WO2018117339A1 - 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 - Google Patents

담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 Download PDF

Info

Publication number
WO2018117339A1
WO2018117339A1 PCT/KR2017/003621 KR2017003621W WO2018117339A1 WO 2018117339 A1 WO2018117339 A1 WO 2018117339A1 KR 2017003621 W KR2017003621 W KR 2017003621W WO 2018117339 A1 WO2018117339 A1 WO 2018117339A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
catalyst
tungsten
nickel
crude oil
Prior art date
Application number
PCT/KR2017/003621
Other languages
English (en)
French (fr)
Inventor
이관영
허영걸
김찬훈
정광식
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018117339A1 publication Critical patent/WO2018117339A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a process for producing light oil from super heavy oil using a sulfided nickel-molybdenum-tungsten dispersed catalyst without using a carrier, and more particularly, sulfidation without using a support in a hydrocracking reaction. It relates to a process for producing light oil using the nickel- molybdenum- tungsten dispersed catalyst.
  • the global oil demand forecast is expected to reach about 80 million barrels / day in 2010, which is expected to increase by 1.7% every year due to the increase in consumption in emerging economies in Asia and Latin America such as China and India. It is expected.
  • the consumption of light distillate and middle distillate is not only high, but the increase is 2.8% and 4.4%, respectively, compared to other products.
  • the consumption of light and heavy oil is expected to increase.
  • Ultra-heavy oil refers to crude oil having a value of 10 ° or less based on the American Petroleum Institute (API) value set by the American Petroleum Institute. Bitumen, a crude oil extracted from Venezuela crude oil and an oil sand, corresponds to ultra-heavy oil. do. In addition, the vacuum residue generated when distilling crude oil can also be classified as super heavy oil because it has a very low API value.
  • API American Petroleum Institute
  • Non-Patent Document 1 Production of heavy oil by hydrocracking reaction of FT WAX on solid acid catalyst, Chung Heon-do et al.
  • the present invention provides a process for producing a light oil comprising the following steps to solve the above problems.
  • the molar ratio of nickel / (molybdenum + tungsten) of the sulfided nickel-molybdenum-tungsten dispersed catalyst without using the carrier may be 0.1 to 1, and molybdenum / tungsten The molar ratio of may be 0.1 to 3.5.
  • the sulfided nickel-molybdenum-tungsten dispersed catalyst that does not use the carrier may be prepared through the following steps.
  • the size of the sulfided nickel-molybdenum-tungsten dispersed catalyst without using the carrier may be 100 nm to 1 ⁇ m.
  • Figure 1 shows the conversion rate of the residual oil having a boiling point of 525 °C or more and the asphaltene contained therein according to the porous carrier catalyst and the colloidal or molecular catalyst.
  • Figure 2 shows a process for producing a sulfided nickel-molybdenum-tungsten dispersed catalyst without using a carrier according to an embodiment of the present invention.
  • Figure 5 shows the decomposition of super heavy oil using a sulfided nickel-molybdenum-tungsten dispersed catalyst without using a carrier according to an embodiment of the present invention.
  • Figure 6 shows the structure of asphaltenes contained in super heavy oil.
  • Figure 7 shows the component content of the product decomposed using a sulfided nickel-molybdenum-tungsten dispersed catalyst without using a carrier according to an embodiment of the present invention.
  • the dispersed catalyst means a well dispersed catalyst, which is an important factor because the degree of dispersion of the catalyst directly affects the activity of the catalyst.
  • the super heavy oil may be selected from crude oil, bitumen, vacuum residue or mixtures thereof having a specific gravity of 1 to 10 ° of API (American Petroleum Institute).
  • the present invention is a method for producing light oil using a sulfide-treated nickel-molybdenum-tungsten dispersed catalyst (NiMoW) in the hydrocracking reaction of ultra-heavy oil, a fluid catalytic cracking catalyst corresponding to a catalyst supported on a conventional carrier ( (FCC) to separate heavy oils.
  • NiMoW nickel-molybdenum-tungsten dispersed catalyst
  • FCC conventional carrier
