WO2019131827A1 - 廃水の処理方法 - Google Patents

廃水の処理方法 Download PDF

Info

Publication number
WO2019131827A1
WO2019131827A1 PCT/JP2018/048026 JP2018048026W WO2019131827A1 WO 2019131827 A1 WO2019131827 A1 WO 2019131827A1 JP 2018048026 W JP2018048026 W JP 2018048026W WO 2019131827 A1 WO2019131827 A1 WO 2019131827A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
precipitate
treated water
aluminum
heavy metal
Prior art date
Application number
PCT/JP2018/048026
Other languages
English (en)
French (fr)
Inventor
大輔 原口
林 浩志
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to PE2020000855A priority Critical patent/PE20210782A1/es
Priority to KR1020207017808A priority patent/KR102543786B1/ko
Priority to AU2018397949A priority patent/AU2018397949A1/en
Priority to CA3087015A priority patent/CA3087015A1/en
Priority to EP18894256.9A priority patent/EP3733612B1/en
Priority to CN201880084084.8A priority patent/CN111542499B/zh
Priority to MX2020006734A priority patent/MX2020006734A/es
Priority to US16/957,464 priority patent/US11479490B2/en
Publication of WO2019131827A1 publication Critical patent/WO2019131827A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention recovers gypsum with a low amount of fluorine from acid wastewater containing heavy metals such as copper, arsenic and zinc in addition to sulfuric acid, fluorine and chlorine, like non-ferrous metal smelter wastewater,
  • the present invention relates to a method for treating wastewater that sufficiently removes the heavy metal from the solution at low cost.
  • the waste water of nonferrous metal smelters is rich in heavy metals such as copper, arsenic and zinc in addition to sulfuric acid, fluorine and chlorine, and when discharging this waste out of the system, it complies with waste water regulations In order to do so, it is necessary to sufficiently remove these heavy metals. Also, in general, the waste water is a strongly acidic waste water containing sulfate ions, so it is often neutralized by adding a calcium compound, but it is expected to recover and reuse gypsum produced by this neutralization treatment. It is done.
  • the clear liquid is mixed with a neutralizer to convert sulfuric acid to gypsum and solid-liquid separation to obtain gypsum final solution, and gypsum final solution is mixed with a sulfurizing agent to sulfide heavy metals, and the obtained sulfide sediment is obtained
  • Secondary slurry including the secondary slurry and the secondary clear fluid, and the secondary slurry from which the secondary clear fluid is separated in the secondary sulfide process is returned to the primary sulfide process and mixed with waste acid
  • the processing method of the waste acid which is done (patent literature 1).
  • Patent No. 6206287 JP, 2017-105651 A Japanese Patent Publication No. 59-34644 Japanese Patent Laid-Open No. 9-192675
  • the treatment method of Patent Document 2 is a method of washing gypsum mixed with fluorine with water or sulfuric acid, but in this embodiment, 50 mL of a washing solution is required for 10 g of gypsum, and the washing solution is discharged as a large amount of wastewater. I will. This increase in wastewater is disadvantageous both in environmental and economic aspects. Further, in order to wash gypsum having a large amount of fluorine, in the case of washing leakage, stirring or insufficient washing, fluorine is not sufficiently reduced from the gypsum. In order to stabilize the cleaning, it is sufficient to increase the amount of solution added to gypsum to lower the solid concentration, but this also increases the amount of cleaning solution and wastewater, and additionally requires the wastewater treatment of the new cleaning fluid containing fluorine. Become.
  • Patent Document 3 aluminum is added to waste sulfuric acid containing fluorine to keep the fluorine in the liquid, and a calcium compound is added thereto to form gypsum, and then solid-liquid separation is performed. A large amount of aluminum, fluorine and heavy metals are dissolved in the separated filtrate, and the treatment of aluminum, fluorine and heavy metals in the solution becomes a problem.
  • the present invention solves the above-mentioned problems in the conventional treatment method, and provides a treatment method excellent in the removal effect of fluorine and heavy metal contained in waste liquid.
  • the present invention is a method for treating waste liquid, which has solved the above problems by the following constitution.
  • a method of treating waste liquid for recovering heavy metal by recovering gypsum with low fluorine content from acidic waste liquid containing fluorine and heavy metal which comprises dissolving aluminum in the acid waste liquid to convert fluorine in the solution to fluoroaluminic acid
  • Aluminum dissolving step to stably dissolve it as ions to form a heavy metal reduced precipitate and separate it into a first treated water and the heavy metal reduced precipitate; after the removal of the heavy metal reduced precipitate, the first treatment
  • a gypsum recovery step of adding a calcium compound to water under pH 4 or less to form gypsum and separating it into a second treated water and the gypsum, and after removing the gypsum, the second treated water
  • the pH of the third treated water is adjusted to pH 5.5 to 7.0 to suppress the amount of sediment and to suppress precipitation of arsenic and zinc to suppress the precipitation
  • the method for treating waste liquid of the present invention it is possible to provide a method for treating waste liquid which can more effectively remove fluorine and heavy metals contained in the waste liquid.
  • the waste liquid treatment method is a waste liquid treatment method for recovering gypsum from low acid content from acid waste liquid containing fluorine and heavy metal and removing heavy metal, which is a liquid in which aluminum is dissolved in the acid waste liquid.
  • a ferric compound is added to the second treated water to form a ferric hydroxide precipitate, and the heavy metal in the liquid is coprecipitated in the precipitate to form a third treated water and a heavy metal coprecipitate.
  • Process of heavy metal coprecipitation After removing the heavy metal co-precipitate, an alkali is added to the third treated water, and the pH is adjusted to 5.5 to 9.5 to form a deposit containing aluminum and fluorine while suppressing the amount of the deposit.
  • the acidic waste liquid containing the fluorine and the heavy metal which is the processing object of the present embodiment is, for example, a waste water generated in a process of smelting a non-ferrous metal sulfide mineral or the like such as copper smelting.
  • non-ferrous smelter wastewater is a strongly acidic wastewater of pH 0.8 to 2.0 containing heavy metals such as copper, arsenic and zinc and further containing sulfuric acid and fluorine.
  • Al melting process In the waste liquid treatment method of the present embodiment, aluminum is dissolved in an acidic waste liquid containing fluorine and heavy metal to stably dissolve fluorine in the liquid as a fluoroaluminate ion, and at the same time, a reduced precipitate of heavy metal is formed. And an aluminum addition step of solid-liquid separation into the first treated water and the heavy metal reduced precipitate.
  • aluminum ions Al 3+
  • the aluminum ions are complexed with fluorine ions (F ⁇ ) in the solution Since the formed fluoroaluminate ions (AlF 2+ , AlF 2 + , AlF 3 0 ) are formed, fluorine is stably dissolved in the liquid.
  • Al / F 0.3 mol
  • the amount of fluorine in gypsum becomes 0.3 mass% or more.
  • the amount of fluorine in gypsum can be made 0.2 mass% or less.
  • the pH of the acidic waste liquid in the aluminum dissolving step is preferably 4.0 or less. As shown in Example 1, when the pH is 4.1 or more, it is not preferable because arsenic in the solution is adsorbed to gypsum and the arsenic content rapidly increases.
  • suspended particles and the like containing a fine heavy metal when suspended particles and the like containing a fine heavy metal are present in the acidic waste solution, these suspended particles and the like can be incorporated into the reduced sediment to be flocculated and separated.
  • the main component of the reduced precipitate is copper or copper hydride, it can be recovered and used as a raw material for copper smelting.
  • the fluorine ion contained in the above filtrate is stably dissolved by forming a complex ion with the aluminum ion, and therefore calcium fluoride (CaF 2 ) is hardly generated even if calcium carbonate etc. is added, and the fluorine to gypsum is Since contamination can be avoided, gypsum with a low fluorine content can be obtained.
  • the formation of gypsum preferably has a pH of 4.0 or less. When the pH exceeds 4.0, heavy metals are precipitated as hydroxides and coprecipitated in gypsum, which is not preferable.
  • a ferric compound is added to a residual solution (second treated water) from which gypsum is separated to form a ferric hydroxide deposit, and heavy metals in the solution are adsorbed and coprecipitated by the deposit. A large amount of fluorine remains together with the dissolved aluminum in the residual liquid from which the gypsum has been separated.
  • An alkali such as calcium hydroxide is added to this residual solution to adjust to a pH of 5.0 or higher to form a precipitate containing aluminum or fluorine and solid-liquid separation can be carried out.
  • the treatment method of the present embodiment has a heavy metal coprecipitation step of selectively removing heavy metals such as arsenic from the liquid prior to removal of aluminum and fluorine.
  • a ferric compound such as ferric chloride
  • second treated water residual liquid
  • heavy metals such as arsenic and molybdenum in the solution are said water
  • the coprecipitation in the ferric oxide deposit allows solid-liquid separation into the third treated water and heavy metal co-precipitate to remove heavy metals such as arsenic and molybdenum.
  • the heavy metal co-precipitate is particularly concentrated in high concentrations of arsenic and iron, it can be used as a raw material of arsenic compounds and iron compounds.
  • the pH of the second treated water of the heavy metal coprecipitation step is preferably in the range of pH 3.0 to 4.0.
  • the pH of the gypsum formation step is preferably 4.0 or less, and when a ferric compound is added, the pH necessarily decreases. Therefore, when the pH is significantly reduced, an alkali such as calcium hydroxide is added.
  • the pH may be adjusted to a range of 3.0 to 4.0.
  • the residual liquid obtained by solid-liquid separation of the heavy metal coprecipitate contains fluorine dissolved in aluminum and waste water originally contained in the waste water, and cadmium remaining after separation of the heavy metal coprecipitate, Zinc is dissolved.
  • a neutralization agent such as calcium hydroxide is added to make the solution an alkaline region of pH 9.5 to pH 11.8, and hydroxide It is known to produce things.
  • Wastewater treatment sludge is generally treated repeatedly in the smelting process or is disposed in landfills at the final disposal site.
  • the amount of fuel used in the smelting process increases, and in the case of landfilling, the increase in the amount of landfill causes the shortage of the final disposal site, so the increase in the amount of sludge generation is avoided There is a need.
