KR102239025B1 - 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 - Google Patents

담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 Download PDF

Info

Publication number
KR102239025B1
KR102239025B1 KR1020200012520A KR20200012520A KR102239025B1 KR 102239025 B1 KR102239025 B1 KR 102239025B1 KR 1020200012520 A KR1020200012520 A KR 1020200012520A KR 20200012520 A KR20200012520 A KR 20200012520A KR 102239025 B1 KR102239025 B1 KR 102239025B1
Authority
KR
South Korea
Prior art keywords
catalyst
molybdenum
oil
heavy oil
tungsten
Prior art date
Application number
KR1020200012520A
Other languages
English (en)
Other versions
KR20200015663A (ko
Inventor
이관영
허영걸
김찬훈
정광식
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20200015663A publication Critical patent/KR20200015663A/ko
Application granted granted Critical
Publication of KR102239025B1 publication Critical patent/KR102239025B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 담지체를 사용하지 않은 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유를 제조하는 방법에 관한 것이다.
본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 경질유의 생산방법은 중질유의 분해 반응에 일반적으로 상업적으로 사용되는 NiMo/Al2O3 촉매에 비하여 높은 반응성을 가지고 초중질유를 효율적으로 분해하여 경질유를 생산할 수 있으며, 높은 액상 생성물의 수득률은 물론, 담지체를 사용한 촉매에 비해 코크 생성을 억제하며 아스팔텐의 분해에서도 높은 활성을 나타낸다.

