WO2019130989A1 - エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料 - Google Patents

エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料 Download PDF

Info

Publication number
WO2019130989A1
WO2019130989A1 PCT/JP2018/044240 JP2018044240W WO2019130989A1 WO 2019130989 A1 WO2019130989 A1 WO 2019130989A1 JP 2018044240 W JP2018044240 W JP 2018044240W WO 2019130989 A1 WO2019130989 A1 WO 2019130989A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
evoh
ethylene
content
mol
Prior art date
Application number
PCT/JP2018/044240
Other languages
English (en)
French (fr)
Inventor
吉田 健太郎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US16/958,501 priority Critical patent/US20210061975A1/en
Priority to JP2019562893A priority patent/JP7084944B2/ja
Priority to CN201880090393.6A priority patent/CN111742010B/zh
Priority to SG11202005638PA priority patent/SG11202005638PA/en
Priority to EP18897810.0A priority patent/EP3733766A4/en
Priority to KR1020207021733A priority patent/KR102550270B1/ko
Publication of WO2019130989A1 publication Critical patent/WO2019130989A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a resin composition containing an ethylene-vinyl alcohol copolymer as a main component, and a molded article and a packaging material using the resin composition.
  • Ethylene-vinyl alcohol copolymer (hereinafter referred to as "EVOH”) has excellent gas barrier properties and melt moldability, so it can be molded into films, sheets, pipes, tubes, bottles, etc. by various melt molding methods. It is widely used as a packaging material in food and industrial fields where gas barrier properties are required. And in order to improve productivity in recent years, high-speed melt formability in high temperature compared with before is calculated
  • melt molding at high temperature defects such as voids caused by low molecular weight volatile components inherent in the resin or generated by decomposition of the resin become problems. In particular, when a film is produced at a high temperature, voids are easily generated at the end of the film, which is one of the factors that lower the productivity.
  • the moisture content of the EVOH resin composition is preferably 1.0% or less for the purpose of preventing molding problems such as generation of voids during melt molding, and excessive decomposition during melt molding is For the purpose of suppressing, it is described that 60 ⁇ mol / g or less of the alkaline earth metal ion in the EVOH resin composition is preferable.
  • the demand for the quality of packaging materials is becoming severe, and there is a need for further improvement of the quality of flexible packaging materials, particularly in the food field.
  • the present invention has been made based on the above circumstances, and an object thereof is to suppress the generation of voids even when melt molding is performed at high temperature, and a resin composition suitably used for high-speed melt molding process at high temperature To provide goods.
  • the inventors of the present invention have found that, in a resin composition containing EVOH manufactured using an azonitrile-based polymerization initiator, the amount of nitrogen element derived from the polymerization initiator is It is found that generation of voids can be suppressed at the time of performing melt molding at high temperature when the ratio of the amount of nitrogen element is in a specific range before and after performing a reprecipitation operation within a specific range, leading to the present invention
  • the invention made in order to solve the above-mentioned subject is as follows.
  • the content is 20 to 60 mol%
  • the degree of saponification is 85 mol% or more
  • the amount of nitrogen element (NI) derived from the polymerization initiator is 5 to 60 ppm
  • the following operation relative to the amount of nitrogen element (NI) A resin composition, wherein the ratio (NF / NI) of the amount of elemental nitrogen (NF) contained in the dried solid obtained by (X) is in the range of 0.65 to 0.99.
  • the resin composition of the present invention can suppress the generation of voids even when melt molding is performed at high temperature, and is suitably used for high-speed melt molding process at high temperature.
  • the resin composition of the present invention can be provided economically, it can be used for the production of various packaging materials.
  • the illustrated material may be used individually by 1 type, and may use 2 or more types together.
  • the resin composition of the present invention contains, as a main component, an ethylene-vinyl alcohol copolymer (A) (hereinafter sometimes abbreviated as EVOH (A)) produced using an azonitrile type polymerization initiator. .
  • the nitrogen element amount (NI) derived from the polymerization initiator in the resin composition is 5 to 60 ppm, and the nitrogen element contained in the dried solid obtained by the following operation (X) with respect to the nitrogen element amount (NI)
  • the ratio (NF / NI) of the amount (NF) needs to be 0.65 to 0.99.
  • the coloring of the molded body obtained can be improved by satisfying the conditions described above for the elemental nitrogen content (NI) and the elemental nitrogen content (NF). .
  • NI elemental nitrogen content
  • NF elemental nitrogen content
  • the ratio (NF / NI) is preferably in the range of 0.75 to 0.95.
  • the elemental nitrogen content can be quantified by a trace total nitrogen analyzer.
  • the amount of nitrogen element derived from the component is separately quantified, and the amount is measured with a trace total nitrogen analyzer. The net amount of nitrogen element derived from the polymerization initiator is calculated by subtracting from the measured amount.
  • EVOH (A) is a main component of the resin composition of the present invention.
  • EVOH (A) is a copolymer having an ethylene unit and a vinyl alcohol unit as main structural units.
  • EVOH (A) also contains a vinyl ester unit as an optional component.
  • EVOH (A) is usually obtained by polymerizing ethylene and a vinyl ester, and saponifying the resulting ethylene-vinyl ester copolymer.
  • the ethylene unit content of EVOH (A) (that is, the ratio of the number of ethylene units to the total number of monomer units in EVOH (A)) needs to be 20 to 60 mol%. 22 mol% is preferable and 24 mol% of the minimum of ethylene unit content of EVOH (A) is more preferable. On the other hand, 55 mol% is preferable and 50 mol% of the upper limit of ethylene unit content of EVOH (A) is more preferable. If the ethylene unit content of EVOH (A) is less than 20 mol%, the gas barrier properties under high humidity may be lowered, and the melt moldability may also be deteriorated. Conversely, if the ethylene unit content of EVOH (A) exceeds 60 mol%, sufficient gas barrier properties may not be obtained.
  • the degree of saponification of EVOH (A) (that is, the ratio of the number of vinyl alcohol units to the total number of vinyl alcohol units and vinyl ester units in EVOH (A)) needs to be 85 mol% or more. 95 mol% is preferable and, as for the minimum of the degree of saponification of EVOH (A), 99 mol% is more preferable. On the other hand, 100 mol% is preferable and 99.99 mol% of the upper limit of the saponification degree of EVOH (A) is more preferable. If the degree of saponification of EVOH (A) is less than 85 mol%, sufficient gas barrier properties may not be obtained, and the heat stability may be insufficient.
  • EVOH (A) consists of a mixture of 2 or more types of EVOH in which ethylene unit content differs
  • an average value computed from mixed mass ratio be ethylene unit content of EVOH (A).
  • the difference in ethylene unit content between EVOHs having the ethylene unit content farthest apart be 30 mol% or less. 20 mol% or less is more preferable, and, as for the difference of ethylene unit content, 15 mol% or less is more preferable.
  • the average value calculated from the mixed mass ratio is taken as the degree of saponification of EVOH (A).
  • the difference between the degree of saponification between the most distant EVOHs is preferably 7% or less, more preferably 5% or less.
  • the ethylene unit content is 24 mol% or more and less than 34 mol%, and saponification Containing EVOH (A-1) having an acidity of 99 mol% or more, and EVOH (A-2) having an ethylene unit content of 34 mol% or more and less than 50 mol% and having a degree of saponification of 99 mol% or more; It is also possible to use one having a mass ratio (A-1 / A-2) of EVOH (A-1) to EVOH (A-2) of 60/40 to 90/10 as the EVOH (A).
  • the ethylene unit content and the degree of saponification of EVOH (A) can be determined by nuclear magnetic resonance (NMR) method.
  • melt flow rate according to JIS K 7210: 2014 of EVOH (A) (hereinafter simply referred to as “MFR”; temperature 210 ° C., load 2160 g) is usually 0.1 g / 10 min, and the upper limit is , Usually 50 g / 10 min.
  • EVOH (A) can contain, as copolymerized units, monomer units other than ethylene units, vinyl alcohol units and vinyl ester units, as long as the object of the present invention is not inhibited.
  • the monomer include ⁇ -olefins such as propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene and 1-octene; itaconic acid, methacrylic acid, acrylic acid, and maleic acid Etc., unsaturated carboxylic acids thereof, their salts, their partial or complete esters, their nitriles, their amides, their anhydrides; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyl Vinylsilane compounds such as trimethoxysilane; unsaturated sulfonic acids or salts thereof; unsaturated thiols; vinylpyrrolidones.
  • Contents of ethylene units, vinyl alcohol units and other monomer units other than vinyl ester units in EVOH (A) ie, the total number of other monomer units relative to the total number of monomer units in EVOH (A)
  • the ratio of the numbers is usually 5 mol% or less, preferably 2 mol% or less, and more preferably 1 mol% or less.
  • the resin composition contains EVOH (A) as the main component means that the content of EVOH (A) in the resin composition is 70% by mass or more, and 80% by mass or more Preferably, it is 90% by mass or more.
  • EVOH (A) is the main component of the resin composition, the melt moldability of the obtained resin composition is improved, and the gas barrier properties, oil resistance, and the like of the molded article obtained therefrom become excellent.
  • the resin composition of the present invention preferably further contains a metal ion (B).
  • the resin composition of the present invention is excellent in interlayer adhesion when formed into a multilayer structure by containing the metal ion (B).
  • the reason why the metal ion (B) improves the interlayer adhesion is not clear, but the molecule contained in the layer adjacent to the EVOH (A) has a functional group capable of reacting with the hydroxyl group of the EVOH (A). It is considered that this bond formation reaction is accelerated by the metal ion (B).
  • the melt moldability and coloring tolerance of the resin composition obtained can be improved by controlling the content ratio with the carboxylic acid (C) mentioned later.
  • 100 ppm is preferable and, as for the minimum of content of the metal ion (B) in the said resin composition, 150 ppm is more preferable.
  • 400 ppm is preferable and, as for the upper limit of content of the metal ion (B) in the said resin composition, 350 ppm is more preferable. If the content of the metal ion (B) in the resin composition is less than 100 ppm, the interlayer adhesion of the resulting multilayer structure may be insufficient. On the other hand, when the content of the metal ion (B) in the resin composition is more than 400 ppm, the coloring resistance may be insufficient.
  • the metal ion (B) examples include alkali metal ions, alkaline earth metal ions, other transition metal ions, and the like, and these may be made of one or more kinds. Among them, it is preferable to contain an alkali metal ion. It is more preferable that the metal ion (B) consists only of an alkali metal ion from the viewpoint that the resin composition can be easily produced and that the interlayer adhesion of the multilayer structure can be further improved.
  • alkali metal ion examples include lithium, sodium, potassium, rubidium and cesium ions, but from the viewpoint of industrial availability, sodium or potassium ions are preferable.
  • alkali metal salt which gives an alkali metal ion
  • aliphatic carboxylates of lithium, sodium and potassium aromatic carboxylates, carbonates, hydrochlorides, nitrates, sulfates, phosphates and metal complexes
  • sodium acetate, potassium acetate, sodium phosphate and potassium phosphate are more preferable in terms of easy availability.
  • the metal ion (B) comprises an alkaline earth metal ion.