  • the liquid property of the third treated water is adjusted to pH 9.5 to pH 11.8 in one step in order to suppress the formation of layered double hydroxide and avoid an increase in the amount of sludge formation.
  • the aluminum is selectively precipitated by adjusting the pH to a little lower than this and adjusting to a pH of 5.5 to 9.5, preferably a pH of 5.5 to 6.5. It is difficult to form layered double hydroxide under pH 5.5 to 9.5, while almost all aluminum in the solution forms hydroxide to precipitate, so by adjusting to the above pH An excessive increase in the amount of sludge generation can be avoided to form an aluminum deposit, which can be efficiently removed by solid-liquid separation.
  • a neutralizing agent calcium hydroxide, calcium oxide, sodium hydroxide, potassium hydroxide and the like can be used.
  • the fluorine in the third treated water reacts with the fluorine in the liquid to form calcium fluoride (CaF 2) to form a fluorine compound.
  • CaF 2 calcium fluoride
  • the produced calcium fluoride has a good filterability and can greatly improve solid-liquid separation.
  • sodium fluoride and potassium fluoride which are formed when sodium hydroxide and potassium hydroxide are used as a neutralizing agent are easily dissolved, the fluorine ions in the solution are adsorbed to the aluminum hydroxide precipitate, so aluminum
  • fluorine can be removed from the liquid.
  • the main components of these deposits recovered by solid-liquid separation into the fourth treated water and the precipitates containing aluminum and fluorine are aluminum and fluorine, and therefore, they can be used as aluminum resources or fluorine resources.
  • the concentration in the solution gradually decreases, but the pH exceeds 7.0 and becomes alkaline.
  • the pH in the range of 5.5 to 7.0 in order to suppress the formation of the precipitate of zinc and arsenic and promote the precipitation of aluminum and fluorine.
  • Aluminum and fluorine precipitates produced in this pH range can be used as raw materials for firing aluminum resources and fluorine resources such as cement since they are less contaminated with zinc and arsenic.
  • the above-described series of treatment steps recover gypsum with a low amount of fluorine and heavy metals, and the amount of fluorine and heavy metals in the waste water can be released to the outside of the system because it is reduced to meet the waste water regulations.
  • the pH of the alkali-neutralized water in the neutralization deposit removal step is pH 9.5 to 11.8, in order to release it, the drainage standard value must be adjusted to pH 5.8 or more and 8.6 or less. Therefore, it is better to add an acid to reverse neutralize.
  • the recovered gypsum and sediment can be effectively used as a cement raw material.
  • the treatment method of the present embodiment by dissolving aluminum in the wastewater, the stable dissolution of fluorine and the generation of heavy metal deposit simultaneously proceed, so the treatment can be efficiently proceeded, and fluorine is stably dissolved in the liquid. Since gypsum is produced in a state where it is allowed to flow, no fluorine is mixed into the gypsum, and gypsum having an extremely small amount of fluorine can be obtained. Also, it is not necessary to wash the gypsum with a large amount of chemical such as sulfuric acid. Therefore, the amount of drainage can be reduced. Furthermore, since the treatment method of this embodiment does not use a sulfiding agent, hydrogen sulfide is not generated, and the working environment is safe.
  • heavy metals such as arsenic and molybdenum are adsorbed on ferric hydroxide precipitates and separated after gypsum recovery, so the removal effect of these is high and the burden of removal operation is also small.
  • the pH is adjusted to pH 9.5 to pH 11.8 in one step to remove hydroxide when removing aluminum, and the pH is slightly lower than pH 5.5 to pH 11.8. Since adjustment to the range of 9.5 selectively deposits aluminum, layered double hydroxide is not formed, and the amount of sludge generation is not increased. Therefore, the burden of sludge treatment is greatly reduced. Specifically, an increase in fuel consumption can be avoided in the smelting treatment of sludge, and in landfill disposal, the amount of landfill can be suppressed to prolong the life of the final disposal site.
  • concentration was measured based on JIS K 0102: 2013 factory drainage test method.
  • Example 1 Dissolution of Aluminum Copper aluminum smelter waste solution (fluorine concentration 2.9 g / L, arsenic concentration 6.2 g / L, copper concentration 1.5 g / L, pH 1.1) 1L metal aluminum foil (Mitsubishi Aluminum Corp., purity 99.5% or more) After adding 30 ⁇ m in thickness, 2 mm in width, 4 mm in length and stirring for 30 minutes, the formed precipitate was separated into solid and liquid. Calcium carbonate was added to the filtrate to form gypsum, and the contents of fluorine, arsenic and copper contained in the gypsum recovered by solid-liquid separation were measured.
  • 1L metal aluminum foil Mitsubishi Aluminum Corp., purity 99.5% or more
  • the dissolution of aluminum is preferably such that the Al / F molar ratio is 0.4 or more and pH 4 or less.
  • Example 2 Heavy metal coprecipitation
  • Metal aluminum powder is added to the same copper smelter waste solution as in Example 1 under the condition of Al / F molar ratio 0.4, pH 4 to form a precipitate, and solid-liquid separation is carried out, and calcium carbonate is added to this filtrate Produced gypsum.
  • Ferric chloride and calcium hydroxide were added to the residue obtained by solid-liquid separation of this gypsum to form a ferric hydroxide deposit.
  • Arsenic was adsorbed to the precipitate for solid-liquid separation.
  • the residual arsenic concentration and residual fluorine concentration in the solution at each pH are shown in FIG. As shown in FIG. 2, it is confirmed that arsenic is sufficiently coprecipitated and removed at pH 3.0 or higher. On the other hand, when the pH is higher than 4.0, it is understood that the fluorine concentration is rapidly reduced and the fluorine is also coprecipitated. From this result, it can be understood that the range of pH 3.0 to 4.0 is optimum to selectively remove arsenic and the like.
  • Example 3 Suppression of the amount of deposit
  • Calcium hydroxide was sequentially added to the residue (pH 4.0) obtained by separating the ferric hydroxide precipitate of Example 2 to form an aluminum precipitate and a fluorine precipitate (calcium fluoride).
  • the change in the amount of deposit formation and the aluminum concentration corresponding to the change in pH with the added amount of calcium hydroxide is shown in FIG.
  • FIG. 3 it can be confirmed that when the pH is 5.5 or more, almost all the aluminum becomes a deposit.
  • the amount of sediment increases until pH 7.0, and when the pH exceeds 9.5, the amount of sediment increases rapidly again. It is believed that this is due to the formation of Friedel's salt. From this result, it can be understood that the range of pH 5.5 to 9.5 is suitable, and the range of pH 5.5 to 7.0 is preferable, in order to ensure precipitation of aluminum without increasing the amount of precipitate.
  • Example 4 Selective deposition of fluorine
  • calcium hydroxide was sequentially added to the remaining solution (pH 4.0) from which ferric hydroxide precipitate was separated to form aluminum precipitate and fluorine precipitate (calcium fluoride).
  • Changes in residual fluorine concentration and residual arsenic concentration in the liquid corresponding to changes in pH with the addition amount of calcium hydroxide are shown in FIG.
  • the concentration of fluorine in the solution sharply decreases in the range of pH 4.0 to pH 5.5, decreases to about 0.1 g / L at about pH 5.5, and the concentration is almost zero at about pH 7 become.
  • the pH after 2 hours was pH 2.10.
  • the gypsum slurry was filtered to recover the gypsum and the treated water B, and the surface of the gypsum was thoroughly washed with pure water [gypsum recovery step].
  • the treated water B from which gypsum is separated is heated to 40 ° C. with a water bath, iron chloride (FeCl 3 ) is added so that the ferric iron (III) concentration becomes 4.0 g / L, and the pH adjuster Calcium hydroxide was added as it was and stirred for 1 hour to coprecipitate heavy metals.
  • the pH after stirring was 3.91.
  • the heavy metal coprecipitated slurry was filtered to obtain treated water C and heavy metal coprecipitate (heavy metal coprecipitation step).
  • Treated water C was heated to 40 ° C. with a water bath, calcium hydroxide was added as a pH adjuster and stirred for 1 hour to form a precipitate.
  • the pH after stirring was 6.0.
  • the slurry containing the formed precipitate was filtered to recover the treated water D and the precipitate.
  • the surface of this deposit was thoroughly washed with pure water to obtain a deposit of aluminum and fluorine (aluminium and fluorine removing step).
  • the treated water D was added with calcium hydroxide as a pH adjuster at normal temperature, and stirred for 1 hour to form a neutralized precipitate.
  • the pH after stirring was 11.81.
  • the slurry containing the precipitate was filtered to obtain neutralized treated water E and alkali neutralized precipitate [neutralization step].
  • the results are shown in Table 4.
  • the fluorine in the recovered gypsum is 0.05% by mass, which is much less.
  • the amount of arsenic contained in the treated water C was small, and it was confirmed that heavy metals were coprecipitated and separated.
  • the amount of aluminum and fluorine contained in the treated water D is significantly small, and aluminum and fluorine can be effectively recovered as deposits.
  • the amount of heavy metals contained in the treated water E after the neutralization step is less than the regulation of waste water, and the burden of waste water treatment is small.
  • the amount of the precipitate (kg-dray / m 3 ) is 4.9 kg of reduced precipitate, 14.3 kg of coprecipitate, 11.1 kg of aluminum and fluorine precipitate, 2.4 kg of neutralized precipitate (total 27.8 kg), Comparative Example 1 Much less than the amount of sediment on the
  • Comparative Example 1 Raw wastewater having the same composition as in Example 5 was heated to 55 ° C. with a water bath, calcium carbonate was added and stirred for 2 hours to produce gypsum. The pH after stirring for 2 hours was pH 1.81. The slurry containing gypsum was filtered to recover gypsum and treated water B2, and the surface of gypsum was thoroughly washed with pure water [gypsum recovery step]. Next, calcium hydroxide was added as a pH adjuster to the treated water B2 at normal temperature, and the mixture was stirred for 1 hour. The pH after 1 hour was 11.81 [neutralization step].
  • the slurry containing the precipitate generated by this neutralization treatment was filtered to recover the neutralized precipitate (the amount of precipitate 41.6 kg) and the treated water D2.
  • the amount of fluorine contained in the recovered gypsum is 1.52% by mass, which is much more than the amount of fluorine contained in the gypsum recovered in Example 5, and the amount of sediment is also greater than in Example 5.
  • waste liquid capable of more effectively removing fluorine and heavy metals contained in waste liquid while suppressing contamination of fluorine with gypsum and sludge formation in the waste liquid treatment process.