Description

담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법{Method of preparing light oil from extra heavy oil using unsupported NiMoW sulfide dispersed catalyst}
본 발명은 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유를 제조하는 방법에 관한 것으로 보다 상세하게는 수소화 분해 반응에 담지체를 사용하지 않고 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용하여 경질유를 제조하는 방법에 관한 것이다.
국내의 경우 휘발유, 경유뿐만 아니라 다양한 석유화학원료를 원유로부터 생산하고 있다. 현재까지 시추가 용이하고 휘발유, 경유 및 납사 성분이 많이 포함된 경질 원유를 주로 사용하고 있었으나, 이러한 고급 경질 원유의 매장량이 한계에 도달함에 따라 경질유 기반의 석유화학에서 중질유 또는 초중질유 기반으로 패러다임의 전환이 있을 것으로 예상된다.
또한, 전 세계 원유 수요 예측량은 2010년 약 8천만 배럴/일로 중국, 인도 등 아시아와 중남미 신흥 발전국의 소비량 증가로 인해서 매년 1.7% 가량 증가할 것으로 내다보며 2015년경에는 9천만 배럴을 넘어설 것으로 전망되고 있다. 소비원유 중 전세계적으로 경질유(light distillate)와 중질유(middle distillate) 소비량이 많을 뿐만 아니라 증가폭도 각각 2.8%와 4.4%로 다른 생산품에 비해 높은 경향을 나타내고 있다. 특히 중남미와 아시아 태평양지역의 신흥 발전국들의 발전과 함께 경질유 및 중질유의 소비는 더욱 증가할 것으로 예상된다.
상기와 같은 문제를 해결하기 위해 경질유분을 대체할 에너지원에 대한 다양한 연구가 진행 중에 있으나, 기존의 생산 설비를 이용할 수 있는 에너지 개발이 쉽지 않기 때문에 현 시점에서 매장량이 풍부한 오일 샌드 또는 베네수엘라의 초중질유에 대한 관심이 매우 높은 상황이다.
초중질유란, 미국석유협회가 정한 API(American Petroleum Institute) 값 기준으로 10°이하를 갖는 원유를 말하며, 베네수엘라 산(産) 원유 및 오일샌드에서 추출한 원유 성분인 역청(bitumen)이 초중질유에 해당된다. 또한, 원유를 증류할 때 발생하는 감압잔사유(vacuum residue) 역시 매우 낮은 API 값을 가지기 때문에 초중질유로 분류될 수 있다.
중질유의 분해법으로는 접촉분해법, 수소화분해법 및 열분해법 등과 같은 다양한 방법이 존재한다. 초중질유의 경질화를 위한 열분해 공정은 고온의 열을 통해 탄소-탄소(C-C) 결합을 끊어 점도를 낮추거나 코크의 생산을 통해 액상의 수소/탄소(H/C) 분율을 높이는 쪽으로 연구가 진행되고 있다. 상기와 같은 열분해법은 초기 운전비용이 적게 들고 비교적 용이한 방법에 해당되어 많이 이용되고 있으나, 과량의 탄소 손실에 의해 공정 효율이 떨어지며 수소의 손실이 발생해 고급 원유의 생산이 어렵다는 단점이 존재한다.
또한, 수소화 분해법에서 다양한 촉매들의 가능성이 보고되고 있으나, 초중질유와 같이 보다 더 극한의 조건에서 분해반응을 일으키기에 촉매의 내구성이 충분하지 않거나 초중질유의 금속 성분에 의해 촉매성능이 상실되는 문제점이 있다.
따라서, 수소를 효율적으로 이용할 수 있는 촉매 및 분해 공정의 개발에 대한 중요성이 대두되고 있다.
종래 기술(비특허문헌 1)에 따르면, 제올라이트 촉매에 귀금속을 담지한 중질유 생산 방법에 대하여 기재하고 있으나, 상기와 같은 종래 기술은 초중질유의 분해 조건에서 사용되기 어려운 담지체를 포함하고 있다.
고체산 촉매상에서 FT WAX의 수소첨가 분해반응에 의한 중질유 생산, 정헌도 등, 한국신재생에너지학회 춘계학술대회 초록집, 2010, p114
이와 같은 기술적 배경 하에서, 본 발명자들은 예의 노력한 결과, 초중질유로부터 경질유를 제조하는 방법을 개발하기에 이르렀다.
본 발명의 목적은 초중질유의 수소화 분해 반응에 담지체를 사용하지 않은 니켈-몰리브데늄-텅스텐 분산형 촉매를 적용하여 경질유를 제조하는 방법을 제공하는 것이다.
본 발명은 상기 과제를 해결하기 위하여,
(a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐(NiMoWS) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계;
(b) 상기 혼합물에 수소를 첨가하는 단계; 및
(c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃ 에서 수소화 분해하는 단계;
를 포함하는 경질유의 제조 방법을 제공한다.
본 발명에 따르면, 상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10˚인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택될 수 있다.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 몰리브데늄/텅스텐의 몰비율은 0.1 내지 3.5일 수 있다.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매는,
텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계;
상기 혼합 후 암모니아 용액을 첨가하는 단계;
상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계; 및
상기 니켈 전구체 혼합 후 H2S/H2 가스를 사용하여 300 ~ 500 ℃에서 황화 처리(sulfidation)하는 단계;를 통해 제조될 수 있다.
본 발명에 따르면, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛일 수 있다.
본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 경질유의 생산방법은 중질유의 분해 반응에 일반적이고, 상업적으로 사용되는 NiMo/Al2O3 촉매에 비하여 높은 반응성을 가지고 초중질유를 효율적으로 분해하여 경질유를 생산할 수 있으며, 높은 액상 생성물의 수득률은 물론, 담지체를 사용한 촉매에 비해 코크 생성을 억제하며 아스팔텐의 분해에서도 높은 활성을 나타낸다.
