WO2019130579A1 - パイル織物 - Google Patents

パイル織物 Download PDF

Info

Publication number
WO2019130579A1
WO2019130579A1 PCT/JP2017/047354 JP2017047354W WO2019130579A1 WO 2019130579 A1 WO2019130579 A1 WO 2019130579A1 JP 2017047354 W JP2017047354 W JP 2017047354W WO 2019130579 A1 WO2019130579 A1 WO 2019130579A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
yarn
yarns
height
loop
Prior art date
Application number
PCT/JP2017/047354
Other languages
English (en)
French (fr)
Inventor
信行 内野
Original Assignee
内野株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内野株式会社 filed Critical 内野株式会社
Priority to US16/958,623 priority Critical patent/US20210062373A1/en
Priority to EP17936494.8A priority patent/EP3733940A4/en
Priority to PCT/JP2017/047354 priority patent/WO2019130579A1/ja
Priority to JP2018557059A priority patent/JP6468577B1/ja
Priority to CN201780097940.9A priority patent/CN111527251B/zh
Priority to TW107144288A priority patent/TWI685321B/zh
Publication of WO2019130579A1 publication Critical patent/WO2019130579A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • D03D27/06Warp pile fabrics
    • D03D27/08Terry fabrics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/34Yarns or threads having slubs, knops, spirals, loops, tufts, or other irregular or decorative effects, i.e. effect yarns
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions
    • D02G3/406Yarns or threads coated with polymeric solutions where the polymeric solution is removable at a later stage, e.g. by washing
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/024Moisture-responsive characteristics soluble
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal

Definitions

  • the present invention relates to a pile fabric which is superior in durability (pile retention and / or fuzz reduction) as compared with conventional products.
  • Pile fabrics are widely used today.
  • towel cloth pile fabric
  • a wide range of fields such as towels, bath towels, gowns such as towel yukata, and sheets and the like.
  • the pile fabric comprises a ground structure formed of warps and wefts, and a loop pile formed of piles of warps.
  • the presence of the loop pile improves water absorbency, hygroscopicity and heat retention compared to plain weave. Furthermore, when the loop is deformed when touching the skin, a soft touch can be obtained.
  • Patent Document 1 Many of the commercially available towels use 10 to 30 English count (for example, 20th) cotton twist yarn as a pile yarn.
  • pile fabrics are much softer than plain fabrics. However, more softness is required.
  • Patent Document 2 In order to further soften the touch feeling of the pile fabric, there are a method using a non-twist yarn (or a weak twist yarn) for the pile yarn (Patent Document 2) and a method using a fine count for the pile yarn.
  • Twisted yarn is formed by twisting short fibers such as cotton, while non-twisted yarn is formed such that the twisted yarn is untwisted and untwisted.
  • the towel having the non-twist pile has a feature of soft touch and lightness compared to the voluminous appearance as compared with a general towel having the twist pile. It is characterized in that there are many fiber gaps and that the part absorbs moisture and has high water absorbability. In addition, heat retention is high.
  • untwisted yarn has a weak bond between fibers, and the removal of fluff has been a problem. If the fluff falls off, the characteristics of the untwisted yarn are impaired. Furthermore, it adheres to the skin, causing discomfort to the consumer.
  • the pile yarn becomes easy to be caught during use and washing.
  • the pile yarn comes off when it comes in contact with a projection or the like or when strong friction is applied.
  • the area of each loop pile subjected to friction increases, it is strongly affected by the force applied from the outside during use and washing, and it becomes easy for the pile yarn to come off.
  • the method of using non-twist yarn for pile yarn and the method of using fine count yarn for pile yarn can provide a soft touch feeling.
  • the present invention is intended to solve the above-mentioned problems, and a soft touch feeling similar to the method of using non-twist yarn for pile yarn and the method of using fine count yarn for pile yarn is obtained, and durability (pile retention or It is an object of the present invention to provide a pile fabric excellent in
  • pile textiles of the present invention are provided with ground tissue formed from warp yarns and wefts, and loop piles formed from pile yarns.
  • the height of the loop pile is at least 40 times the diameter of the pile yarn.
  • the pile yarn is a twisted yarn having a twist coefficient of 2.0 or more.
  • pile textiles of the present invention are provided with ground tissue formed from warp yarns and wefts, and loop piles formed from pile yarns.
  • the height of the loop pile is at least 40 times the diameter of the pile yarn.
  • the pile yarn is a non-twist yarn or a weak twist yarn.
  • a plurality of pile yarns are arranged in parallel with the warp yarns.
  • the interval between adjacent pile yarns is 0.5 mm or less.
  • the loop pile has a snare.
  • the snares of the adjacent loop piles are intertwined.
  • the pile yarn is a 50-120 English count.
  • pile height can be made into a predetermined range.
  • a plurality of the pile yarns are disposed between the adjacent warp yarns.
  • pile textiles of the present invention are provided with ground tissue formed from warp yarns and wefts, and loop piles formed from pile yarns.
  • the loop pile has a snare, and the snares of the adjacent loop piles are intertwined.
  • a plurality of the pile yarns disposed between the adjacent warp yarns are arranged (woven) in the same eye of a cocoon . After weaving, a snare is formed, and the snares of the adjacent loop piles are intertwined.
  • the composite yarn to be the pile yarn is reverse to the twisting direction of the water insoluble twist yarn.
  • the water soluble yarn is wound around.
  • the water-insoluble twisting yarn is a twisting yarn having a twist coefficient of 2.0 or more.
  • the composite yarn is woven so as to form a loop pile, and the pile yarn is formed by removing the water-soluble yarn.
  • the pile fabric of the present invention when non-twisted yarn (or weakly twisted yarn) is used as the pile yarn, the soft touch feeling characteristic of non-twisted yarn (or weakly twisted yarn) is obtained, and pile retention is improved and fuzz fall off Is suppressed.
  • Diagram showing conditions of sunal occurrence A diagram showing the occurrence of sunal Diagram showing conditions for Sunal intertwining Figure showing Sunal intertwining Diagram showing conditions for Sunal to be entangled (Modified example) Diagram showing conditions for Sunal to be entangled (Modified example) Diagram showing conditions for Sunal to be entangled (Modified example) A diagram showing a state in which Sunard is intertwined (modified example) Diagram showing conditions for Sunal to be entangled (Modified example) Diagram showing the situation of penetration (modification) Diagram showing a typical 3 pick structure The figure which shows this application 3 pick structure The figure which shows this application 4 pick structure A diagram showing the present five pick structure
  • Example comparison list (twisted yarn) Composite yarn conceptual diagram Figure showing Sunal entangled (non-twisted yarn) List of Examples and Comparative Examples (Non-twisted Yarn, Weft Twisted Yarn)
  • Sunal action ⁇ When a sunal is formed in the pile, it acts as a resistance at the pile root when a force to pull out the adjacent pile acts. If two or more sunals are formed in the pile, the next sunal will resist even if one sunal can not be resisted as a result of the action of a strong pullout force.
  • Sunal generation condition ⁇ We examined the conditions under which sunal occurs in the pile surely. In particular, it is preferable that two or more sunals occur in one pile.
  • a loop-like pile yarn is twisted, and a portion formed by an intersection and a substantially annular shape is taken as one sunal.
  • FIG. 1 shows the elements that are the conditions for the occurrence of sund.
  • the ratio H / D of the pile height to the pile diameter is preferably about 40 times or more.
  • the ratio H / D of the pile height to the pile diameter is preferably about 50 times or more.
  • the ratio H / D of the pile height to the pile diameter is preferably about 70 times or more.
  • the upper limit of the H / D is 120 because it is not practical to use a yarn count thinner than 120 British-style and that a towel with a pile height of 1.2 mm or more is not practical in general.
  • the ratio H / D of the pile height to the pile diameter is 40 times or more, and the pile yarn is preferably a twist yarn having a twist coefficient of 2.0 or more.
  • the ratio H / D of the pile height to the pile diameter is 50 times or more, and the pile yarn is more preferably a twisted yarn having a twist coefficient of 2.5 or more.
  • the pile yarn stands up from between wefts, is separated into two wefts, and returns from between wefts. This forms a loop.
  • the length per pile refers to the length of the yarn from the beginning (rise) to the end (return) of one pile.
  • the pile is in the form of a loop, the ring is greatly expanded, and it is shrunk due to the formation of the sunal, and the measured value of the pile height is not constant.
  • the length per pile is determined by the reed loose during weaving and can be accurately defined by the setting of the weaving machine. Therefore, half of the length per pile is taken as the pile height for convenience.
  • snare is reliably generated by squeezing the pile fabric in a water weir or by applying a special brush rotational motion to the pile fabric.
  • the pile yarn is preferably a single yarn, but it has been confirmed that a sunal is also generated in the twin yarn.
  • Pile thread count ⁇ Consider English yarn counts for pile yarns. The thinner the pile yarn, the easier it is to generate sunal.
  • the upper limit is 120. More preferably, the upper limit is 100th.
  • the pile yarn in the present embodiment is a 50-120 British count number.
  • Fig. 2 shows the condition of sunal occurrence. If two or more sunals are formed in the pile, pile retention improves. In addition, Sunar itself also rotates, and it becomes easy to be entangled with Sunal of an adjacent pile.
  • FIG. 3 shows an element L which is a condition under which Sunard becomes entangled.
  • the interval L between adjacent pile yarns is preferably 0.5 mm or less.
  • the spacing L between adjacent piles is the spacing between the piles.
  • FIG. 4 shows a state in which Sunard is intertwined.
  • a plurality of sunals are formed in each of the two piles, and sunals of adjacent loop piles are intertwined to form an appearance like a single pile.
  • FIG. 5 is a general pile structure.
  • the warp yarns G1 and G2 constituting the ground tissue are alternately arranged.
  • a pile yarn P1 forming a front pile is disposed between the warp yarns G1 and G2, and a pile yarn P2 forming a back pile is disposed between the warp yarn G2 and the next warp yarn G1.
  • the pile yarns P1 and P2 are alternately arranged.
  • a space interval between piles by adjacent pile yarns P1 is L.
  • the reciprocal of pile density (center-to-center distance) is obtained by subtracting the pile diameter length.
  • FIG. 6 shows a pile structure according to a modification.
  • the warp yarns G1 and G2 constituting the ground tissue are alternately arranged.
  • two pile yarns P1 (P1-1, P1-2) forming the front pile are arranged, and between the warp yarn G2 and the next warp yarn G1, the pile yarn P2 forming the back pile Two are arranged.
  • the pile yarns P1 and P2 are alternately arranged.
  • a space interval between adjacent pile yarns P1-1 and P1-2 is L.
  • FIG. 7 is a modification of FIG. While two pile yarns are arranged between the warp yarns G1 and G2 in FIG. 6, three pile yarns are arranged in FIG. Let L be the space interval between adjacent pile yarns.
  • FIG. 8 shows a state in which Sunard is intertwined in the pile structure of FIG. A plurality of sunals are formed in each of the three piles, and sunals of adjacent loop piles are intertwined to form an appearance like a single pile.
  • FIG. 9 shows a single-sided pile structure.
  • the warp yarns G1 and G2 constituting the ground tissue are alternately arranged.
  • a pile yarn P which forms a pile is disposed between the warp yarns G1 and G2.
  • a space interval between piles by adjacent pile yarns P is L.
  • FIG. 10 shows the situation where a pile yarn is passed through a weir.
  • three pile yarns may be passed through each eye (feather) of a cocoon.