Abstract

この廃液の処理方法では、酸性廃液にアルミニウムを溶解して第1の処理水と重金属還元澱物とに分離するアルミニウム溶解工程、前記第1の処理水にpH4以下の液性下でカルシウム化合物を添加して第2の処理水と石膏とに分離する石膏回収工程、前記第2の処理水に第二鉄化合物を添加して第3の処理水と重金属共沈澱物とに分離する重金属共沈工程、前記第3の処理水にアルカリを添加して第4の処理水とアルミニウムおよびフッ素を含む澱物とに分離するアルミニウムおよびフッ素除去工程、前記第4の処理水にアルカリを添加してアルカリ中和処理水と重金属水酸化物の中和澱物とに分離する中和工程を有する。

Description

廃水の処理方法
 本発明は、非鉄金属製錬所廃水のように、硫酸、フッ素、塩素に加えて、銅、ヒ素、および亜鉛などの重金属を含有する酸性廃水から、フッ素量の少ない石膏を回収し、さらに残液から該重金属を低コストで十分に除去する廃水の処理方法に関する。
 本願は、2017年12月27日に、日本に出願された特願2017-250886号に基づき優先権を主張し、その内容をここに援用する。
 非鉄金属製錬所の廃水には硫酸、フッ素、塩素に加えて、銅、ヒ素、および亜鉛などの重金属が多く含まれており、この廃水を系外に放出する際には、排水規制に適合するよう、これらの重金属を十分に除去する必要がある。また、一般に該廃水は硫酸イオンを含む強酸性廃水であるのでカルシウム化合物を添加して中和処理されていることが多いが、この中和処理によって生じる石膏を回収して再利用することが期待されている。
 非鉄金属製錬所廃水などの処理方法として以下の方法が知られている。
(a)銅製錬で発生する廃酸に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む1次スラリーと1次清澄液とに分離する1次硫化工程と、1次清澄液に中和剤を混合して硫酸を石膏とし、固液分離して石膏終液を得る石膏製造工程と、石膏終液に硫化剤を混合して重金属を硫化し、得られた硫化澱物を含む2次スラリーと2次清澄液とに分離する2次硫化工程とを備え、2次硫化工程において2次清澄液を分離した2次スラリーを1次硫化工程に戻し、廃酸と混合する廃酸の処理方法(特許文献1)。
(b)非鉄製錬において発生する排ガスから得た廃酸に、Caを含むアルカリ剤を加えて該廃酸を中和し、この中和処理で生じた石膏に含まれるフッ素を水または硫酸を用いて洗浄する廃酸石膏の製造方法(特許文献2)。
(c)フッ素を含む廃硫酸に該廃硫酸に含まれるフッ素量の0.5倍以上のアルミニウムを添加した後にアルカリ剤でpH5.6以下に中和する廃硫酸の処理方法(特許文献3)。
(d)フッ素、セレン又はこれらの化合物のいずれか1種以上を含む廃水にアルミニウム塩を添加して凝集フロックを形成させた後に沈殿分離を行い、分離した上澄水に液体キレート剤を加えて反応させ、さらに該反応液にアルミニウム塩を添加して固形物を凝集させた後に固液分離する廃水の処理方法(特許文献4)。
特許第6206287号公報 特開2017-105651号公報 特公昭59-34644号公報 特開9-192675号公報
 特許文献1の処理方法では、硫化剤によって溶存重金属を硫化物として沈殿除去しているが、非鉄金属製錬所廃水のように強酸性の溶液に硫化剤を添加すると有害な硫化水素ガスが発生するために危険であり、安全面に問題がある。また、揮散した硫化水素分の硫化剤は重金属の沈殿除去に寄与しないため反応効率が低い。さらに、この処理方法は、1次硫化工程で石膏を製造しているが、この硫化処理では廃水中のフッ素は除去されないため、多量のフッ素が石膏に混入する欠点がある。
 特許文献2の処理方法は、フッ素が混入した石膏を水もしくは硫酸で洗浄する方法であるが、この実施例では石膏10gに対して50mLの洗浄液を必要とし、洗浄液が大量の廃水として排出されてしまう。この廃水の増大は環境面および経済面の何れにおいても不利である。またフッ素量の多い石膏を洗浄するため、洗い漏らし、撹拌や洗浄不十分などの場合には、石膏からフッ素が十分に低減されない。洗浄を安定させるためには石膏への溶液の添加量を増やして固形分濃度を下げればよいが、そうするとやはり洗浄液や廃水量が多くなり、さらに新たなフッ素を含む洗浄水の廃水処理が必要になる。
 特許文献3の処理方法では、フッ素を含む廃硫酸にアルミニウムを添加してフッ素を液中にとどめ、これにカルシウム化合物を添加して石膏を生成させた後に固液分離しているが、石膏を分離した濾液には多量のアルミニウムとフッ素と重金属が溶存しており、液中のアルミニウムとフッ素と重金属の処理が問題になる。
 特許文献4の処理方法は、廃水にアルミニウム塩を添加して、pH6~8に調整することによって、水酸化アルミニウムを析出させ、廃水中のSS成分(懸濁物質:Suspended Solids)である石膏、フッ化カルシウム(CaF)を上記水酸化アルミニウムのフロックに取り込ませると共にフッ素イオンの一部を該水酸化アルミニウムに吸着させて除去する方法であるが、澱物が石膏とフッ素含有沈殿物の混合物となってしまっているため澱物を資源として有効利用することが難しい。さらに、廃液に含まれる銅やヒ素を十分に除去することができない。
 本発明は、従来の処理方法における上記問題を解決したものであり、廃液に含まれるフッ素および重金属の除去効果に優れ処理方法を提供する。
 本発明は、以下の構成によって上記課題を解決した、廃液の処理方法である。
〔1〕フッ素および重金属を含有する酸性廃液から低フッ素量の石膏を回収して重金属を除去する廃液の処理方法であって、前記酸性廃液にアルミニウムを溶解して液中のフッ素をフルオロアルミン酸イオンにして安定に溶存させると共に重金属還元澱物を生成させて、第1の処理水と前記重金属還元澱物とに分離するアルミニウム溶解工程、前記重金属還元澱物の除去後に、前記第1の処理水にpH4以下の液性下でカルシウム化合物を添加して石膏を生成させて、第2の処理水と前記石膏とに分離する石膏回収工程、前記石膏除去後に、前記第2の処理水に第二鉄化合物を添加して水酸化第二鉄澱物を生成させ、該澱物に液中の重金属を吸着させて共沈させて、第3の処理水と重金属共沈澱物とに分離する重金属共沈工程、前記重金属共沈澱物を除去した後に、前記第3の処理水にアルカリを添加し、pH5.5~9.5に調整して澱物量を抑制しつつアルミニウムおよびフッ素を含む澱物を生成させて、第4の処理水と前記アルミニウムおよびフッ素を含む澱物とに分離するアルミニウムおよびフッ素除去工程、前記アルミニウムおよびフッ素を含む澱物の除去後に、さらに前記第4の処理水にアルカリを添加してpH9.5~11.8に調整して重金属水酸化物の中和澱物を生成させて、アルカリ中和処理水と前記重金属水酸化物の中和澱物とに分離する中和工程を有することを特徴とする廃液の処理方法。
〔2〕前記アルミニウムおよびフッ素除去工程において、前記第3の処理水の液性をpH5.5~7.0に調整して澱物量を抑制すると共にヒ素および亜鉛の澱物化を抑制してフッ素とアルミニウムを沈澱させる上記[1]に記載する廃液の処理方法。
〔3〕前記フッ素および重金属を含有する酸性廃液が非鉄金属製錬所の廃水である上記[1]または上記[2]に記載する廃液の処理方法。
 本発明の廃液の処理方法によれば、廃液に含まれるフッ素および重金属をより効果的に除去することができる廃液の処理方法を提供可能である。
本発明の廃液の処理方法の概略を示す工程図。 実施例2のフッ素濃度とヒ素濃度の変化を示すグラフ。 実施例3の澱物生成量とアルミニウム濃度の変化を示すグラフ。 実施例4のフッ素濃度とヒ素濃度と亜鉛濃度の変化を示すグラフ。