도 1은 다공성 담지체 촉매와 콜로이드성 또는 분자성 촉매에 따른 끓는점이 525 ℃ 이상인 잔유의 전환율 및 이에 포함된 아스팔텐의 전화율을 나타낸 것이다.
도 2는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 HRTEM 이미지이다.
도 3은 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 XRD 분석 결과를 나타낸 것이다.
도 4는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 합성한 후 TEM-EDX mapping 분석을 통해 각각의 성분들이 잘 분산되어 있음을 확인한 결과를 나타낸 것이다.
도 5는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유의 분해 과정을 나타낸 것이다.
도 6은 초중질유에 포함된 아스팔텐의 구조를 나타낸 것이다.
도 7은 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 H2-TPD(H2-temperature programmed desorption) 결과를 나타낸 것이다.
도 8의 a)는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용하여 분해된 생성물의 성분 함량을 나타낸 것이고, 도 8의 b)는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용하여 분해된 상용 액상 생성물(나프타+중질유+가스오일)의 질량분율을 나타낸 것이다.
도 9는 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용하여 얻어진 고상 생성물(코크)과 아스팔텐 전환율을 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐(NiMoWs) 분산형 촉매를 이용하여 초중질유로부터 경질유를 제조하는 것을 특징으로 하는 경질유 제조방법 및 초중질유로부터 경질유를 제조하기 위한 담지체를 사용하지 않은 분산형 황화 처리된 니켈-몰리브데늄-텅스텐(NiMoWS 또는 NMWS로 표시) 분산형 촉매에 관한 것이다.
본 발명에 있어, 분산형 촉매란 분산된 형태(well dispersed)의 촉매를 의미하는데, 촉매의 분산 정도는 촉매의 활성에 직접적인 영향을 미치기 때문에 중요한 요소가 된다.
구체적으로 본 발명은, (a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐(NiMoWS) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계; (b) 상기 혼합물에 수소를 첨가하는 단계; 및 (c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃ 에서 수소화 분해하는 단계;를 포함하는 경질유의 제조 방법을 제공한다.
본 발명에 따르면, 상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10˚인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택될 수 있다.
본 발명은 초중질유의 수소화 분해 반응에 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매(NiMoWS)를 이용하여 경질유를 제조하는 방법으로, 종래 담지체에 담지된 촉매에 해당하는 유동식 접촉 분해 촉매(FCC)를 사용하여 중질유를 분해하는 방법과 구별된다.
일반적인 중질유(heavy oil)의 수소화 분해 반응(hydrocracking)의 온도 조건은 약 270 ~ 400 ℃ 인 반면, 초중질유(extra heavy oil)의 수소화 분해 반응의 온도 조건은 약 370 ~ 500 ℃ 로서 중질유의 분해 반응 조건보다 상대적으로 더 가혹한 조건을 요구한다. 또한, 초중질유는 중질유에 비하여 과량의 금속 및 황 성분을 포함하기 때문에 분해 반응에 사용되는 촉매의 강한 내구성이 요구된다.
중질유의 경우 아스팔텐(asphaltene)과 같은 중질 물질(heavy material)이 거의 존재하지 않으며, 니켈 또는 바나듐과 같은 금속 성분이 매우 미량 포함되어 있다. 또한, 물성 역시 초중질유에 비해 우수하기 때문에 코크(coke)의 발생량도 상대적으로 적다. 따라서, 산화알루미늄과 같은 담지체를 적용하여 분해 반응을 위한 비표면적을 증가시킴과 동시에 산성을 띄는 담지체를 사용함으로써 촉매의 활성을 증가시킨다.
다만, 담지체는 표면에 미세 기공을 다수 포함하고 있으며, 상기 기공 내에 분해 반응의 활성 구성요소인 니켈, 몰리브덴 또는 헤테로폴리산 등을 포함하고 있는 형태를 취하고 있다. 따라서, 도 1에 나타난 바와 같이, 담지체를 포함하는 촉매를 초중질유의 수소화 분해 반응에 사용할 경우, 아스팔텐과 같은 중질 물질이 담지체의 기공 안으로 침투하여 질량 이동 제한(mass transfer limitation)이 발생하고, 초중질유에 포함된 과량의 금속 성분에 의해 코크(coke)가 발생하게 되어 담지체의 기공을 막게되는 결과, 촉매의 활성이 소멸되는 문제점이 발생한다. 또한, 아스팔텐은 코크를 생성시키는 전구체로 알려져 있어 아스팔텐의 분해를 통한 경질유로의 반응 유도가 본 반응에서의 중요한 요소가 될 수 있다.
따라서, 본 발명은 초중질유의 수소화 분해 반응을 위해 담지체에 담지되지 않으며, 초중질유에 포함된 과량의 금속 성분의 담지체로의 침착에 의한 촉매의 비활성이 야기되지 않으며, 상기 촉매로 금속성분이 침착되더라도 공촉매(co-catalyst)로서 작용할 수 있다.
본 발명에 따른 담지체를 사용하지 않은 황화 니켈-몰리브데늄-텅스텐 (NiMoWS)분산형 촉매를 이용하여 초중질유를 분해할 때, 생성되는 고상(solid), 액상(liquid) 및 기상(gas) 생성물의 수득률을 통해 촉매의 활성 정도가 결정된다. 초중질유의 수소화 분해 반응에 촉매를 사용하지 않는 경우보다 담지체를 사용하지 않은 황화 니켈-몰리브데늄-텅스텐 (NiMoW)분산형 촉매를 사용할 경우, 액상 생성물의 수득률이 증가하며, 고상 및 기상 생성물의 수득률이 감소한다.