  • FIG. 11 shows a general three pick structure.
  • the pile is formed by 3 picks.
  • the pile rises from between wefts W2 and W3 and returns from between wefts W4 and W5.
  • weft yarn W5 is also involved in pile formation, since it overlaps with the configuration of the next pile, three picks corresponding to weft yarns W2 to W4 are used as a pile formation portion.
  • let three picks corresponding to wefts W5 to W7 be the next pile forming portion
  • let three picks corresponding to the wefts W8 to W10 be the next pile forming portion.
  • FIG. 12 is an application of the present invention to a general 3-pick structure. That is, the pile has a snare, and the snares of adjacent loop piles are intertwined.
  • FIG. 13 is a modification to a four pick structure.
  • It has a pile formation portion formed by three picks and a ground weave portion formed by one pick.
  • the number of picks is four. That is, one repeat consists of four picks, and one repeat is repeated.
  • the pile rises from between wefts W3 and W4 and returns from between wefts W5 and W6.
  • the weft yarn W6 is also involved in the pile formation, but for comparison with the three pick structure according to the general conventional product, the three picks corresponding to the weft yarns W3 to W5 are used as the pile formation portion.
  • three picks corresponding to weft yarns W7 to W9 are used as a pile forming portion.
  • the picks corresponding to the weft yarns W2, W6 and W10 intersect the weft yarns without forming the pile yarns, and this pick is the ground weave portion.
  • the pile formed in the pile forming portion has two or more sunals. In the case of illustration, there are four.
  • the upper and lower piles are alternately reversed. Therefore, it can apply, when it is not concerned with a pattern, such as a plain towel.
  • FIG. 14 is a modification to the 5-pick structure.
  • the number of picks is five. That is, one repeat consists of five picks, and one repeat is repeated.
  • weft yarn W5 is also involved in pile formation, but for comparison with a three-pick structure according to a general conventional product (described later), three picks corresponding to weft yarns W2 to W4 are used as a pile formation portion. Similarly, three picks corresponding to weft yarns W7 to W9 are used as a pile forming portion.
  • the pile yarn intersects the weft without forming a pile, and this two picks are used as the ground weave portion.
  • two picks corresponding to weft yarns W10 to W11 are used as the ground weave portion.
  • the pile formed in the pile forming portion has two or more sunals. In the case of illustration, there are four.
  • Example (twisted yarn) Example 1 A pile yarn having a twist coefficient K of 4 and an English count 60th single yarn (diameter D: 0.12 mm) is used.
  • the density is 47 birds / inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 94 / inch.
  • a pile with a pile magnification of 8.6 times and a pile height of 6.3 mm is formed.
  • the ratio H / D of pile height to pile diameter is 51 times.
  • the pile magnification is a ratio of pile yarn length corresponding to the warp unit length.
  • the gap L of the pile yarn is 0.25 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 25 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the pile holding power of this example was 4200 mN.
  • the pile retention was evaluated by the JIS L 1075 B method.
  • Example 2 Use a pile yarn with a twist coefficient K of 2.8 and a single 100-degree count yarn (diameter D 0.10 mm).
  • the density is 47 birds per inch, and 3 pile yarns are passed through one chick. As a result, the pile yarn density is 141 yarns / inch.
  • a pile having a pile magnification of 7.7 times and a pile height of 7.5 mm is formed.
  • the ratio H / D of pile height to pile diameter is 78 times.
  • the gap L of the pile yarn is 0.25 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 30 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the pile holding power of this example was 3900 mN.
  • Example 3 Use a pile yarn with a twist coefficient K of 2.8 and a single 100-degree count yarn (diameter D 0.10 mm).
  • the density is 47 birds / inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 94 / inch.
  • a pile having a pile magnification of 7.7 times and a pile height of 7.5 mm is formed.
  • the ratio H / D of pile height to pile diameter is 78 times.
  • the gap L of the pile yarn is 0.35 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 22 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the pile holding power of this example was 3700 mN.
  • Comparative example (twisted yarn) (Comparative example 1) A pile yarn with a twist coefficient K of 4 and an English count number 40 is used as a single yarn (diameter D 0.15 mm).
  • the density is 34 birds per inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 68 / inch.
  • a pile with a pile magnification of 8.1 times and a pile height of 6.2 mm is formed.
  • the ratio H / D of pile height to pile diameter is 40 times.
  • the gap L of the pile yarn is 0.44 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 14 times.
  • the pile retention power of this comparative example was 1843 mN.
  • the density is 34 birds per inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 34 / inch.
  • a pile having a pile magnification of 7.4 times and a pile height of 7.8 mm is formed.
  • the ratio H / D of the pile height to the pile diameter is 31 times.
  • the gap L of the pile yarn is 0.50 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 16 times.
  • the pile retention of this comparative example was 1308 mN.
  • the density is 34 birds per inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 34 / inch.
  • a pile with a pile magnification of 8.1 times and a pile height of 5.3 mm is formed.
  • the ratio H / D of pile height to pile diameter is 24 times.
  • the gap L of the pile yarn is 0.53 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 10 times.
  • the pile retention power of this comparative example was 1600 mN.
  • the density is 34 birds per inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 34 / inch.
  • a pile with a pile magnification of 8.5 times and a pile height of 6.7 mm is formed.
  • the ratio H / D of the pile height to the pile diameter is 31 times.
  • the gap L of the pile yarn is 0.53 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 13 times.
  • the pile holding power of this comparative example was 1489 mN.
  • the density is 36 birds per inch, and one pile thread is passed through one chick. As a result, the pile yarn density is 36 / inch.
  • a pile having a pile magnification of 8.1 times and a pile height of 7.7 mm is formed.
  • the ratio H / D of pile height to pile diameter is 44 times.
  • the gap L of the pile yarn is 0.53 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 15 times.
  • the pile retention power of this comparative example was 2200 mN.
  • the density is 32 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 32 yarns / inch.
  • a pile having a pile magnification of 6.9 times and a pile height of 8.7 mm is formed.
  • the ratio H / D of pile height to pile diameter is 35 times.
  • the gap L of the pile yarn is 0.54 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 16 times.
  • the pile retention power of this comparative example was 1700 mN.
  • the density is 32 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 32 yarns / inch.
  • a pile with a pile magnification of 8.1 times and a pile height of 6.2 mm is formed.
  • the ratio H / D of the pile height to the pile diameter is 27 times.
  • the gap L of the pile yarn is 0.56 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 11 times.
  • the pile retention power of this comparative example was 1600 mN.
  • the density is 30.5 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 30.5 yarns / inch.
  • a pile having a pile magnification of 6.8 times and a pile height of 8.6 mm is formed.
  • the ratio H / D of pile height to pile diameter is 38 times.
  • the gap L of the pile yarn is 0.60 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 14 times.
  • the pile retention power of this comparative example was 1800 mN.
  • the density is 29 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 29 yarns / inch.
  • a pile with a pile magnification of 7.4 times and a pile height of 5.6 mm is formed.
  • the ratio H / D of pile height to pile diameter is 37 times.
  • the gap L of the pile yarn is 0.72 mm, and the ratio H / L of the pile height to the gap of the pile yarn is eight times.
  • the pile holding power of this comparative example was 500 mN.
  • FIG. 15 shows a list according to Examples 1 to 3 and Comparative Examples 1 to 9.
  • the ratio H / D of the pile height to the pile diameter is 40 times or more, and the pile yarn is a twisted yarn having a twist coefficient of 2.0 or more. Furthermore, the ratio H / D of the pile height to the pile diameter is 50 times or more, and the pile yarn is a twisted yarn having a twist coefficient of 2.5 or more.
  • the gap L between the pile yarns is 0.5 mm or less.
  • the ratio H / L of the pile height to the clearance of the pile yarn is at least 20 times.
  • the pile yarns have a 50-120 English count.
  • Comparative Example 5 a snare is formed on the pile, but the gap L between the pile yarns is more than 0.5 mm, and adjacent piles are not entangled with each other.
  • the average pile retention of Examples 1 to 3 is approximately 4000 mN.
  • Comparative Examples 2 to 4 and 6 to 9 the pile retention does not exceed 1800 mN. That is, in the embodiment of the present invention, the pile holding power is twice or more that of the comparative example, and the pile holding performance is improved.
  • FIG. 16 is a conceptual view of a composite yarn before becoming a non-twist yarn.
  • Twisted yarn is formed by twisting fibers such as cotton, while non-twisted yarn is formed such that the twisted yarn is untwisted and untwisted.
  • a water-soluble yarn for example, PVA
  • the water-soluble yarn is removed from the composite yarn to form Be done.
  • the twist coefficient K of the untwisted yarn is zero.
  • the twist coefficient of the water-insoluble twist yarn is 2.0 or more, it can be handled in the same manner as the twist yarn in the above embodiment. That is, the composite yarn is woven to form a loop pile.
  • the ratio H / D of the pile height to the pile diameter is 40 times or more, and the water-insoluble twist yarn is a twist yarn having a twist coefficient of 2.0 or more. Furthermore, the ratio H / D of the pile height to the pile diameter is 50 times or more, and the water-insoluble twist yarn is a twist yarn having a twist coefficient of 2.5 or more.
  • the gap L between the pile yarns is 0.5 mm or less.
  • Two or more sunals are formed in each pile, and the sunals of adjacent piles are intertwined.
  • the water-soluble yarn is removed from the composite yarn, and the pile yarn becomes a non-twist yarn (or a weak twist yarn).
  • FIG. 17 shows a state in which two or more sunals are formed in the non-twisted yarn pile, and the sunals of adjacent piles are intertwined.