 以下、本発明の実施形態の一例について図を参照して詳細に説明するが、本発明はこれらの実施形態に限定して解釈されるものではない。
 本実施形態の廃液の処理方法は、フッ素および重金属を含有する酸性廃液から低フッ素量の石膏を回収して重金属を除去する廃液の処理方法であって、前記酸性廃液にアルミニウムを溶解して液中のフッ素をフルオロアルミン酸イオンにして安定に溶存させると共に重金属還元澱物を生成させて、第1の処理水と前記重金属還元澱物とに分離するアルミニウム溶解工程、前記重金属還元澱物の除去後に、前記第1の処理水にpH4以下の液性下でカルシウム化合物を添加して石膏を生成させて、第2の処理水と前記石膏とに分離する石膏回収工程、前記石膏除去後に、前記第2の処理水に第二鉄化合物を添加して水酸化第二鉄澱物を生成させ、該澱物に液中の重金属を共沈させて、第3の処理水と重金属共沈澱物とに分離する重金属共沈工程、前記重金属共沈澱物を除去した後に、前記第3の処理水にアルカリを添加し、pH5.5~9.5に調整して澱物量を抑制しつつアルミニウムおよびフッ素を含む澱物を生成させて、第4の処理水と前記アルミニウムおよびフッ素を含む澱物とに分離するアルミニウムおよびフッ素除去工程、前記アルミニウムおよびフッ素を含む澱物の除去後に、さらに前記第4の処理水にアルカリを添加してpH9.5~11.8に調整して重金属水酸化物の中和澱物を生成させて、アルカリ中和処理水と前記重金属水酸化物の中和澱物とに分離する中和工程を有することを特徴とする廃液の処理方法である。
 本実施形態の廃液の処理方法の概略を図1の工程図に示す
 本実施形態の処理対象であるフッ素および重金属を含有する酸性廃液は、例えば、銅製錬など非鉄金属の硫化鉱物等を製錬する工程で発生する廃水である。一般に、非鉄製錬所の廃水は銅、ヒ素、および亜鉛などの重金属を含み、さらに硫酸およびフッ素を含有するpH0.8~2.0の強酸性廃水である。
〔アルミニウム溶解工程〕
 本実施形態の廃液の処理方法は、フッ素および重金属を含有する酸性廃液に、アルミニウムを溶解して液中のフッ素をフルオロアルミン酸イオンにして安定に溶存させると共に重金属の還元澱物を生成させて、第1の処理水と前記重金属還元澱物とに固液分離するアルミニウム添加工程を有する。
 アルミニウムを溶解させることによって、液中にアルミニウムイオン(Al3+)が供給され、次式(1)~(3)に示すように、このアルミニウムイオンが液中のフッ素イオン(F)と錯体化したフルオロアルミン酸イオン(AlF2+、AlF 、AlF )を形成するので、フッ素が液中に安定に溶存するようになる。
Al3+(aq)+F(aq)→AlF2+(aq)  (1)
AlF2+(aq)+F(aq)→AlF (aq)  (2)
AlF (aq)+F(aq)→AlF (aq)  (3)
 液中のフッ素イオンがアルミニウムイオンとフルオロアルミン酸イオンを形成して安定に溶存することによって、次工程でカルシウム化合物が添加されても、フッ化カルシウム(CaF)の生成が抑制され、生成した石膏にフッ化カルシウムが混入するのを避けることができ、フッ素量の少ない石膏を得ることができる。
 さらに、アルミニウムが溶解する際に、次式(4)及び(5)に示すように、還元反応を生じる。例えば、アルミニウムは銅よりもイオン化傾向が大きいので、アルミニウムの溶解によって液中の銅イオン(Cu2+)は還元されて析出し、あるいは還元した銅がヒ酸イオン(AsO 3-)と反応してヒ化銅の沈殿を生じる。なお、亜鉛のイオン化傾向はアルミニウムに近いので、亜鉛の大部分は液中に溶存して残る。
2Al(s)+3Cu2+(aq)→2Al3+(aq)+3Cu(s)  (4)
Al(s)+3Cu(s)+AsO 3-(aq)+6H→Al3+(aq)+Cu3As(s)+6HO  (5)
 アルミニウムの溶解量は、液中のフッ素量に対して、モル比で、Al/F=0.4以上~0.8以下の範囲が好ましい。アルミニウムの溶解量がAl/F=0.3モルではフッ素の錯イオン化が不十分であるので、石膏を生成させたときに石膏中のフッ素量が多くなり、Al/F=0.4モル以上であれば石膏中のフッ素量を大幅に低減することができる。
 具体的には、実施例1に示すように、Al/F=0.3モルでは石膏中のフッ素量が0.3質量%以上になる。一方、Al/F=0.4モルでは石膏中のフッ素量を0.2質量%以下にすることができる。
 アルミニウム溶解工程の酸性廃液の液性はpH4.0以下が好ましい。実施例1に示すように、pH4.1以上になると、液中のヒ素が石膏に吸着してヒ素含有量が急激に多くなるので好ましくない。
 このように、酸性廃液にアルミニウムを溶解させて還元反応を生じさせることによって液中の銅やヒ素を還元澱物として析出させ、固液分離して除去することができる。この還元反応は酸化還元電位が+400mV(vs.SHE)以下であれば良好に進行する。
 また、酸性廃液に微細な重金属を含有する懸濁粒子等が存在している場合、これらの懸濁粒子等を還元澱物に取り込ませて凝集分離することができる。処理工程の初期に重金属を除去することによって、後段の澱物に重金属が混入するのを防止し、また後段処理における中和剤の添加量を従来プロセスよりも低減することができる。還元澱物の主成分は銅やヒ化銅であるので、これを回収して銅熔錬の原料として用いることができる。
〔石膏回収工程〕
 アルミニウムを溶解して生じた還元澱物を固液分離した濾液(第1の処理水)について、次式(6)に示すように、カルシウム化合物を添加して石膏を生成させ、第2の処理水と石膏とに固液分離して石膏を回収する。石膏の生成によって液中の硫酸イオンが除去される。カルシウム化合物は炭酸カルシウム、水酸化カルシウム、酸化カルシウム、あるいはこれらを主成分として含む石灰類を用いることができる。
HSO(aq)+CaCO(s)+HO →CaSO・2HO(s)+CO(g)  (6)
 上記濾液に含まれるフッ素イオンはアルミニウムイオンと錯イオンを形成して安定に溶存しているので、炭酸カルシウム等を添加してもフッ化カルシウム(CaF)が生成し難く、石膏へのフッ素の混入を避けることができるので、フッ素含有量の少ない石膏を得ることができる。また、廃水中に微細な重金属を含有する懸濁粒子等が存在していたとしても前工程で凝集分離されているので、重金属含有量の少ない石膏を回収することができる。石膏の生成はpH4.0以下が好ましい。pH4.0を上回ると重金属類が水酸化物として沈殿したり、石膏に共沈してしまうため好ましくない。
〔重金属共沈工程〕
 石膏を分離した残液(第2の処理水)に第二鉄化合物を添加して水酸化第二鉄澱物を生成させ、該澱物に液中の重金属を吸着させて共沈させる。
 石膏を分離した残液には、溶解させたアルミニウムと共にフッ素が多く残留している。この残液に水酸化カルシウムなどのアルカリを添加し、pH5.0以上の液性に調整してアルミニウムやフッ素を含む澱物を生成させて固液分離することができるが、液中にヒ素やモリブデンなどの重金属が大量に含まれていると、これらの重金属がアルミニウムやフッ素を含む澱物に過剰に混入して回収したフッ素の品位を大幅に低下させ、またこれらの重金属の分離回収も難しくなると云う問題がある。
 そこで本実施形態の処理方法は、アルミニウムとフッ素の除去に先立ち、液中からヒ素等の重金属を選択的に除去する重金属共沈工程を有する。石膏を分離した残液(第2の処理水)に塩化第二鉄などの第二鉄化合物を添加して水酸化第二鉄を沈澱させると、液中のヒ素やモリブデンなどの重金属は該水酸化第二鉄澱物に共沈するので、第3の処理水と重金属共沈澱物とに固液分離してヒ素やモリブデンなどの重金属を除去することができる。また、この重金属共沈澱物にはとくにヒ素や鉄が高濃度に濃縮しているので、ヒ素化合物や鉄化合物の原料として利用することができる。