  • the metal ion (B) contains an alkaline earth metal ion, the thermal deterioration of the EVOH (A) when the trim is reused is suppressed, and the generation of gel and lumps of the resulting molded body may be suppressed. is there.
  • alkaline earth metal ion examples include ions of beryllium, magnesium, calcium, strontium and barium, but in terms of industrial availability, ions of magnesium or calcium are preferable.
  • alkaline earth metal salts that give alkaline earth metal ions include aliphatic carboxylates of magnesium and calcium, aromatic carboxylates, carbonates, hydrochlorides, nitrates, sulfates, phosphates and metal complexes. It can be mentioned.
  • the resin composition of the present invention preferably further contains a carboxylic acid (C).
  • a carboxylic acid (C) By containing the carboxylic acid (C), the resin composition of the present invention can improve the melt moldability of the obtained resin composition and the coloring resistance at high temperature.
  • the pKa of the carboxylic acid (C) is in the range of 3.5 to 5.5, since the pH buffering capacity of the resulting resin composition may be enhanced and the coloring resistance to acidic substances and basic substances may be improved. It is more preferable that
  • the content of the carboxylic acid (C) in the resin composition is less than 50 ppm, the color resistance at high temperatures may be insufficient.
  • the content of the carboxylic acid (C) in the resin composition is more than 400 ppm, the melt moldability may be insufficient or the odor may be a problem.
  • the content of the carboxylic acid salt is not considered as the content of the carboxylic acid (C) in the resin composition.
  • carboxylic acid (C) monovalent carboxylic acid and polyvalent carboxylic acid can be mentioned, and these may consist of 1 type or multiple types.
  • carboxylic acid (C) the melt-moldability of the obtained resin composition and the color resistance at high temperatures may be particularly improved.
  • the polyvalent carboxylic acid may have three or more carboxyl groups. In this case, the coloring resistance of the resin composition of the present invention may be more effectively improved.
  • a monovalent carboxylic acid is a compound having one carboxyl group in the molecule.
  • the pKa of the monovalent carboxylic acid is preferably in the range of 3.5 to 5.5.
  • These carboxylic acids may have a substituent such as a hydroxyl group, an amino group or a halogen atom.
  • acetic acid is preferable because it is highly safe and easy to handle.
  • the polyvalent carboxylic acid is a compound having two or more carboxyl groups in the molecule.
  • polyvalent carboxylic acids having a pKa of at least one carboxyl group in the range of 3.5 to 5.5 are preferred.
  • the resin composition of the present invention may contain other components as long as the effects of the present invention are not impaired.
  • Other components include, for example, phosphoric acid compounds, boron compounds, thermoplastic resins other than EVOH (A), crosslinking agents, drying agents, oxidation accelerators, antioxidants, oxygen absorbers, plasticizers, lubricants, thermal stabilizers (Melting stabilizer), processing aids, surfactants, deodorizing agents, antistatic agents, UV absorbers, antifogging agents, flame retardants, pigments, dyes, fillers, fillers, reinforcing agents such as various fibers, etc.
  • the lower limit of the content thereof in the resin composition is preferably 1 ppm, more preferably 10 ppm in terms of phosphoric acid.
  • the upper limit of the content in the resin composition is preferably 200 ppm, more preferably 100 ppm, in terms of phosphoric acid.
  • the phosphate may be in any form of primary phosphate, secondary phosphate or tertiary phosphate.
  • the cationic species of the phosphate is also not particularly limited, but the cationic species is preferably an alkali metal or an alkaline earth metal. Among them, it is preferable to add a phosphoric acid compound in the form of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • the lower limit of the content thereof in the resin composition is preferably 5 ppm in terms of boron element, and more preferably 10 ppm.
  • the upper limit of the content in the resin composition is preferably 1,000 ppm in terms of boron element, and more preferably 500 ppm.
  • boric acid includes, for example, orthoboric acid (H 3 BO 3 ), metaboric acid, and tetraboric acid
  • boric acid esters include, for example, trimethyl borate and triethyl borate
  • boric acid salt examples include alkali metal salts of the above-mentioned boric acids, alkaline earth metal salts, borax and the like. Among these, orthoboric acid is preferred.
  • thermoplastic resins other than EVOH (A) for example, various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene-propylene copolymer, ethylene and ⁇ -containing 4 or more carbon atoms can be used.
  • the content of the thermoplastic resin in the resin composition is usually less than 30% by mass, preferably less than 20% by mass, and more preferably less than 10% by mass.
  • a molded article containing the resin composition of the present invention is a preferred embodiment of the present invention.
  • the resin composition may be a molded body having a single-layer structure, or may be a molded body of two or more multilayer structures, that is, a multilayer structure, along with other various substrates.
  • a molding method for example, extrusion molding, thermoforming, profile forming, hollow molding, rotational molding, and injection molding are exemplified.
  • the applications of the molded body of the present invention are various, and films, sheets, containers, bottles, tanks, pipes, hoses and the like are suitable.
  • a film, a sheet, a pipe, a hose or the like may be extrusion molded by extrusion molding
  • a container shape may be injection molded
  • a hollow container such as a bottle or tank may be hollow molded or rotational molded. It can be molded.
  • the hollow molding includes, for example, extrusion hollow molding in which a parison is molded by extrusion molding and blow molding the parison, and injection hollow molding in which a preform is molded by injection molding and blow molding thereof.
  • a method of forming a packaging material such as a multilayer film by extrusion molding, and a method of thermoforming a multilayer sheet formed by extrusion molding into a container-like packaging material are suitably used.
  • the said molded object is a multilayer structure containing the layer which consists of a resin composition of this invention.
  • the said multilayer structure is obtained by laminating
  • the layer configuration of the multilayer structure for example, when the layer composed of a resin other than the resin composition of the present invention is x layer, the resin composition layer of the present invention is y layer, and the adhesive resin layer is z layer, for example y, x / y / x, x / z / y, x / z / y / z / x, x / y / x / y / x, x / z / y / z / x / z / y / z / x etc.
  • the types may be the same or different.
  • each layer of the multilayer structure is not particularly limited, but the thickness ratio of the y layer to the total layer thickness is usually 2 to 20% from the viewpoint of formability and cost.
  • the resin used for the x layer is preferably a thermoplastic resin from the viewpoint of processability and the like.
  • the thermoplastic resin for example, various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene-propylene copolymer, copolymer of ethylene and ⁇ -olefin having 4 or more carbon atoms) , Copolymers of polyolefin and maleic anhydride, ethylene-vinyl ester copolymers, ethylene-acrylic acid ester copolymers, or modified polyolefins obtained by graft-modifying these with unsaturated carboxylic acids or derivatives thereof), various polyamides (Nylon 6, nylon 6, 6 nylon 6/66 copolymer, nylon 11, nylon 12, polymethaxylylene adipamide etc), various polyesters (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate etc), polychlorinated Vinyl, poly Flu
  • the thermoplastic resin layer may be unstretched, or may be uniaxially or biaxially stretched or rolled.
  • thermoplastic resins polyolefin is preferable in terms of moisture resistance, mechanical properties, economy, heat sealability and the like, and polyamide and polyester are preferred in terms of mechanical properties, heat resistance and the like.
  • the adhesive resin used in the z layer is not particularly limited as long as it can bond the respective layers, and a polyurethane-based or polyester-based one-component or two-component curable adhesive, carboxylic acid-modified polyolefin, etc. Is preferably used.
  • the carboxylic acid-modified polyolefin is a polyolefin copolymer containing unsaturated carboxylic acid or its anhydride (maleic anhydride etc.) as a copolymer component; or graft obtained by grafting unsaturated carboxylic acid or its anhydride onto polyolefin It is a copolymer.
  • Examples of the method for obtaining the multilayer structure of the present invention include coextrusion molding, coextrusion hollow molding, coinjection molding, extrusion lamination, coextrusion lamination, dry lamination, solution coating and the like.
  • the multilayer structure obtained by such a method is further subjected to secondary processing after reheating within the range of the melting point of EVOH (A) by a method such as vacuum pressure deep drawing, blow molding, press molding, etc. It may be molded to have a desired molded body structure.
  • the multilayer structure is uniaxially or biaxially stretched after reheating in the range of the melting point of EVOH (A) or less by a method such as roll stretching method, pantograph stretching method, inflation stretching method, etc. It is also possible to obtain a structure.
  • EVOH (A) is produced using an azonitrile-based polymerization initiator, and the amount of nitrogen element (NI) derived from the polymerization initiator is 5 to 60 ppm, A resin composition is obtained in which the ratio (NF / NI) of the nitrogen element amount (NF) contained in the dried solid obtained by the following operation (X) to the element amount (NI) is 0.65 to 0.99 It is not particularly limited as long as it is a method.
  • a copolymerization step (I) for obtaining ethylene-vinyl ester copolymer by copolymerizing ethylene and vinyl ester using an azonitrile type polymerization initiator ethylene-vinyl ester copolymer Saponification step (II) to obtain EVOH (A) by saponification
  • resin composition including EVOH (A) by drying the water-containing pellets Drying step (IV) to obtain the product ethylene-vinyl ester copolymer by copolymerizing ethylene and vinyl ester using an azonitrile type polymerization initiator, ethylene-vinyl ester copolymer Saponification step (II) to obtain EVOH (A) by saponification
  • granulation step (III) to obtain water-containing pellets of EVOH (A) by granulation operation
  • the copolymerization step (I) As a method of controlling the nitrogen element amount (NI) and ratio (NF / NI) derived from the polymerization initiator, in the copolymerization step (I), type and amount of the polymerization initiator, temperature until addition and Adjusting the time, polymerization temperature, polymerization time, polymerization rate, type and amount of polymerization solvent, etc. In the saponification step (II), appropriately adjust the type and amount of alkali catalyst, reaction temperature, reaction time, etc.
  • the paste concentration and temperature at which the paste of EVOH (A) is deposited, the composition and temperature of the coagulation bath, and immersing the water-containing pellet of EVOH (A) in the subsequent steps can be appropriately adjusted.
  • the ratio (NF / NI) can be increased by immersing the water-containing pellet in an alcohol solvent such as methanol. At this time, the alcohol concentration is increased, the immersion temperature is increased, the immersion time is increased, the number of immersions is increased, agitation is performed during immersion, ultrasonic treatment is performed during immersion, or the like.
  • the ratio (NF / NI) can be more effectively increased.
  • each component such as metal ion (B) and carboxylic acid (C) into the resin composition of the present invention
  • a method of incorporating each component such as metal ion (B) and carboxylic acid (C) into the resin composition of the present invention for example, a method of mixing the above-mentioned pellet together with each component and melt-kneading, The method of mixing each component, the method of making the said pellet immerse in the solution in which each component is contained, etc. are mentioned. At this time, both water-containing pellets and dry pellets can be used as the pellets.