상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 니켈/(몰리브데늄+텅스텐)의 몰비율은 0.1 내지 1인 것이 바람직하다.
또한, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 몰리브데늄/텅스텐의 몰비율은 0.1 내지 3.5인 것이 바람직하고, 1.5인 것이 더욱 바람직하다.
상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매는, 텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계; 상기 혼합 후 암모니아 용액을 첨가하는 단계; 상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계; 및 상기 니켈 전구체 혼합 후 H2S/H2 가스를 사용하여 300 ~ 500 ℃에서 황화 처리(sulfidation)하는 단계;를 통해 제조될 수 있다.
또한, 상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛일 수 있다.
이하, 본 발명의 이해를 위하여 구체적인 실시예를 통하여 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기의 실시예에 의해서 본 발명의 권리범위가 한정되는 것은 아니다.
실험 방법
담지체를 사용하지 않은 황화 처리된 니켈- 몰리브데늄 -텅스텐 분산형 촉매(NiMoWS 또는 NMWS로 표시)의 제조
먼저, 텅스텐 전구체 (ammonium metatungstate (0, 0.16, 0.12, 0.08, 0.04, and 0.2 mole W, Sigma-Aldrich, ≥66.5%)), 몰리브데늄 전구체(Ammonium heptamolybdate (0.2, 0.04, 0.08, 0.12, 0.16, and 0 mole Mo, Sigma-Aldrich, 81.0-83.0%))와 증류수 (800 mL)를 혼합하여 90 ℃에서 교반하여 A 솔루션을 제조하였다. A 솔루션의 pH를 수산화암모늄 (약 600 ml, Sigma-Aldrich, 28.0-30.0% NH3 기준)을 첨가함으로써 약 9.8-10.0으로 유지시켰다. 다음으로, 니켈 전구체 (Nickel (II) nitrate hexahydrate (0.2 moles Ni, Sigma-Aldrich, 99.999%))를 90℃의 증류수 (100 mL)에 교반하여 용해시켜 B 솔루션을 제조하였다. 이어서 용액 B를 용액 A에 90℃에서 서서히 첨가할 때 침전이 관찰되었고, 용액을 100℃에서 8 시간 동안 환류시켰다. 현탁액을 실온으로 냉각 및 여과한 후(Whatman No. 1, 7 cm), 뜨거운 물로 세척하고 110℃에서 건조시켰다. 약 37.5-38.2 g의 물질이 회수되었다. 5 vol.% H2S/H2 (60 mL/min)를 사용하여 4시간 동안 400℃ 및 1기압의 관형로(tubular furnace)에서 황화 처리(Sulfidation)하였으며, 이때, 촉매에서 물리 흡착된 가스를 제거하기 위해, 비활성 가스(N2)(60 mL/min)로 1시간 퍼징하여, 본 발명에 따른 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매(NiMoWS) 제조하였다.
석유 정제 공정에서 수소 처리 및 수소 첨가 분해 반응을 위해 상업적으로 사용되는 NiMo/Al2O3 기반 촉매 (BASF)를 비교예로 준비하였다. 반응 시험 전에 NiMo/Al2O3 촉매를 분쇄하고 40-75 ㎛로 체질 한 후 400℃에서 5% H2S/H2  가스 하에서 4시간 동안 활성화시켰다.
촉매의 특성 측정
황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매(NiMoWS)의 원소 함량 (W, Mo 및 Ni)은 ICP-OES (Thermo Scientific, iCAP 6300)로 측정하였으며, 촉매의 약식(abbreviated expressions)을 하기 표 1에 나타내었다.
Figure 112020011009793-pat00001
TEM 분석 및 EDX 원소 매핑은 300kV에서 작동되는 TEM 기기(Tecnai, G2 F30ST)를 사용하여 수행하였다. 분산된 NiMoWS(x) 샘플을 헥산 (Sigma-Aldrich, 95%)에 분산시키고 Cu 그리드 위에 떨어 뜨려 주변 조건에서 건조시켰다.
XRD(Rigaku, D / MAX-2500V / PC 장비) 분석은 Ni-filtered Cu-Kα 방사선 (λ = 1.5418Å)을 사용하여 수행하였다. XRD 측정은 실온에서 10°에서 90°까지의 2-theta 범위 (2°/분의 스캐닝 속도)에 대해 얻어졌다.
벨프로그램 (Bell, BELCAT-B)을 사용하여 H2-TPD(H2-temperature programmed desorption) 분석을 수행하였다. 촉매(50mg)를 U형 석영 튜브에 넣고 1시간 동안 30 mL/분의 헬륨 흐름 하에 200℃에서 전처리하였다. 샘플을 100℃로 냉각시키고, 10% H2/N2 가스를 30 mL/분의 유속으로 공급하고, 이를 1시간 동안 유지하였다. H2를 0.5 시간 동안 퍼지하기 위해 가스를 헬륨으로 전환하였다. 마지막으로, 촉매를 헬륨 유속 30 mL/min에서 10℃/min의 속도로 850℃로 가열하였다. 탈착된 가스는 질량 분석기 (Bell, BELMass)로 분석하였다.
촉매 반응 시험
감압잔사유(vacuum residue, VR)의 수소 첨가 분해 반응 시험은 오토클레이브 회분식 반응기 (Parr Instrument, 4598 Micro Reactor)를 사용하여 수행하였다. VR (30 g) 및 촉매 (40 mg)를 100 mL 반응기에 함께 첨가하였다. 반응기를 수소 가스 (+ 99.99 %)로 3회 세정하여 공기를 제거한 다음 내부 압력이 70 bar에 도달할 때까지 수소 가스로 채웠다. 이어서, 반응기를 400℃ (12.5℃/분)로 가열하였다. 반응을 1,000 rpm에서 24시간 동안 교반하면서 수행하였다(도 5 참조). 액체 및 고체 생성물은 종래 문헌(H.-J. Eom, D.-W. Lee, S. Kim, S.-H. Chung, Y.G. Hur, K.-Y. Lee, Hydrocracking of extra-heavy oil using Cs-exchanged phosphotungstic acid (CsxH3 - xPW12O40, x = 1-3) catalysts, Fuel, 126 (2014) 263-270.)에 기재된 방법대로 회수하였다.