  • the temperature condition of hydrocracking of heavy oil is about 270-400 ° C, whereas the temperature condition of hydrocracking of extra heavy oil is about 370-500 ° C. Requires conditions that are relatively harsher than conditions. In addition, since super heavy oil contains excess metal and sulfur components compared to heavy oil, strong durability of the catalyst used for the decomposition reaction is required.
  • the present invention is not supported on the support for the hydrocracking reaction of the ultra heavy oil, does not cause the inactivation of the catalyst by the deposition of the excess of the metal component contained in the ultra heavy oil to the carrier, the metal component is Even when deposited, it can act as a co-catalyst.
  • the molar ratio of nickel / (molybdenum + tungsten) in the sulfided nickel-molybdenum-tungsten dispersed catalyst without using the carrier is preferably 0.1 to 1, more preferably 1.
  • the molar ratio of molybdenum / tungsten is preferably 0.1 to 3.5, more preferably 1.5.
  • the sulfided nickel-molybdenum-tungsten dispersed catalyst that does not use the carrier may include mixing a tungsten precursor and a molybdenum precursor; Adding a precipitant such as ammonia solution after the mixing; Mixing the nickel precursor after adding the ammonia solution; And wherein the nickel precursor sulfiding (sulfidation) at 300 ⁇ 400 °C using H 2 S gas after mixing; can be prepared via the.
  • the yield of the liquid product and the conversion of C5-asphaltene may be used as a measure for determining the usefulness of the process for producing light oil according to the present invention.
  • the formula for obtaining the liquid phase yield and the conversion rate of C5-asphaltene is described in Equations 1 and 2 below.
  • Nickel sulfide-molybdenum-tungsten dispersed catalyst without using a carrier according to an embodiment of the present invention was prepared according to FIG. 2.
  • tungsten precursor (ammonium metatungstate, 0, 0.16, 0.12, 0.08, 0.04, 0.2 mole W, Sigma-Aldrich, ⁇ 66.5%)
  • molybdenum precursor (Ammonium heptamolybdate, 0, 0.2, 0.04, 0.08, 0.12, 0.16 mole Mo, Sigma-Aldrich, 81.0-83.0%)
  • ammonia solution (ammonium hydroxide, about 600 mL, Sigma-Aldrich, 28.0-30.0% NH 3 basis) and distilled water (800 mL) were mixed for 30 minutes at 90 ° C. The temperature was raised with stirring the mixture over, which is called A solution.
  • Nickel (II) nitrate hexahydrate, 0.2 moles Ni, Sigma-Aldrich, 99.999%) was dissolved in distilled water (100 mL) to prepare a B solution.
  • the A and B solutions were simultaneously mixed into the A solution at a rate of 1 mL / sec using a pump for syringe. After 8 hours of mixing, the precipitated material was separated using a filter paper, followed by 6 L washing with distilled water at 90 ° C., followed by drying in an oven at 120 ° C.
  • the sulfided nickel-molybdenum-tungsten dispersion catalyst (NiMoW) was prepared by a sulfidation step at 300 to 400 ° C. for 2 to 4 hours using 10 Vol.% H 2 S gas.
  • XRD X-ray diffraction analysis
  • Nickel sulfide-molybdenum-tungsten dispersed catalyst (a) NWS, b) NMWS (0.2), c) NMWS (0.6), d) NMWS (1.5), e) NMWS (3.5), and f) NMS ) was confirmed to have a crystal structure of WS2 MoS2, NiS (see Fig. 3).
  • the sulfided nickel-molybdenum-tungsten dispersed catalyst which does not use a carrier, in particular, the sulfided nickel-molybdenum-tungsten (1.5) dispersed catalyst (NiMoWS (1.5)) was used to hydrogenate super heavy oil.
  • NiMoW nickel-molybdenum-tungsten
  • NiMoWS 1.5
  • the yield of the liquid product was found to be 5.4% by weight higher than that of the control (NiMo / Al 2 O 3 commercial catalyst), and the yield of the solid product was found to be 1.3% by weight.
  • NiMoWS (1.5) nickel-molybdenum-tungsten (1.5) dispersion catalyst
  • the present invention was synthesized as a dispersion catalyst without using a carrier and applied to the production of light oil. It was confirmed that it shows a more positive catalytic effect compared to the commercial catalyst (NiMo / Al 2 O 3 ).
  • the process for producing light oil using the sulfided nickel-molybdenum-tungsten dispersion catalyst without using the carrier according to the present invention is higher in reactivity than the commercial NiMo / Al 2 O 3 catalyst generally used for cracking heavy oil.
  • Light oil can be produced by efficiently decomposing super heavy oil, and high yield of liquid product can be suppressed, as well as coke formation compared to catalyst using carrier, and high activity in decomposition of asphaltenes. Can be utilized.