  • Example 4 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a single 60-degree yarn having a diameter of 0.16 mm (diameter D: 0.12 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 47 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 47 yarns / inch.
  • a pile with a pile magnification of 8.5 times and a pile height of 7.6 mm is formed.
  • the ratio H / D of pile height to pile diameter is 61 times.
  • the pile magnification is a ratio of pile yarn length corresponding to the warp unit length.
  • the gap L of the pile yarn is 0.42 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 18 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, two or more sunals are formed in each pile, and sunals of adjacent piles entangle each other.
  • the pile holding power of this example was 900 mN.
  • the pile retention was evaluated by the JIS L 1075 B method.
  • the fuzz loss rate of this example was 0.08%.
  • the fluff drop rate was evaluated by a test method based on the TRI method devised by Osaka Industrial Technology Research Institute.
  • the fuzz rate is a ratio of the weight of fibers dropped from the product by washing to the weight of the product before washing, and is generally used as an index for evaluating the quality of towels.
  • Example 5 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a single 60-degree yarn having a diameter of 60 (diameter D: 0.12 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 47 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 47 yarns / inch.
  • a pile with a pile magnification of 9.3 times and a pile height of 6.4 mm is formed.
  • the ratio H / D of pile height to pile diameter is 51 times.
  • the gap L of the pile yarn is 0.42 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 15 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, two or more sunals are formed in each pile, and sunals of adjacent piles entangle each other.
  • the pile holding power of this example was 850 mN.
  • the fuzz loss rate of this example was 0.03%.
  • Comparative example non-twisted yarn
  • Comparative example 10 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and an English-count 20-th single yarn (diameter D 0.22 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 34 birds per inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 34 / inch.
  • a pile with a pile magnification of 6.5 times and a pile height of 5.0 mm is formed.
  • the ratio H / D of pile height to pile diameter is 23 times.
  • the gap L of the pile yarn is 0.53 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 9 times.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, no sunal is formed in the pile. Adjacent piles do not get caught each other.
  • a non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a British count 30th single yarn (diameter D: 0.18 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 34 birds per inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 34 / inch.
  • a pile with a pile magnification of 8 times and a pile height of 6.8 mm is formed.
  • the ratio H / D of pile height to pile diameter is 39 times.
  • the gap L of the pile yarn is 0.59 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 11 times.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, no sunal is formed in the pile. Adjacent piles do not get caught each other.
  • the pile holding power of this comparative example was 430 mN.
  • the fuzz loss rate of this example was 0.24%.
  • a non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a British count 30th single yarn (diameter D: 0.18 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 30.5 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 30.5 yarns / inch.
  • a pile with a pile magnification of 7, 7 and a pile height of 6.1 mm is formed.
  • the ratio H / D of pile height to pile diameter is 35 times.
  • the gap L of the pile yarn is 0.66 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 9 times.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, no sunal is formed in the pile. Adjacent piles do not get caught each other.
  • a non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a single 60-degree yarn having a diameter of 0.16 mm (diameter D: 0.12 mm) is used.
  • the water-soluble yarn (PVA) is twisted in the same direction in the opposite direction to the water-insoluble yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 32 birds / inch, and one pile yarn is passed through one chick. As a result, the pile yarn density is 32 yarns / inch.
  • a pile with a pile magnification of 9.3 times and a pile height of 6.4 mm is formed.
  • the ratio H / D of pile height to pile diameter is 51 times.
  • the gap L of the pile yarn is 0.67 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 10 times.
  • the water-soluble yarn is removed from the composite yarn to form a non-twisted yarn pile (zero twist coefficient K). Even if the water-soluble yarn is removed, sunals are formed on the piles, but adjacent piles are not entangled with each other.
  • Example 6 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and a single 60-degree yarn having a diameter of 60 (diameter D: 0.12 mm) is used.
  • the water-soluble yarn (PVA) is twisted about 30% in the reverse direction to the water-insoluble twisting yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 47 birds / inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 94 / inch.
  • a pile with a pile magnification of 8.6 times and a pile height of 6.3 mm is formed.
  • the ratio H / D of pile height to pile diameter is 51 times.
  • the pile magnification is a ratio of pile yarn length corresponding to the warp unit length.
  • the gap L of the pile yarn is 0.25 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 25 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the water-soluble yarn is removed from the composite yarn to form a weak twist pile (twist coefficient K is 2.8). Even if the water-soluble yarn is removed, two or more sunals are formed in each pile, and sunals of adjacent piles entangle each other.
  • the pile holding power of this example was 5300 mN.
  • the pile retention was evaluated by the JIS L 1075 B method.
  • Example 7 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and an English count 80-th single yarn (diameter D: 0.11 mm) is used.
  • the water-soluble yarn (PVA) is twisted about 30% in the reverse direction to the water-insoluble twisting yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 47 birds / inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 94 / inch.
  • a pile with a pile magnification of 9.3 times and a pile height of 6.4 mm is formed.
  • the ratio H / D of pile height to pile diameter is 69 times.
  • the gap L of the pile yarn is 0.32 mm, and the ratio H / L of the pile height to the gap of the pile yarn is 23 times.
  • two or more sunals are formed in each pile, and sunals of adjacent piles are intertwined.
  • the water-soluble yarn is removed from the composite yarn to form a weak twist pile (twist coefficient K is 2.8). Even if the water-soluble yarn is removed, two or more sunals are formed in each pile, and sunals of adjacent piles entangle each other.
  • the pile holding power of this example was 3700 mN.
  • Comparative example 14 A non-water-soluble yarn (cotton yarn) having a twist coefficient K of 4 and an English-count No. 40 single yarn (diameter D 0.15 mm) is used.
  • the water-soluble yarn (PVA) is twisted about 18% in the reverse direction to the water-insoluble twisting yarn to form a composite yarn. This composite yarn is used as a pile yarn.
  • the density is 30 birds / inch, and two pile yarns are passed through one chick. As a result, the pile yarn density is 60 yarns / inch.
  • a pile with a pile magnification of 5.3 times and a pile height of 4.6 mm is formed.
  • the ratio H / D of pile height to pile diameter is 30 times.
  • the gap L of the pile yarn is 0.54 mm, and the ratio H / L of the pile height to the gap of the pile yarn is eight times.
  • the water-soluble yarn is removed from the composite yarn to form a weak twist pile (twist coefficient K is 3.3). Even if the water-soluble yarn is removed, no sunal is formed in the pile. Adjacent piles do not get caught each other.
  • the pile retention of this comparative example was 1900 mN.
  • FIG. 18 shows a list according to Examples 5 to 8 and Comparative Examples 10 to 14.
  • the pile yarn is a non-twist yarn.
  • the untwisted yarn is formed by removing a water-soluble yarn from a composite yarn containing a water-insoluble twisting yarn having a twist coefficient of 2.0 or more.
  • the ratio H / D of the pile height to the pile diameter is 40 times or more, and the ratio H / D of the pile height to the pile diameter is 50 times or more.
  • the gap L between the pile yarns is 0.5 mm or less.
  • the ratio H / L of the pile height to the clearance of the pile yarn is at least 15 times.
  • the pile yarns have a 50-120 English count.
  • Comparative Example 13 a snare is formed in the pile, but the gap L between the pile yarns is more than 0.5 mm, and adjacent piles are not entangled with each other.
  • the average pile retention of Examples 4 to 5 is approximately 900 mN.
  • the pile retention does not exceed 450 mN. That is, in the embodiment of the present invention, the pile holding power is twice or more that of the comparative example, and the pile holding performance is improved.
  • the average fuzz loss rate of Examples 4 to 5 is approximately 0.05%
  • the average fuzz loss rate of Comparative Examples 10 to 12 is approximately 0.24%. That is, in the embodiment of the present invention, the falling amount of the fluff is suppressed to about 20% as compared with the comparative example.
  • a sunal is formed in a pile and suppresses drop-off
  • the pile yarn is a weak twist yarn.
  • a weak twist yarn is formed by removing a water-soluble yarn from a composite yarn containing a water-insoluble twist yarn having a twist coefficient of 2.0 or more.
  • the ratio H / D of the pile height to the pile diameter is 40 times or more, and the ratio H / D of the pile height to the pile diameter is 50 times or more.
  • the gap L between the pile yarns is 0.5 mm or less.
  • the ratio H / L of the pile height to the clearance of the pile yarn is at least 20 times.
  • the pile yarns have a 50-120 English count.
  • the average pile retention of Examples 6 to 7 is approximately 4500 mN, while the pile retention of Comparative Example 14 does not exceed 2000 mN. . That is, in the embodiment of the present invention, the pile holding power is twice or more that of the comparative example, and the pile holding performance is improved.
  • the pile retention strength is significantly improved when the piles of adjacent piles are intertwined.
  • this invention is applicable also to a non-twisted yarn (weak twisted yarn) pile.
  • fuzz When applied to a non-twisted yarn (weakly twisted yarn) pile, fuzz can be further suppressed from falling off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Knitting Of Fabric (AREA)