생성물 (액체(l), 고체(s) 및 기체(g))의 수율은 하기 식 1 내지 식 3을 이용하여 계산하였다.
[식 1]
Figure 112020011009793-pat00002
[식 2]
Figure 112020011009793-pat00003
[식 3]
Figure 112020011009793-pat00004
상업용 액상 제품의 수율(%)은 하기 식 4에 따라 계산하였다.
[식 4]
Figure 112020011009793-pat00005
상기 식 4에서 10.4%의 값은 이미 VR 반응물에 함유된 경유의 중량% 이다. VR 특성은 하기 표 2에 기재된 바와 같다.
Figure 112020011009793-pat00006
C5-아스팔텐의 전환율은 하기 식 5에 따라 계산하였다.
[식 5]
Figure 112020011009793-pat00007
n- 펜탄에 의해 분리된 아스팔텐 종은 C5-아스팔텐으로 표시되며, 아스팔텐의 구조는 하기 도 6에 나타내었다. 또한, 상기 식 5에서 23.1 %의 값은 VR 반응물에서 C5-아스팔텐의 질량 분율을 나타낸다.
초중질유의 분해 반응을 통해 제조되는 경질유는 액상 생성물에 포함되어 있으며, 상기 액상 생성물은 끓는점이 약 35 ~ 130 ℃인 경질 나프타(Naphtha), 끓는점이 약 130 ~ 220 ℃인 중질 나프타 및 이를 제외한 경질유 및 중질유 생성물을 포함한다. 고상 생성물은 주로 코크(coke)를 의미한다. 따라서, 반응물인 초중질유로부터 고상 및 기상 생성물을 제외한 액상 생성물의 수득률을 계산함으로써 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 (NiMoWS)분산형 촉매를 사용함에 따른 경질유의 제조 방법의 유용성을 판단할 수 있다.
모의 증류 (ASTM 방법 D-7169)를 사용하여 액체 생성물의 질량 분율을 측정 하였다. 가스 크로마토 그래피 분석 (Perkin-Elmer, Clarus 600)을 사용하여 각 분획의 중량%를 측정하였다.
황 오염물의 함량을 원소 분석 (FISONS Instruments, 1108 CHNS-O)으로 측정 하였다. 밀도 측정기 (Anton Paar, DMA 35) 및 ASTM 방법 D-287을 사용하여 액체 생성물의 API 중력 값을 측정하였다.
결과 및 고찰
촉매의 특성
도 2는 분산된 NMWS (x) 샘플의 HRTEM 이미지를 도시한 것이다. 모든 샘플은 스택(stack)과 곡률(curvature)이 있는 MoS2 및 WS2 층의 일반적인 구조를 나타내었다. MoS2와 WS2의 굴곡 형태는 더 많은 활성 부위를 가짐으로써 수소화 활성을 선호한다는 것이 보고된바 있다(C. Yin, Y. Wang, S. Xue, H. Liu, H. Li, C. Liu, Influence of sulfidation conditions on morphology and hydrotreating performance of unsupported Ni-Mo-W catalysts, Fuel, 175 (2016) 13-19.). 도 2의 라멜라 구조는 0.61 내지 0.65 nm 사이의 층간 간격 및 각각 3 및 9와 같은 적층 수를 가짐을 확인하였다.
분산된 NMWS (x) 샘플의 XRD 패턴을 도 3에 나타내었다. 준비된 모든 시료는 이황화 텅스텐 (PDF # 08-0237), 이황화 몰리브덴 (PDF # 37-1492) 및 황화 니켈 (PDF # 44-1418)에 해당하는 회절 피크를 나타내었다. 2θ=14.3°에서 피크(002)의 강도는 c 방향으로 적층된 2차원 WS2/MoS2 슬라브(slabs)의 특성을 나타낸다. 또한, Ni3S2의 회절 피크도 모든 샘플에서 명확하게 구별할 수 있었다.
도 4는 분산된 NMWS (x) 샘플의 TEM-EDX 원소 매핑을 나타낸다. 이를 통해 Ni, Mo, W 및 S 등 모든 구성 원소가 샘플 내에 균일하게 분포되어 있음을 확인하였다.
수소의 탈착량을 평가하기 위해 H2-TPD를 적용하였고, 분산된 NMWS (x) 샘플의 H2-TPD 결과를 도 7에 나타내었다. 수소 탈착 속도(H2-TPD)는 분산된 NMWS (x) 샘플의 실행 시간과 온도의 함수로서 샘플 탈착량에 대해 정규화되었다. 기록된 TPD 패턴은 복잡하고 몇 가지 최대값을 나타내었으며 이를 통해 금속 황화물 촉매에 약하고 강하게 결합된 다양한 형태의 수소가 나타났다. 분산된 NMWS (x) 샘플의 탈착 프로파일은 온도 범위에 따라 약 (-300 ℃), 중간 (300-500 ℃) 또는 강한 (500 ℃)로 표시되었다. 탈착된 수소의 양은 표 3에 요약 된 바와 같이 적분에 의해 추정하였다. 측정 결과, NMWS(1.5)로부터 탈착된 H2의 총량은 NMS보다 높은 측정값을 나타낸 NWS보다 약 4.2 배 더 높은 것으로 확인되었다. 이를 통해 텅스텐과 몰리브덴을 함께 사용하면 수소 탈착 능력이 크게 향상됨을 확인하였다.
Figure 112020011009793-pat00008
또한, 본 발명에 따른 NMWS (x) 샘플의 수소 탈착 총량은 NMWS (0.2) <NMWS (0.6) <NMWS (3.6) <NMWS (1.5)의 순서로 나타났다. 특히, 수소 (약 500 ℃ 미만)의 약한 및 중간 결합의 양은 NMWS (1.5)에서 총 탈착 된 수소의 약 72%를 차지하는 것으로 나타났다. 이는 다른 NMWS (x) 샘플에 비해 수소의 약 결합 및 중간 결합의 탈착량과 비율에 중요한 이점을 제공한다. 또한, Mo 및 W가 수소 탈착에 미치는 이 상승효과는 수소 첨가 분해 반응 성능에 긍정적인 영향을 줄 것으로 기대되었다.
분산된 NMWS (x) 촉매의 활성