  • ⁇ Copolymerization step (I)> in addition to the step of copolymerization of ethylene and vinyl ester, a polymerization inhibitor is optionally added, and then unreacted ethylene and unreacted vinyl ester are removed to give ethylene-vinyl ester co-weight Including the step of obtaining a combined solution.
  • the copolymerization method of ethylene and vinyl ester include known methods such as solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization.
  • Typical vinyl esters used for polymerization include vinyl acetate, but other aliphatic vinyl esters such as vinyl propionate and vinyl pivalate can also be used.
  • the polymerization temperature is preferably 20 to 90 ° C., and more preferably 40 to 70 ° C.
  • the polymerization time is usually 2 to 15 hours.
  • the polymerization rate is preferably 10 to 90%, more preferably 30 to 80%, with respect to the charged vinyl ester.
  • the resin content in the solution after polymerization is usually 5 to 85% by mass.
  • the azonitrile type polymerization initiator can control the 10-hour half-life temperature and the solubility in a solvent by the molecular skeleton.
  • the process can be performed safely and stably.
  • azonitrile type polymerization initiators examples include 4,4′-azobis (4-cyanovaleric acid), 1,1′-azobis (cyclohexane-1-carbonitrile), and 2,2′-azobis (2-methylbutyl). , 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvalero) Nitrile etc. can be mentioned.
  • 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (4-methoxy-2 , 4-Dimethylvaleronitrile) can be preferably used.
  • an alkali catalyst is added to the ethylene-vinyl ester copolymer solution to saponify the copolymer in the solution to obtain EVOH (A).
  • the saponification method may be either continuous or batch.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide and alkali metal alcoholates.
  • it is generally carried out to add an acid such as acetic acid to neutralize the remaining alkali catalyst.
  • ⁇ Granulation process (III)> As the operation of granulation, for example, (1) a method of extruding a solution of EVOH (A) into a low temperature poor solvent to precipitate or coagulate, and cooling or solidifying immediately after cooling, (2) EVOH (A) The solution of (iii) is brought into contact with steam, and cut in advance as a water-containing resin composition of EVOH (A).
  • the water content of the water-containing pellet of EVOH (A) obtained by these methods is preferably 50 to 200 parts by mass, and 70 to 150 parts by mass with respect to 100 parts by mass of EVOH (A). It is more preferable that It is also generally performed that the obtained water-containing pellet is subjected to washing treatment with a solvent, additive treatment, and the like, as necessary.
  • the water-containing pellet of EVOH (A) obtained in the granulation step is preferably dried to obtain a dry pellet of EVOH (A).
  • the content of water in the dry pellet is preferably 1.0 part by mass or less with respect to 100 parts by mass of EVOH (A), for the purpose of preventing forming problems such as generation of voids during forming processing.
  • the content is more preferably 5 parts by mass or less, still more preferably 0.3 parts by mass or less.
  • a method of drying the water-containing pellet for example, stationary drying or fluid drying can be mentioned. These drying methods may be used alone or in combination of two or more.
  • the drying process may be carried out by either a continuous system or a batch system, and in the case of combining a plurality of drying systems, a continuous system or a batch system can be freely selected for each drying system. It is also preferable to carry out the drying at a low oxygen concentration or in the absence of oxygen from the viewpoint of reducing the deterioration of the resin composition due to the oxygen during the drying.
  • the resin composition of the present invention can suppress the generation of voids even when melt molding is performed at high temperature, it is suitably used for a high-speed melt molding process at high temperature. Also, the resin composition of the present invention can be provided economically. Therefore, the resin composition of the present invention is formed into a film, a sheet, a container, etc., and is suitably used as various packaging materials.
  • the packaging material which has a molded object containing the resin composition of this invention is a more preferable embodiment of this invention.
  • Ethylene unit content and degree of saponification of EVOH (A) The dried pellet was dissolved in dimethyl sulfoxide (DMSO-d 6 ) containing tetramethylsilane (TMS) as an internal standard substance and trifluoroacetic acid (TFA) as an additive. It melts and it measures at 80 ° C using 1 H-NMR (made by Nippon Denshi Co., Ltd .: "GX-500”) of 500 MHz, According to the peak intensity ratio of an ethylene unit, a vinyl alcohol unit, and a vinyl ester unit, ethylene unit content is included. The amount and degree of saponification were determined.
  • DMSO-d 6 dimethyl sulfoxide
  • TMS tetramethylsilane
  • TSA trifluoroacetic acid
  • Amount of elemental nitrogen (NF) contained in the dried solid obtained by operation (X) A solution formed by dissolving 5 g of dry pellets in 100 g of 1,1,1,3,3,3-hexafluoro-2-propanol is dropped into 1000 g of methanol (20 ° C.) under stirring to form a precipitate. Separated. From the dried solid obtained by drying this precipitate at 100 ° C for 24 hours, 20 mg is weighed, and the nitrogen element is determined by a trace nitrogen / sulfur analyzer (using “TS-2100H type” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) The amount of elemental nitrogen (NF) in the dried solid was determined.
  • Void evaluation A dry pellet was formed into a film under the following conditions to obtain a 30 cm wide single layer film. With respect to a single layer film obtained one hour after the start of film formation, the void generation state was visually confirmed and evaluated based on the criteria of A to D below, to be an index of void evaluation.
  • the YI value is an index showing the yellowness (yellowness) of the object, and the higher the YI value, the stronger the yellowness, while the lower the YI value, the weaker the yellowness and the less coloring.
  • the YI range of the roll end face is determined by comparing the hue of the roll end face for 200 m of the single layer film obtained in (6) with the hue of the prepared disk-like sample. It is used as an index of color tolerance by evaluating it on the basis.
  • LLDPE linear low density polyethylene
  • adhesive resin Densilicate resin
  • the extruder and extrusion conditions, and the die used were as follows.
  • LLDPE Single screw extruder (Plastic Engineering Research Institute Ltd.
  • Die Coat hanger die for 300 mm width 3 types and 5 layers (Plastic Engineering Research Institute Co., Ltd.)
  • Synthesis Example 1 The ethylene-vinyl acetate copolymer was polymerized under the following raw materials and conditions using a 250 L pressure reaction tank. ⁇ Vinyl acetate: 83.0 kg ⁇ Methanol: 26.6 kg -Initial supply of 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (2.5 g / L in methanol): 362 mL, continuous supply: 1120 mL / hr Polymerization temperature: 60 ° C. -Polymerization tank ethylene pressure: 3.6MPa When the polymerization rate of vinyl acetate reached about 40%, sorbic acid was added and the polymerization was stopped by cooling.
  • the reaction tank is opened to deethyleneize, and then the reaction liquid is supplied to a purge tower, and unreacted vinyl acetate is removed from the tower top by introduction of methanol vapor from the lower portion of the tower, and the ethylene-vinyl acetate copolymer Methanol solution was obtained.
  • This solution is charged into a saponification reactor, sodium hydroxide / methanol solution (80 g / L) is added so that the molar ratio of sodium hydroxide to vinyl ester units in the copolymer is 0.7, and methanol is added. To adjust the copolymer concentration to 15%. The temperature of this solution was raised to 60 ° C., and a saponification reaction was allowed to occur for about 4 hours while blowing nitrogen gas into the reactor.
  • the saponification reaction was stopped by adding acetic acid and water to obtain an EVOH suspension.
  • the suspension was drained by a centrifugal drainer and then dried at 60 ° C. for 24 hours to obtain a crude dry of EVOH having an ethylene unit content of 32 mol% and a degree of saponification of 99.9 mol%.
  • Synthesis Example 2 A crude EVOH having an ethylene unit content of 24 mol% and a degree of saponification of 99.9 mol% by the same operation as in Synthesis Example 1 except that the polymerization conditions of the ethylene-vinyl acetate copolymer were changed as follows: A dry product was obtained. ⁇ Vinyl acetate: 102.0 kg ⁇ Methanol: 17.7 kg -Initial supply of 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (2.5 g / L in methanol): 280 mL, continuous supply: 850 mL / hr Polymerization temperature: 60 ° C. -Polymerization tank ethylene pressure: 2.9MPa
  • Synthesis Example 3 A crude dry product of EVOH having an ethylene unit content of 27 mol% and a degree of saponification of 99.9 mol% by the same operation as in Synthesis Example 1 except that the conditions for polymerization of the ethylene-vinyl acetate copolymer were changed to the following I got ⁇ Vinyl acetate: 85.2 kg ⁇ Methanol: 32.3 kg ⁇
  • Synthesis Example 4 A crude dry product of EVOH having an ethylene unit content of 44 mol% and a degree of saponification of 99.9 mol% by the same operation as in Synthesis Example 1 except that the conditions for polymerization of the ethylene-vinyl acetate copolymer were changed to the following I got ⁇ Vinyl acetate: 76.7 kg ⁇ Methanol: 11.0 kg ⁇
  • Synthesis Example 5 A crude dry product of EVOH having an ethylene unit content of 32 mol% and a degree of saponification of 99.9 mol% by the same operation as in Synthesis Example 1 except that the conditions for polymerization of the ethylene-vinyl acetate copolymer were changed to the following I got ⁇ Vinyl acetate: 105.0 kg ⁇ Methanol: 38.3 kg -Initial supply of 2,2'-azobis (2,4-dimethyl valeronitrile) (10.0 g / L solution in methanol): 2440 mL, continuous supply: none-Polymerization temperature: 60 ° C -Polymerization tank ethylene pressure: 3.7MPa
  • Synthesis Example 6 The same operation as in Synthesis Example 5 except that the concentration of a methanol solution of 2,2'-azobis (2,4-dimethylvaleronitrile) was 20.0 g / L and the solution was used after storage at 51 ° C for 10 hours As a result, a crude dried product of EVOH having an ethylene unit content of 32 mol% and a degree of saponification of 99.9 mol% was obtained.
  • Example 3 When repeating the procedure of immersion and washing in methanol at 50 ° C. for 1 hour while repeating washing three times, dry pellets are manufactured and analyzed and evaluated in the same manner as in Example 1 except that ultrasonic waves are applied. Did.
  • Example 9 A dry pellet was produced by the same operation as Example 1 except that the crude dried product of EVOH obtained in the above Synthesis Example 5 was used, and analysis and evaluation were performed.
  • Example 10 A dry pellet was manufactured by the same operation as Example 2 except that the crude dried product of EVOH obtained in the above Synthesis Example 5 was used, and analysis and evaluation were performed.
  • Example 11 A dry pellet was manufactured by the same operation as Example 1 except that the crude dried product of EVOH obtained in the above Synthesis Example 6 was used, and analysis and evaluation were performed.
  • Example 12 to 16 The dry pellet is manufactured and analyzed and evaluated in the same manner as in Example 1 except that the type and concentration of each component of the aqueous solution for immersion treatment are adjusted so that the content of the components will be as described in Table 1. went.
  • Comparative Example 1 The dried pellet was manufactured, analyzed and evaluated in the same manner as in Example 1 except that the operation of immersion in 50 ° C. methanol for 1 hour while stirring and washing was not repeated three times.
  • Comparative Example 6 A dry pellet was manufactured by the same operation as Comparative Example 1 except that the crude dried product of EVOH obtained in the above Synthesis Example 5 was used, and analysis and evaluation were performed.
  • Comparative Example 7 The dried pellet was manufactured by the same operation as Example 2 except that the crude dried product of EVOH obtained in the above Synthesis Example 6 was used, and analysis and evaluation were performed.
  • Comparative Example 8 A dry pellet was manufactured by the same operation as Comparative Example 1 except that the crude dried product of EVOH obtained in the above Synthesis Example 6 was used, and analysis and evaluation were performed.