Abstract

본 발명은 담지체를 사용하지 않은 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유를 제조하는 방법에 관한 것으로서, 중질유의 분해 반응에 있어서 일반적으로 사용되고 있는 상용 NiMo/Al2O3 촉매에 비하여 높은 반응성을 가져서 초중질유를 효율적으로 분해하여 경질유를 생산할 수 있으며, 높은 액상 생성물의 수득률은 물론이고, 담지체를 사용한 촉매에 비하여 코크 생성을 억제하며 아스팔텐의 분해에서도 높은 활성을 나타낸다.

Description

담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법
본 발명은 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유를 제조하는 방법에 관한 것으로 보다 상세하게는 수소화 분해 반응에 담지체를 사용하지 않고 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용하여 경질유를 제조하는 방법에 관한 것이다.
국내의 경우 휘발유, 경유뿐만 아니라 다양한 석유화학원료를 원유로부터 생산하고 있다. 현재까지 시추가 용이하고 휘발유, 경유 및 납사 성분이 많이 포함된 경질 원유를 주로 사용하고 있었으나, 이러한 고급 경질 원유의 매장량이 한계에 도달함에 따라 경질유 기반의 석유화학에서 중질유 또는 초중질유 기반으로 패러다임의 전환이 있을 것으로 예상된다.
또한, 전 세계 원유 수요 예측량은 2010년 약 8천만 배럴/일로 중국, 인도 등 아시아와 중남미 신흥 발전국의 소비량 증가로 인해서 매년 1.7% 가량 증가할 것으로 내다보며 2015년경에는 9천만 배럴을 넘어설 것으로 전망되고 있다. 소비원유 중에서 전 세계적으로 경질유(light distillate)와 중질유(middle distillate) 소비량이 많을 뿐만 아니라 증가폭도 각각 2.8%와 4.4%로 다른 생산품에 비해 높은 경향을 나타내고 있다. 특히 중남미와 아시아 태평양지역의 신흥 발전국들의 발전과 함께 경질유 및 중질유의 소비는 더욱 증가할 것으로 예상된다.
상기와 같은 문제를 해결하기 위해 경질유분을 대체할 에너지원에 대한 다양한 연구가 진행 중에 있으나, 기존의 생산 설비를 이용할 수 있는 에너지 개발이 쉽지 않기 때문에 현 시점에서 매장량이 풍부한 오일 샌드 또는 베네수엘라의 초중질유에 대한 관심이 매우 높은 상황이다.
초중질유란, 미국석유협회가 정한 API(American Petroleum Institute) 값 기준으로 10°이하를 갖는 원유를 말하며, 베네수엘라 산(産) 원유 및 오일샌드에서 추출한 원유 성분인 역청(bitumen)이 초중질유에 해당된다. 또한, 원유를 증류할 때 발생하는 감압잔사유(vacuum residue) 역시 매우 낮은 API 값을 가지기 때문에 초중질유로 분류될 수 있다.
중질유의 분해법으로는 접촉분해법, 수소화분해법 및 열분해법 등과 같은 다양한 방법이 존재한다. 초중질유의 경질화를 위한 열분해 공정은 고온의 열을 통해 탄소-탄소(C-C) 결합을 끊어 점도를 낮추거나 코크의 생산을 통해 액상의 수소/탄소(H/C) 분율을 높이는 쪽으로 연구가 진행되고 있다. 상기와 같은 열분해법은 초기 운전비용이 적게 들고 비교적 용이한 방법에 해당되어 많이 이용되고 있으나, 과량의 탄소 손실에 의해 공정 효율이 떨어지며 수소의 손실이 발생해 고급 원유의 생산이 어렵다는 단점이 존재한다.
또한, 수소화 분해법에서 다양한 촉매들의 가능성이 보고되고 있으나, 초중질유와 같이 보다 더 극한의 조건에서 분해반응을 일으키기에 촉매의 내구성이 충분하지 않거나 초중질유의 금속 성분에 의해 촉매성능이 상실되는 문제점이 있다.
따라서, 수소를 효율적으로 이용할 수 있는 촉매 및 분해 공정의 개발에 대한 중요성이 대두되고 있다.
종래 기술(비특허문헌 1)에 따르면, 제올라이트 촉매에 귀금속을 담지한 중질유 생산 방법에 대하여 기재하고 있으나, 상기와 같은 종래 기술은 초중질유의 분해 조건에서 사용되기 어려운 담지체를 포함하고 있다.
(비특허문헌 1) 고체산 촉매상에서 FT WAX의 수소첨가 분해반응에 의한 중질유 생산, 정헌도 등, 한국신재생에너지학회 춘계학술대회 초록집, 2010, p114
이와 같은 기술적 배경 하에서, 본 발명자들은 예의 노력한 결과, 초중질유로부터 경질유를 제조하는 방법을 개발하기에 이르렀다.
본 발명의 목적은 초중질유의 수소화 분해 반응에 담지체를 사용하지 않은 니켈-몰리브덴늄-텅스텐 분산형 촉매를 적용하여 경질유를 제조하는 방법을 제공하는 것이다.
본 발명은 상기 과제를 해결하기 위하여 하기 단계를 포함하는 경질유의 제조 방법을 제공한다.
(a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐(NiMoWs) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계,
(b) 상기 혼합물에 수소를 첨가하는 단계 및
(c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃ 에서 2 내지 24 시간 동안 수소화 분해하는 단계.
본 발명에 따르면, 상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10°인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택될 수 있다.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 니켈/(몰리브데늄+텅스텐)의 몰비율은 0.1 내지 1일 수 있고, 몰리브데늄/텅스텐의 몰비율은 0.1 내지 3.5일 수 있다.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매는 하기 단계를 통하여 제조될 수 있다.
텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계,
상기 혼합 후 암모니아 용액을 첨가하는 단계,
상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계 및
상기 니켈 전구체 혼합 후 H2S 가스를 사용하여 300 ~ 400 ℃에서 황화 처리(sulfidation)하는 단계.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛일 수 있다.
본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 경질유의 생산방법은 중질유의 분해 반응에 일반적으로 상업적으로 사용되는 NiMo/Al2O3 촉매에 비하여 높은 반응성을 가지고 초중질유를 효율적으로 분해하여 경질유를 생산할 수 있으며, 높은 액상 생성물의 수득률은 물론, 담지체를 사용한 촉매에 비해 코크 생성을 억제하며 아스팔텐의 분해에서도 높은 활성을 나타낸다.
도 1은 다공성 담지체 촉매와 콜로이드성 또는 분자성 촉매에 따른 끓는점이 525 ℃ 이상인 잔유의 전환율 및 이에 포함된 아스팔텐의 전환율을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 제조 과정을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 XRD 분석 결과를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 합성한 후 TEM-EDX mapping 분석을 통해 각각의 성분들이 잘 분산되어 있음을 확인한 결과를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유의 분해 과정을 나타낸 것이다.
도 6은 초중질유에 포함된 아스팔텐의 구조를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용하여 분해된 생성물의 성분 함량을 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용하여 분해된 상용 액상 생성물(나프타+미들디스틸레이트+가스오일)의 질량분율을 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용하여 얻어진 고상 생성물(코크)와 아스팔텐 전환율을 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐(NiMoWs) 분산형 촉매를 이용하여 초중질유로부터 경질유를 제조하는 것을 특징으로 하는 경질유 제조방법 및 초중질유로부터 경질유를 제조하기 위한 담지체를 사용하지 않은 분산형 황화 처리된 니켈-몰리브덴늄-텅스텐(NiMoWs) 분산형 촉매에 관한 것이다.
본 발명에 있어, 분산형 촉매란 분산된 형태(well dispersed)의 촉매를 의미하는데, 촉매의 분산 정도는 촉매의 활성에 직접적인 영향을 미치기 때문에 중요한 요소가 된다.
구체적으로 본 발명은, (a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐(NiMoWs) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계; (b) 상기 혼합물에 수소를 첨가하는 단계; 및 (c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃에서 2 내지 24 시간 동안 수소화 분해하는 단계; 를 포함하는 경질유의 제조 방법을 제공한다.
본 발명에 따르면, 상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10°인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택될 수 있다.
본 발명은 초중질유의 수소화 분해 반응에 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW)를 이용하여 경질유를 제조하는 방법으로, 종래 담지체에 담지된 촉매에 해당하는 유동식 접촉 분해 촉매(FCC)를 사용하여 중질유를 분해하는 방법과 구별된다.
일반적인 중질유(heavy oil)의 수소화 분해 반응(hydrocracking)의 온도 조건은 약 270 ~ 400 ℃인 반면, 초중질유(extra heavy oil)의 수소화 분해 반응의 온도 조건은 약 370 ~ 500 ℃로서 중질유의 분해 반응 조건보다 상대적으로 더 가혹한 조건을 요구한다. 또한, 초중질유는 중질유에 비하여 과량의 금속 및 황 성분을 포함하기 때문에 분해 반응에 사용되는 촉매의 강한 내구성이 요구된다.
중질유의 경우 아스팔텐(asphaltene)과 같은 중질 물질(heavy material)이 거의 존재하지 않으며, 니켈 또는 바나듐과 같은 금속 성분이 매우 미량 포함되어 있다. 또한, 물성 역시 초중질유에 비해 우수하기 때문에 코크(coke)의 발생량도 상대적으로 적다. 따라서, 산화 알루미늄과 같은 담지체를 적용하여 분해 반응을 위한 비표면적을 증가시킴과 동시에 산성을 띄는 담지체를 사용함으로써 촉매의 활성을 증가시킨다.