 石膏分離後の残液に亜鉛、カドミウム、ニッケルなどが溶存しているときは、これらの一部も上記水酸化第二鉄澱物に吸着されるので、重金属共沈澱物と共に除去される。
 重金属共沈工程の第2の処理水の液性はpH3.0~4.0の範囲が好ましい。pH4.0を上回ると、ヒ素などの他にフッ素も沈澱し始めるので、ヒ素等を選択的に沈澱させることができなくなる。一方、pH3.0未満ではヒ素等の重金属除去が不十分である。なお、石膏生成工程のpHは4.0以下が好ましく、第二鉄化合物を加えた場合は必然的にpHが低下するため、pHの低下が著しい場合は水酸化カルシウム等のアルカリを添加してpH3.0~4.0の範囲に調整するとよい。
〔アルミニウムおよびフッ素除去工程〕
 重金属共沈物を固液分離した残液(第3の処理水)には、溶解させたアルミニウムや廃水に当初から含まれているフッ素、および重金属共沈物を分離した後にも残留するカドミウム,亜鉛などが溶存している。従来、このような液中の亜鉛やカドミウムなどを除去する方法として、水酸化カルシウムなどの中和剤を添加して液性をpH9.5~pH11.8のアルカリ域にして、水酸化物澱物を生成させることが知られている。しかし、中和剤を添加して液性を一段でpH9.5~pH11.8の範囲に調整すると、上記水酸化物の生成に加えて、次式(7)~(9)に示すように、フリーデル氏塩〔Friedel’s salt:CaAl(OH)Cl・2HO〕、クゼル氏塩〔Kuzel’s salt :CaAl(OH)12Cl(SO)・5HO〕、エトリンガイト〔Ettringite:CaAl(OH)12(SO)・26HO〕などの層状複水酸化物が生成し、アルミニウムに加えて大量の塩素や水酸基、水和水を含む澱物が生じ、汚泥生成量が増大する。
2Ca(OH)+Al3++2OH+Cl+2HO → CaAl(OH)Cl・2HO  (7)
4Ca(OH)+2Al3++4OH+Cl+SO 2-+5HO → CaAl(OH)12Cl(SO)・5HO  (8)
6Ca(OH)+2Al3++Cl+3SO 2-+26HO → CaAl(OH)12(SO)・26HO  (9)
 廃水処理汚泥は一般には熔錬工程に繰り返して処理されるか、または最終処分場に埋め立て処分される。含水率の高い廃水処理汚泥が多量に投入されると、熔錬工程では燃料使用量が増大し、埋立処分では埋立量の増大によって最終処分場の不足を招くので、汚泥生成量の増大は避ける必要がある。
 本実施形態の処理方法は、層状複水酸化物の生成を抑制して汚泥生成量の増大を回避するため、第3の処理水の液性を一段でpH9.5~pH11.8に調整するのではなく、これよりpHをやや低く、pH5.5~9.5、好ましくはpH5.5~6.5の範囲に調整してアルミニウムを選択的に澱物化する。pH5.5~9.5の液性下では層状複水酸化物が生成し難く、一方、液中のアルミニウムの殆ど全てが水酸化物を生成して沈澱するので、上記pHに調整することによって汚泥生成量の過剰な増大を避けてアルミニウム澱物を生成させることができ、これを固液分離することによって効率よくアルミニウムを除去することができる。中和剤には,水酸化カルシウム,酸化カルシウム,水酸化ナトリウム,水酸化カリウムなどを用いることができる。
 また、第3の処理水中のフッ素は、中和剤としてカルシウム化合物を用いると、液中のフッ素と反応してフッ化カルシウム(CaF2)が生成し、フッ素化合物が形成されるので、アルミニウムと共にフッ素を液中から効率的に除去することができる。また生成したフッ化カルシウムは濾過性が良く、固液分離性を格段に改善することができる。なお、中和剤として水酸化ナトリウムや水酸化カリウムを用いたときに生成するフッ化ナトリウムやフッ化カリウムは溶解しやすいが、液中のフッ素イオンは水酸化アルミニウム澱物に吸着するので、アルミニウムと共にフッ素を液中から除去することができる。第4の処理水とアルミニウムおよびフッ素を含む澱物とに固液分離して回収したこれらの澱物の主な成分はアルミニウムやフッ素であるので、アルミニウム資源あるいはフッ素資源として利用することができる。
 アルミニウムおよびフッ素除去工程において、第3の処理水中に残留するヒ素や亜鉛の共沈を抑制してアルミニウムおよびフッ素を選択的に澱物化するには、pH5.5~7.0の範囲に調整するのが好ましい。例えば、液中のフッ素は水酸化カルシウムと反応してフッ化カルシウム澱物を生成し、pH4.0~pH5.5の範囲で急激に液中のフッ素濃度が低下し、pH7付近でほぼ濃度ゼロになる。一方、液中のヒ素や亜鉛はpH4.0~7.0の範囲ではフッ化カルシウム澱物に吸着されるので、液中の濃度は緩やかに低下するが、pH7.0を超えてアルカリ域になると、一部は水酸化物やカルシウム塩を形成し始めるので、液中の亜鉛濃度およびヒ素濃度の低下割合が次第に大きくなる。従って、亜鉛やヒ素の澱物生成を抑制してアルミニウムおよびフッ素の澱物化を進めるにはpH5.5~7.0の範囲に制御するのが好ましい。このpH域で生成したアルミニウムおよびフッ素澱物は亜鉛やヒ素の混入が少ないので、アルミニウム資源やフッ素資源、例えばセメントの焼成原料として利用することができる。
〔中和工程〕
 アルミニウムおよびフッ素を含む澱物を分離した残液(第4の処理水)に亜鉛、カドミウム、ニッケルなどが残留しているときには、この残液にさらにアルカリを添加してpH9.5~11.8の範囲に調整して、水酸化亜鉛、水酸化カドミウム、水酸化ニッケルなどの重金属水酸化物の中和澱物を生成させ、アルカリ中和処理水と重金属水酸化物の中和澱物とに固液分離して除去する。pH11.8を上回ると水酸化亜鉛が再溶解するので好ましくない。pH9.5~11.8の範囲に調整することによって、残液中に残留する亜鉛、カドミウム、ニッケルなどは水酸化物を生成して沈澱するので、この中和澱物を固液分離して除去することができる。
 上記一連の処理工程によって、フッ素量および重金属量の少ない石膏が回収され、廃水のフッ素量および重金属量は排水規制に適合するまで低減されるので、系外に放出することができる。なお、中和澱物除去工程のアルカリ中和処理水の液性はpH9.5~11.8であるので、放流するには、排水基準値のpH5.8以上~8.6以下に適合させるため、酸を加えて逆中和すると良い。回収した石膏や澱物はセメント原料として有効に利用することができる。
 本実施形態の処理方法は、廃水にアルミニウムを溶解させることによって、フッ素の安定溶存と重金属澱物の生成が同時に進行するので、効率よく処理を進めることができ、フッ素を液中に安定に溶存させた状態で石膏を生成させるので、石膏にフッ素が混入せず、フッ素量の極めて少ない石膏を得ることができる。また、石膏を硫酸など大量の薬剤で洗浄する必要がない。このため排水量を削減することができる。さらに、本実施形態の処理方法は硫化剤を使用しないので硫化水素が発生せず、作業環境が安全である。
 本実施形態の処理方法は、石膏回収後に、ヒ素やモリブデンなどの重金属を水酸化第二鉄澱物に吸着させて分離するので、これらの除去効果が高く、除去操作の負担も少ない。
 本実施形態の処理方法では、アルミニウム除去の際に、液性を一段でpH9.5~pH11.8に調整して水酸化物を生成させるのではなく、これよりpHがやや低いpH5.5~9.5の範囲に調整してアルミニウムを選択的に澱物化するので、層状複水酸化物が生成せず、汚泥生成量が増大しない。従って、汚泥処理の負担が大幅に軽減される。具体的には、汚泥の熔錬処理では燃料使用量の増大を避けることができ、埋立処分では埋立量を抑制して最終処分場の延命化を図ることができる。
