 수첨 석유수지 및 이를 포함하는 타이어 트레드용 고무 조성물

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687989A (en) 1968-06-04 1972-08-29 Josef Baltes Process for the selective hydrogenation of fats and fatty acids
US4328090A (en) 1980-07-31 1982-05-04 Exxon Research & Engineering Co. Process for production of hydrogenated hydrocarbon polymers and catalyst useful therefore
US4650563A (en) * 1984-04-02 1987-03-17 Exxon Research And Engineering Company Transition metal sulfide promoted molybdenum or tungsten sulfide catalysts and their uses for hydroprocessing
US5223470A (en) 1990-07-05 1993-06-29 Engelhard De Meern B.V. Sulfur-promoted nickel catalyst and preparation thereof
WO1996001691A1 (en) * 1994-07-12 1996-01-25 Exxon Research And Engineering Company Dispersed metal sulfide catalysts for hydroprocessing
KR20020024713A (ko) * 2000-09-26 2002-04-01 김충섭 니켈-지르코니아계 선택적 수소화 촉매 및 이를 이용한디-올레핀 화합물의 선택적 수소화 공정
KR100366972B1 (ko) * 2000-03-07 2003-01-09 코오롱유화주식회사 점·접착제용 공중합 석유수지 및 그의 제조방법
KR20090031916A (ko) * 2006-07-21 2009-03-30 차이나 페트로리움 앤드 케미컬 코포레이션 수소첨가 촉매 조성물, 그의 제조 방법 및 용도
KR20100100834A (ko) 2007-10-31 2010-09-15 셰브런 유.에스.에이.인크. 수소처리 벌크 촉매 및 이의 용도

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859370A (en) * 1970-10-26 1975-01-07 Exxon Research Engineering Co Massive nickel catalysts and use in hydrogenation processes
US3865716A (en) * 1973-09-13 1975-02-11 Exxon Research Engineering Co Process for the selective hydrogenation of olefins
US4251672A (en) * 1978-08-25 1981-02-17 Exxon Research & Engineering Co. Process for hydrogenating organic compounds with coprecipitated copper-nickel-silica catalysts
JPH0625214B2 (ja) * 1987-07-30 1994-04-06 丸善石油化学株式会社 水素化石油樹脂の製法
JP3289310B2 (ja) * 1992-04-06 2002-06-04 東ソー株式会社 水添石油樹脂の製造方法
JP3289326B2 (ja) * 1992-07-07 2002-06-04 東ソー株式会社 水添石油樹脂類の製造方法
US6281163B1 (en) * 1994-05-09 2001-08-28 Engelhard De Meern B.V. Hydrogenation catalyst particles
DE19603901A1 (de) * 1996-02-03 1997-08-07 Krupp Uhde Gmbh Verfahren zur Gewinnung von Reinaromaten aus Reformatbenzin und Vorrichtung zur Durchführung des Verfahrens
JP3687079B2 (ja) * 1996-03-29 2005-08-24 荒川化学工業株式会社 フェノール変性c9系水素化石油樹脂およびその製造方法
FR2854335B1 (fr) * 2003-04-30 2009-03-20 Eurecat Sa Traitement hors site de catalyseurs d'hydrogenation
JP2005146054A (ja) * 2003-11-12 2005-06-09 Idemitsu Kosan Co Ltd 脱硫剤及びこれを用いた脱硫方法
US7678730B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Hydroprocessing bulk catalyst and uses thereof
US7678732B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition
US20060058174A1 (en) 2004-09-10 2006-03-16 Chevron U.S.A. Inc. Highly active slurry catalyst composition
US7737072B2 (en) 2004-09-10 2010-06-15 Chevron Usa Inc. Hydroprocessing bulk catalyst and uses thereof
US7678731B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Hydroprocessing bulk catalyst and uses thereof
CN100506379C (zh) * 2006-11-02 2009-07-01 中国石油化工股份有限公司 用于选择性加氢的大孔容含硫镍催化剂
JP5287012B2 (ja) 2008-02-25 2013-09-11 Jsr株式会社 硬化性組成物、液晶シール剤及び液晶表示素子
FR2949077B1 (fr) * 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte a base de ni et d'un metal du groupe ib pour l'hydrogenation selective d'hydrocarbures polyinsatures
JP2011072933A (ja) * 2009-09-30 2011-04-14 Jgc Catalysts & Chemicals Ltd 炭化水素の水素化触媒及び炭化水素の水素化触媒の製造方法
CN104117359B (zh) * 2013-04-27 2016-04-27 中国石油化工股份有限公司 一种加氢催化剂的制备方法
RU2531624C1 (ru) * 2013-07-25 2014-10-27 Открытое акционерное общество "Синтез-Каучук" Никелевый катализатор гидрирования ненасыщенных углеводородов и сероочистки, способ его получения и применения
CN106914260A (zh) * 2015-12-24 2017-07-04 中国石油天然气股份有限公司 油品加氢精制催化剂、其制备方法及应用
KR102327050B1 (ko) 2017-12-29 2021-11-15 한화솔루션 주식회사 선택적 수소화 방법
JP6433105B1 (ja) 2018-07-03 2018-12-05 安雄 牛久 遊戯システム及び遊戯装置
KR102311346B1 (ko) * 2018-12-31 2021-10-08 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
KR20210001784A (ko) * 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화반응용 촉매 및 그 제조방법
KR102528310B1 (ko) * 2019-06-28 2023-05-02 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
KR20210001781A (ko) * 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화 반응용 촉매 및 이의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687989A (en) 1968-06-04 1972-08-29 Josef Baltes Process for the selective hydrogenation of fats and fatty acids
US4328090A (en) 1980-07-31 1982-05-04 Exxon Research & Engineering Co. Process for production of hydrogenated hydrocarbon polymers and catalyst useful therefore
US4650563A (en) * 1984-04-02 1987-03-17 Exxon Research And Engineering Company Transition metal sulfide promoted molybdenum or tungsten sulfide catalysts and their uses for hydroprocessing
US5223470A (en) 1990-07-05 1993-06-29 Engelhard De Meern B.V. Sulfur-promoted nickel catalyst and preparation thereof
WO1996001691A1 (en) * 1994-07-12 1996-01-25 Exxon Research And Engineering Company Dispersed metal sulfide catalysts for hydroprocessing
JPH10502865A (ja) 1994-07-12 1998-03-17 エクソン リサーチ アンド エンジニアリング カンパニー 水素処理用分散硫化金属触媒
KR100366972B1 (ko) * 2000-03-07 2003-01-09 코오롱유화주식회사 점·접착제용 공중합 석유수지 및 그의 제조방법
KR20020024713A (ko) * 2000-09-26 2002-04-01 김충섭 니켈-지르코니아계 선택적 수소화 촉매 및 이를 이용한디-올레핀 화합물의 선택적 수소화 공정
KR20090031916A (ko) * 2006-07-21 2009-03-30 차이나 페트로리움 앤드 케미컬 코포레이션 수소첨가 촉매 조성물, 그의 제조 방법 및 용도
KR20100100834A (ko) 2007-10-31 2010-09-15 셰브런 유.에스.에이.인크. 수소처리 벌크 촉매 및 이의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733288A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164925A (zh) * 2018-12-31 2021-07-23 韩华思路信株式会社 氢化反应用催化剂及其制备方法
CN113164925B (zh) * 2018-12-31 2023-10-31 韩华思路信株式会社 氢化反应用催化剂及其制备方法
US11878286B2 (en) 2018-12-31 2024-01-23 Hanwha Solutions Corporation Catalyst for hydrogenation reaction and preparation method for same