Abstract

柔らかな肌触り感と耐久性(パイル保持性または/および毛羽脱落抑制)とが両立するパイル織物を提供する。 パイル織物は、経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備える。パイル糸は、撚り係数2.0以上の撚糸である。パイル糸が無撚糸または弱撚糸である場合、水溶性糸除去前の非水溶性糸が、撚り係数2.0以上の撚糸である。パイル糸の直径に対するパイル高さの比率は40倍以上である。隣り合う前記パイル糸の間隔は0.5mm以下である。パイル糸は、50~120英式番手である。ループパイルはスナールを有し、隣り合うループパイルのスナール同士が絡み合っている。

Description

パイル織物
 本発明は、従来品と比較して、耐久性(パイル保持性または/および毛羽脱落抑制)に優れたパイル織物に関する。
 パイル織物は、今日、広く使用されている。例えば、タオル、バスタオル、タオル製浴衣などのガウン、その他にもシーツと言った如くに広範囲な分野でタオル生地(パイル織物)が用いられている。
 パイル織物は、経糸および緯糸から形成される地組織と、パイル経糸から形成されるループパイルとを備える。
 ループパイルがあることにより、平織と比べ、吸水性、吸湿性、保温性が向上する。更に、肌に触れた時にループが変形することにより、柔らかな肌触り感が得られる。
 一般にタオル業界では、ボリュームがあるタオルほど高級感があるとして好まれる傾向にある。また、太い糸を用いるほど、ボリューム感が出てくる。したがって、当業者の関心は、如何に太い番手を用いるかにある。タオル取引の実情においても、タオル相場も重量当たりで決められている傾向にある。
 市販されているタオルの多くが、パイル糸に、10~30英式番手(たとえば、20番手)の綿撚糸を用いている(特許文献1)。
 上述の通り、パイル織物は平織物に比べて格段に柔らかい。しかしながら、更なる柔らかさが求められている。
 パイル織物の肌触り感を更に柔らかくするには、パイル糸に無撚糸(または弱撚糸)を用いる方法(特許文献2)と、パイル糸に細番手を用いる方法がある。
 撚糸は、綿花等の短繊維を撚って形成されるのに対し、無撚糸は、撚糸を撚り戻し、撚りのない状態になるように形成される。
 パイルに無撚糸を用いたタオルは、ふんわりとふくらみ、繊維間に空気をたくさん含んでいる。これにより、無撚糸パイルを有するタオルは、撚糸パイルを有する一般的なタオルに比べ、柔らかな肌触りと、見た目のボリューム感に比べて軽いという特徴を有する。繊維の隙間が多く、その部分が水分を吸うため吸水性が高いという特徴を有する。また、保温性が高い。
 一方で、無撚糸は繊維間の結束が弱く、毛羽の脱落が課題とされてきた。毛羽が脱落すると無撚糸の特徴を損なう。さらに、肌に付着し、需要者に不快感を与える。
 毛羽の脱落を防ぐ方法としては、ループパイルを短く織り上げることや、細い糸で表面をカバーすることなどが行われてきた。しかし、これらの方法では、柔らかな肌触りが失われる。
 また、タオル地を衣服に適用する場合、衣服は常時肌に密着しているため、毛羽の脱落があると、肌に付着する。その結果、毛羽の脱落が特に目立つようになる。また、需要者に不快感を与えるおそれがある。
 次に、パイル糸に細番手を用いる方法について説明する。パイル糸に細番手を用いると、パイルの剛性が低くなり、触感が柔らかくなる。ただし、細番手のパイルを用いると、吸水性等も低減するため、パイル密度を高くして、吸水性等を維持する。また、パイル高を高く(パイル長を長く)するほど、パイルの剛性が低くなり、柔らかくなる。
 一方で、パイル糸に細番手を用いる場合、パイル糸と地組織の接触面積が低減するため、摩擦抵抗も低減し、パイル糸の抜けが起こりやすくなる。
 ループパイルが長くなると、形成される輪が大きくなり、使用時及び洗濯時にパイル糸が引っ掛かりやすくなる。突起物などに接触したり、強い摩擦が加えられたりした際にパイル糸の抜けが発生する。また、ループパイル1本当りが摩擦を受ける面積が大きくなることから、使用時及び洗濯時に外部から加わる力の影響を強く受け、パイル糸の抜けが起こりやすくなる。
特開2017-042370号公報 特開2000-079072号公報
 以上のように、パイル糸に無撚糸を用いる方法もパイル糸に細番手を用いる方法も柔らかな肌触り感が得られる。
 しかしながら、パイル糸に無撚糸を用いる方法では、毛羽脱落に係る課題がある。パイル糸に細番手を用いる方法では、パイル糸の抜けに係る課題がある。
 すなわち、柔らかな肌触り感と耐久性(パイル保持性または/および毛羽脱落抑制)とを両立させるのは、難しい。
 本発明は上記課題を解決しようとするものであり、パイル糸に無撚糸を用いる方法やパイル糸に細番手を用いる方法と同様な柔らかな肌触り感が得られるとともに、耐久性(パイル保持性または/および毛羽脱落抑制)に優れたパイル織物を提供することを目的とする。
 上記課題を解決するため、本発明のパイル織物は、経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備える。前記ループパイルの高さは前記パイル糸直径の40倍以上である。前記パイル糸は、撚り係数2.0以上の撚糸である。
 これにより、ループパイルにスナールが発生する。
 上記課題を解決するため、本発明のパイル織物は、経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備える。前記ループパイルの高さは前記パイル糸直径の40倍以上である。前記パイル糸は、無撚糸または弱撚糸である。
 これにより、無撚糸ループパイルまたは弱撚糸ループパイルにおいてもスナールが発生する。
 好ましくは、前記パイル糸は、前記経糸と並列に複数配置される。隣り合う前記パイル糸の間隔は0.5mm以下である。
 これにより、隣り合うループパイルのスナール同士が絡み合う。
 好ましくは、前記ループパイルはスナールを有する。前記隣り合うループパイルのスナール同士が絡み合っている。
 これにより、パイル保持性が格段に向上する。また、無撚糸パイルの場合は、毛羽脱落が抑制される。
 好ましくは、前記パイル糸は、50~120英式番手である。
 これにより、パイル高を所定範囲とすることができる。
 好ましくは、隣り合う前記経糸の間に、複数の前記パイル糸が配置される。
 これにより、隣り合うループパイルのスナール同士が確実に絡み合う。
 上記課題を解決するため、本発明のパイル織物は、経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備える。前記ループパイルはスナールを有し、前記隣り合うループパイルのスナール同士が絡み合っている。
 これにより、パイル保持性が格段に向上する。また、無撚糸パイルの場合は、毛羽脱落が抑制される。
 上記課題を解決するため、本発明のパイル織物の製造方法では、前記隣り合う経糸の間に配置される複数の前記パイル糸は、筬の同じ目に配置されて(通されて)製織される。製織後にスナールが形成され、前記隣り合うループパイルのスナール同士が絡み合う。
 上記課題を解決するため、本発明のパイル織物の製造方法では、パイル糸が無撚糸または弱撚糸である場合、前記パイル糸となる複合糸において、非水溶性撚糸の撚り方向に対して逆方向に水溶性糸が巻き付けられる。前記非水溶性撚糸は、撚り係数2.0以上の撚糸である。前記複合糸によりループパイルを形成するように製織され、前記パイル糸は、前記水溶性糸が除去されて形成される。
 本発明のパイル織物では、パイル糸に撚糸を用いる場合、柔らかな肌触り感が得られるとともに、パイル保持性が向上する。
 本発明のパイル織物では、パイル糸に無撚糸(または弱撚糸)を用いる場合、無撚糸(または弱撚糸)の特徴である柔らかな肌触り感が得られるとともに、パイル保持性が向上し、毛羽脱落が抑制される。
スナール発生の条件を示す図 スナール発生状態を示す図 スナールが絡み合う条件を示す図 スナールが絡み合う状態を示す図 スナールが絡み合う条件を示す図(変形例) スナールが絡み合う条件を示す図(変形例) スナールが絡み合う条件を示す図(変形例) スナールが絡み合う状態を示す図(変形例) スナールが絡み合う条件を示す図(変形例) 筬通しの状況を示す図(変形例) 一般的な3ピック構造を示す図 本願3ピック構造を示す図 本願4ピック構造を示す図 本願5ピック構造を示す図 実施例比較例一覧(撚糸) 複合糸概念図 スナールが絡み合う状態を示す図(無撚糸) 実施例比較例一覧(無撚糸・弱撚糸)
 ~スナール作用~
 パイルにスナールが形成されると、隣り合うパイルを引き抜く力が作用した場合、パイル根元において抵抗として作用する。また、パイルに2以上のスナールが形成されていると、強い引き抜き力が作用した結果1つのスナールが抵抗しきれなくなっても、次のスナールが抵抗する。
 パイルにスナールが形成されると、パイルが形成する開口面積が小さくなる。これにより、突起物に引っ掛かりにくくなる。
 これらの相互作用により、スナールを有するパイルはパイル保持性向上に寄与する。
 ~スナール発生条件~
 確実にパイルにスナールが発生する条件について検討した。とくに、1つのパイルに2以上のスナールが発生することが好ましい。
 ここで、パイルにおいてループ状のパイル糸が捩じれ、交点と略環状より形成される部分を1スナールとする。
 撚糸の撚り係数が大きいと、スナールは発生しやすい。また、パイル糸が細く、パイル高が高いと、スナールは発生しやすい。
 図1に、スナール発生の条件となる要素を示す。
 パイル糸の撚り係数Kが3.0以上である場合は、パイル直径に対するパイル高さの比率H/Dは約40倍以上であることが好ましい。
 パイル糸の撚り係数Kが2.5以上である場合は、パイル直径に対するパイル高さの比率H/Dは約50倍以上であることが好ましい。
 パイル糸の撚り係数Kが2.0以上である場合は、パイル直径に対するパイル高さの比率H/Dは約70倍以上であることが好ましい。
 但し、120英式番手より細い番手を用いることが実用的でないこと、かつ、一般にパイル高1.2mm超のタオルが実用的でないことから、H/Dの上限は120である。
 以上を総合すると、パイル直径に対するパイル高さの比率H/Dは40倍以上であり、パイル糸は撚り係数2.0以上の撚糸であることが好ましい。
 さらに、パイル直径に対するパイル高さの比率H/Dは50倍以上であり、パイル糸は撚り係数2.5以上の撚糸であることがより好ましい。
 なお、本願明細書では、「パイル長が長い」ことと「パイル高が高い」ことと同様に使用している。
 ところで、一般的な3ピック構造の場合、パイル糸は、緯糸の間から立ち上がり、緯糸2本分離れて、緯糸間から戻る。これによりループを形成する。一般にパイル1本当たりの長さとは、1本のパイルの始まり(立ち上がり)から終わり(戻り)までの糸の長さをいう。
 「パイル長」は「パイル高」と同じ意味であるが、「パイル1本当たりの長さ」と混乱するおそれがあるため、本願では「パイル高」を用いる。
 また、パイルはループ状となるため輪が大きく膨らんだりし、またスナールの形成により縮んだりして、パイル高の実測値は一定にならない。一方、パイル1本当たりの長さは、製織時の筬打ちの距離(Reed Loose)によって決定されるものであり、織機の設定によって正確に規定出来る。したがって、パイル1本当たりの長さの半分を便宜的にパイル高とする。
 さらに、パイル織物を水流漕の中で揉む、または、パイル織物に特殊ブラシによる回転運動を加えることにより、確実にスナールが発生する。パイル糸は単糸が好ましいが、双糸においてもスナールが発生することを確認している。
 ~パイル糸番手~
 パイル糸の英式番手について検討する。パイル糸が細い番手であるほど、スナールは発生しやすい。
 しかし、上述の通り、120番手より細い番手を用いることが実用的でないことから、120番手を上限とする。より好ましくは100番手を上限とする。
 パイル糸が太い番手であるほど、スナールは発生しにくい。実用性の観点からパイル高の上限を12mmとし、H/Dが40以上とすれば、20番手でもスナールは発生する。H/Dが50以上とすれば、30番手以上が好ましい。H/Dが70以上とすれば、40番手以上が好ましい。
 下限を50番手とすれば、スナールは確実に発生する。以上より、本実施形態におけるパイル糸は、50~120英式番手である。
 図2にスナール発生の状況を示す。パイルに2以上のスナールが形成されているとパイル保持性が向上する。また、スナール自体も回転し、隣り合うパイルのスナールと絡みやすくなる。
 ~スナールが絡み合う条件~
 各パイルにスナールが形成されているだけでなく、隣り合うループパイルのスナール同士が絡み合うと、相互に抵抗力が作用し、パイル保持性は各段に向上する(後述する実施例参照)。
 隣り合うパイルの間隔が短いほど、隣り合うループパイルのスナール同士が絡み合いやすくなる。
 図3に、スナールが絡み合う条件となる要素Lを示す。隣り合うパイル糸の間隔Lは0.5mm以下であることが好ましい。
 隣り合うパイルの間隔Lは、パイル間の空間間隔とする。
 図4にスナールが絡み合う状態を示す。2本のパイルそれぞれに複数のスナールが形成され、隣り合うループパイルのスナール同士が絡み合い、まるで一本のパイルのような外観を形成する。
 なお、隣り合うパイルの間隔Lの厳密な定義は、パイル構造の詳細に応じて、若干異なる。具体的には図5~9において詳述する。
 図5は、一般的なパイル構造である。地組織を構成する経糸G1,G2が交互に配置される。経糸G1,G2の間に、表パイルを形成するパイル糸P1が配置され、経糸G2と隣の経糸G1の間に、裏パイルを形成するパイル糸P2が配置される。このようにパイル糸P1,P2が交互に配置される。
 隣り合うパイル糸P1によるパイル間の空間間隔をLとする。具体的には、パイル密度の逆数(中心間距離)からパイル直径長を引いたものである。
 図6は、変形例にかかるパイル構造である。地組織を構成する経糸G1,G2が交互に配置される。経糸G1,G2の間に、表パイルを形成するパイル糸P1(P1-1,P1-2)が2本配置され、経糸G2と隣の経糸G1の間に、裏パイルを形成するパイル糸P2が2本配置される。このようにパイル糸P1,P2が交互に配置される。
 隣り合うパイル糸P1-1,P1-2間の空間間隔をLとする。
 図7は、図6の変形例である。図6では、経糸G1,G2の間にパイル糸が2本配置されるのに対し、図7ではパイル糸が3本配置される。隣り合うパイル糸の空間間隔をLとする。
 図8に、図7のパイル構造においてスナールが絡み合う状態を示す。3本のパイルそれぞれに複数のスナールが形成され、隣り合うループパイルのスナール同士が絡み合い、まるで一本のパイルのような外観を形成する。
 図9は、片面パイルのパイル構造である。地組織を構成する経糸G1,G2が交互に配置される。経糸G1,G2の間に、パイルを形成するパイル糸Pが配置される。隣り合うパイル糸Pによるパイル間の空間間隔をLとする。
 ~筬通し~
 図5に示す一般的なパイル構造では、1本のパイル糸が筬の各目(羽とも呼ぶ)に通される。
 これに対し、図6に示す変形例にかかるパイル構造では、パイル糸2本を筬の各目(羽)に通してもよい。図10に筬にパイル糸を通した状況を示す。
 同様に、図7に示す変形例にかかるパイル構造では、パイル糸3本を筬の各目(羽)に通してもよい。
 複数のパイル糸が筬の同じ目に通されることにより、複数のパイル糸には同じようにスナールが形成され、隣り合うパイルのスナールが絡み合いやすくなる。すなわち確実に絡み合う。
 ~ピック構造~
 一般的な3ピック構造に地織部を付加すると、地織部がパイル糸を保持するため、パイル保持性はさらに向上する。以下、詳述する。