 以下、本発明の実施例を比較例と共に示す。濃度はJIS K 0102:2013 工場排水試験方法に基づいて測定した。
〔実施例1:アルミニウムの溶解〕
 銅製錬所廃液(フッ素濃度2.9g/L 、ヒ素濃度6.2g/L、銅濃度1.5g/L 、pH1.1)1Lに金属アルミニウム箔(三菱アルミニウム社製、純度99.5%以上、厚さ20μm、幅2mm、長さ4mm)を加えて30分撹拌した後に、生成した澱物を固液分離した。この濾液に炭酸カルシウムを加えて石膏を生成させ、固液分離して回収した石膏に含まれるフッ素、ヒ素、銅の各含有量を測定した。廃液に含まれるフッ素含有量に対するアルミニウムの添加量(Al/Fモル比)およびpHを変えて実施した結果を表1~3に示す。
 表1~3に示すように、Al/Fモル比が0.3では、石膏中のフッ素含有量が0.3質量%以上であり、石膏のフッ素含有量が多い。一方、Al/Fモル比が0.4では、石膏中のフッ素量は0.2質量%以下であり、フッ素含有量が大幅に低減されている。ただし、pH4.1以上になると、石膏に混入するヒ素の量が急激に多くなる。従って、アルミニウムの溶解は、Al/Fモル比0.4以上、pH4以下が好ましい。この条件でアルミニウムを溶解させることによって、石膏に混入するフッ素含有量を低減することができ、さらに廃液中に含まれる重金属類が水酸化物として沈殿したり石膏に共沈しないため、ヒ素および銅を殆ど含まない石膏を得ることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
〔実施例2:重金属共沈〕
 実施例1と同様の銅製錬所廃液に、Al/Fモル比0.4、pH4の条件で金属アルミニウム粉を加えて澱物を生成させて固液分離し、この濾液に炭酸カルシウムを加えて石膏を生成させた。この石膏を固液分離した残液に、塩化第二鉄と水酸化カルシウムを添加して水酸化第二鉄澱物を生成させた。該澱物にヒ素を吸着させて固液分離した。
 塩化第二鉄の添加量はFe=4000mg/Lで固定し、水酸化カルシウムを逐次添加してpHを調整した。各pHにおける溶液中の残留ヒ素濃度と残留フッ素濃度を図2示す。
 図2に示すように、ヒ素はpH3.0以上において十分に共沈除去されていることが確認される。一方、pH4.0を超えると、フッ素濃度が急激に低下し、フッ素も共沈されることが分かる。この結果から、ヒ素などを選択的に除去するには、pH3.0~4.0の範囲が最適であることが分かる。
〔実施例3:澱物量の抑制〕
 実施例2の水酸化第二鉄澱物を分離した残液(pH4.0)に、水酸化カルシウムを逐次添加してアルミニウム澱物とフッ素澱物(フッ化カルシウム)を生成させた。水酸化カルシウムの添加量に伴うpHの変化に対応した澱物生成量とアルミニウム濃度の変化を図3に示す。図3に示すように、pH5.5以上になるとアルミニウムのほぼ全量が澱物になることが確認できる。一方、pH7.0までは澱物量が増加し、pH9.5を超過すると、澱物の量が再び急激に増加する。これはフリーデル氏塩の生成によると考えられる。この結果から、澱物量を増大させずにアルミニウムを確実に澱物化するには、pH5.5~9.5の範囲が適切であり、pH5.5~7.0の範囲が好ましいことが分かる。
〔実施例4:フッ素の選択的澱物化〕
 実施例3と同様に、水酸化第二鉄澱物を分離した残液(pH4.0)に、水酸化カルシウムを逐次添加してアルミニウム澱物とフッ素澱物(フッ化カルシウム)を生成させた。水酸化カルシウムの添加量に伴うpHの変化に対応した液中の残留フッ素濃度と残留ヒ素濃度の変化を図4に示す。図4に示すように、液中のフッ素はpH4.0~pH5.5の範囲で急激に濃度が低下し、pH5.5付近では約0.1g/Lに減少し、pH7付近でほぼ濃度ゼロになる。一方、液中のヒ素や亜鉛はpH4.0~7.0の範囲では液中の濃度は緩やかに低下するが、pH7.0を超えてアルカリ域になると濃度低下の割合が次第に大きくなる。この結果から、亜鉛やヒ素の混入を避けてフッ素澱物を生成させるには、pH4.0~7.0の範囲に制御するのが好ましい。
〔実施例5〕
 銅製錬所の廃水を用い、この原廃水をウォーターバスで40℃に加温し、モル比でF/Al=0.5、Al濃度として2.0g/Lになるように金属アルミニウム箔(三菱アルミニウム社製、純度99.5%以上、厚さ20μm、幅2mm、長さ4mm)の裁断物を添加して30分撹拌した。撹拌後、添加した金属アルミニウムが全量溶解して黒色の還元澱物が析出沈殿したことを確認し、これを濾過して処理水Aと還元澱物を得た〔アルミニウム溶解工程〕。
 この処理水Aをウォーターバスで55℃に加温して炭酸カルシウムを添加して2時間撹拌し、石膏を生成させた。2時間後のpHはpH2.10であった。石膏スラリーを濾過して石膏と処理水Bを回収し、石膏の表面を純水でよく洗浄した〔石膏回収工程〕。
 石膏を分離した処理水Bをウォーターバスで40℃に加温し、第二鉄Fe(III)濃度が4.0g/Lになるように、塩化鉄(FeCl)を添加し、pH調整剤として水酸化カルシウムを添加して1時間撹拌して重金属を共沈させた。撹拌後のpHは3.91であった。重金属共沈スラリーを濾過して処理水Cと重金属共沈澱物を得た〔重金属共沈工程〕。
 処理水Cをウォーターバスで40℃に加温し、pH調整剤として水酸化カルシウムを添加して1時間撹拌して澱物を生成させた。撹拌後のpHは6.0であった。生成した澱物を含むスラリーを濾過して処理水Dと澱物を回収した。この澱物の表面を純水でよく洗浄してアルミニウム及びフッ素の澱物を得た〔アルミニウムおよびフッ素除去工程〕。
 処理水Dを常温下で、pH調整剤として水酸化カルシウムを添加して1時間撹拌し、中和澱物を生成させた。撹拌後のpHは11.81であった。この澱物を含むスラリーを濾過して中和処理水Eとアルカリ中和澱物を得た〔中和工程〕。
 この結果を表4に示す。表4に示すように、回収した石膏中のフッ素は0.05質量%であり、格段に少ない。また、処理水Cに含まれるヒ素の量は少なく、重金属が共沈して分離されたことが確認された。さらに、処理水Dに含まれるアルミニウムとフッ素の量は大幅に少なく、アルミニウムおよびフッ素を澱物として有効に回収できる。また、中和工程後の処理水Eに含まれる重金属量は排水規制以下であり、排水処理の負担が少ない。また、澱物量(kg-dray/m)は還元澱物4.9kg、共沈澱物14.3kg、アルミニウムおよびフッ素澱物11.1kg、中和澱物2.4kg(合計27.8kg)であり、比較例1の澱物量より大幅に少ない。
Figure JPOXMLDOC01-appb-T000004
〔比較例1〕
 実施例5と同じ組成の原廃水をウォーターバスで55℃に加温し、炭酸カルシウムを添加して2時間撹拌して石膏を生成させた。2時間撹拌後のpHはpH1.81であった。石膏を含むスラリーを濾過して、石膏と処理水B2を回収し、石膏の表面を純水でよく洗浄した〔石膏回収工程〕。次いで、処理水B2に常温下でpH調整剤として水酸化カルシウムを添加して1時間撹拌した。1時間後のpHは11.81であった〔中和工程〕。この中和処理で生じた澱物を含むスラリーを濾過して中和澱物(澱物量41.6kg)と処理水D2を回収した。回収した石膏に含まれるフッ素量は1.52質量%であり、実施例5で回収した石膏に含まれるフッ素量より格段に多く、澱物量も実施例5より多い。
 本発明の廃液の処理方法によれば、廃液の処理過程で、石膏へのフッ素の混入や汚泥生成を抑制しながら、廃液に含まれるフッ素および重金属をより効果的に除去することが可能な廃液の処理方法を提供することができる。