다만, 담지체는 표면에 미세 기공을 다수 포함하고 있으며, 상기 기공 내에 분해 반응의 활성 구성요소인 니켈, 몰리브덴 또는 헤테로폴리산 등을 포함하고 있는 형태를 취하고 있다. 따라서, 도 1에 나타난 바와 같이, 담지체를 포함하는 촉매를 초중질유의 수소화 분해 반응에 사용할 경우, 아스팔텐과 같은 중질 물질이 담지체의 기공 안으로 침투하여 질량 이동 제한(mass transfer limitation)이 발생하고, 초중질유에 포함된 과량의 금속 성분에 의해 코크(coke)가 발생하게 되어 담지체의 기공을 막게되는 결과, 촉매의 활성이 소멸되는 문제점이 발생한다. 또한 아스팔텐은 코크를 생성시키는 전구체로 알려져 있어 아스팔텐의 분해를 통한 경질유로의 반응 유도가 본 반응에서의 중요한 요소가 될 수 있다.
따라서, 본 발명은 초중질유의 수소화 분해 반응을 위해 담지체에 담지되지 않으며, 초중질유에 포함된 과량의 금속 성분의 담지체로의 침착에 의한 촉매의 비활성이 야기되지 않으며, 상기 촉매로 금속 성분이 침착되더라도 공촉매(co-catalyst)로서 작용할 수 있다.
본 발명에 따른 담지체를 사용하지 않은 황화 니켈-몰리브덴늄-텅스텐 (NiMoW)분산형 촉매를 이용하여 초중질유를 분해할 때, 생성되는 고상(solid), 액상(liquid) 및 기상(gas) 생성물의 수득률을 통해 촉매의 활성 정도가 결정된다. 초중질유의 수소화 분해 반응에 촉매를 사용하지 않는 경우보다 담지체를 사용하지 않은 황화 니켈-몰리브덴늄-텅스텐 (NiMoW)분산형 촉매를 사용할 경우, 액상 생성물의 수득률이 증가하며, 고상 및 기상 생성물의 수득률이 감소한다.
상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 니켈/(몰리브데늄+텅스텐)의 몰비율은 0.1 내지 1인 것이 바람직하고, 1인 것이 더욱 바람직하다. 또한, 몰리브데늄/텅스텐의 몰비율은 0.1 내지 3.5인 것이 바람직하고, 1.5인 것이 더욱 바람직하다.
상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매는, 텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계; 상기 혼합 후 암모니아 용액과 같은 침전제를 첨가하는 단계; 상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계; 및 상기 니켈 전구체 혼합 후 H2S 가스를 사용하여 300 ~ 400 ℃에서 황화 처리(sulfidation)하는 단계;를 통해 제조될 수 있다.
또한, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛일 수 있다.
또한, 본 발명에 따른 경질유의 제조 방법의 유용성을 판단하기 위한 척도로서 액상 생성물의 수득률 및 C5-아스팔텐의 전환율을 이용할 수 있다. 상기 액상 수득률 및 C5-아스팔텐의 전환율을 구하는 식은 하기의 [수학식 1] 및 [수학식 2]에 기재되어 있다.
[수학식 1]
Figure PCTKR2017003621-appb-I000001
[수학식 2]
Figure PCTKR2017003621-appb-I000002
초중질유의 분해 반응을 통해 제조되는 경질유는 액상 생성물에 포함되어 있으며, 상기 액상 생성물은 끓는점이 약 35 ~ 130 ℃인 경질 나프타(Naphtha), 끓는점이 약 130 ~ 220 ℃인 중질 나프타 및 이를 제외한 경질유 및 중질유 생성물을 포함한다. 고상 생성물은 주로 코크(coke)를 의미한다. 따라서, 반응물인 초중질유로부터 고상 및 기상 생성물을 제외한 액상 생성물의 수득률을 계산함으로써 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 (NiMoW)분산형 촉매를 사용함에 따른 경질유의 제조 방법의 유용성을 판단할 수 있다.
이하, 본 발명의 이해를 위하여 구체적인 실시예를 통하여 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기의 실시예에 의해서 본 발명의 권리범위가 한정되는 것은 아니다.
1. 담지체를 사용하지 않은 황화 처리된 니켈- 몰리브덴늄 -텅스텐 분산형 촉매(NiMoW)의 제조 방법
본 발명의 일 실시예에 따른 담지체를 사용하지 않은 황화 니켈-몰리브덴늄-텅스텐 분산형 촉매는 하기 도 2에 따라 제조되었다.
먼저, 텅스텐 전구체 (ammonium metatungstate, 0, 0.16, 0.12, 0.08, 0.04, 0.2 mole W, Sigma-Aldrich, ≥66.5%)), 몰리브데늄 전구체(Ammonium heptamolybdate, 0, 0.2, 0.04, 0.08, 0.12, 0.16 mole Mo, Sigma-Aldrich, 81.0-83.0%), 암모니아 솔루션(ammonium hydroxide, 약 600 mL, Sigma-Aldrich, 28.0-30.0% NH3 basis)과 증류수 (800 mL)를 혼합하여 90 ℃에서 30분에 걸쳐 혼합물을 교반시키면서 온도를 올려주었으며, 이를 A 솔루션이라 한다.
니켈 전구체 (Nickel(Ⅱ) nitrate hexahydrate, 0.2 moles Ni, Sigma-Aldrich, 99.999%)를 증류수 (100 mL)에 용해시켜 B 솔루션을 제조하였다.
상기 A, B 솔루션을 동시에 주사기용 펌프를 이용하여 1 mL/sec의 속도로 B 솔루션을 A 솔루션에 혼합하였다. 8시간의 혼합후, 필터 종이를 이용해 침전된 물질을 분리한 후 90 ℃의 증류수로 6 L 세척과정을 거친 후, 120 ℃의 오븐에서 건조과정을 거친다. 10 Vol.% H2S 가스를 이용하여 300 ~ 400 ℃에서 2~4시간 동안 황화(sulfidation) 단계를 거쳐 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW) 제조하였다.