 図11は、一般的な3ピック構造である。パイルは3ピックにより形成される。パイルは、緯糸W2とW3の間から立ち上がり、緯糸W4とW5の間から戻る。実際には、緯糸W5もパイル形成に関与しているが、隣のパイルの構成と重複するため、緯糸W2~W4に相当する3ピックをパイル形成部とする。同様に、緯糸W5~W7に相当する3ピックを隣のパイル形成部とし、緯糸W8~W10に相当する3ピックを更に隣のパイル形成部とする。
 図12は、本願発明を一般的な3ピック構造に適用したものである。すなわち、パイルはスナールを有し、隣り合うループパイルのスナール同士が絡み合っている。
 図13は、4ピック構造に変形したものである。
 3ピックにより形成されるパイル形成部と、1ピックにより形成される地織部とを有する。
 ピック数は4である。すなわち、1リピートは4ピックから構成され、1リピートが繰り返される。
 パイルは、緯糸W3とW4の間から立ち上がり、緯糸W5とW6の間から戻る。実際には、緯糸W6もパイル形成に関与しているが、一般従来品に係る3ピック構造との比較のため、緯糸W3~W5に相当する3ピックをパイル形成部とする。同様に、緯糸W7~W9に相当する3ピックをパイル形成部とする。
 緯糸W2,W6,W10に相当するピックは、パイル糸がパイルを形成せずに緯糸と交差しており、このピックを地織部とする。
 パイル形成部に形成されるパイルは2以上のスナールを有する。図示の場合、4つである。
 なお、4ピック構造では、上下のパイルが交互に反転する。そのため、無地のタオル等、模様に拘らない場合に適用できる。
 図14は、5ピック構造に変形したものである。
 3ピックにより形成されるパイル形成部と、2ピックにより形成される地織部とを有する。
 ピック数は5である。すなわち、1リピートは5ピックから構成され、1リピートが繰り返される。
 パイルは、緯糸W2とW3の間から立ち上がり、緯糸W4とW5の間から戻る。実際には、緯糸W5もパイル形成に関与しているが、一般従来品に係る3ピック構造との比較(後述)のため、緯糸W2~W4に相当する3ピックをパイル形成部とする。同様に、緯糸W7~W9に相当する3ピックをパイル形成部とする。
 緯糸W5~W6に相当する2ピックは、パイル糸がパイルを形成せずに緯糸と交差しており、この2ピックを地織部とする。同様に、緯糸W10~W11に相当する2ピックを地織部とする。
 パイル形成部に形成されるパイルは2以上のスナールを有する。図示の場合、4つである。
 ~実施例(撚糸)~
 (実施例1)
 撚り係数Kが4、英式番手60番手の単糸(直径D0.12mm)のパイル糸を用いる。
 筬密度47羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、94本/inchとなる。
 3ピック構造とする。緯糸密度は、52本/inchとする。
 パイル倍率8.6倍、パイル高さ6.3mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは51倍となる。なお、パイル倍率は、経糸単位長に対応するパイル糸長の比である。
 パイル糸の隙間Lは0.25mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは25倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は4200mNであった。パイル保持性は、JIS L 1075 B法により評価した。
 (実施例2)
 撚り係数Kが2.8、英式番手100番手の単糸(直径D0.10mm)のパイル糸を用いる。
 筬密度47羽/inchとし、筬1羽に3本のパイル糸を通す。その結果、パイル糸密度は、141本/inchとなる。
 4ピック構造とする。緯糸密度は、52本/inchとする。
 パイル倍率7.7倍、パイル高さ7.5mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは78倍となる。
 パイル糸の隙間Lは0.25mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは30倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は3900mNであった。
 (実施例3)
 撚り係数Kが2.8、英式番手100番手の単糸(直径D0.10mm)のパイル糸を用いる。
 筬密度47羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、94本/inchとなる。
 4ピック構造とする。緯糸密度は、52本/inchとする。
 パイル倍率7.7倍、パイル高さ7.5mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは78倍となる。
 パイル糸の隙間Lは0.35mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは22倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は3700mNであった。
 ~比較例(撚糸)~
 (比較例1)
 撚り係数Kが4、英式番手40番手の単糸(直径D0.15mm)のパイル糸を用いる。
 筬密度34羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、68本/inchとなる。
 3ピック構造とする。緯糸密度は、50本/inchとする。
 パイル倍率8.1倍、パイル高さ6.2mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは40倍となる。
 パイル糸の隙間Lは0.44mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは14倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルには一部スナールが形成されたが不充分であり、隣り合うパイルのスナール同士が一部絡むが不充分である。
 本比較例のパイル保持力は1843mNであった。
 (比較例2)
 撚り係数Kが2、英式番手30番手の双糸(直径D0.25mm)のパイル糸を用いる。
 筬密度34羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、34本/inchとなる。
 5ピック構造とする。緯糸密度は、60本/inchとする。
 パイル倍率7.4倍、パイル高さ7.8mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは31倍となる。
 パイル糸の隙間Lは0.50mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは16倍となる。
 地組織には、40番手双糸の経糸と30番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1308mNであった。
 (比較例3)
 撚り係数Kが3.6、英式番手20番手の単糸(直径D0.22mm)のパイル糸を用いる。
 筬密度34羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、34本/inchとなる。
 3ピック構造とする。緯糸密度は、48本/inchとする。
 パイル倍率8.1倍、パイル高さ5.3mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは24倍となる。
 パイル糸の隙間Lは0.53mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは10倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1600mNであった。
 (比較例4)
 撚り係数Kが4、英式番手20番手の単糸(直径D0.22mm)のパイル糸を用いる。
 筬密度34羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、34本/inchとなる。
 3ピック構造とする。緯糸密度は、48本/inchとする。
 パイル倍率8.5倍、パイル高さ6.7mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは31倍となる。
 パイル糸の隙間Lは0.53mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは13倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1489mNであった。
 (比較例5)
 撚り係数Kが4、英式番手30番手の単糸(直径D0.18mm)のパイル糸を用いる。
 筬密度36羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、36本/inchとなる。
 3ピック構造とする。緯糸密度は、40本/inchとする。
 パイル倍率8.1倍、パイル高さ7.7mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは44倍となる。
 パイル糸の隙間Lは0.53mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは15倍となる。
 地組織には、40番手双糸の経糸と30番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されるが、隣り合うパイル同士が絡むことはない。
 本比較例のパイル保持力は2200mNであった。
 (比較例6)
 撚り係数Kが2、英式番手30番手の双糸(直径D0.25mm)のパイル糸を用いる。
 筬密度32羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、32本/inchとなる。
 5ピック構造とする。緯糸密度は、50本/inchとする。
 パイル倍率6.9倍、パイル高さ8.7mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは35倍となる。
 パイル糸の隙間Lは0.54mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは16倍となる。
 地組織には、30番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1700mNであった。
 (比較例7)
 撚り係数Kが3.3、英式番手18番手の単糸(直径D0.23mm)のパイル糸を用いる。
 筬密度32羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、32本/inchとなる。
 3ピック構造とする。緯糸密度は、48本/inchとする。
 パイル倍率8.1倍、パイル高さ6.2mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは27倍となる。
 パイル糸の隙間Lは0.56mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは11倍となる。
 地組織には、30番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1600mNであった。
 (比較例8)
 撚り係数Kが3.3、英式番手18番手の単糸(直径D0.23mm)のパイル糸を用いる。
 筬密度30.5羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、30.5本/inchとなる。
 5ピック構造とする。緯糸密度は、50本/inchとする。
 パイル倍率6.8倍、パイル高さ8.6mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは38倍となる。
 パイル糸の隙間Lは0.60mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは14倍となる。
 地組織には、30番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1800mNであった。
 (比較例9)
 撚り係数Kが4、英式番手40番手の単糸(直径D0.15mm)のパイル糸を用いる。
 筬密度29羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、29本/inchとなる。
 3ピック構造とする。緯糸密度は、50本/inchとする。
 パイル倍率7.4倍、パイル高さ5.6mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは37倍となる。
 パイル糸の隙間Lは0.72mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは8倍となる。
 地組織には、20番手単糸の経糸と30番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は500mNであった。
 ~考察~
 図15に、実施例1~3および比較例1~9に係る一覧表を示す。
 実施例1~3では、パイル直径に対するパイル高さの比率H/Dは40倍以上であり、パイル糸は撚り係数2.0以上の撚糸である。さらに、パイル直径に対するパイル高さの比率H/Dは50倍以上であり、パイル糸は撚り係数2.5以上の撚糸である。パイル糸の隙間Lは0.5mm以下である。パイル糸の隙間に対するパイル高さの比率H/Lは20倍以上である。パイル糸は、50~120英式番手である。
 実施例1~3では、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 比較例2~4,6~9では、上記条件を満たさず、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 比較例1では、パイル直径に対するパイル高さの比率H/Dは40倍であり、条件下限であり、パイルには一部スナールが形成されたが不充分であり、隣り合うパイルのスナール同士が一部絡むが不充分である。
 比較例5では、パイルにはスナールが形成されるが、パイル糸の隙間Lは0.5mm超であり、隣り合うパイル同士が絡むことはない。
 各例において詳細な構成が異なるため厳密な比較はできないが、実施例1~3の平均パイル保持力がおよそ4000mN
であるのに対し、比較例2~4,6~9では、パイル保持力が1800mNを超えることはない。すなわち、本願実施例では比較例に比べ2倍以上のパイル保持力を有し、パイル保持性が向上する。
 比較例1,5では、スナール発生が散見でき、若干のパイル保持性向上が見られるが、隣り合うパイル同士が充分に絡むこともなく、本願実施例程のパイル保持力は得られない。
 ~無撚糸(または弱撚糸)への適用~
 図16は、無撚糸となる前の複合糸の概念図である。
 撚糸は、綿花等の繊維を撚って形成されるのに対し、無撚糸は、撚糸を撚り戻し、撚りのない状態になるように形成される。具体的には、非水溶性撚糸(たとえば綿糸)の撚り方向に対して逆方向に水溶性糸(たとえばPVA)を巻き付けて複合糸を形成した後、複合糸から水溶性糸が除去されて形成される。
 たとえば、非水溶性撚糸の撚り100回に対し、水溶性糸の撚り100回とすると、無撚糸が形成される。したがって、無撚糸の撚り係数Kはゼロである。