Abstract

アゾニトリル系重合開始剤を用いて製造されるエチレン-ビニルアルコール共重合体(A)を主成分として含有する樹脂組成物であって、エチレン-ビニルアルコール共重合体(A)のエチレン単位含有量が20~60モル%、けん化度が85モル%以上であり、前記重合開始剤に由来する窒素元素量(NI)が5~60ppmであり、かつ窒素元素量(NI)に対する、下記操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)の比率(NF/NI)が0.65~0.99である、樹脂組成物とする。当該樹脂組成物は、高温で溶融成形を行う場合も、ボイドが発生しにくく、高温での高速溶融成形プロセスに好適に用いられる。 操作(X):5gの樹脂組成物を100gの1,1,1,3,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノールに滴下して、生成した沈殿を分離した後乾燥して乾燥固形物を得る。

Description

エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料
 本発明は、エチレン-ビニルアルコール共重合体を主成分として含有する樹脂組成物、並びにこの樹脂組成物を用いる成形体及び包装材料に関する。
 エチレン-ビニルアルコール共重合体(以下、「EVOH」という。)は、優れたガスバリア性及び溶融成形性を有することから、各種の溶融成形法により、フィルム、シート、パイプ、チューブ、ボトル等に成形され、ガスバリア性の要求される食品分野及び産業分野で包装材料として広く使用されている。そして、近年では生産性を向上させるため、従来よりも高温での高速溶融成形性が求められている。しかしながら、高温での溶融成形では、樹脂に内在していたり、樹脂の分解により生じたりする低分子量揮発成分に起因するボイド等の欠点が問題となる。特に、高温でフィルムを製造する場合に、フィルムの端部にボイドが発生しやすく、生産性を低下させる要因の1つとなっている。
 上記問題を改善するために、EVOH樹脂組成物中の水分率を低く管理することが行われている。また、EVOH樹脂組成物中のアルカリ土類金属イオンを一定量以下に管理することも行われている。たとえば、特許文献1には、溶融成形中のボイドの発生といった成形トラブルを防ぐ目的から、EVOH樹脂組成物の水分率は1.0%以下が好ましいこと、及び、溶融成形中の過度な分解を抑制する目的から、EVOH樹脂組成物中のアルカリ土類金属イオンは60μモル/g以下が好ましいことが記載されている。しかしながら、包装材料の品質に対する要求は厳しくなっており、特に食品分野におけるフレキシブル包装材料の品質のさらなる改善が求められている。
国際公開第2017/047806号
 本発明は上記のような事情に基づいてなされたものであり、その目的は、高温で溶融成形を行う場合もボイドの発生を抑制でき、高温での高速溶融成形プロセスに好適に用いられる樹脂組成物を提供することにある。
 本発明者らは、上記の問題を解決するために鋭意検討した結果、アゾニトリル系重合開始剤を用いて製造されるEVOHを含有する樹脂組成物において、前記重合開始剤に由来する窒素元素量が特定の範囲にあり、かつ、再沈殿操作を行う前後の窒素元素量の比率が特定の範囲にある場合に、高温で溶融成形を行う際のボイドの発生を抑制できることを見出し、本発明に至った。上記課題を解決するためになされた発明は、以下の通りである。
 (1) アゾニトリル系重合開始剤を用いて製造されるエチレン-ビニルアルコール共重合体(A)を主成分として含有する樹脂組成物であって、エチレン-ビニルアルコール共重合体(A)のエチレン単位含有量が20~60モル%、けん化度が85モル%以上であり、前記重合開始剤に由来する窒素元素量(NI)が5~60ppmであり、かつ窒素元素量(NI)に対する、下記操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)の比率(NF/NI)が0.65~0.99の範囲である、樹脂組成物。
操作(X):5gの樹脂組成物を100gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノールに滴下して、生成した沈殿を分離した後乾燥して乾燥固形物を得る。
 (2) 前記比率(NF/NI)が0.75~0.95である、(1)に記載の樹脂組成物。
 (3) さらに金属イオン(B)を100~400ppm含有する、(1)または(2)に記載の樹脂組成物。
 (4) さらにカルボン酸(C)を50~400ppm含有する、(1)~(3)のいずれかに記載の樹脂組成物。
 (5) (1)~(4)のいずれかに記載の樹脂組成物を含む成形体。
 (6) 多層構造体である、(5)に記載の成形体。
 (7) (5)または(6)に記載の成形体を有する包装材料。
 本発明の樹脂組成物は、高温で溶融成形を行う場合もボイドの発生を抑制でき、高温での高速溶融成形プロセスに好適に用いられる。また、本発明の樹脂組成物は経済的に提供できるため、多様な包装材料の製造に使用できる。
 以下、本発明の実施の形態について説明するが、本発明はこれらに限定されない。また、例示される材料は、1種を単独で用いてもよく、2種以上を併用してもよい。
<樹脂組成物>
 本発明の樹脂組成物は、アゾニトリル系重合開始剤を用いて製造されるエチレン-ビニルアルコール共重合体(A)(以下、EVOH(A)と略記することがある。)を主成分として含有する。前記樹脂組成物中の前記重合開始剤に由来する窒素元素量(NI)が5~60ppmであり、窒素元素量(NI)に対する、下記操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)の比率(NF/NI)が0.65~0.99である必要がある。
操作(X):5gの樹脂組成物を100gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノールに滴下して、生成した沈殿を分離した後乾燥して乾燥固形物を得る。
 窒素元素量(NI)及び窒素元素量(NF)が上述した条件を満たすことで、高温で溶融成形を行う場合においても、ボイドの発生を抑制できることに加え、得られる成形体の着色も改善できる。この理由は定かではないが、前記重合開始剤に由来する低分子量成分の量が低減されることに加え、前記重合開始剤に由来する末端構造や低分子量成分による樹脂組成物の熱分解が抑制されているためであると推測される。一方で、重合開始剤に由来する低分子量成分がごく微量存在することにより、樹脂組成物の長時間の溶融加工安定性が改善される場合もある。また、NIを5ppmよりも低減するためには、重合濃度を下げ、重合時間を長くする必要があることから、経済的に実施することは困難となる。前記比率(NF/NI)は0.75~0.95の範囲にあることが好ましい。窒素元素量は微量全窒素分析装置で定量できる。前記樹脂組成物や前記乾燥固形物が重合開始剤以外の成分に由来する窒素元素を含有する場合には、その成分に由来する窒素元素量を別途定量し、その量を微量全窒素分析装置で測定された量から差し引くことで重合開始剤に由来する正味の窒素元素量を算出する。
<EVOH(A)>
 EVOH(A)は、本発明の樹脂組成物の主成分である。EVOH(A)は、主構造単位として、エチレン単位及びビニルアルコール単位を有する共重合体である。またEVOH(A)は、任意成分としてビニルエステル単位を含有する。EVOH(A)は、通常、エチレンとビニルエステルとを重合し、得られるエチレン-ビニルエステル共重合体をけん化して得られる。
 EVOH(A)のエチレン単位含有量(すなわち、EVOH(A)中の単量体単位の総数に対するエチレン単位の数の割合)は20~60モル%である必要がある。EVOH(A)のエチレン単位含有量の下限は、22モル%が好ましく、24モル%がより好ましい。一方、EVOH(A)のエチレン単位含有量の上限は、55モル%が好ましく、50モル%がより好ましい。EVOH(A)のエチレン単位含有量が20モル%より小さいと、高湿度下のガスバリア性が低下し、溶融成形性も悪化することがある。逆に、EVOH(A)のエチレン単位含有量が60モル%を超えると、充分なガスバリア性が得られないことがある。
 EVOH(A)のけん化度(すなわち、EVOH(A)中のビニルアルコール単位及びビニルエステル単位の総数に対するビニルアルコール単位の数の割合)は85モル%以上である必要がある。EVOH(A)のけん化度の下限は、95モル%が好ましく、99モル%がより好ましい。一方、EVOH(A)のけん化度の上限は、100モル%が好ましく、99.99モル%がより好ましい。EVOH(A)のけん化度が85モル%より小さいと、充分なガスバリア性が得られないことがあり、熱安定性が不十分なものとなるおそれもある。
 EVOH(A)が、エチレン単位含有量の異なる2種類以上のEVOHの混合物からなる場合には、混合質量比から算出される平均値をEVOH(A)のエチレン単位含有量とする。この場合、エチレン単位含有量が最も離れたEVOH同士のエチレン単位含有量の差が30モル%以下であることが好ましい。エチレン単位含有量の差は20モル%以下がより好ましく、15モル%以下がさらに好ましい。同様に、EVOH(A)が、けん化度の異なる2種類以上のEVOHの混合物からなる場合には、混合質量比から算出される平均値をEVOH(A)のけん化度とする。この場合、最も離れたEVOH同士のけん化度の差は7%以下が好ましく、5%以下がより好ましい。EVOH(A)を含む樹脂組成物の熱成形性及びガスバリア性が、より高いレベルでバランスがとれたものを所望する場合は、エチレン単位含有量が24モル%以上34モル%未満であり、けん化度が99モル%以上のEVOH(A-1)と、エチレン単位含有量が34モル%以上50モル%未満であり、けん化度が99モル%以上のEVOH(A-2)とを含有し、EVOH(A-2)に対するEVOH(A-1)の質量比(A-1/A-2)が60/40~90/10であるものをEVOH(A)として使用することもできる。EVOH(A)のエチレン単位含有量及びけん化度は、核磁気共鳴(NMR)法により求めることができる。
 EVOH(A)のJIS K 7210:2014に準拠したメルトフローレート(以下、単に「MFR」ともいう。;温度210℃、荷重2160g)の下限は、通常0.1g/10分であり、上限は、通常50g/10分である。
 EVOH(A)は、本発明の目的が阻害されない範囲で、エチレン単位、ビニルアルコール単位及びビニルエステル単位以外の単量体単位を共重合単位として含有できる。前記単量体の例としては、例えばプロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン;イタコン酸、メタクリル酸、アクリル酸、マレイン酸等の不飽和カルボン酸、その塩、その部分又は完全エステル、そのニトリル、そのアミド、その無水物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシエトキシ)シラン、γ-メタクリルオキシプロピルトリメトキシシラン等のビニルシラン系化合物;不飽和スルホン酸又はその塩;不飽和チオール類;ビニルピロリドン類が挙げられる。EVOH(A)中のエチレン単位、ビニルアルコール単位及びビニルエステル単位以外の他の単量体単位の含有量(すなわち、EVOH(A)中の単量体単位の総数に対する他の単量体単位の数の割合)は通常5モル%以下であり、2モル%以下が好ましく、1モル%以下がより好ましい。
 本発明において樹脂組成物が主成分としてEVOH(A)を含有するとは、樹脂組成物中のEVOH(A)の含有量が70質量%以上であることを指し、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。EVOH(A)が樹脂組成物の主成分であることで、得られる樹脂組成物の溶融成形性が向上し、それから得られる成形体のガスバリア性や耐油性等も優れたものとなる。
<金属イオン(B)>
 本発明の樹脂組成物が、さらに金属イオン(B)を含有することが好ましい。本発明の樹脂組成物は金属イオン(B)を含有することで、多層構造体とした時の層間接着性に優れる。金属イオン(B)が層間接着性を向上させる理由は明らかではないが、EVOH(A)と隣接する層に含まれる分子が、EVOH(A)のヒドロキシ基と反応し得る官能基を有する場合には、この結合生成反応が金属イオン(B)によって加速されることが考えられる。また、後述するカルボン酸(C)との含有比率を制御することで、得られる樹脂組成物の溶融成形性や着色耐性を改善できる。
 前記樹脂組成物中の金属イオン(B)の含有量の下限は、100ppmが好ましく、150ppmがより好ましい。一方、前記樹脂組成物中の金属イオン(B)の含有量の上限は、400ppmが好ましく、350ppmがより好ましい。樹脂組成物中の金属イオン(B)の含有量が100ppmより小さいと、得られる多層構造体の層間接着性が不十分となる場合がある。一方、樹脂組成物中の金属イオン(B)の含有量が400ppmより大きいと、着色耐性が不十分となる場合がある。
 金属イオン(B)としては、アルカリ金属イオン、アルカリ土類金属イオン、その他遷移金属イオン等を挙げることができ、これらは1種又は複数種からなるものであってもよい。中でも、アルカリ金属イオンを含むことが好ましい。前記樹脂組成物を簡便に製造できる点や、多層構造体の層間接着性をさらに向上できる点からは、金属イオン(B)がアルカリ金属イオンのみからなることがより好ましい。