Claims (3)

  1.  フッ素および重金属を含有する酸性廃液から低フッ素量の石膏を回収して重金属を除去してする廃液の処理方法であって、
     前記酸性廃液にアルミニウムを溶解して液中のフッ素をフルオロアルミン酸イオンにして安定に溶存させると共に重金属還元澱物を生成させて、第1の処理水と前記重金属還元澱物とに分離するアルミニウム溶解工程、
     前記重金属還元澱物の除去後に、前記第1の処理水にpH4以下の液性下でカルシウム化合物を添加して石膏を生成させて、第2の処理水と前記石膏とに分離する石膏回収工程、
     前記石膏除去後に、前記第2の処理水に第二鉄化合物を添加して水酸化第二鉄澱物を生成させ、該澱物に液中の重金属を共沈させて、第3の処理水と重金属共沈澱物とに分離する重金属共沈工程、
     前記重金属共沈澱物を除去した後に、前記第3の処理水にアルカリを添加し、pH5.5~9.5に調整して澱物量を抑制しつつアルミニウムおよびフッ素を含む澱物を生成させて、第4の処理水と前記アルミニウムおよびフッ素を含む澱物とに分離するアルミニウムおよびフッ素除去工程、及び
     前記アルミニウムおよびフッ素を含む澱物の除去後に、さらに前記第4の処理水にアルカリを添加してpH9.5~11.8に調整して重金属水酸化物の中和澱物を生成させて、アルカリ中和処理水と前記重金属水酸化物の中和澱物とに分離する中和工程を有することを特徴とする廃液の処理方法。
  2.  前記アルミニウムおよびフッ素除去工程において、前記第3の処理水の液性をpH5.5~7.0に調整して澱物量を抑制すると共にヒ素および亜鉛の澱物化を抑制してフッ素とアルミニウムを沈澱させる請求項1に記載する廃液の処理方法。
  3.  前記フッ素および重金属を含有する酸性廃液が非鉄金属製錬所の廃水である請求項1または請求項2に記載する廃液の処理方法。
PCT/JP2018/048026 2017-12-27 2018-12-27 廃水の処理方法 WO2019131827A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PE2020000855A PE20210782A1 (es) 2017-12-27 2018-12-27 Metodo de tratamiento de aguas residuales
KR1020207017808A KR102543786B1 (ko) 2017-12-27 2018-12-27 폐수의 처리 방법
AU2018397949A AU2018397949A1 (en) 2017-12-27 2018-12-27 Method of treating wastewater
CA3087015A CA3087015A1 (en) 2017-12-27 2018-12-27 Method of treating wastewater
EP18894256.9A EP3733612B1 (en) 2017-12-27 2018-12-27 Wastewater treatment method
CN201880084084.8A CN111542499B (zh) 2017-12-27 2018-12-27 废水的处理方法
MX2020006734A MX2020006734A (es) 2017-12-27 2018-12-27 Metodo de tratamiento de aguas residuales.
US16/957,464 US11479490B2 (en) 2017-12-27 2018-12-27 Method of treating wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-250886 2017-12-27
JP2017250886A JP6970917B2 (ja) 2017-12-27 2017-12-27 廃水の処理方法

Publications (1)

Publication Number Publication Date
WO2019131827A1 true WO2019131827A1 (ja) 2019-07-04

Family

ID=67067532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048026 WO2019131827A1 (ja) 2017-12-27 2018-12-27 廃水の処理方法

Country Status (11)