 一方、非水溶性撚糸の撚り100回に対し、水溶性糸の撚り30回とすると、撚り戻し後の撚り70%の弱撚糸が形成される。
 非水溶性撚糸の撚り100回に対し、水溶性糸の撚り170回とすると、撚り戻し後の撚り-70%(元の綿糸の撚りと逆方向に撚られる)の弱撚糸が形成される。
 非水溶性撚糸の撚り係数が2.0以上であれば、上記実施形態における撚糸と同様に扱える。すなわち、複合糸によりループパイルを形成するように製織する。
 パイル直径に対するパイル高さの比率H/Dは40倍以上であり、非水溶性撚糸は撚り係数2.0以上の撚糸である。さらに、パイル直径に対するパイル高さの比率H/Dは50倍以上であり、非水溶性撚糸は撚り係数2.5以上の撚糸である。パイル糸の隙間Lは0.5mm以下である。
 各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 パイル形成後、複合糸から水溶性糸が除去され、パイル糸は無撚糸(または弱撚糸)となる。
 各パイルにスナールが形成されているだけでなく、隣り合うループパイルのスナール同士が絡み合うと、パイル保持性向上に加えて毛羽脱落を抑制できる(後述する実施例参照)。
 ~実施例(無撚糸)~
 図17に、無撚糸パイルに2以上のスナールが形成され、隣り合うパイルのスナールが絡み合う状態を示す。
 (実施例4)
 撚り係数Kが4、英式番手60番手の単糸(直径D0.12mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度47羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、47本/inchとなる。
 5ピック構造とする。緯糸密度は、71本/inchとする。
 パイル倍率8.5倍、パイル高さ7.6mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは61倍となる。なお、パイル倍率は、経糸単位長に対応するパイル糸長の比である。
 パイル糸の隙間Lは0.42mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは18倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は900mNであった。パイル保持性は、JIS L 1075 B法により評価した。
 本実施例の毛羽脱落率は0.08%であった。毛羽脱落率は、大阪産業技術研究所考案のTRI法に準拠した試験方法により評価した。毛羽脱落率とは、洗濯によって製品から脱落した繊維の質量を洗濯前の製品質量に対する比率で表したものであり、タオルの品質評価の指標として一般的に用いられている。
 (実施例5)
 撚り係数Kが4、英式番手60番手の単糸(直径D0.12mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度47羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、47本/inchとなる。
 3ピック構造とする。緯糸密度は、70本/inchとする。
 パイル倍率9.3倍、パイル高さ6.4mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは51倍となる。
 パイル糸の隙間Lは0.42mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは15倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は850mNであった。本実施例の毛羽脱落率は0.03%であった。
 ~比較例(無撚糸)~
 (比較例10)
 撚り係数Kが4、英式番手20番手の単糸(直径D0.22mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度34羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、34本/inchとなる。
 3ピック構造とする。緯糸密度は、50本/inchとする。
 パイル倍率6.5倍、パイル高さ5.0mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは23倍となる。
 パイル糸の隙間Lは0.53mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは9倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例では、パイル糸がすぐ破断し、パイル保持力は測定不能であった。本実施例の毛羽脱落率は0.15%であった。
 (比較例11)
 撚り係数Kが4、英式番手30番手の単糸(直径D0.18mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度34羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、34本/inchとなる。
 3ピック構造とする。緯糸密度は、45本/inchとする。
 パイル倍率8倍、パイル高さ6.8mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは39倍となる。
 パイル糸の隙間Lは0.59mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは11倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は430mNであった。本実施例の毛羽脱落率は0.24%であった。
 (比較例12)
 撚り係数Kが4、英式番手30番手の単糸(直径D0.18mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度30.5羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、30.5本/inchとなる。
 3ピック構造とする。緯糸密度は、48本/inchとする。
 パイル倍率7,7倍、パイル高さ6.1mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは35倍となる。
 パイル糸の隙間Lは0.66mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは9倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例では、パイル糸がすぐ破断し、パイル保持力は測定不能であった。本実施例の毛羽脱落率は0.32%であった。
 (比較例13)
 撚り係数Kが4、英式番手60番手の単糸(直径D0.12mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に同程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度32羽/inchとし、筬1羽に1本のパイル糸を通す。その結果、パイル糸密度は、32本/inchとなる。
 3ピック構造とする。緯糸密度は、45本/inchとする。
 パイル倍率9.3倍、パイル高さ6.4mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは51倍となる。
 パイル糸の隙間Lは0.67mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは10倍となる。
 地組織には、40番手双糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されるが、隣り合うパイル同士が絡むことはない。
 複合糸から水溶性糸が除去されて、無撚糸パイル(撚り係数Kがゼロ)が形成される。水溶性糸が除去されても、パイルにはスナールが形成されるが、隣り合うパイル同士が絡むことはない。
 本比較例のパイル保持力は370mNであった。本実施例の毛羽脱落率は0.04%であった。
 ~実施例(弱撚糸)~
 (実施例6)
 撚り係数Kが4、英式番手60番手の単糸(直径D0.12mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に30%程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度47羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、94本/inchとなる。
 3ピック構造とする。緯糸密度は、52本/inchとする。
 パイル倍率8.6倍、パイル高さ6.3mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは51倍となる。なお、パイル倍率は、経糸単位長に対応するパイル糸長の比である。
 パイル糸の隙間Lは0.25mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは25倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 複合糸から水溶性糸が除去されて、弱撚糸パイル(撚り係数Kが2.8)が形成される。水溶性糸が除去されても、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は5300mNであった。パイル保持性は、JIS L 1075 B法により評価した。
 (実施例7)
 撚り係数Kが4、英式番手80番手の単糸(直径D0.11mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に30%程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度47羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、94本/inchとなる。
 3ピック構造とする。緯糸密度は、52本/inchとする。
 パイル倍率9.3倍、パイル高さ6.4mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは69倍となる。
 パイル糸の隙間Lは0.32mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは23倍となる。
 地組織には、60番手双糸の経糸と30番手単糸の緯糸を用いる。
 本実施例の構成によれば、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 複合糸から水溶性糸が除去されて、弱撚糸パイル(撚り係数Kが2.8)が形成される。水溶性糸が除去されても、各パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 本実施例のパイル保持力は3700mNであった。
 ~比較例(弱撚糸)~
 (比較例14)
 撚り係数Kが4、英式番手40番手の単糸(直径D0.15mm)の非水溶性糸(綿糸)を用いる。非水溶性の撚糸に逆方向に18%程度、水溶性糸(PVA)が撚られて、複合糸が形成される。この複合糸をパイル糸に用いる。
 筬密度30羽/inchとし、筬1羽に2本のパイル糸を通す。その結果、パイル糸密度は、60本/inchとなる。
 3ピック構造とする。緯糸密度は、44本/inchとする。
 パイル倍率5.3倍、パイル高さ4.6mmのパイルを形成する。その結果、パイル直径に対するパイル高さの比率H/Dは30倍となる。
 パイル糸の隙間Lは0.54mmとなり、パイル糸の隙間に対するパイル高さの比率H/Lは8倍となる。
 地組織には、20番手単糸の経糸と20番手単糸の緯糸を用いる。
 本比較例の構成によれば、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 複合糸から水溶性糸が除去されて、弱撚糸パイル(撚り係数Kが3.3)が形成される。水溶性糸が除去されても、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 本比較例のパイル保持力は1900mNであった。
 ~考察~
 図18に、実施例5~8および比較例10~14に係る一覧表を示す。
 実施例4~5では、パイル糸は無撚糸である。無撚糸は、撚り係数2.0以上の非水溶性撚糸を含む複合糸から水溶性糸が除去されて形成される。パイル直径に対するパイル高さの比率H/Dは40倍以上であり、さらに、パイル直径に対するパイル高さの比率H/Dは50倍以上である。パイル糸の隙間Lは0.5mm以下である。パイル糸の隙間に対するパイル高さの比率H/Lは15倍以上である。パイル糸は、50~120英式番手である。
 実施例4~5では、各無撚糸パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 比較例10~12では、上記条件を満たさず、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 比較例13では、パイルにはスナールが形成されるが、パイル糸の隙間Lは0.5mm超であり、隣り合うパイル同士が絡むことはない。
 各例において詳細な構成が異なるため厳密な比較はできないが、実施例4~5の平均パイル保持力がおよそ900mN
であるのに対し、比較例10~13では、パイル保持力が450mNを超えることはない。すなわち、本願実施例では比較例に比べ2倍以上のパイル保持力を有し、パイル保持性が向上する。
 さらに、実施例4~5の平均毛羽脱落率がおよそ0.05% であるのに対し、比較例10~12の平均毛羽脱落率はおよそ0.24%である。すなわち、本願実施例では比較例に比べ、毛羽の脱落量が20%程度に抑えられている。
 なお、比較例13では、パイルにはスナールが形成され、毛羽の脱落を抑制する。
 実施例6~7では、パイル糸は弱撚糸である。弱撚糸は、撚り係数2.0以上の非水溶性撚糸を含む複合糸から水溶性糸が除去されて形成される。パイル直径に対するパイル高さの比率H/Dは40倍以上であり、さらに、パイル直径に対するパイル高さの比率H/Dは50倍以上である。パイル糸の隙間Lは0.5mm以下である。パイル糸の隙間に対するパイル高さの比率H/Lは20倍以上である。パイル糸は、50~120英式番手である。
 実施例6~7では、各弱撚糸パイルには2以上のスナールが形成され、隣り合うパイルのスナール同士が絡み合う。
 比較例14では、上記条件を満たさず、パイルにはスナールが形成されない。隣り合うパイル同士が絡むこともない。
 各例において詳細な構成が異なるため厳密な比較はできないが、実施例6~7の平均パイル保持力がおよそ4500mNであるのに対し、比較例14では、パイル保持力が2000mNを超えることはない。すなわち、本願実施例では比較例に比べ2倍以上のパイル保持力を有し、パイル保持性が向上する。
 ~まとめ~
 スナールが確実に発生する条件および隣り合うパイルのスナールが絡み合う条件を見出し、パイル織物に適用した。
 隣り合うパイルのスナールが絡み合うと、パイル保持強度は格段に向上する。
 複合糸の状態であれば撚糸と同様に扱え、無撚糸や弱撚糸をパイル糸に用いる場合でも、パイルにスナールが発生し、隣り合うパイルのスナールが絡み合う。すなわち、本願発明は、無撚糸(弱撚糸)パイルにも適用できる。
 無撚糸(弱撚糸)パイルにも適用する場合、さらに毛羽の脱落を抑制できる。
 