도 8의 (a)는 고형물 (코크스), 액체 및 가스 생성물의 질량 분율을 나타내며, 액체 생성물은 가상 증류(Simulated distillation, SIMDIS) 분석(Y.G. Hur, M.-S. Kim, D.-W. Lee, S. Kim, H.-J. Eom, G. Jeong, M.-H. No, N.S. Nho, K.-Y. Lee, Hydrocracking of vacuum residue into lighter fuel oils using nanosheet-structured WS2 catalyst, Fuel, 137 (2014) 237-244.)에 의해 잔사유(residue)(525 ℃), 가스오일(gas oil) (343-525 ℃ ), 중질유(middle distillate) (177-343 ℃) 및 나프타(naphtha) (-177 ℃)로 끓는점에 따라 분류하였다. 촉매가 VR의 수소 첨가 분해에 사용되지 않은 경우, 액체 질량 분율은 단지 56.2 중량% 이고, 기체 및 고체의 촉매는 17.8 및 26.0 중량% 이다. 그러나 분산된 NMWS (x) 촉매를 사용하면 액체 질량 분율이 증가하고 고체 분율은 감소한다. 분산된 NMS 촉매 및 분산된 NWS 촉매를 적용할 때, 액체 질량 분율은 각각 53.8 및 56.5 중량% 였고, NMWS (0.2), NMWS (0.6), NMWS (1.5) 및 NMWS (3.6)가 각각 사용되었을 때 59.5, 61.7, 64.9 및 60.5 중량%로 증가함을 확인하였다.
도 8의 (b)는 분산된 NMWS (x) 촉매가 사용될 때의 상업용 액체 연료 생성물 (즉, 나프타, 중질유, 가스오일 등)의 수율을 나타낸다. NMWS (x) 촉매의 사용은 상업용 액체 연료 제품의 생산성을 NMWS (0.2) <NMWS (0.6) <NMWS (3.6) <NMWS (1.5)의 순서로 효과적으로 향상시켰다.
도 9는 C5-아스팔텐 전환율 및 고체 생성물 (코크스)의 수율을 나타낸다. 수소 첨가 분해 촉매를 시험할 때, 아스팔텐은 코크스 형성의 주요 선구 물질이기 때문에 아스팔텐 전환은 중요한 활동 지수로 간주된다(F. Trejo, J. Ancheyta, Kinetics of asphaltenes conversion during hydrotreating of Maya crude, Catalysis Today, 109 (2005) 99-103.). 측정 결과, 분산된 NiMoWS (x) 촉매가 사용될 때, C5-아스팔텐 전환율이 증가하였고, 코크스 생성물의 수율은 실질적으로 감소하였다. 특히 분산된 NMWS (1.5) 촉매는 가장 낮은 코크스 형성(15.8 중량 %) 및 가장 높은 C5-아스팔텐 전환율(93.7 %)을 보임을 확인하였다.
하기 표 4에 수소화 분해 반응 활성도와 황 함량 및 API 중력 값과 같은 액체 생성물의 품질 측정값을 측정하여 나타내었다. 측정 결과, 분산된 NMWS (1.5) 촉매가 사용될 때, 액체 생성물의 황 함량은 0.52 중량%로 상당히 감소됨을 확인하였다. 한편, API 중력 값은 액체 제품의 품질을 분류하는 데 사용되는 가장 중요한 요소인데, VR 반응물은 2.3° API 중력 값을 가졌지만, 분산된 NMWS (1.5) 촉매 하에서의 VR의 수소 첨가 분해는 API 중력을 20.4°로 증가시킴을 확인하였다. 이러한 결과는 수소 첨가 분해 생성물이 중질 원유로 분류될 수 있음을 의미한다. 황 제거 전환율과 API 중력은 분산된 NMWS (x) 촉매의 Mo/W 비율에 큰 영향을 받는 것으로 나타났으며, 구체적으로 분산된 NMWS (0.2) <NMWS (0.6) <NMWS (3.6) <NMWS (1.5) 순으로 측정되었다. 특히 NMWS (1.5) 촉매는 가장 높은 수소 탈착 능력과 금속-황 결합 에너지 (EMS)와의 상관관계로 인해 가장 높은 촉매 성능을 보임을 확인하였다.
Figure 112020011009793-pat00009
마지막으로, 수소 첨가 분해 반응에서 분산된 NMWS (1.5) 촉매를 황화 처리된 NiMo/Al2O3 상업용 촉매와 비교하였으며, 촉매 성능의 비교 결과를 하기 표 5에 나타내었다.
Figure 112020011009793-pat00010
측정 결과, 본 발명에 따른 NMWS (1.5) 분산형 촉매와 비교하여, NiMo/Al2O3 촉매는 보다 낮은 액체 생성물 수율 (59.5 중량 %)을 나타낸 반면, 가스 (23.4 중량 %) 및 고체 (17.1 중량 %) 생성물 수율은 더 높은 것으로 나타났다. 또한, NiMo/Al2O3 촉매는 C5-아스팔텐 전환, 황 전환 및 API 중력 값의 관점에서 더 낮은 촉매 성능을 가지는 것으로 나타났다. 이러한 결과를 통해 본 발명에 따른 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매가 VR의 수소 첨가 분해에서 경쟁력 있는 촉매 성능을 가짐을 확인하였다.
결론
VR의 수소 첨가 분해에서 본 발명에 따른 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 활성은 반응 공정에서 촉매의 수소 탈착 정도를 결정하는 Mo/W 비율에 크게 영향을 받는다. 본 발명에 따른 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매는 모우 우수한 촉매 성능을 가짐을 확인하였으며, 특히 NMWS (1.5) 분산형 촉매는 VR의 수소 첨가 분해 (hydrocracking)에서 가장 우수한 촉매 성능을 보였으며 상업용 액체 연료 생산성이 가장 우수한 것으로 나타났다. 또한, 본 발명에 따른 촉매는 모두 높은 C5-아스팔텐 전환율과 낮은 코크스 형성 특성을 보였으며, 상업용 촉매와 비교할 때, 수소 첨가 분해 반응 및 수소화 반응에 대한 모든 지표에 대해 우수한 촉매 성능을 나타냄을 확인하였다. 특히 NMWS (1.5) 분산형 촉매를 VR (API 중력 = 2.3 °)의 수소 첨가 분해에 적용하면 무거운 원유 수준의 생성물 (API 중력 = 20.4°)이 생성되었으며, 황제거 환원 및 코크스 형성 억제에서 가장 뛰어난 성능을 가지는 것을 확인하였다.
결론적으로, 본 발명에 따른 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매는 수소 첨가 분해 반응 및 수소화 반응에 대한 모든 지표에 대해 우수한 촉매 성능을 나타내었는바, 초중질유로부터 경질유를 생산하는 공정에 매우 효과적으로 적용될 수 있음을 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (3)