2. 담지체를 사용하지 않은 황화 처리된 니켈- 몰리브덴늄 -텅스텐 분산형 촉매(NiMoW)의 XRD 분석 결과
상기 실시예 1에 따라 제조된 고체 촉매는 X선 회절 분석(XRD)을 통해 상기 촉매의 구조를 분석하였다. 구체적으로, 상기 촉매의 XRD 패턴은 40 kV 및 150 mA에서 Ni-filtered Cu-Kα 복사(radiation) (λ = 0.15418 nm)으로 작동되는 X선 회절 분석기, D/MAX-2500V/PC (Rigaku)를 사용하여 상온에서 얻어졌다.
분석 결과, 황화 니켈-몰리브덴늄-텅스텐 분산형 촉매 (a) NWS, b) NMWS(0.2), c) NMWS(0.6), d) NMWS(1.5), e) NMWS(3.5), and f) NMS)는 WS2 MoS2, NiS의 결정 구조를 가지고 있는것이 확인되었다(도 3 참조).
3. 담지체를 사용하지 않은 황화 처리된 니켈- 몰리브덴늄 -텅스텐 분산형 촉매(NiMoW)를 이용한 초중질유의 수소화 분해 반응 결과
니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW)의 초중질유 수소화 분해 반응을 통한 경질유의 제조 반응의 활성을 알아보기 위해 도 5의 순서에 따라 가혹한 실험 조건 하에서 감압잔사유를 분해하여 생성물의 수득률 및 전환율 등을 계산하였다. 상기 감압잔사유는 과량의 아스팔텐을 포함하고 있으며, 상기 아스팔텐의 구조는 도 5에 나타나 있다.
우선, 100 mL 반응기에 반응물인 감압잔사유(API도 = 2.32, SK 이노베이션)를 30 g 충진하고, 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW)를 0.04 g 충진하였다. 10 bar의 수소를 통해 3회의 퍼징(purging) 과정을 거친 후 70 bar의 수소를 충진하였다. 반응 온도를 400 ℃에 맞추기 위해 30분 동안 가열하고, 정상 상태(steady state)에 도달하기 위해 10 분 동안 유지하였다. 이어서 1000 rpm에서 24시간 교반을 한 후 냉각 재킷(cooling jacket)을 통해 반응기를 상온까지 냉각한 후 생성물의 물성을 분석하였다.
초중질유의 수소화 분해 반응 후 생성물은 고상(코크), 액상(나프타, 중질유, 가스 오일, 잔여물) 및 기상 생성물로 분리되었으며, 생성된 액상 생성물은 가상 증류(Simulated distillation; SIMDIS) 분석을 통해 성분이 분석하였고, 그 결과를 [표 1] 및 하기 도 7 내지 9에 나타내었다. 하기의 [표 1] 및 도 7 내지 9에는 상기 니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW)를 적용한 초중질유의 분해 결과가 기재되어 있다.
촉매 비촉매 NiMo/Al2O3 NWS NMWS(0.2) NMWS(0.6) NMWS(1.5) NMWS(3.5) NMS
기상 생성물(중량%) 17.8 23.4 25.2 21.2 22.1 19.3 23.6 26.4
액상 생성물(중량%) 56.2 59.5 56.2 59.5 61.7 64.9 60.5 53.8
고상 생성물(중량%) 26.0 17.1 26.0 19.3 16.2 15.8 15.9 19.8
액상 생성물 분포(중량%)
C5-177 ℃(나프타) 12.0 17.5 11.6 13.1 15.4 15.9 14.9 12.8
177-343 ℃(중질유) 36.7 34.5 38.1 37.3 43.4 44.3 39.8 37.7
345-525 ℃(가스 오일) 21.3 18.9 24.7 22.8 24.2 26.4 23.7 21.6
>525 ℃(잔사유) 30.0 29.1 25.5 26.8 17.0 13.4 21.6 27.9
우선, 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매(NiMoW) 특히 황화 처리된 니켈-몰리브덴늄-텅스텐(1.5) 분산형 촉매(NiMoWS(1.5))를 초중질유의 수소화 분해 반응에 사용할 경우, 대조군(NiMo/Al2O3 상용촉매)보다 액상 생성물의 수득율이 5.4 중량% 높게 나타냈으며, 고상 생성물의 수득율은 1.3 중량% 낮게 나타냈다.
따라서, 상기의 결과를 통해 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐(1.5) 분산형 촉매(NiMoWS(1.5))의 경우, 초중질유의 수소화 분해 반응이 촉진된 것을 확인할 수 있었다.
결국, 본 발명에 따른 황화 처리된 니켈-몰리브덴늄-텅스텐(1.5) 분산형 촉매(NiMoWS(1.5))를 담지체를 사용하지 않은 분산형 촉매로 합성하여 경질유의 제조에 적용한 것이 그 특징으로, 상용촉매 촉매(NiMo/Al2O3)와 비교해 더 긍정적인 촉매 효과를 나타냄을 확인하였다.
본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 경질유의 생산방법은 중질유의 분해 반응에 일반적으로 사용되고 있는 상용 NiMo/Al2O3 촉매에 비하여 높은 반응성을 가지고 초중질유를 효율적으로 분해하여 경질유를 생산할 수 있으며, 높은 액상 생성물의 수득률은 물론, 담지체를 사용한 촉매에 비해 코크 생성을 억제할 수 있고, 아스팔텐의 분해에서도 높은 활성을 나타내어 산업상 유용하게 활용할 수 있다.