 

Claims (9)

  1.  経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備え、
     前記パイル糸の直径に対する前記ループパイルの高さの比率は40倍以上であり、
     前記パイル糸は、撚り係数2.0以上の撚糸である
     ことを特徴とするパイル織物。
  2.  経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備え、
     前記パイル糸の直径に対する前記ループパイルの高さの比率は40倍以上であり、
     前記パイル糸は、無撚糸または弱撚糸である
     ことを特徴とするパイル織物。
  3.  前記パイル糸は、前記経糸と並列に複数配置され、
     隣り合う前記パイル糸の間隔は0.5mm以下である
     ことを特徴とする請求項1または2記載のパイル織物。
  4.  前記ループパイルはスナールを有し、
     前記隣り合うループパイルのスナール同士が絡み合っている
     ことを特徴とする請求項3記載のパイル織物。
  5.  前記パイル糸は、50~120英式番手である
     ことを特徴とする請求項1~4いずれか記載のパイル織物。
  6.  隣り合う前記経糸の間に、複数の前記パイル糸が配置される
     ことを特徴とする請求項3~5いずれか記載のパイル織物。
  7.  経糸および緯糸から形成される地組織と、パイル糸から形成されるループパイルとを備え、
     前記ループパイルはスナールを有し、
     前記隣り合うループパイルのスナール同士が絡み合っている
     ことを特徴とするパイル織物。
  8.  前記隣り合う経糸の間に配置される複数の前記パイル糸は、筬の同じ目に配置されて製織され、
     製織後にスナールが形成され、前記隣り合うループパイルのスナール同士が絡み合う
     ことを特徴とする請求項6記載のパイル織物の製造方法。
  9.  前記パイル糸となる複合糸において、非水溶性撚糸に逆方向に水溶性糸が撚られ、
     前記非水溶性撚糸は、撚り係数2.0以上の撚糸であり、
     前記複合糸によりループパイルを形成するように製織され、
     前記パイル糸は、前記水溶性糸が除去されて形成される
     ことを特徴とする請求項2記載のパイル織物の製造方法。
     
PCT/JP2017/047354 2017-12-28 2017-12-28 パイル織物 WO2019130579A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/958,623 US20210062373A1 (en) 2017-12-28 2017-12-28 Pile fabric
EP17936494.8A EP3733940A4 (en) 2017-12-28 2017-12-28 POLE FABRIC
PCT/JP2017/047354 WO2019130579A1 (ja) 2017-12-28 2017-12-28 パイル織物
JP2018557059A JP6468577B1 (ja) 2017-12-28 2017-12-28 パイル織物
CN201780097940.9A CN111527251B (zh) 2017-12-28 2017-12-28 毛圈织物
TW107144288A TWI685321B (zh) 2017-12-28 2018-12-10 毛絨織物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/047354 WO2019130579A1 (ja) 2017-12-28 2017-12-28 パイル織物

Publications (1)

Publication Number Publication Date
WO2019130579A1 true WO2019130579A1 (ja) 2019-07-04

Family

ID=65356086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047354 WO2019130579A1 (ja) 2017-12-28 2017-12-28 パイル織物

Country Status (6)

Country Link
US (1) US20210062373A1 (ja)
EP (1) EP3733940A4 (ja)
JP (1) JP6468577B1 (ja)
CN (1) CN111527251B (ja)
TW (1) TWI685321B (ja)
WO (1) WO2019130579A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540807B1 (ja) 2024-05-31 2024-08-27 伊澤タオル株式会社 タオル生地用パイル糸とその製造方法及びタオル生地とその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112220385B (zh) * 2020-09-25 2022-08-02 山东金号家纺集团有限公司 一种精梳弱捻纯棉股线毛巾

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797745A (ja) * 1993-09-28 1995-04-11 Kanebo Ltd タオル地
JP2000079072A (ja) 1998-09-07 2000-03-21 Toshin:Kk 浴用タオル
JP3152796U (ja) * 2009-06-03 2009-08-13 内野株式会社 室内干しに好適なタオル
JP2014163004A (ja) * 2013-02-22 2014-09-08 Uchino Co Ltd タオル製品およびタオル製品の製造方法
WO2015049887A1 (ja) * 2013-10-01 2015-04-09 内野株式会社 タオル製品
WO2015122025A1 (ja) * 2014-02-14 2015-08-20 内野株式会社 パイル織物および製造方法
JP2016037676A (ja) * 2014-08-07 2016-03-22 妙中パイル織物株式会社 綴織調ループパイル織物、及び、その綴織調ループパイル織物の製造方法
JP2016194182A (ja) * 2015-04-01 2016-11-17 帝人フロンティア株式会社 パイル布帛およびその製造方法および繊維製品
JP2017042370A (ja) 2015-08-27 2017-03-02 一広株式会社 タオルおよびタオルの製造方法
EP3141643A2 (en) * 2015-09-10 2017-03-15 Welspun India Limited Terry article with synthetic filament yarns and method of making same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012719A (en) * 1932-11-17 1935-08-27 Holt William Terry towel
US4408446A (en) * 1979-08-31 1983-10-11 Monsanto Company Singles carpet yarn
US4701518A (en) * 1986-05-08 1987-10-20 Monsanto Company Antimicrobial nylon prepared in water with zinc compound and phosphorus compound
GB8611412D0 (en) * 1986-05-09 1986-06-18 Moore Rosemary V A Loop pile fabric
US4901517A (en) * 1989-07-17 1990-02-20 Monsanto Company Apparatus for the drafting section of ring spinning frames
JPH0978396A (ja) * 1995-09-04 1997-03-25 Toray Ind Inc 炭素繊維パイル布帛
JP3207775B2 (ja) * 1996-12-13 2001-09-10 帝人株式会社 長短パイルを生起可能な立毛布帛
US20030203152A1 (en) * 2002-04-08 2003-10-30 Higgins Kenneth B. Flooring systems and methods
WO2007054827A2 (en) * 2005-10-17 2007-05-18 Mandawewala Rajesh R Hygro materials for use in making yarns and fabrics
CN201080533Y (zh) * 2007-07-20 2008-07-02 山东滨州亚光毛巾有限公司 高毛倍毛巾
ES2544991T3 (es) * 2010-11-03 2015-09-07 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Tela no tejida reforzada
TWI491773B (zh) * 2012-11-01 2015-07-11 Eclat Textile Co Ltd 輕量化雙面刷毛毛巾結構
JP5737734B1 (ja) * 2014-02-14 2015-06-17 内野株式会社 パイル織物および製造方法
DE102014002232B4 (de) * 2014-02-21 2019-10-02 Carl Freudenberg Kg Mikrofaser-Verbundvliesstoff
TWI640283B (zh) * 2015-03-30 2018-11-11 內野股份有限公司 Sewing fabric and clothes sewn using the sewing fabric
CA2989988C (en) * 2015-08-31 2023-08-29 Teijin Frontier Co., Ltd. Cloth and fibrous product
US9828704B2 (en) * 2015-09-10 2017-11-28 Welspun India Limited Terry article with synthetic filament yarns and method of making same
GB2544864B (en) * 2015-09-30 2018-06-06 Trident Ltd Pile fabric and methods for manufacture of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797745A (ja) * 1993-09-28 1995-04-11 Kanebo Ltd タオル地
JP2000079072A (ja) 1998-09-07 2000-03-21 Toshin:Kk 浴用タオル
JP3152796U (ja) * 2009-06-03 2009-08-13 内野株式会社 室内干しに好適なタオル
JP2014163004A (ja) * 2013-02-22 2014-09-08 Uchino Co Ltd タオル製品およびタオル製品の製造方法
WO2015049887A1 (ja) * 2013-10-01 2015-04-09 内野株式会社 タオル製品
WO2015122025A1 (ja) * 2014-02-14 2015-08-20 内野株式会社 パイル織物および製造方法
JP2016037676A (ja) * 2014-08-07 2016-03-22 妙中パイル織物株式会社 綴織調ループパイル織物、及び、その綴織調ループパイル織物の製造方法
JP2016194182A (ja) * 2015-04-01 2016-11-17 帝人フロンティア株式会社 パイル布帛およびその製造方法および繊維製品
JP2017042370A (ja) 2015-08-27 2017-03-02 一広株式会社 タオルおよびタオルの製造方法
EP3141643A2 (en) * 2015-09-10 2017-03-15 Welspun India Limited Terry article with synthetic filament yarns and method of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733940A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540807B1 (ja) 2024-05-31 2024-08-27 伊澤タオル株式会社 タオル生地用パイル糸とその製造方法及びタオル生地とその製造方法

Also Published As

Publication number Publication date
TW201936104A (zh) 2019-09-16
CN111527251B (zh) 2022-06-28
TWI685321B (zh) 2020-02-21
US20210062373A1 (en) 2021-03-04
EP3733940A1 (en) 2020-11-04
EP3733940A4 (en) 2021-04-28
CN111527251A (zh) 2020-08-11
JP6468577B1 (ja) 2019-02-13
JPWO2019130579A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP4916582B1 (ja) 糸わた及び糸わたを用いた織編物
WO2019130579A1 (ja) パイル織物
US6739160B1 (en) Lint-free wiper
JP6128720B1 (ja) 中綿シート
JP2022552948A (ja) 複合糸およびそれを用いてなる生地複合糸およびそれを用いてなる生地
JP2004218163A (ja) 芯地用複合糸及び芯地用布帛
JP2022122802A (ja) 合撚糸及びこれを用いてなる編物、織物の製造方法
JP5034968B2 (ja) 接着芯地
JP2006299458A (ja) 裏地用織物
JP2021188156A (ja) 仮撚糸及び織編物
TW202039948A (zh) 開放式網狀紗羅織物、由其製成之袋及製造該紗羅織物之方法
CN220742351U (zh) 一种双面轧光面料
JPH11158751A (ja) 地割れ調の外観を呈する接着芯地
CN216156082U (zh) 一种仿棉锦纶短纤面料
JP6006616B2 (ja) 畳表及びその製造方法
WO2022255101A1 (ja) 織物
JP2013112915A (ja) スパンライク織物
JPS6051583B2 (ja) 結束紡績糸による光沢と柔軟性に優れた繊維製品の製造方法
JP2005105455A (ja) 織物
JP3103022B2 (ja) 芯地用織物
JP2018084009A (ja) 和紙の撚糸を含む搦織物
JP3847144B2 (ja) ストレッチ性交織織物
JP3745791B2 (ja) たわし
JP2012112080A (ja) ボディタオルおよびその製造方法
JP3465640B2 (ja) 長短複合紡績糸および織物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557059

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017936494

Country of ref document: EP

Effective date: 20200728