 アルカリ金属イオンとしては、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウムのイオンが挙げられるが、工業的入手の点からはナトリウム又はカリウムのイオンが好ましい。
 アルカリ金属イオンを与えるアルカリ金属塩としては、例えばリチウム、ナトリウム、カリウムの脂肪族カルボン酸塩、芳香族カルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩、金属錯体が挙げられる。これらの中でも、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム、リン酸カリウムが、入手容易である点からより好ましい。
 金属イオン(B)はアルカリ土類金属イオンを含むことが好ましい場合がある。金属イオン(B)がアルカリ土類金属イオンを含むことで、トリムを再利用した際のEVOH(A)の熱劣化が抑制され、得られる成形体のゲル及びブツの発生が抑制される場合がある。
 アルカリ土類金属イオンとしては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムのイオンが挙げられるが、工業的入手の点からはマグネシウム又はカルシウムのイオンが好ましい。
 アルカリ土類金属イオンを与えるアルカリ土類金属塩としては、例えばマグネシウムやカルシウムの脂肪族カルボン酸塩、芳香族カルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩、金属錯体が挙げられる。
<カルボン酸(C)>
 本発明の樹脂組成物が、さらにカルボン酸(C)を含有することが好ましい。本発明の樹脂組成物はカルボン酸(C)を含有することで、得られる樹脂組成物の溶融成形性や高温下での着色耐性を改善できる。特に、得られる樹脂組成物のpH緩衝能力が高まり、酸性物質や塩基性物質に対する着色耐性を改善できる場合がある点から、カルボン酸(C)のpKaが3.5~5.5の範囲にあることがより好ましい。
 前記樹脂組成物中のカルボン酸(C)の含有量の下限は、50ppmが好ましく、100ppmがより好ましい。一方、樹脂組成物中のカルボン酸(C)の含有量の上限は、400ppmが好ましく、350ppmがより好ましい。樹脂組成物中のカルボン酸(C)の含有量が50ppmより小さいと、高温下での着色耐性が不十分となる場合がある。一方、樹脂組成物中のカルボン酸(C)の含有量が400ppmより大きいと、溶融成形性が不十分となったり、臭気が問題になったりする場合がある。ここで、樹脂組成物中のカルボン酸(C)の含有量として、カルボン酸塩の含有量は考慮しない。
 カルボン酸(C)としては、1価カルボン酸及び多価カルボン酸を挙げることができ、これらは1種又は複数種からなるものであってもよい。カルボン酸(C)として1価カルボン酸と多価カルボン酸の両方を含む場合には、得られる樹脂組成物の溶融成形性や高温下での着色耐性を特に改善できる場合がある。また、多価カルボン酸は、3個以上のカルボキシル基を有してもよい。この場合、本発明の樹脂組成物の着色耐性をより効果的に向上できる場合がある。
 1価カルボン酸とは、分子内に1つのカルボキシル基を有する化合物である。1価のカルボン酸のpKaが3.5~5.5の範囲にあることが好ましい。このようなカルボン酸としては、例えばギ酸(pKa=3.77)、酢酸(pKa=4.76)、プロピオン酸(pKa=4.85)、酪酸(pKa=4.82)、カプロン酸(pKa=4.88)、カプリン酸(pKa=4.90)、乳酸(pKa=3.86)、アクリル酸(pKa=4.25)、メタクリル酸(pKa=4.65)、安息香酸(pKa=4.20)、2-ナフトエ酸(pKa=4.17)等が挙げられる。これらのカルボン酸は、水酸基、アミノ基、ハロゲン原子といった置換基を有していてもよい。これらの中でも、安全性が高く、取扱いが容易であることから酢酸が好ましい。
 多価カルボン酸とは、分子内に2つ以上のカルボキシル基を有する化合物である。この場合、少なくとも1つのカルボキシル基のpKaが3.5~5.5の範囲にある多価カルボン酸が好ましい。このような多価カルボン酸として、例えばシュウ酸(pKa=4.27)、コハク酸(pKa=4.20)、フマル酸(pKa=4.44)、リンゴ酸(pKa=5.13)、グルタル酸(pKa=4.30、pKa=5.40)、アジピン酸(pKa=4.43、pKa=5.41)、ピメリン酸(pKa=4.71)、フタル酸(pKa=5.41)、イソフタル酸(pKa=4.46)、テレフタル酸(pKa=3.51、pKa=4.82)、クエン酸(pKa=4.75)、酒石酸(pKa=4.40)、グルタミン酸(pKa=4.07)、アスパラギン酸(pKa=3.90)等を挙げることができる。
<その他の成分>
 本発明の樹脂組成物には、本発明の効果を損なわない範囲でその他の成分を含有してもよい。その他の成分としては、例えばリン酸化合物、ホウ素化合物、EVOH(A)以外の熱可塑性樹脂、架橋剤、乾燥剤、酸化促進剤、酸化防止剤、酸素吸収剤、可塑剤、滑剤、熱安定剤(溶融安定剤)、加工助剤、界面活性剤、脱臭剤、帯電防止剤、紫外線吸収剤、防曇剤、難燃剤、顔料、染料、フィラー、充填剤、各種繊維等の補強剤等が挙げられる。
<リン酸化合物>
 リン酸化合物を含有する場合、樹脂組成物中のその含有量の下限は、リン酸根換算で1ppmが好ましく、10ppmがより好ましい。一方、樹脂組成物中の前記含有量の上限は、リン酸根換算で200ppmが好ましく、100ppmがより好ましい。この範囲でリン酸化合物を含有することで、樹脂組成物の熱安定性を改善できる。特に、長時間にわたって溶融成形を行う際のゲル状ブツの発生や着色を抑制できる場合がある。
 前記リン酸化合物としては、例えばリン酸、亜リン酸等の各種の酸やその塩等を用いることができる。リン酸塩は第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形であってもよい。リン酸塩のカチオン種も特に限定されないが、カチオン種がアルカリ金属、アルカリ土類金属であることが好ましい。中でも、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウムの形でリン酸化合物を添加することが好ましい。
<ホウ素化合物>
 ホウ素化合物を含有する場合、樹脂組成物中のその含有量の下限は、ホウ素元素換算で5ppmが好ましく、10ppmがより好ましい。一方、樹脂組成物中の前記含有量の上限は、ホウ素元素換算で1,000ppmが好ましく、500ppmがより好ましい。この範囲でホウ素化合物を含有することで、樹脂組成物の溶融成形時の熱安定性を向上でき、ゲル状ブツの発生が抑制できる場合がある。また、得られる成形体の機械的性質が向上する場合もある。これらの効果は、EVOH(A)とホウ素化合物との間にキレート相互作用が発生することに起因すると推測される。
 前記ホウ素化合物としては、例えばホウ酸、ホウ酸エステル、ホウ酸塩、水素化ホウ素が挙げられる。具体的には、ホウ酸としては、例えばオルトホウ酸(HBO)、メタホウ酸、四ホウ酸が挙げられ、ホウ酸エステルとしては、例えばホウ酸トリメチル、ホウ酸トリエチルが挙げられ、ホウ酸塩としては、例えば前記ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの中でもオルトホウ酸が好ましい。
 EVOH(A)以外の熱可塑性樹脂としては、例えば各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸もしくはその誘導体でグラフト変性した変性ポリオレフィン等)、各種ポリアミド(ナイロン6、ナイロン6・6、ナイロン6/66共重合体、ナイロン11、ナイロン12、ポリメタキシリレンアジパミド等)、各種ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリカーボネート、ポリアセタール、ポリアクリレート及び変性ポリビニルアルコール樹脂等が挙げられる。前記樹脂組成物中の前記熱可塑性樹脂の含有量は通常30質量%未満であり、20質量%未満が好ましく、10質量%未満がより好ましい。
<成形体>
 本発明の樹脂組成物を含む成形体が本発明の好適な実施態様である。前記樹脂組成物は、単層構造の成形体とすることもできるし、他の各種基材と共に2種以上の多層構造の成形体、すなわち多層構造体とすることもできる。成形方法としては、例えば押出成形、熱成形、異形成形、中空成形、回転成形、射出成形が例示される。本発明の成形体の用途は多岐にわたり、フィルム、シート、容器、ボトル、タンク、パイプ、ホース等が好適である。
 具体的な成形方法としては、例えば、フィルム、シート、パイプ、ホース等であれば押出成形により、容器形状であれば射出成形により、ボトルやタンク等の中空容器であれば中空成形や回転成形により成形することができる。中空成形としては、押出成形によりパリソンを成形し、これをブローして成形を行う押出中空成形と、射出成形によりプリフォームを成形し、これをブローして成形を行う射出中空成形が挙げられる。フレキシブル包装材や容器には、押出成形によって多層フィルム等の包装材を成形する方法、押出成形によって成形した多層シートを熱成形して容器状の包装材にする方法が好適に用いられる。
<多層構造体>
 前記成形体が本発明の樹脂組成物からなる層を含む多層構造体であることが好ましい。当該多層構造体は、本発明の樹脂組成物からなる層と他の層とを積層して得られる。当該多層構造体の層構成としては、本発明の樹脂組成物以外の樹脂からなる層をx層、本発明の樹脂組成物層をy層、接着性樹脂層をz層とすると、例えばx/y、x/y/x、x/z/y、x/z/y/z/x、x/y/x/y/x、x/z/y/z/x/z/y/z/x等が挙げられる。複数のx層、y層、z層を設ける場合は、その種類は同じであっても異なっていてもよい。また、成形時に発生するトリム等のスクラップからなる回収樹脂を用いた層を別途設けてもよいし、回収樹脂を他の樹脂からなる層にブレンドしてもよい。当該多層構造体の各層の厚さ構成は、特に限定されるものではないが、成形性及びコスト等の観点から、全層厚さに対するy層の厚さ比は通常2~20%である。
 前記x層に使用される樹脂は、加工性等の観点から熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸もしくはその誘導体でグラフト変性した変性ポリオレフィン等)、各種ポリアミド(ナイロン6、ナイロン6・6、ナイロン6/66共重合体、ナイロン11、ナイロン12、ポリメタキシリレンアジパミド等)、各種ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリカーボネート、ポリアセタール、ポリアクリレート及び変性ポリビニルアルコール樹脂が挙げられる。かかる熱可塑性樹脂層は無延伸のものであってもよいし、一軸もしくは二軸に延伸又は圧延されているものであっても構わない。これらの熱可塑性樹脂のうち、ポリオレフィンは耐湿性、機械的特性、経済性、ヒートシール性等の点で、また、ポリアミドやポリエステルは機械的特性、耐熱性等の点で好ましい。
 一方、z層に使用される接着性樹脂は、各層間を接着できるものであれば特に限定されず、ポリウレタン系又はポリエステル系の一液型又は二液型硬化性接着剤、カルボン酸変性ポリオレフィン等が好適に用いられる。カルボン酸変性ポリオレフィンは、不飽和カルボン酸又はその無水物(無水マレイン酸等)を共重合成分として含むポリオレフィン系共重合体;又は不飽和カルボン酸又はその無水物をポリオレフィンにグラフトさせて得られるグラフト共重合体である。
 本発明の多層構造体を得る方法は、例えば共押出成形、共押出中空成形、共射出成形、押出ラミネート、共押出ラミネート、ドライラミネート、溶液コート等が挙げられる。なお、このような方法で得られた多層構造体に対して、さらに真空圧空深絞成形、ブロー成形、プレス成形等の方法により、EVOH(A)の融点以下の範囲で再加熱後に二次加工成形を行い、目的とする成形体の構造にしてもよい。また、多層構造体に対して、ロール延伸法、パンタグラフ延伸法、インフレーション延伸法等の方法により、EVOH(A)の融点以下の範囲で再加熱後に一軸又は二軸延伸して、延伸された多層構造体を得ることもできる。
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法としては、アゾニトリル系重合開始剤を用いてEVOH(A)の製造を行い、前記重合開始剤に由来する窒素元素量(NI)が5~60ppmであり、窒素元素量(NI)に対する、下記操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)の比率(NF/NI)が0.65~0.99である樹脂組成物が得られる方法であれば特に限定されない。
操作(X):5gの樹脂組成物を100gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノールに滴下して、生成した沈殿を分離した後乾燥して乾燥固形物を得る。
 好ましい製造方法としては、アゾニトリル系重合開始剤を使用して、エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る共重合工程(I)、エチレン-ビニルエステル共重合体をけん化してEVOH(A)を得るけん化工程(II)、造粒操作によりEVOH(A)の含水ペレットを得る造粒工程(III)、及び含水ペレットを乾燥してEVOH(A)を含む樹脂組成物を得る乾燥工程(IV)を含む。