  1. (a) 초중질유 및 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐(NiMoWS) 분산형 촉매를 혼합하여 혼합물을 생성하는 단계;
    (b) 상기 혼합물에 수소를 첨가하는 단계; 및
    (c) 상기 수소가 첨가된 혼합물을 380 ~ 500 ℃ 에서 수소화 분해하는 단계;를 포함하고,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매는, 텅스텐 전구체와 몰리브데늄 전구체를 혼합하는 단계; 상기 혼합 후 암모니아 용액을 첨가하는 단계; 상기 암모니아 용액 첨가 후 니켈 전구체를 혼합하는 단계; 및 상기 니켈 전구체 혼합 후 H2S/H2 가스를 사용하여 300 ~ 500 ℃에서 황화 처리(sulfidation)하는 단계;를 통해 제조되며,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 몰리브데늄/텅스텐의 몰비율은 1.5인 것을 특징으로 하는 경질유의 제조방법.
  2. 제1항에 있어서,
    상기 초중질유는 API(American Petroleum Institute) 비중이 1 ~ 10˚인 원유, 역청(bitumen), 감압잔사유(vacuum residue) 또는 이의 혼합물로부터 선택되는 것을 특징으로 하는 경질유의 제조방법.
  3. 제1항에 있어서,
    상기 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매의 크기는 100 nm 내지 1 ㎛인 것을 특징으로 하는 경질유의 제조방법.
KR1020200012520A 2016-12-23 2020-02-03 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법 KR102239025B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160177961 2016-12-23
KR1020160177961 2016-12-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170178340A Division KR20180074602A (ko) 2016-12-23 2017-12-22 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법