Country Link
US (1) US11479490B2 (ja)
EP (1) EP3733612B1 (ja)
JP (1) JP6970917B2 (ja)
KR (1) KR102543786B1 (ja)
CN (1) CN111542499B (ja)
AU (1) AU2018397949A1 (ja)
CA (1) CA3087015A1 (ja)
CL (1) CL2020001731A1 (ja)
MX (1) MX2020006734A (ja)
PE (1) PE20210782A1 (ja)
WO (1) WO2019131827A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807481B (zh) * 2020-07-17 2022-03-08 常熟理工学院 一种氰化提金废水的处理方法
CN113802006A (zh) * 2021-08-30 2021-12-17 广东邦普循环科技有限公司 电池粉浸出液中除氟铜的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934644B2 (ja) 1980-06-13 1984-08-23 日本鉱業株式会社 廃硫酸からのフッ素除去方法
JPS626287B2 (ja) 1985-05-14 1987-02-10 Fujikura Cable Works Ltd
JPS62197192A (ja) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The 排煙脱硫排水中のフツ素の処理方法
JPH09192675A (ja) 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd 廃水の処理方法
JP2000117265A (ja) * 1998-10-16 2000-04-25 Fujikasui Engineering Co Ltd モリブデン含有排水の処理方法
JP2005270860A (ja) * 2004-03-25 2005-10-06 Dowa Mining Co Ltd 飛灰の処理方法
JP2007196177A (ja) * 2006-01-30 2007-08-09 Nippon Steel & Sumikin Stainless Steel Corp 弗素含有廃液の処理方法
JP2016191119A (ja) * 2015-03-31 2016-11-10 Jx金属株式会社 銅イオン含有溶液からの銅の除去方法および、有価金属の回収方法
JP2017105651A (ja) 2015-12-07 2017-06-15 Jx金属株式会社 廃酸石膏の製造方法
JP2017159222A (ja) * 2016-03-08 2017-09-14 Dowaテクノロジー株式会社 砒素の除去方法
JP2018079439A (ja) * 2016-11-17 2018-05-24 栗田工業株式会社 硫酸、フッ素及び重金属イオン含有廃水の処理方法および処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934644A (ja) 1982-08-20 1984-02-25 Citizen Watch Co Ltd 半導体集積回路
JPS60228627A (ja) 1984-04-25 1985-11-13 Mitsui Mining & Smelting Co Ltd 有価金属の湿式処理におけるフツ素除去方法
JPH0212172Y2 (ja) 1985-06-25 1990-04-05
US5976383A (en) 1991-04-08 1999-11-02 Romar Technologies, Inc. Recycle process for removing dissolved heavy metals from water with aluminum particles
JP2614197B2 (ja) 1994-11-11 1997-05-28 元旦ビューティ工業株式会社 緑青発色処理液の再利用方法
US5651895A (en) * 1995-02-21 1997-07-29 Envirocorp Services & Technology Heavy metals removal
AU7325398A (en) 1997-05-12 1998-12-08 Robert Hose Process for the production of gypsum from sulphuric acid containing waste st reams
SE0102222D0 (sv) * 2001-06-21 2001-06-21 Chematur Eng Ab Process och anläggning för behandling a avfall
JP5261950B2 (ja) 2006-07-04 2013-08-14 栗田工業株式会社 セレン含有排水の処理方法及び処理装置
DE102007004310A1 (de) 2007-01-29 2008-07-31 Siemens Ag Verfahren und Vorrichtung zur Reinigung von mit Sulfat-Ionen und Schwermetall-Ionen verunreinigtem Wasser
JP5170461B2 (ja) 2009-08-31 2013-03-27 三菱マテリアル株式会社 セレン含有排水の処理方法
CN101830583B (zh) * 2010-03-25 2012-12-12 云南铜业股份有限公司 石膏沉淀-氧化沉砷-中和铁盐共沉污酸的方法
JP5794422B2 (ja) 2011-09-30 2015-10-14 三菱マテリアル株式会社 フッ素および有害物質を除去する処理方法と処理装置
NZ700313A (en) 2012-03-28 2017-03-31 Dober Chemical Corp Water treatment compositions and methods of use
FI126285B (en) 2012-08-27 2016-09-15 Outotec Finland Oy Process for removing sulfate, calcium and / or other soluble metals from wastewater
US20140251906A1 (en) 2013-03-06 2014-09-11 Ecolab Usa Inc. Addition of aluminum reagents to sulfate-containing waste stream reduce sulfate concentration
CN103420534B (zh) 2013-08-13 2014-09-10 浙江信得达特种管业有限公司 减少钢材加工过程中所产生的废水中的重金属及氟含量的环保处理方法
KR20150085427A (ko) * 2014-01-15 2015-07-23 최윤진 폐불소화합물을 무해하게 안정화시켜 산업 기초 원료로 제조하여 재활용하는 기술
JP6206287B2 (ja) 2014-03-26 2017-10-04 住友金属鉱山株式会社 銅製錬において発生する廃酸の処理方法
GB201407101D0 (en) 2014-04-22 2014-06-04 Paxton Richard G New process for the treatment of high sulphate waters
KR101656825B1 (ko) 2015-02-03 2016-09-12 최윤진 폐수로부터 불소 성분을 제거하는 조성물 및 이를 이용하여 폐수로부터 불소 성분을 제거하는 방법
JP6485290B2 (ja) * 2015-08-31 2019-03-20 住友金属鉱山株式会社 フッ素含有排水からのフッ素分離方法
CN105366853B (zh) 2015-12-24 2018-03-13 南京格洛特环境工程股份有限公司 铜冶炼行业高含砷、铜、锌等重金属污酸水的处理工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934644B2 (ja) 1980-06-13 1984-08-23 日本鉱業株式会社 廃硫酸からのフッ素除去方法
JPS626287B2 (ja) 1985-05-14 1987-02-10 Fujikura Cable Works Ltd
JPS62197192A (ja) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The 排煙脱硫排水中のフツ素の処理方法
JPH09192675A (ja) 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd 廃水の処理方法
JP2000117265A (ja) * 1998-10-16 2000-04-25 Fujikasui Engineering Co Ltd モリブデン含有排水の処理方法
JP2005270860A (ja) * 2004-03-25 2005-10-06 Dowa Mining Co Ltd 飛灰の処理方法
JP2007196177A (ja) * 2006-01-30 2007-08-09 Nippon Steel & Sumikin Stainless Steel Corp 弗素含有廃液の処理方法
JP2016191119A (ja) * 2015-03-31 2016-11-10 Jx金属株式会社 銅イオン含有溶液からの銅の除去方法および、有価金属の回収方法
JP2017105651A (ja) 2015-12-07 2017-06-15 Jx金属株式会社 廃酸石膏の製造方法
JP2017159222A (ja) * 2016-03-08 2017-09-14 Dowaテクノロジー株式会社 砒素の除去方法
JP2018079439A (ja) * 2016-11-17 2018-05-24 栗田工業株式会社 硫酸、フッ素及び重金属イオン含有廃水の処理方法および処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733612A4

Also Published As

Publication number Publication date
CN111542499B (zh) 2022-04-05
US20200325053A1 (en) 2020-10-15
MX2020006734A (es) 2020-08-24
JP6970917B2 (ja) 2021-11-24
KR102543786B1 (ko) 2023-06-14
CA3087015A1 (en) 2019-07-04
AU2018397949A1 (en) 2020-07-16
JP2019115884A (ja) 2019-07-18
EP3733612A4 (en) 2021-09-15
KR20200096247A (ko) 2020-08-11
CN111542499A (zh) 2020-08-14
EP3733612A1 (en) 2020-11-04
PE20210782A1 (es) 2021-04-22
EP3733612B1 (en) 2023-03-15
US11479490B2 (en) 2022-10-25
CL2020001731A1 (es) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2019131832A1 (ja) 廃水の処理方法
CA2792400C (en) Method for wastewater treatment for wastewater containing aluminium, magnesium, and manganese
US8603344B2 (en) Method and apparatus for removing metal from waste water
WO2018092396A1 (ja) 硫酸、フッ素及び重金属イオン含有廃水の処理方法および処理装置
JP2009179841A (ja) 溶融飛灰等の処理方法
WO2019131827A1 (ja) 廃水の処理方法
JP4826532B2 (ja) 溶融飛灰の処理方法
JP4306394B2 (ja) セメントキルン抽気ダストの処理方法
JPH09295841A (ja) セメント製造装置抽気ダストの処理方法
JPH1099817A (ja) セメント製造装置抽気ダストの処理方法
JP2009101359A (ja) セメントキルン抽気ダストの処理方法
JP2005152741A (ja) セメントキルン抽気ダストの処理方法
JP2007237054A (ja) 多成分系めっき廃液スラッジの再資源化処理方法
JP4756415B2 (ja) ガスの処理方法
JP3794260B2 (ja) 廃棄物の処理方法
JP3733452B2 (ja) 廃棄物の処理方法
JP2000109938A (ja) 飛灰からの有価金属回収方法
JP5877588B2 (ja) 排水処理方法
JP2005152898A (ja) セメント製造装置抽気ダストの処理方法
JP2000054038A (ja) カルシウム含有焼却飛灰及び溶融飛灰の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207017808

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3087015

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018397949

Country of ref document: AU

Date of ref document: 20181227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018894256

Country of ref document: EP

Effective date: 20200727