Claims (5)

  1. (a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐(NiMoWs) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계;
    (b) 상기 혼합물에 수소를 첨가하는 단계; 및
    (c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃에서 2 내지 24시간 동안 수소화 분해하는 단계;를 포함하는 경질유의 제조 방법.
  2. 제1항에 있어서,
    상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10°인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택되는 것을 특징으로 하는 경질유의 제조 방법.
  3. 제1항에 있어서,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 니켈/(몰리브데늄+텅스텐)의 몰비율은 0.1 내지 1이고, 몰리브데늄/텅스텐의 몰비율은 0.1 내지 3.5인 것을 특징으로 하는 경질유의 제조 방법.
  4. 제1항에 있어서,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매는,
    텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계;
    상기 혼합 후 암모니아 용액을 첨가하는 단계;
    상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계; 및
    상기 니켈 전구체 혼합 후 H2S 가스를 사용하여 300 ~ 400 ℃에서 황화 처리(sulfidation)하는 단계;를 통해 제조되는 것을 특징으로 하는 경질유의 제조방법.
  5. 제1항에 있어서,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛인 것을 특징으로 하는 경질유의 제조방법.
PCT/KR2017/003621 2016-12-23 2017-04-03 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 WO2018117339A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160177961 2016-12-23
KR10-2016-0177961 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018117339A1 true WO2018117339A1 (ko) 2018-06-28

Family

ID=62626680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003621 WO2018117339A1 (ko) 2016-12-23 2017-04-03 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법

Country Status (2)