 重合開始剤に由来する窒素元素量(NI)及び比率(NF/NI)を制御する方法としては、共重合工程(I)においては、重合開始剤の種類及び使用量、添加するまでの温度及び時間、重合温度、重合時間、重合率、重合溶媒の種類及び使用量等を適宜調節すること、けん化工程(II)においては、アルカリ触媒の種類及び使用量、反応温度、反応時間等を適宜調節すること、また、造粒工程(III)においては、EVOH(A)のペーストを析出させる際のペースト濃度及び温度、凝固浴の組成及び温度、その後の工程においてEVOH(A)の含水ペレットを浸漬する溶液の種類、浸漬温度、浸漬時間及び回数等を適宜調節することによりなし得る。
 特に、含水ペレットをメタノールなどのアルコール系溶媒に浸漬することで、比率(NF/NI)を増大させることができる。この際、アルコール濃度を高くする、浸漬温度を高くする、浸漬時間を長くする、浸漬回数を増やす、浸漬時に攪拌を行う、浸漬時に超音波処理を行う、等の方法を採用したり、これらを適宜組み合わせることにより、さらに効果的に比率(NF/NI)を増大させることができる。一方、含水ペレットを水中に浸漬するのみでは、本発明の範囲に比率(NF/NI)を制御することは一般に困難である。
 本発明の樹脂組成物に金属イオン(B)やカルボン酸(C)等の各成分を含有させる方法としては、例えば上記ペレットを各成分と共に混合して溶融混練する方法、上記ペレットを調製する際に各成分を混合する方法、上記ペレットを各成分が含まれる溶液に浸漬させる方法等が挙げられる。この際、ペレットとしては含水ペレット、乾燥ペレットともに使用することができる。
<共重合工程(I)>
 共重合工程は、エチレンとビニルエステルとの共重合の工程に加え、必要に応じて重合禁止剤を添加し、それに続いて未反応エチレン、未反応ビニルエステルを除去してエチレン-ビニルエステル共重合体溶液を得る工程を含む。エチレンとビニルエステルとの共重合方法としては、例えば溶液重合、懸濁重合、乳化重合、バルク重合などの公知の方法が挙げられる。重合に用いられる代表的なビニルエステルとして酢酸ビニルが挙げられるが、その他の脂肪族ビニルエステル、例えばプロピオン酸ビニルやピバリン酸ビニルも使用できる。他にも、共重合し得る単量体を少量共重合させることができる。重合温度としては、20~90℃が好ましく、40~70℃がより好ましい。重合時間は、通常2~15時間である。重合率は、仕込みのビニルエステルに対して10~90%が好ましく、30~80%がより好ましい。重合後の溶液中の樹脂分は、通常5~85質量%である。
 共重合工程(I)ではアゾニトリル系重合開始剤を使用する必要がある。アゾニトリル系重合開始剤は分子骨格によって10時間半減期温度及び溶剤への溶解性を制御できる。また、アゾニトリル系重合開始剤は金属接触等による誘発分解を起こしにくく、分解時に溶媒の影響を受けにくいことなどから、工程を安全かつ安定に行うことができる。アゾニトリル系重合開始剤としては、例えば、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等を挙げることができる。これらの中でも、比較的低温で重合を速やかに進行させることが可能であることから、2,2’-アゾビス(2,4-ジメチルバレロニトリル)及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)を好ましく使用できる。
<けん化工程(II)>
 次に、エチレン-ビニルエステル共重合体溶液にアルカリ触媒を添加し、溶液中の共重合体をけん化してEVOH(A)を得る。けん化方法は、連続式、回分式のいずれも可能である。アルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートが挙げられる。また、けん化工程の後に、酢酸等の酸を添加して残存するアルカリ触媒を中和することも一般に行われる。
<造粒工程(III)>
 造粒の操作としては、例えば、(1)EVOH(A)の溶液を低温の貧溶媒中に押出して析出又は凝固させ、冷却固化させた後又は直後にカットする方法、(2)EVOH(A)の溶液を水蒸気と接触させて予めEVOH(A)の含水樹脂組成物としてカットする方法が挙げられる。これらの方法により得られたEVOH(A)の含水ペレット中の水の含有量は、EVOH(A)100質量部に対して、50~200質量部であることが好ましく、70~150質量部であることがより好ましい。得られた含水ペレットに対し、必要に応じて溶媒による洗浄処理や添加剤処理などを行うことも一般に行われる。
 <乾燥工程(IV)>
 造粒工程で得られたEVOH(A)の含水ペレットは、乾燥することでEVOH(A)の乾燥ペレットとすることが好ましい。乾燥ペレット中の水の含有量は、成形加工時のボイドの発生といった成形トラブルを防ぐ目的から、EVOH(A)100質量部に対して、1.0質量部以下であることが好ましく、0.5質量部以下であることがより好ましく、0.3質量部以下であることがさらに好ましい。含水ペレットの乾燥方法としては、例えば静置乾燥や流動乾燥が挙げられる。これらの乾燥方法は単独で用いてもよいし、複数を組み合わせて用いてもよい。乾燥処理は連続式、バッチ式いずれの方法で行っても良く、複数の乾燥方式を組み合わせて行う場合は、各乾燥方式について連続式、バッチ式を自由に選択できる。乾燥を低酸素濃度或いは無酸素状態で行うことも、乾燥中の酸素による樹脂組成物の劣化を低減できる点で好ましい。
 本発明の樹脂組成物は、高温で溶融成形を行う場合にもボイドの発生を抑制できるので、高温での高速溶融成形プロセスに好適に用いられる。また、本発明の樹脂組成物は経済的に提供することができる。そのため、本発明の樹脂組成物は、フィルム、シート、容器等に成形され、各種包装材料として好適に用いられる。本発明の樹脂組成物を含む成形体を有する包装材料が本発明のより好適な実施態様である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されない。なお、本実施例における各分析及び評価は以下の方法で行った。
(1)EVOH(A)のエチレン単位含有量及びけん化度
 乾燥ペレットを、内部標準物質としてテトラメチルシラン(TMS)、添加剤としてトリフルオロ酢酸(TFA)を含むジメチルスルホキシド(DMSO-d)に溶解し、500MHzのH-NMR(日本電子株式会社製:「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比より、エチレン単位含有量及びけん化度を求めた。
(2)重合開始剤に由来する窒素元素量(NI)
 乾燥ペレット約20mgを秤量し、微量窒素・硫黄分析装置(三菱ケミカルアナリテック社製「TS-2100H型」を使用)により窒素元素を定量し、乾燥ペレット(樹脂組成物)中の窒素元素量(NI)を求めた。
(3)操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)
 乾燥ペレット5gを100gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノール(20℃)に滴下して、生成した沈殿を分離した。この沈殿を100℃で24時間乾燥して得られた乾燥固形物から20mgを秤量し、微量窒素・硫黄分析装置(三菱ケミカルアナリテック社製「TS-2100H型」を使用)により窒素元素を定量し、乾燥固形物中の窒素元素量(NF)を求めた。
(4)金属イオン(B)の含有量
 乾燥ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。分解後に蓋をし、湿式分解装置により150℃で10分間、次いで180℃で5分間加熱することでさらに分解を行い、その後、室温まで冷却した。得られた処理液を50mLのメスフラスコに移し純水でメスアップした溶液について、ICP発光分光分析装置により各金属イオンを定量した。なお、リン酸化合物、ホウ素化合物の含有量も同様の方法で定量することができる。
(5)カルボン酸(C)の含有量
 乾燥ペレット10gと純水50mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で8時間撹拌した。得られた抽出液を20℃まで冷却した後、フェノールフタレインを指示薬として、0.02モル/Lの水酸化ナトリウム水溶液で滴定することにより、カルボン酸(C)を定量した。
(6)ボイド評価
 乾燥ペレットを以下の条件で製膜して幅30cmの単層フィルムを得た。製膜開始から1時間後に得られた単層フィルムについて、ボイド発生状況を目視で確認し、下記のA~Dの基準で評価することでボイド評価の指標とした。
<製膜条件>
 押出機:東洋精機製作所社製20mm押出機「D2020」
 スクリュー:フルフライトスクリュー、L/D=20、圧縮比=2.0
 押出温度:供給部/圧縮部/計量部/ダイ=180/280/280/280℃
 スクリュー回転数:20rpm
 引取りロール温度:80℃
 引取りロール速度:フィルム厚みが20μmとなるように調節
<評価>
 A:ボイドは観察されない、または端部から1cm以内の領域にボイドが散見されたが、それより内側にボイドが観察されなかった
 B:端部から1cmを超えて2cm以内の領域にボイドが散見されたが、それより内側にボイドが確認されなかった
 C:端部から2cmを超えて4cm以内の領域にボイドが散見されたが、それより内側にボイドが確認されなかった
 D:端部から4cmより内側にボイドが確認された
(7)着色耐性
 各実施例及び比較例で得た乾燥ペレット10gを用いて、加熱圧縮プレス装置にて220℃で6分間加熱溶融させて、厚み3mmの円盤状サンプルを作製した。この円盤状サンプルを複数作成し、YI(イエローインデックス)がそれぞれ10、15、20となる円盤状サンプルを用意した。なお、YIは、乾燥ペレットを製造する際の120℃で行う乾燥時間を変更することにより調整した。円盤状サンプルのYIは、HunterLab社製「LabScan XE Sensor」を用いて測定した。なお、YI値は対象物の黄色度(黄色み)を表す指標であり、YI値が高いほど黄色度が強く、一方、YI値が低いほど黄色度が弱く、着色が少ないことを表している。
 次に、(6)で得た単層フィルム200m分のロール端面の色相と、上記用意した円盤状サンプルの色相とを比較することでロール端面のYI範囲を判定し、下記のA~Cの基準で評価することで着色耐性の指標とした。
 A :10未満
 B :10以上15未満
 C :15以上
(8)層間接着性
 乾燥ペレット、直鎖状低密度ポリエチレン(日本ポリエチレン社製ノバテックLL-UF943。以下LLDPEと略記する。)及び接着性樹脂(デュポン社製バイネルCXA417E107質量部とLLDPE93質量部の混合物。以下Adと略記する。)を用い、3種5層の多層フィルム(LLDPE/Ad/EVOH/Ad/LLDPE=50μm/10μm/10μm/10μm/50μm)を製膜した。押出機及び押出条件、使用したダイは下記の通りとした。
押出機:
 EVOH:単軸押出機(東洋精機株式会社 ラボ機ME型CO-EXT)
  口径20mmφ、L/D20、フルフライトスクリュー
  供給部/圧縮部/計量部/ダイ=175/210/220/220℃
 LLDPE:単軸押出機(株式会社プラスチック工学研究所 GT-32-A)
  口径32mmφ、L/D28、フルフライトスクリュー
  供給部/圧縮部/計量部/ダイ=150/200/210/220℃
 Ad:単軸押出機(株式会社テクノベル SZW20GT-20MG-STD)
  口径20mmφ、L/D20、フルフライトスクリュー
  供給部/圧縮部/計量部/ダイ=150/200/220/220℃
 ダイ:300mm幅3種5層用コートハンガーダイ(プラスチック工学研究所社製)
 上記製膜を開始後、15分を経過したときに得られた多層フィルムを、温度23℃、相対湿度50%RHにて2時間調湿した後、押出方向に沿って長さ150mm、幅15mmになるよう切り取って試料を得た。前記試料を、株式会社島津製作所製オートグラフDCS-50M型引張試験機にて、23℃、50%RHの雰囲気下、引張速度250mm/分にてT型剥離モードで剥離したときの剥離強度を測定し、下記のA~Cの基準で評価することで、層間接着力の指標とした。
 A :500g/15mm以上
 B :300g/15mm以上500g/15mm未満
 C :300g/15mm未満
[合成例1]
 250Lの加圧反応槽を用いて以下の原料及び条件でエチレン-酢酸ビニル共重合体を重合した。
・酢酸ビニル:83.0kg
・メタノール:26.6kg
・2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(2.5g/Lメタノール溶液)初期供給量:362mL、連続供給量:1120mL/hr
・重合温度:60℃
・重合槽エチレン圧力:3.6MPa
 酢酸ビニルの重合率が約40%となったところでソルビン酸を添加して冷却して重合を停止した。次いで、反応槽を開放して脱エチレンした後に反応液を追出塔に供給し、塔下部からのメタノール蒸気の導入により未反応酢酸ビニルを塔頂より除去して、エチレン-酢酸ビニル共重合体のメタノール溶液を得た。この溶液をケン化反応器に仕込み、水酸化ナトリウム/メタノール溶液(80g/L)を、共重合体中のビニルエステル単位に対する水酸化ナトリウムのモル比が0.7となるように添加し、メタノールを加えて共重合体濃度が15%になるように調整した。この溶液を60℃に昇温し、反応器内に窒素ガスを吹き込みながら約4時間けん化反応させた。その後、酢酸と水を添加してけん化反応を停止させ、EVOH懸濁液を得た。この懸濁液を遠心脱液機により脱液し、次いで60℃で24時間乾燥させることでエチレン単位含有量32モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
[合成例2]
 前記エチレン-酢酸ビニル共重合体の重合時の条件を下記のとおり変更した以外は、合成例1と同様の操作により、エチレン単位含有量24モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
・酢酸ビニル:102.0kg
・メタノール:17.7kg
・2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(2.5g/Lメタノール溶液)初期供給量:280mL、連続供給量:850mL/hr
・重合温度:60℃
・重合槽エチレン圧力:2.9MPa
[合成例3]
 前記エチレン-酢酸ビニル共重合体の重合時における条件を下記に変更した以外は合成例1と同様の操作により、エチレン単位含有量27モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
・酢酸ビニル:85.2kg
・メタノール:32.3kg
・2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(2.5g/Lメタノール溶液)初期供給量:310mL、連続供給量:950mL/hr
・重合温度:60℃
・重合槽エチレン圧力:2.9MPa
[合成例4]
 前記エチレン-酢酸ビニル共重合体の重合時における条件を下記に変更した以外は合成例1と同様の操作により、エチレン単位含有量44モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
・酢酸ビニル:76.7kg
・メタノール:11.0kg
・2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(2.5g/Lメタノール溶液)初期供給量:510mL、連続供給量:1570mL/hr
・重合温度:60℃
・重合槽エチレン圧力:5.5MPa
[合成例5]
 前記エチレン-酢酸ビニル共重合体の重合時における条件を下記に変更した以外は合成例1と同様の操作により、エチレン単位含有量32モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
・酢酸ビニル:105.0kg
・メタノール:38.3kg
・2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10.0g/Lメタノール溶液)初期供給量:2440mL、連続供給量:なし
・重合温度:60℃
・重合槽エチレン圧力:3.7MPa
[合成例6]
 2,2’-アゾビス(2,4-ジメチルバレロニトリル)のメタノール溶液の濃度を20.0g/Lとし、当該溶液を51℃で10時間保存した後に使用した以外は合成例5と同様の操作により、エチレン単位含有量32モル%、けん化度99.9モル%のEVOHの粗乾燥物を得た。
[実施例1]
 上記合成例1で得られたEVOHの粗乾燥物を、固形分40質量%となるように水/メタノール=40/60(質量比)の混合溶媒に入れ、60℃で6時間攪拌して溶解させ、直径4mmのノズルより、0℃に調整した水/メタノール=90/10(質量比)の析出浴中に連続的に押出してストランド状に析出させた。このストランドをペレタイザーに導入して多孔質の含水ペレットを得た。この含水ペレットを50℃のメタノールに1時間、攪拌しながら浸漬させて洗浄する操作を3度繰り返し、次いで酢酸水溶液及びイオン交換水を用いて洗浄した後、酢酸ナトリウム及び酢酸を含む水溶液で浸漬処理を行った。この水溶液と含水ペレットを分離して脱液した後、熱風乾燥機に入れて80℃で3時間、次いで120℃で40時間乾燥を行って、水分率0.1%以下の乾燥ペレット(樹脂組成物)を得た。この乾燥ペレットを用いて、上記の分析及び評価を行った。なお、浸漬処理用水溶液の各成分の濃度を調節することにより、各成分の含有量が表1に記載の通りとなるように樹脂組成物を調製した。
[実施例2]
 50℃のメタノールに1時間、攪拌しながら浸漬させて洗浄する操作を3度繰り返す代わりに、30℃の水/メタノール=50/50(質量比)の混合溶媒に10分間、攪拌せずに浸漬させて洗浄する操作を1度のみ行った以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例3]
 50℃のメタノールに1時間、攪拌しながら浸漬させて洗浄する操作を3度繰り返す際に、超音波を当てたこと以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例4]
 上記合成例2で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=55/45(質量比)の混合溶媒を用いた以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例5]
 上記合成例2で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=55/45(質量比)の混合溶媒を用いた以外は実施例2と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例6]
 上記合成例3で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=50/50(質量比)の混合溶媒を用いた以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例7]
 上記合成例3で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=50/50(質量比)の混合溶媒を用いた以外は実施例2と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例8]
 上記合成例4で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=25/75(質量比)の混合溶媒を用いた以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例9]
 上記合成例5で得られたEVOHの粗乾燥物を使用した以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例10]
 上記合成例5で得られたEVOHの粗乾燥物を使用した以外は実施例2と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例11]
 上記合成例6で得られたEVOHの粗乾燥物を使用した以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[実施例12~16]
 成分の含有量が表1に記載の通りとなるように浸漬処理用水溶液の各成分の種類及び濃度を調節した以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例1]
 50℃のメタノールに1時間、攪拌しながら浸漬させて洗浄する操作を3度繰り返す操作を行わなかった以外は実施例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例2]
 上記合成例2で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=55/45(質量比)の混合溶媒を用いた以外は比較例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例3]
 上記合成例3で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=50/50(質量比)の混合溶媒を用いた以外は比較例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例4]
 上記合成例4で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=25/75(質量比)の混合溶媒を用いた以外は実施例2と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例5]
 上記合成例4で得られたEVOHの粗乾燥物を使用し、溶解させる溶媒として水/メタノール=25/75(質量比)の混合溶媒を用いた以外は比較例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例6]
 上記合成例5で得られたEVOHの粗乾燥物を使用した以外は比較例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例7]
 上記合成例6で得られたEVOHの粗乾燥物を使用した以外は実施例2と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
[比較例8]
 上記合成例6で得られたEVOHの粗乾燥物を使用した以外は比較例1と同様の操作により、乾燥ペレットを製造して分析及び評価を行った。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  アゾニトリル系重合開始剤を用いて製造されるエチレン-ビニルアルコール共重合体(A)を主成分として含有する樹脂組成物であって、
     エチレン-ビニルアルコール共重合体(A)のエチレン単位含有量が20~60モル%、けん化度が85モル%以上であり、
     前記重合開始剤に由来する窒素元素量(NI)が5~60ppmであり、かつ
    窒素元素量(NI)に対する、下記操作(X)により得られる乾燥固形物に含まれる窒素元素量(NF)の比率(NF/NI)が0.65~0.99である、樹脂組成物。
    操作(X):5gの樹脂組成物を100gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶解させた溶液を、攪拌下にある1000gのメタノールに滴下して、生成した沈殿を分離した後乾燥して乾燥固形物を得る。
  2.  比率(NF/NI)が0.75~0.95である、請求項1に記載の樹脂組成物。
  3.  さらに金属イオン(B)を100~400ppm含有する、請求項1または2に記載の樹脂組成物。
  4.  さらにカルボン酸(C)を50~400ppm含有する、請求項1~3のいずれかに記載の樹脂組成物。
  5.  請求項1~4のいずれかに記載の樹脂組成物を含む成形体。
  6.  多層構造体である、請求項5に記載の成形体。
  7.  請求項5または6に記載の成形体を有する包装材料。
PCT/JP2018/044240 2017-12-27 2018-11-30 エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料 WO2019130989A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/958,501 US20210061975A1 (en) 2017-12-27 2018-11-30 Resin composition including ethylene/vinyl alcohol copolymer, and molded object and packaging material both comprising same
JP2019562893A JP7084944B2 (ja) 2017-12-27 2018-11-30 エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料
CN201880090393.6A CN111742010B (zh) 2017-12-27 2018-11-30 含有乙烯-乙烯醇共聚物的树脂组合物和包含其的成形体和包装材料
SG11202005638PA SG11202005638PA (en) 2017-12-27 2018-11-30 Resin composition including ethylene/vinyl alcohol copolymer, and molded object and packaging material both comprising same
EP18897810.0A EP3733766A4 (en) 2017-12-27 2018-11-30 RESIN COMPOSITION COMPRISING AN ETHYLENE / VINYL ALCOHOL COPOLYMER AND MOLDED OBJECT AND PACKAGING MATERIAL COMPRISING IT BOTH
KR1020207021733A KR102550270B1 (ko) 2017-12-27 2018-11-30 에틸렌-비닐알코올 공중합체 함유 수지 조성물, 및 이로 이루어지는 성형체 및 포장 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017250575 2017-12-27
JP2017-250575 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019130989A1 true WO2019130989A1 (ja) 2019-07-04