Also Published As

Publication number Publication date
US20210002403A1 (en) 2021-01-07
EP3733288A4 (en) 2021-08-25
US11987659B2 (en) 2024-05-21
JP2021505385A (ja) 2021-02-18
CN111491727A (zh) 2020-08-04
CN111491727B (zh) 2023-12-15
EP3733288A1 (en) 2020-11-04
JP7431169B2 (ja) 2024-02-14
KR102300823B1 (ko) 2021-09-09
KR20190081127A (ko) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019132407A1 (ko) 수소화 반응용 촉매 및 이의 제조방법
WO2020141705A1 (ko) 수소화반응용 촉매 및 이의 제조방법
US20200369794A1 (en) A method for selective hydrogenation
WO2020262989A1 (ko) 수소화반응용 촉매 및 그 제조방법
WO2020138684A1 (ko) 수소화 반응용 촉매 및 이의 제조방법
WO2020246765A1 (ko) 수첨 석유수지의 제조 방법
WO2020262985A1 (ko) 수소화 반응용 촉매 및 이의 제조방법
WO2020262986A1 (ko) 수소화반응용 촉매 및 이의 제조방법
WO2018117339A1 (ko) 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법
WO2022145740A1 (ko) 내황성이 향상된 수소화 반응용 촉매 및 이의 제조방법
WO2020262987A1 (ko) 수소화반응용 니켈 촉매 및 그 제조방법
KR102687289B1 (ko) 수첨 석유수지의 연속적 제조 방법
KR102695438B1 (ko) 수첨 석유수지의 연속적 제조 방법
KR102695439B1 (ko) 수첨 석유수지의 연속적 제조 방법
WO2019151599A1 (ko) 니켈-텅스텐 카바이드 촉매 입자의 제조방법 및 이를 이용한 경질유의 제조방법
WO2021182731A1 (ko) 알칸족 가스로부터 올레핀 제조용 탈수소촉매 및 그 제조방법
WO2021071100A1 (ko) 아세틸렌의 선택적 수소화용 촉매 및 이의 제조방법
TW202231675A (zh) 氫化石油樹脂的連續製備方法
CN109400808A (zh) 一种碳九石油树脂加氢方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895225

Country of ref document: EP

Effective date: 20200729