Country Link
KR (2) KR20180074602A (ko)
WO (1) WO2018117339A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115450597A (zh) * 2022-10-07 2022-12-09 中国石油大学(华东) 一种稠油木质素催化共水热裂解改质用的复合型催化剂技术及其应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058639A (ko) * 2009-11-24 2011-06-01 인테베프, 에스.에이. 중질유, 초중질유 및 잔사유에 대한 수소전환 공정
KR20130048651A (ko) * 2011-11-02 2013-05-10 한국에너지기술연구원 중질 탄소원의 촉매 열분해 방법
JP2014506831A (ja) * 2010-12-30 2014-03-20 シェブロン ユー.エス.エー. インコーポレイテッド 水素化処理触媒及びそれを作製するための方法
KR20160039471A (ko) * 2014-10-01 2016-04-11 에스케이이노베이션 주식회사 유용성 니켈-몰리브데늄-텅스텐 삼원금속 촉매의 제조방법
KR20160083667A (ko) * 2015-01-02 2016-07-12 고려대학교 산학협력단 담지체를 사용하지 않은 분산형 Ni-W-S 나노 촉매를 이용한 초중질유로부터 경질유의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754448B1 (ko) * 2014-03-19 2017-07-05 고려대학교 산학협력단 이황화 텅스텐 나노 촉매를 이용한 초중질유로부터 경질유의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058639A (ko) * 2009-11-24 2011-06-01 인테베프, 에스.에이. 중질유, 초중질유 및 잔사유에 대한 수소전환 공정
JP2014506831A (ja) * 2010-12-30 2014-03-20 シェブロン ユー.エス.エー. インコーポレイテッド 水素化処理触媒及びそれを作製するための方法
KR20130048651A (ko) * 2011-11-02 2013-05-10 한국에너지기술연구원 중질 탄소원의 촉매 열분해 방법
KR20160039471A (ko) * 2014-10-01 2016-04-11 에스케이이노베이션 주식회사 유용성 니켈-몰리브데늄-텅스텐 삼원금속 촉매의 제조방법
KR20160083667A (ko) * 2015-01-02 2016-07-12 고려대학교 산학협력단 담지체를 사용하지 않은 분산형 Ni-W-S 나노 촉매를 이용한 초중질유로부터 경질유의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115450597A (zh) * 2022-10-07 2022-12-09 中国石油大学(华东) 一种稠油木质素催化共水热裂解改质用的复合型催化剂技术及其应用方法
CN115450597B (zh) * 2022-10-07 2024-03-15 中国石油大学(华东) 稠油木质素共水热裂解用复合型催化剂的使用方法

Also Published As

Publication number Publication date
KR102239025B1 (ko) 2021-04-12
KR20180074602A (ko) 2018-07-03
KR20200015663A (ko) 2020-02-12

Similar Documents

Publication Publication Date Title
JPH10192712A (ja) 硫黄と、少なくとも1つの第vb族元素と、少なくとも1つの第vib族元素とを含む混合硫化物を含む水素化精製および水素化クラッキング触媒
KR20130106826A (ko) 방향족 탄화수소의 제조 방법
KR102424491B1 (ko) 자기-지지된 다중-금속 촉매 상 나프텐 링 개방
KR20120078006A (ko) 전이금속 황화물 촉매를 이용한 방향족 제품의 제조방법
WO2015164334A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a high nanopore volume
Yue et al. From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high temperature coal tar: A simple hydrothermal modification
CN103071527B (zh) 一种制备高辛烷值石脑油的加氢裂化方法
CN103097026A (zh) 低品质烃类原料的加氢转化方法
WO2018117339A1 (ko) 담지체를 사용하지 않은 황화 처리된 니켈-몰리브덴늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법
KR101754448B1 (ko) 이황화 텅스텐 나노 촉매를 이용한 초중질유로부터 경질유의 제조 방법
CN104560177A (zh) 一种重质烃油加氢转化方法
JP4242055B2 (ja) 水素化処理用触媒およびそれを用いる炭化水素油の水素化処理方法
JP5537222B2 (ja) 水素化har油の製造方法
TW202016020A (zh) 含磷高矽分子篩及其製備方法和應用
WO2019151599A1 (ko) 니켈-텅스텐 카바이드 촉매 입자의 제조방법 및 이를 이용한 경질유의 제조방법
WO2022145740A1 (ko) 내황성이 향상된 수소화 반응용 촉매 및 이의 제조방법
Sardhar Basha et al. Effect of order of impregnation of Mo and Ni on the hydrodenitrogenation activity of NiO-MoO3/AlMCM-41 catalyst
KR20160083667A (ko) 담지체를 사용하지 않은 분산형 Ni-W-S 나노 촉매를 이용한 초중질유로부터 경질유의 제조방법
CN101735852A (zh) 一种近临界水条件下的重油悬浮床加氢方法
CN103059941B (zh) 制备高辛烷值石脑油的加氢裂化方法
CN100389178C (zh) 一种含氟加氢催化剂及其制备方法
JP2000296331A (ja) 第ivb族の2元素を含む金属酸化物上に担持される水素化処理触媒
CN104513674A (zh) 一种重油临氢转化方法
KR20190092225A (ko) 니켈-텅스텐 카바이드 촉매 입자의 제조방법 및 이를 이용한 경질유의 제조방법
US20150306581A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a high total nanopore volume

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882688

Country of ref document: EP

Kind code of ref document: A1