Family

ID=67067045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044240 WO2019130989A1 (ja) 2017-12-27 2018-11-30 エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料

Country Status (8)

Country Link
US (1) US20210061975A1 (ja)
EP (1) EP3733766A4 (ja)
JP (1) JP7084944B2 (ja)
KR (1) KR102550270B1 (ja)
CN (1) CN111742010B (ja)
SG (1) SG11202005638PA (ja)
TW (1) TWI773864B (ja)
WO (1) WO2019130989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829490A (zh) * 2019-12-27 2022-07-29 株式会社可乐丽 树脂组合物以及包含其的成形品和多层结构体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213046A1 (ja) * 2019-04-15 2020-10-22 株式会社クラレ エチレン-ビニルアルコール共重合体及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234007A (ja) * 1999-12-16 2001-08-28 Kuraray Co Ltd ロングラン性に優れたエチレン−ビニルアルコール共重合体樹脂組成物
JP2002060413A (ja) * 2000-08-24 2002-02-26 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
WO2011118648A1 (ja) * 2010-03-25 2011-09-29 株式会社クラレ 樹脂組成物、その製造方法及び多層構造体
JP2011202052A (ja) * 2010-03-26 2011-10-13 Kuraray Co Ltd 変性エチレン−ビニルアルコール共重合体およびそれを含有する組成物
JP2012207054A (ja) * 2011-03-29 2012-10-25 Kuraray Co Ltd 熱収縮性フィルム
WO2017047806A1 (ja) 2015-09-18 2017-03-23 株式会社クラレ 樹脂組成物、その製造方法及び多層構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964990B2 (en) * 1999-12-16 2005-11-15 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer resin composition of improved long-run workability, and its shaped articles
JP5179309B2 (ja) 2008-09-29 2013-04-10 株式会社クラレ エチレン−酢酸ビニル共重合体ケン化物の製造方法
WO2013005807A1 (ja) * 2011-07-07 2013-01-10 株式会社クラレ エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法
JP5715923B2 (ja) * 2011-09-29 2015-05-13 株式会社クラレ 感温性相変化型水性組成物、紙用塗工剤、塗工紙および塗工紙の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234007A (ja) * 1999-12-16 2001-08-28 Kuraray Co Ltd ロングラン性に優れたエチレン−ビニルアルコール共重合体樹脂組成物
JP2002060413A (ja) * 2000-08-24 2002-02-26 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
WO2011118648A1 (ja) * 2010-03-25 2011-09-29 株式会社クラレ 樹脂組成物、その製造方法及び多層構造体
JP2011202052A (ja) * 2010-03-26 2011-10-13 Kuraray Co Ltd 変性エチレン−ビニルアルコール共重合体およびそれを含有する組成物
JP2012207054A (ja) * 2011-03-29 2012-10-25 Kuraray Co Ltd 熱収縮性フィルム
WO2017047806A1 (ja) 2015-09-18 2017-03-23 株式会社クラレ 樹脂組成物、その製造方法及び多層構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733766A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829490A (zh) * 2019-12-27 2022-07-29 株式会社可乐丽 树脂组合物以及包含其的成形品和多层结构体

Also Published As

Publication number Publication date
JPWO2019130989A1 (ja) 2021-01-28
SG11202005638PA (en) 2020-07-29
TWI773864B (zh) 2022-08-11
CN111742010A (zh) 2020-10-02
CN111742010B (zh) 2023-03-10
KR102550270B1 (ko) 2023-07-04
TW201934640A (zh) 2019-09-01
KR20200093687A (ko) 2020-08-05
EP3733766A1 (en) 2020-11-04
US20210061975A1 (en) 2021-03-04
EP3733766A4 (en) 2021-09-08
JP7084944B2 (ja) 2022-06-15

Similar Documents

Publication Publication Date Title
KR101795094B1 (ko) 수지 조성물, 그 제조 방법 및 다층 구조체
WO2000020211A1 (fr) Structure a multiples couches et procede de production de cette derniere
JP6724019B2 (ja) 樹脂組成物、その製造方法及び多層構造体
JP5700898B2 (ja) ロングラン性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびそれを用いた多層構造体
JP7025605B1 (ja) 多層フィルム及びそれを用いた多層構造体
JP7337593B2 (ja) ペレット及びそれからなる溶融成形体、並びにその製造方法
WO2017110568A1 (ja) 樹脂組成物及び成形体
JP4845272B2 (ja) ガスバリア性コート剤およびガスバリア性被膜並びにガスバリア性フィルム及びその製造方法
KR20010076159A (ko) 층간 접착성이 우수한 에틸렌-비닐 알콜 공중합체로이루어진 수지 조성물
JP7084944B2 (ja) エチレン-ビニルアルコール共重合体含有樹脂組成物、並びにそれからなる成形体及び包装材料
JP2001206999A (ja) アルコキシル基含有エチレン−酢酸ビニル共重合体けん化物及びその成形物
JP4722270B2 (ja) 低臭性および層間接着性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびそれを用いた多層構造体
JP2012021168A (ja) 低臭性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物
JP6733059B1 (ja) エチレン−ビニルアルコール共重合体及びその製造方法
JP7079270B2 (ja) エチレン-ビニルアルコール共重合体含有樹脂組成物の製造方法
JP5093959B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物
TW201831534A (zh) 乙烯-乙烯醇系共聚物丸粒、樹脂組成物及多層結構體
JP2000177068A (ja) 多層構造体およびその製法
JP2021138824A (ja) エチレン−ビニルアルコール共重合体含有樹脂組成物及び成形体
JP7399759B2 (ja) 樹脂組成物及び積層フィルム並びに包装材料
JP2005068414A (ja) 樹脂組成物及びその製造方法
WO2024085228A1 (ja) 多層フィルム、包装材及び反応装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021733

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018897810

Country of ref document: EP

Effective date: 20200727