Publications (2)

Publication Number Publication Date
KR20200015663A KR20200015663A (ko) 2020-02-12
KR102239025B1 true KR102239025B1 (ko) 2021-04-12

Family

ID=62626680

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170178340A KR20180074602A (ko) 2016-12-23 2017-12-22 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법
KR1020200012520A KR102239025B1 (ko) 2016-12-23 2020-02-03 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170178340A KR20180074602A (ko) 2016-12-23 2017-12-22 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법

Country Status (2)

Country Link
KR (2) KR20180074602A (ko)
WO (1) WO2018117339A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102657635B1 (ko) * 2021-08-12 2024-04-16 재단법인 포항산업과학연구원 침상 코크스 전구체 조성물
CN115450597B (zh) * 2022-10-07 2024-03-15 中国石油大学(华东) 稠油木质素共水热裂解用复合型催化剂的使用方法
CN116351440B (zh) * 2023-02-27 2024-08-20 上海交通大学 低温等离子体一步制备硫化钼/镍催化材料的方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679322B2 (en) * 2009-11-24 2014-03-25 Intevep, S.A. Hydroconversion process for heavy and extra heavy oils and residuals
JP6097224B2 (ja) * 2010-12-30 2017-03-15 シェブロン ユー.エス.エー. インコーポレイテッド 水素化処理触媒を作製するための方法
KR101318146B1 (ko) * 2011-11-02 2013-10-16 한국에너지기술연구원 중질 탄소원의 촉매 열분해 방법
KR101754448B1 (ko) * 2014-03-19 2017-07-05 고려대학교 산학협력단 이황화 텅스텐 나노 촉매를 이용한 초중질유로부터 경질유의 제조 방법
KR20160039471A (ko) * 2014-10-01 2016-04-11 에스케이이노베이션 주식회사 유용성 니켈-몰리브데늄-텅스텐 삼원금속 촉매의 제조방법
KR20160083667A (ko) * 2015-01-02 2016-07-12 고려대학교 산학협력단 담지체를 사용하지 않은 분산형 Ni-W-S 나노 촉매를 이용한 초중질유로부터 경질유의 제조방법

Also Published As

Publication number Publication date
WO2018117339A1 (ko) 2018-06-28
KR20180074602A (ko) 2018-07-03
KR20200015663A (ko) 2020-02-12

Similar Documents

Publication Publication Date Title
KR102239025B1 (ko) 담지체를 사용하지 않은 황화 처리된 니켈-몰리브데늄-텅스텐 분산형 촉매를 이용한 초중질유로부터 경질유의 제조방법
KR102089037B1 (ko) 수소화전환 다중-금속 촉매 및 이의 제조 방법
JP5535845B2 (ja) 芳香族炭化水素の製造方法
JP5033631B2 (ja) 有機剤を含む前駆体から作製されるバルクNi−Mo−W触媒
JP2023113704A (ja) 水素化反応用触媒及びこれの製造方法
TW200424011A (en) Mesoporous material with active metals
JP6841912B2 (ja) 自己担持多金属触媒上のナフテン環開環
Loricera et al. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel
CN101016479B (zh) 使用具有控制孔隙度的催化剂的选择性氢化方法
CN112871200B (zh) 一种从合成气制备轻质芳烃的催化剂体系及其应用
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
WO2016065253A1 (en) Synthesis of molybdenum sulfide (mos2) and tungsten sulfide (ws2) catalyst
KR20160142297A (ko) 알루미노실리케이트 촉매의 제조 방법, 알루미노실리케이트 촉매 및 단환 방향족 탄화수소의 제조 방법
CN117960231A (zh) 含有增强酸性位点分布的稳定y沸石的中间馏分加氢裂化催化剂
KR101555000B1 (ko) 중질유 개질용 수첨분해 촉매
KR101754448B1 (ko) 이황화 텅스텐 나노 촉매를 이용한 초중질유로부터 경질유의 제조 방법
CA2966404C (en) Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
Zepeda et al. Positive phosphorous effect during co-processing of pyrolysis bio-oils and S-content model compounds over sulfide NiMo/P/HMS-Al catalysts
RU2662232C1 (ru) Способ гидрокрекинга углеводородного сырья
US11148124B2 (en) Hierarchical zeolite Y and nano-sized zeolite beta composite
RU2603776C1 (ru) Способ гидрокрекинга углеводородного сырья
KR102283321B1 (ko) 구아이아콜의 수소첨가탈산화 반응용 촉매 및 이를 이용한 구아이아콜로부터 탄화수소 화합물의 선택적 제조방법
JP4680520B2 (ja) 低硫黄軽油の製造方法および環境対応軽油
KR20160083667A (ko) 담지체를 사용하지 않은 분산형 Ni-W-S 나노 촉매를 이용한 초중질유로부터 경질유의 제조방법
KR20190092225A (ko) 니켈-텅스텐 카바이드 촉매 입자의 제조방법 및 이를 이용한 경질유의 제조방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant