WO2019117180A1 - メチオニンの製造方法 - Google Patents

メチオニンの製造方法 Download PDF

Info

Publication number
WO2019117180A1
WO2019117180A1 PCT/JP2018/045602 JP2018045602W WO2019117180A1 WO 2019117180 A1 WO2019117180 A1 WO 2019117180A1 JP 2018045602 W JP2018045602 W JP 2018045602W WO 2019117180 A1 WO2019117180 A1 WO 2019117180A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
exhaust gas
methionine
washing tower
water
Prior art date
Application number
PCT/JP2018/045602
Other languages
English (en)
French (fr)
Inventor
訓行 島田
水野 隆夫
山下 大輔
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2019559681A priority Critical patent/JP7048641B2/ja
Priority to EP18887316.0A priority patent/EP3725770B1/en
Priority to US16/771,892 priority patent/US11180447B2/en
Priority to SG11202005533RA priority patent/SG11202005533RA/en
Priority to CN201880080165.0A priority patent/CN111491916B/zh
Publication of WO2019117180A1 publication Critical patent/WO2019117180A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/12Separation of ammonia from gases and vapours
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton

Definitions

  • Methionine is obtained, for example, by the hydrolysis reaction of 5- (2-methylmercaptoethyl) hydantoin as shown in the following reaction formula (1).
  • the aforementioned 5- (2-methylmercaptoethyl) hydantoin can be produced, for example, by reacting 3-methylmercaptopropionaldehyde cyanohydrin with carbon dioxide and ammonia in water, as shown in the following reaction formula (2). can get.
  • This 5- (2-methylmercaptoethyl) hydantoin can also be obtained by the method of reacting 3-methylmercaptopropionaldehyde with hydrocyanic acid, carbon dioxide and ammonia.
  • Methionine is useful as an animal feed additive.
  • Various studies have been conducted on the method for producing methionine from the viewpoint of improvement of quality, reduction of production cost and the like (for example, Patent Document 1).
  • hydantoinization reaction In the reaction for obtaining 5- (2-methylmercaptoethyl) hydantoin (hereinafter sometimes referred to as hydantoinization reaction), an excess amount of ammonia is usually used. For this reason, unreacted ammonia remains in the liquid containing 5- (2-methylmercaptoethyl) hydantoin obtained by the hydantoination reaction.
  • methionine a solution containing 5- (2-methylmercaptoethyl) hydantoin is used as it is in the hydrolysis reaction represented by the above-mentioned reaction formula (1).
  • Patent Document 1 described above, if ammonia is contained in the liquid containing 5- (2-methylmercaptoethyl) hydantoin, the progress of the hydrolysis reaction is impeded, so hydrolysis is performed after ammonia is removed from this liquid. A reaction is taking place.
  • Patent Document 1 does not disclose how the removed ammonia is treated thereafter. In the production of methionine, environmental consideration is strongly demanded so as not to discharge ammonia and damage the environment.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing methionine in which consideration for the environment is taken into consideration.
  • ammonia is an essential component in the hydantoinization reaction, and as a result of earnestly examining technologies capable of giving consideration to the environment, as a result of reacting 3-methylmercaptopropionaldehyde and hydrocyanic acid or these.
  • the method for producing methionine according to the present invention is -Hydantoinization step to obtain a solution containing 5- (2-methylmercaptoethyl) hydantoin by reacting 3-methylmercaptopropionaldehyde and hydrocyanic acid, or a compound obtained by reacting them with carbon dioxide and ammonia ,
  • a method for producing methionine comprising a separation step of solid-liquid separation of a slurry of methion
  • ammonia is recovered from the exhaust gas obtained in the removal step in the first step or the second step.
  • the recovered ammonia can be reused, for example, in the hydantoinization step.
  • almost no ammonia is contained in the gas discharged from the methionine production facility.
  • the recovery step includes the first step and the second step.
  • the first step and the second step are performed on the exhaust gas obtained in the removal step.
  • ammonia is sufficiently recovered from the exhaust gas.
  • the second step is performed on the exhaust gas after the first step is performed.
  • the second step is performed after the first step, ammonia can be more efficiently recovered from the exhaust gas obtained in the removal step.
  • the recovery of ammonia is performed by circulating water as the cleaning solution, the amount of water used for the recovery of ammonia is effectively reduced.
  • the second step is performed on the exhaust gas from which ammonia is recovered in the first step, the load on recovery of ammonia in the second step is reduced. According to this manufacturing method, the recovery process of ammonia can be performed stably. In this production method, it is possible to produce methionine with high environmental consideration.
  • the recovery step is (3) Water is used as the cleaning liquid, and a third step of dissolving ammonia contained in the exhaust gas in the water is included, and the third step is performed on the exhaust gas after the second step is performed. The process is performed.
  • the recovery step includes at least the second step, and in the second step, the concentration of ammonia dissolved in the water is 0.5% by mass or more in the water circulation. It can be continued until
  • the amount of water used for ammonia recovery can be reduced more effectively.
  • methionine can be produced with sufficiently high environmental consideration.
  • the production method of the present invention can produce methionine in consideration of environmental considerations.
  • FIG. 1 is a schematic view showing a part of equipment used in the method for producing methionine according to one embodiment of the present invention.
  • methionine is obtained using 3-methylmercaptopropionaldehyde (hereinafter sometimes referred to as methionine aldehyde) as a starting material.
  • This production method includes a hydantoinization step, a hydrolysis step, a crystallization step, a separation step, a removal step and a recovery step.
  • Methionine aldehyde can be obtained, for example, by reacting methyl mercaptan and acrolein.
  • hydantoinization process In the hydantoinization step, methionine aldehyde and hydrocyanic acid, or a compound obtained by reacting these components in a reaction tank, for example, 3-methylmercaptopropionaldehyde cyanohydrin (hereinafter referred to as methionine cyanohydrin) (5) is reacted with carbon dioxide and ammonia in the presence of water to obtain a solution containing 5- (2-methylmercaptoethyl) hydantoin (hereinafter sometimes referred to as methionine hydantoin).
  • methionine cyanohydrin 3-methylmercaptopropionaldehyde cyanohydrin
  • a method of obtaining a solution containing methionine hydantoin (hereinafter sometimes referred to as a hydantoin solution)
  • a method of reacting methionine aldehyde, hydrocyanic acid, carbon dioxide and ammonia, and methionine cyanohydrin, dioxide The method of making carbon and ammonia react is mentioned.
  • carbon dioxide may also be present in the form of carbonate ion and / or bicarbonate ion.
  • Ammonia can also be present in the form of ammonium ions.
  • the reaction for obtaining methionine hydantoin from methionine cyanohydrin can be carried out, for example, by mixing methionine cyanohydrin with water in which carbon dioxide and ammonia are dissolved, and heating.
  • the reaction temperature is usually 50 to 90.degree.
  • the reaction time is usually 0.5 to 6 hours.
  • the amount of water used is usually 3 to 4 times the amount of methionine cyanohydrin by weight.
  • the amount of carbon dioxide to be used is generally 1 to 5 moles, preferably 1.5 to 3 moles, per 1 mole of methionine cyanohydrin.
  • the amount of ammonia used is usually in excess of 2 moles, preferably 3 to 5 moles, per mole of methionine cyanohydrin.
  • ammonium carbonate When ammonium carbonate is used in place of carbon dioxide and ammonia, the amount of ammonium carbonate used is usually 0.7 to 3 times by weight, preferably 0.9 to 2 times by weight the amount of methionine cyanohydrin.
  • the methionine hydantoin concentration of the hydantoin solution is usually 1 to 50% by mass, preferably 10 to 20% by mass.
  • methionine hydantoin concentration can be measured by liquid chromatography.
  • This hydantoin solution contains ammonia.
  • the ammonia concentration of this hydantoin solution is usually 2 to 7% by mass, preferably 3 to 6% by mass.
  • the amount of ammonia contained in the hydantoin solution is usually 1 to 4 mol, preferably 2 to 3 mol, per 1 mol of methionine hydantoin.
  • the ammonia concentration and the amount of ammonia can be obtained by converting the amount of ammonium ion measured by ion chromatography into the amount of ammonia.
  • the analysis conditions for measuring the amount of ammonium ions are as follows. (Ion chromatography analysis conditions) Column: Dionex IonPac CS12A Column size: inner diameter 4 mm, length 250 mm Eluent: 20 mmol / L methanesulfonic acid
  • the hydantoin solution usually contains carbon dioxide in addition to ammonia.
  • the carbon dioxide concentration of this hydantoin solution is usually 2 to 7% by mass.
  • the carbon dioxide concentration can be measured by gas chromatography.
  • the hydantoin liquid may also contain methyl mercaptan in addition to methionine hydantoin, ammonia and carbon dioxide.
  • the concentration of methyl mercaptan contained in the hydantoin solution is usually 0.001% by mass or more and 1% by mass or less.
  • hydrolysis step methionine hydantoin is hydrolyzed in the presence of an alkali compound such as potassium hydroxide, sodium hydroxide, potassium carbonate, potassium hydrogen carbonate and the like. Thereby, a solution containing a methionine salt (hereinafter sometimes referred to as a hydrolysis reaction solution) is obtained.
  • the pressure is usually set in the range of about 0.5 to 1.0 MPaG.
  • the temperature is set in the range of 150 to 200.degree.
  • crystallization process In the crystallization step, carbon dioxide is introduced into the hydrolysis reaction solution obtained in the hydrolysis step. Thereby, methionine precipitates and a slurry of methionine is obtained.
  • the crystallization temperature is usually 0 to 50 ° C., preferably 10 to 30 ° C.
  • the crystallization time is usually from 30 minutes to 24 hours, although the time until carbon dioxide is saturated in the reaction solution and methionine is sufficiently precipitated is taken as a standard.
  • the separation step the slurry of methionine obtained in the crystallization step is solid-liquid separated into a cake of methionine which is a solid component and a mother liquor which is a liquid component, for example, by a solid-liquid separator such as a centrifuge.
  • a solid-liquid separator such as a centrifuge.
  • the methionine cake obtained in this separation step is purified by washing with washing water, and then the cake is dried to obtain methionine in powder form as a product.
  • the removal step is usually performed before the hydrolysis step.
  • an inert gas is blown into the hydantoin solution obtained in the hydantoin step.
  • the hydantoin solution contains ammonia. Therefore, the ammonia remaining in the hydantoin solution is dissipated by bubbling the hydantoin solution with the inert gas, that is, bubbling the hydantoin solution with the inert gas, and the inert gas and the ammonia are contained in the hydantoin solution.
  • Gas hereinafter sometimes referred to as exhaust gas
  • Nitrogen gas, air, etc. are mentioned as an inert gas blown in at this removal process.
  • the amount of inert gas blown is usually 5 to 200 kg, preferably 10 to 100 kg, and more preferably 20 to 60 kg per hour per 1000 kg of hydantoin solution.
  • the inert gas is preferably blown using a sparger or the like from the viewpoint of being able to disperse the inert gas as fine bubbles in the hydantoin solution.
  • the temperature of the hydantoin solution at the time of blowing an inert gas is usually 30 to 70 ° C., preferably 40 to 60 ° C.
  • the pH of this hydantoin solution is usually 9-14.
  • the blowing time of the inert gas is usually 200 to 1,200 minutes, preferably 400 to 800 minutes.
  • the exhaust gas containing ammonia is obtained by blowing an inert gas into the hydantoin solution.
  • ammonia contained in the exhaust gas is recovered by bringing the exhaust gas obtained in the removal step into contact with the cleaning liquid in the next recovery step.
  • FIG. 1 shows a part of an installation 2 used in the method for producing methionine according to one embodiment of the present invention.
  • the treatment of the exhaust gas containing ammonia obtained in the removal step is performed using this equipment 2.
  • the equipment 2 includes a reaction tank 4, three washing towers 6, a storage tank 8, and an absorption tower 10.
  • a hydantoin process is performed in the reaction tank 4.
  • the removal step is performed in the reaction tank 4.
  • the three washing towers 6 are composed of a first washing tower 6a, a second washing tower 6b and a third washing tower 6c.
  • the equipment 2 includes, as the washing tower 6, a first washing tower 6a, a second washing tower 6b, and a third washing tower 6c.
  • the reaction tank 4, the three washing towers 6, the storage tank 8 and the absorption tower 10 are connected by a gas pipe 12 for flowing a gas and a liquid pipe 14 for flowing a liquid, respectively.
  • the exhaust gas discharged from the reaction tank 4 is the first washing tower 6a, the second washing tower 6b and the third washing tower 6c in this order. It is configured to pass through the washing tower 6c.
  • the first washing tower 6 a is located downstream of the reaction tank 4.
  • the second washing tower 6b is located downstream of the first washing tower 6a.
  • the third washing tower 6c is located downstream of the second washing tower 6b.
  • the absorption tower 10 is located downstream of the third washing tower 6c.
  • ammonium carbonate water may be used as the washing liquid, and ammonia contained in the exhaust gas may be dissolved in ammonium carbonate water (hereinafter also referred to as the first step). ) Will be implemented.
  • the exhaust gas is introduced into the first washing tower 6a from the lower part of the first washing tower 6a.
  • the exhaust gas containing methyl mercaptan and ammonia discharged from the reaction tank 4 is introduced into the first washing tower 6a.
  • the exhaust gas moves from the bottom to the top in the first washing tower 6a, and is discharged from the top of the first washing tower 6a.
  • ammonium carbonate water used in the hydantoinization reaction is prepared.
  • the ammonium carbonate water stored in the storage tank 8 is used as a cleaning liquid (hereinafter, may be referred to as a first cleaning liquid).
  • the washing solution is introduced into the first washing tower 6a from the top of the first washing tower 6a.
  • the cleaning solution moves from the top to the bottom in the first washing tower 6a, and is discharged from the lower portion of the first washing tower 6a.
  • the washing solution is allowed to pass through the first washing tower 6a without being circulated.
  • the washing solution may be circulated and used in the first washing tower 6a, and the washing solution may be repeatedly passed through the first washing tower 6a.
  • the washing solution supplied to the first washing tower 6a that is, the first washing solution is ammonium carbonate water.
  • carbon dioxide and ammonia are dissolved in the first cleaning solution.
  • the carbon dioxide concentration of the first cleaning liquid is usually 5% by mass or more and 20% by mass or less.
  • the ammonia concentration of the first cleaning solution is 5% by mass or more and 20% by mass or less.
  • the ammonia concentration is obtained by converting the amount of ammonium ion measured by the above-mentioned ion chromatography into the amount of ammonia.
  • the first cleaning solution contains water.
  • this water include pure water, ion exchange water, tap water, industrial water and the like.
  • the exhaust gas and the washing solution are introduced into the first washing tower 6a, and the exhaust gas is brought into contact with the washing solution in the first washing tower 6a.
  • the ammonia contained in the exhaust gas is dissolved in the cleaning liquid. Therefore, the ammonia concentration of the exhaust gas discharged from the first washing tower 6a is lower than the ammonia concentration of the exhaust gas introduced to the first washing tower 6a.
  • the ammonia concentration of the washing solution discharged from the first washing tower 6a is higher than the ammonia concentration of the washing solution introduced to the first washing tower 6a.
  • ammonia contained in the exhaust gas is recovered to the cleaning liquid in the first washing tower 6a.
  • the exhaust gas contains methyl mercaptan.
  • the washing solution discharged from the first washing tower 6a does not contain methyl mercaptan.
  • the temperature of the exhaust gas just before being introduced into the first washing tower 6a is usually 70 to 80.degree.
  • the temperature of the exhaust gas immediately after being discharged from the first washing tower 6a is usually 30 to 40.degree.
  • the temperature of the first washing solution is usually 10 to 30 ° C. immediately before the introduction of the first washing tower 6a.
  • the flow rate of the first cleaning liquid introduced into the first washing tower 6a is set in the range of usually 1 to 10 times the flow rate of the exhaust gas introduced into the first washing tower 6a.
  • the exhaust gas is introduced into the second washing tower 6b from the lower part of the second washing tower 6b.
  • the exhaust gas discharged from the first washing tower 6a is introduced into the second washing tower 6b.
  • the exhaust gas travels from the bottom to the top in the second washing tower 6b, and is discharged from the top of the second washing tower 6b.
  • water is used as a cleaning solution (hereinafter, may be referred to as a second cleaning solution).
  • the washing solution is introduced into the second washing tower 6b from the top of the second washing tower 6b.
  • the washing liquid moves from the top to the bottom in the second washing tower 6b and is discharged from the lower part of the second washing tower 6b.
  • water as the second washing liquid introduced into the second washing tower 6b is not particularly limited.
  • examples of this water include pure water, ion exchange water, tap water, industrial water and the like.
  • the cleaning solution and the exhaust gas are introduced, and the cleaning solution and the exhaust gas are brought into contact with each other.
  • the ammonia contained in the exhaust gas is dissolved in the cleaning liquid. Therefore, the ammonia concentration of the exhaust gas discharged from the second washing tower 6b is lower than the ammonia concentration of the exhaust gas introduced to the second washing tower 6b.
  • the ammonia concentration of the washing solution discharged from the second washing tower 6b is higher than the ammonia concentration of the washing solution introduced to the second washing tower 6b. That is, also in the second step, the ammonia contained in the exhaust gas is recovered in the cleaning liquid.
  • the washing solution is circulated and used in the second washing tower 6b. Thereby, the washing solution is repeatedly passed through the second washing tower 6b. Then, when the ammonia concentration of the cleaning solution reaches a predetermined concentration or more, the cleaning solution is supplied to the storage tank 8 and water is newly introduced into the second cleaning tower 6b as a cleaning solution. Thus, in the second washing tower 6b, since the washing solution is circulated and used, the amount of washing solution used can be reduced.
  • the exhaust gas subjected to the recovery processing of ammonia in the first washing tower 6a is introduced into the second washing tower 6b.
  • the load on the recovery of ammonia in the second washing tower 6b is reduced.
  • the recovery process of ammonia can be stably performed.
  • the temperature of the exhaust gas just before being introduced into the second washing tower 6b is usually 30 to 40.degree.
  • the temperature of the exhaust gas immediately after being discharged from the second washing tower 6b is usually 20 to 35.degree.
  • the temperature of the second washing solution is usually 10 to 30 ° C. immediately before the introduction of the second washing tower 6 b.
  • the flow rate of the second cleaning liquid introduced into the second washing tower 6b is set in the range of usually 1 to 10 times the flow rate of the exhaust gas introduced into the second washing tower 6b.
  • a step of using water as a washing solution and dissolving ammonia contained in the exhaust gas in water (hereinafter also referred to as the third step) is carried out. Ru.
  • the exhaust gas is introduced into the third washing tower 6c from the lower part of the third washing tower 6c.
  • the exhaust gas discharged from the second washing tower 6b is introduced into the third washing tower 6c.
  • the exhaust gas moves from the bottom to the top in the third washing tower 6c and is discharged from the top of the third washing tower 6c.
  • water is used as a cleaning solution (hereinafter, may be referred to as a third cleaning solution).
  • the washing solution is introduced into the third washing tower 6c from the top of the third washing tower 6c.
  • the cleaning liquid moves from the top to the bottom in the third washing tower 6c, and is discharged from the lower part of the third washing tower 6c.
  • water as the third cleaning liquid introduced into the third washing tower 6c is not particularly limited.
  • examples of this water include pure water, ion exchange water, tap water, industrial water and the like.
  • the cleaning solution and the exhaust gas are introduced, and the cleaning solution and the exhaust gas are brought into contact with each other.
  • the ammonia contained in the exhaust gas is dissolved in the cleaning liquid. Therefore, the ammonia concentration of the exhaust gas discharged from the third washing tower 6c is lower than the ammonia concentration of the exhaust gas introduced to the third washing tower 6c.
  • the ammonia concentration of the washing solution discharged from the third washing tower 6c is higher than the ammonia concentration of the washing solution introduced to the third washing tower 6c. That is, also in the third step, ammonia contained in the exhaust gas is recovered in the cleaning solution.
  • the temperature of the exhaust gas just before being introduced into the third washing tower 6c is usually 20 to 35.degree.
  • the temperature of the exhaust gas immediately after being discharged from the third washing tower 6c is usually 15 to 30.degree.
  • the temperature of the third washing solution is usually 10 to 30 ° C. immediately before the introduction of the third washing tower 6c.
  • the flow rate of the third cleaning liquid introduced into the third washing tower 6c is set in the range of usually 1 to 10 times the flow rate of the exhaust gas introduced into the third washing tower 6c.
  • the exhaust gas discharged from the third washing tower 6 c is introduced into the absorption tower 10 from the lower part of the absorption tower 10.
  • the exhaust gas travels from the bottom to the top in the absorption tower 10 and is discharged from the top of the absorption tower 10.
  • the exhaust gas contains methyl mercaptan.
  • methionine aldehyde is introduced into the absorption tower 10 from the top of the absorption tower 10 for recovery of the methyl mercaptan.
  • the methionine aldehyde moves from top to bottom in the absorber 10 and is discharged from the bottom of the absorber 10 together with methyl mercaptan.
  • methyl mercaptan is recovered from the exhaust gas.
  • the recovered methyl mercaptan is recycled as raw material for the production of methionine.
  • "MA" means methionine aldehyde.
  • the cleaning liquid containing ammonia recovered from the exhaust gas in the first cleaning tower 6 a is supplied to the reaction tank 4.
  • the ammonia recovered from the exhaust gas in the first step is used in the hydantoinization step.
  • the cleaning solution containing ammonia recovered from the exhaust gas in the second cleaning tower 6b is used in the storage tank 8 for the preparation of ammonium carbonate water.
  • the ammonium carbonate water stored in the storage tank 8 is supplied to the first washing tower 6a as a washing liquid.
  • the washing liquid discharged from the first washing tower 6 a is supplied to the reaction tank 4. Therefore, in this manufacturing method, not only the ammonia recovered from the exhaust gas in the first washing tower 6 a but also the ammonia recovered from the exhaust gas in the second washing tower 6 b is supplied to the reaction tank 4.
  • ammonia recovered from the exhaust gas in the first step and the second step is used in the hydantoinization step.
  • the ammonium carbonate water stored in the storage tank 8 may be directly supplied to the reaction tank 4.
  • the ammonia recovered in the second step is supplied to the reaction tank 4 without passing through the first washing tower 6a.
  • the ammonia recovered in the third step by supplying the cleaning liquid discharged from the third washing tower 6c to the reaction tank 4 can also be used in the hydantoinization step performed in the reaction tank 4 .
  • the cleaning solution discharged from the third washing tower 6c has a low ammonia concentration, it can be made harmless by biological treatment. For this reason, the cleaning liquid discharged from the third washing tower 6c can be treated with biological treatment and drained.
  • the washing tower 6 provided in the facility 2 may be configured of only the first washing tower 6a.
  • the exhaust gas discharged from the first washing tower 6 a is introduced into the absorber 10.
  • the washing liquid discharged from the first washing tower 6 a is supplied to the reaction tank 4.
  • the washing tower 6 may be constituted only by the second washing tower 6b.
  • the exhaust gas discharged from the reaction tank 4 is introduced into the second washing tower 6b.
  • Exhaust gas discharged from the second washing tower 6 b is introduced into the absorber 10.
  • the cleaning solution obtained by recovering ammonia from the exhaust gas in the second cleaning tower 6 b is used for preparation of ammonium carbonate water in the storage tank 8, and this ammonium carbonate water is supplied to the reaction tank 4.
  • ammonia is recovered from the exhaust gas obtained in the removal step in the first step or the second step.
  • the recovered ammonia can be reused, for example, in the hydantoinization step as described above.
  • almost no ammonia is contained in the gas discharged from the methionine production facility.
  • the recovery step preferably includes a first step and a second step. According to this configuration, the first step and the second step are performed on the exhaust gas obtained in the removal step. In this manufacturing method, ammonia is sufficiently recovered from the exhaust gas. In this production method, it is possible to produce methionine with high environmental consideration.
  • the second step be performed on the exhaust gas after the first step is performed.
  • this manufacturing method can more efficiently recover ammonia from the exhaust gas obtained in the removal step.
  • the recovery of ammonia is performed by circulating water as the cleaning solution, the amount of water used for the recovery of ammonia is effectively reduced.
  • the second step is performed on the exhaust gas from which ammonia is recovered in the first step, the load on recovery of ammonia in the second step is reduced.
  • This production method can stably carry out the ammonia recovery process. In this production method, it is possible to produce methionine with high environmental consideration.
  • the third step be performed on the exhaust gas after the second step is performed and the recovery step includes the third step.
  • the first and second steps most of the ammonia is recovered from the exhaust gas obtained in the removal step, so the exhaust gas to be subjected to the third step contains no ammonia or contains ammonia.
  • the amount of ammonia contained in this exhaust gas is extremely small.
  • ammonia is also recovered from the exhaust gas in the third step, the environmental impact of the gas discharged from the manufacturing facility can be sufficiently suppressed.
  • the recovery step preferably includes at least a second step, and the water circulation in the second step is continued until the concentration of ammonia dissolved in the water reaches 0.5% by mass or more.
  • the amount of water used for the recovery of ammonia can be reduced more effectively.
  • methionine can be produced with sufficiently high environmental consideration.
  • the circulation of water in the second step is more preferably continued until the concentration of ammonia dissolved in the water reaches 1% by mass or more.
  • the concentration of ammonia dissolved in water is preferably 10% by mass or less.
  • the production method of the present invention can produce methionine in consideration of environmental considerations.
  • Methionine cyanohydrin was synthesized by reacting methionine aldehyde and hydrocyanic acid at normal temperature and pressure. Ammonium carbonate was allowed to react with this methionine cyanohydrin in water at 75 ° C. for 2.5 hours to obtain a solution containing 15% by mass of methionine hydantoin and 3.6% by mass of ammonia, ie, a hydantoin solution. Nitrogen gas was blown into the hydantoin solution as an inert gas.
  • a liquid (potassium concentration: about 7.5% by mass) obtained by mixing a potassium hydroxide, potassium hydrogencarbonate and a basic potassium compound containing potassium hydroxide with a hydantoin solution blown with nitrogen gas is used as an autoclave
  • the hydrolysis reaction was carried out while continuously supplying from above (supply rate 700 g / hour), maintaining the pressure at 1.0 MPaG and the temperature 180 ° C. to obtain a solution containing methionine salt (hereinafter, hydrolysis reaction solution).
  • Carbon dioxide was introduced into the hydrolysis reaction solution at 0.35 MPaG and 20 ° C. Thereby, methionine was precipitated to obtain a slurry of methionine.
  • the slurry of methionine was subjected to solid-liquid separation using a centrifugal filter (Kokusan Co., Ltd. H-112). Specifically, a slurry of methionine was poured at 600 g / minute into a centrifugal filter rotating at 1700 minutes to attach crude methionine to a filter cloth. Subsequently, the rotation speed was set to 3800 every minute and the water was shaken off for 2 minutes. Thereby, the slurry of methionine was subjected to solid-liquid separation to obtain a cake of methionine and a mother liquor. In addition, it was 49.0 g when the methionine pure part was measured about the cake of methionine (conversion by HPLC measurement).
  • the mother liquor was introduced into a concentrator and heated at 115 ° C. and then 140 ° C. under a pressure of 0.2 MPaG and concentrated. Although not described in detail, crystallization and solid-liquid separation were also performed on the concentrate obtained by this concentration, and methionine contained in the concentrate was recovered.
  • the exhaust gas containing ammonia obtained by blowing nitrogen gas into the hydantoin solution in the reaction vessel is referred to as a first washing tower, a second washing tower and a third washing tower
  • the ammonia contained in this exhaust gas was recovered.
  • Ammonium carbonate water was used as the first cleaning liquid.
  • Water was used for the second and third cleaning solutions.
  • Water was used by circulating as a second cleaning solution.
  • the ammonia recovered in the first washing tower and the second washing tower was supplied to the reaction tank.
  • the blowing amount of nitrogen gas was set to 4.4 kg per hour with respect to 1000 kg of hydantoin solution.
  • the flow rate of the first washing solution introduced into the first washing tower was set to 5.0 times the flow rate of the exhaust gas introduced into the first washing tower.
  • the flow rate of the second cleaning liquid introduced into the second washing tower was set to 5.7 times the flow rate of the exhaust gas introduced into the second washing tower.
  • the flow rate of the third washing solution introduced into the third washing tower was set to 4.0 times the flow rate of the exhaust gas introduced into the third washing tower.
  • Ammonia recovery rate (amount of ammonia recovered in the washing tower) / (amount of ammonia introduced into the washing tower) ⁇ 100
  • Ammonia recovery rate of the first washing tower is 98.3%
  • the ammonia recovery rate of the second washing tower is 98.1%
  • the ammonia recovery rate of the third washing tower is 98.0%.
  • the ammonia recovery amounts in the first washing tower and the second washing tower were summed up, the recovery rate was 99.96%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、環境への配慮が考慮されたメチオニンの製造方法を提供することを目的とする。本発明の製造方法は、5-(2-メチルメルカプトエチル)ヒダントインを含む液に不活性ガスを吹き込むことにより、当該液に残存するアンモニアを放散させて、当該アンモニアを含む排出ガスを得る除去工程と、前記排出ガスを洗浄液と接触させて、当該排出ガスに含まれるアンモニアを回収する回収工程とを含む。

Description

メチオニンの製造方法
 本特許出願は日本国特許出願第2017-238230号(出願日:2017年12月13日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、メチオニンの製造方法に関する。
 メチオニンは、例えば、下記の反応式(1)に示されるように、5-(2-メチルメルカプトエチル)ヒダントインの加水分解反応により得られる。
Figure JPOXMLDOC01-appb-C000001
 前述の5-(2-メチルメルカプトエチル)ヒダントインは、例えば、下記の反応式(2)に示されるように、3-メチルメルカプトプロピオンアルデヒドシアンヒドリンを水中で二酸化炭素及びアンモニアと反応させる方法により得られる。この5-(2-メチルメルカプトエチル)ヒダントインは、3-メチルメルカプトプロピオンアルデヒドを、青酸、二酸化炭素及びアンモニアと反応させる方法によっても得ることができる。
Figure JPOXMLDOC01-appb-C000002
 メチオニンは、動物用飼料添加物として有用である。品質の向上、生産コストの低減等の観点から、メチオニンの製造方法に関しては、さまざまな検討が行われている(例えば、特許文献1)。
特開2014-108956公報
 5-(2-メチルメルカプトエチル)ヒダントインを得る反応(以下、ヒダントイン化反応と記すことがある。)では、通常、過剰量のアンモニアが用いられる。このため、ヒダントイン化反応により得る5-(2-メチルメルカプトエチル)ヒダントインを含む液には、未反応のアンモニアが残存している。メチオニンの製造では、5-(2-メチルメルカプトエチル)ヒダントインを含む液は、そのまま前述の反応式(1)で示された加水分解反応に用いられる。前述の特許文献1では、5-(2-メチルメルカプトエチル)ヒダントインを含む液にアンモニアが含まれていると加水分解反応の進行が妨げられることから、この液からアンモニアを除去した後に、加水分解反応が行われている。
 ところでアンモニアは、環境への影響が考慮され、そのまま大気に放出することはできない。前述の特許文献1には、除去したアンモニアをその後どのように処理したかについての開示はない。メチオニンの製造では、アンモニアを排出して環境を損なうことがないよう、環境への配慮が強く求められている。
 本発明は、このような実状に鑑みてなされたものであり、環境への配慮が考慮されたメチオニンの製造方法を提供することを目的としている。
 本発明者らは、ヒダントイン化反応においてアンモニアは必須の成分であることに着目し、環境への配慮が可能な技術について鋭意検討した結果、3-メチルメルカプトプロピオンアルデヒド及び青酸を、又はこれらを反応させて得られる化合物を、二酸化炭素及びアンモニアと反応させて得られる、5-(2-メチルメルカプトエチル)ヒダントインを含む液に残存したアンモニアを再利用することができる技術を見出し、本発明を完成するに至っている。つまり、本発明に係るメチオニンの製造方法は、
・3-メチルメルカプトプロピオンアルデヒド及び青酸を、又はこれらを反応させて得られる化合物を、二酸化炭素及びアンモニアと反応させることにより、5-(2-メチルメルカプトエチル)ヒダントインを含む液を得るヒダントイン化工程、
・前記5-(2-メチルメルカプトエチル)ヒダントインを加水分解する加水分解工程、
・前記加水分解工程で得られるメチオニン塩を含む液に二酸化炭素を導入して、メチオニンを析出させる晶析工程、及び、
・前記晶析工程で得られるメチオニンのスラリーを固液分離する分離工程を含む、メチオニンの製造方法であって、
・前記5-(2-メチルメルカプトエチル)ヒダントインを含む液に不活性ガスを吹き込むことにより、当該液に残存するアンモニアを放散させて、当該アンモニアを含む排出ガスを得る除去工程と、
・前記排出ガスを洗浄液と接触させて、当該排出ガスに含まれるアンモニアを回収する回収工程と
を含み、前記回収工程が、
(1)前記洗浄液として炭酸アンモニウム水を使用し、前記排出ガスに含まれるアンモニアを当該炭酸アンモニウム水に溶解させる第一工程、及び、
(2)前記洗浄液として水を循環させて使用し、前記排出ガスに含まれるアンモニアを当該水に溶解させる第二工程
からなる群から選択される少なくとも1つの工程を含むことを特徴とする。
 この製造方法では、第一工程又は第二工程において、除去工程で得た排出ガスからアンモニアが回収される。回収したアンモニアは、例えば、ヒダントイン化工程において、再利用することができる。この製造方法では、メチオニンの製造設備から排出されるガスにアンモニアはほとんど含まれない。この製造方法では、環境への配慮が考慮されたメチオニンの製造が可能である。
 このメチオニンの製造方法では、好ましくは、前記回収工程は、前記第一工程及び前記第二工程を含む。
 この製造方法では、除去工程で得た排出ガスに対して、第一工程及び第二工程が実施される。この製造方法では、排出ガスからアンモニアが十分に回収される。この製造方法では、環境への配慮を高めたメチオニンの製造が可能である。
 このメチオニンの製造方法では、より好ましくは、前記第一工程が実施された後の前記排出ガスに対して、前記第二工程が実施される。
 この製造方法によると、第一工程に次いで第二工程が実施されるので、除去工程で得た排出ガスからアンモニアをさらに効率よく回収できる。しかも第二工程においては、洗浄液としての水を循環させてアンモニアの回収が行われるので、アンモニアの回収のために用いられる水の使用量が効果的に削減される。その上、第一工程においてアンモニアが回収された排出ガスに対して第二工程が実施されるので、第二工程ではアンモニアの回収にかかる負荷が低減される。この製造方法によると、アンモニアの回収処理を安定に実行することができる。この製造方法では、環境への配慮を高めたメチオニンの製造が可能である。
 このメチオニンの製造方法では、さらに好ましくは、前記回収工程は、
(3)前記洗浄液として水を使用し、前記排出ガスに含まれるアンモニアを当該水に溶解させる第三工程
を含み、前記第二工程が実施された後の前記排出ガスに対して、前記第三工程が実施される。
 この製造方法では、第一工程及び第二工程において、除去工程で得た排出ガスからアンモニアがほとんど回収されているため、第三工程が実施される排出ガスには、アンモニアは含まれていないか、アンモニアが含まれていてもこの排出ガスに含まれるアンモニアの量は至極微量である。この製造方法では、製造設備から排出されるガスによる、環境への影響が効果的に抑えられる。
 このメチオニンの製造方法では、好ましくは、前記回収工程は、少なくとも前記第二工程を含み、前記第二工程における水の循環は、当該水に溶解したアンモニアの濃度が0.5質量%以上になるまで続けられる。
 この製造方法によると、アンモニアの回収のために用いられる水の使用量を、より効果的に削減できる。この製造方法では、環境への配慮を十分に高めたメチオニンの製造が可能である。
 以上の説明から明らかなように、本発明の製造方法では、環境への配慮が考慮されたメチオニンの製造が可能である。
図1は、本発明の一実施形態に係るメチオニンの製造方法で用いられる設備の一部が示された概略図である。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。なお、本明細書においては、本発明の説明に必要な部分を除いて、従来から公知の部分の内容に関しては詳細な説明は省略する。
[メチオニンの製造方法]
 本発明の一実施形態に係るメチオニンの製造方法では、3-メチルメルカプトプロピオンアルデヒド(以下、メチオニンアルデヒドと記すことがある。)を出発原料として、メチオニンが得られる。この製造方法は、ヒダントイン化工程、加水分解工程、晶析工程、分離工程、除去工程及び回収工程を含む。メチオニンアルデヒドは、例えば、メチルメルカプタン及びアクロレインを反応させて得ることができる。
[ヒダントイン化工程]
 ヒダントイン化工程では、反応槽内において、メチオニンアルデヒド及び青酸を、又はこれらの成分を反応させて得られる化合物、例えば、3-メチルメルカプトプロピオンアルデヒドシアンヒドリン(以下、メチオニンシアンヒドリンと記すことがある。)を、二酸化炭素及びアンモニアと水存在下で反応させることで、5-(2-メチルメルカプトエチル)ヒダントイン(以下、メチオニンヒダントインと記すことがある。)を含む液が得られる。具体的には、メチオニンヒダントインを含む液(以下、ヒダントイン液と記すことがある。)を得る方法としては、メチオニンアルデヒド、青酸、二酸化炭素及びアンモニアを反応させる方法、並びに、メチオニンシアンヒドリン、二酸化炭素及びアンモニアを反応させる方法が挙げられる。なお、本発明においては、二酸化炭素は炭酸イオン及び/又は炭酸水素イオンの形でも存在し得る。アンモニアは、アンモニウムイオンの形でも存在し得る。
 メチオニンシアンヒドリンからメチオニンヒダントインを得る反応は、例えば、二酸化炭素及びアンモニアが溶解した水に、メチオニンシアンヒドリンを混合し、加熱することにより行うことができる。反応温度は通常、50~90℃である。反応時間は通常、0.5~6時間である。
 メチオニンシアンヒドリンからメチオニンヒダントインを得る反応では、水の使用量は通常、メチオニンシアンヒドリンの量の3~4重量倍である。
 二酸化炭素の使用量は、メチオニンシアンヒドリン1モルに対して、通常1~5モル、好ましくは1.5~3モルである。
 アンモニアの使用量は、メチオニンシアンヒドリン1モルに対して、通常は2モルを超える過剰量、好ましくは3~5モルである。
 二酸化炭素及びアンモニアに代えて炭酸アンモニウムを用いる場合には、炭酸アンモニウムの使用量は通常、メチオニンシアンヒドリンの量の0.7~3重量倍、好ましくは0.9~2重量倍である。
 ヒダントイン液のメチオニンヒダントイン濃度は、通常1~50質量%であり、好ましくは、10~20質量%である。本発明においてメチオニンヒダントイン濃度は、液体クロマトグラフィーにより測定することができる。
 ヒダントイン化工程では、通常、過剰量のアンモニアが用いられる。このため、ヒダントイン液には、未反応のアンモニアが残存している。このヒダントイン液は、アンモニアを含んでいる。このヒダントイン液のアンモニア濃度は、通常2~7質量%であり、好ましくは、3~6質量%である。ヒダントイン液に含まれるアンモニアの量は、メチオニンヒダントイン1モルに対しては、通常1~4モル、好ましくは2~3モルである。本発明においてアンモニア濃度及びアンモニアの量は、イオンクロマトグラフィーにて測定したアンモニウムイオンの量をアンモニアの量に換算することにより得られる。アンモニウムイオン量を測定するための分析条件は、次の通りである。
(イオンクロマトグラフィー分析条件)
 カラム:Dionex IonPac CS12A
 カラムサイズ:内径4mm、長さ250mm
 溶離液:20mmol/L メタンスルホン酸
 ヒダントイン液には、通常、アンモニア以外に二酸化炭素が含まれている。このヒダントイン液の二酸化炭素濃度は、通常2~7質量%である。二酸化炭素濃度は、ガスクロマトグラフィーにより測定することができる。
 また、ヒダントイン液は、メチオニンヒダントイン、アンモニア及び二酸化炭素以外にメチルメルカプタンを含むことがある。ヒダントイン液がメチルメルカプタンを含む場合、このヒダントイン液に含まれるメチルメルカプタンの濃度は通常、0.001質量%以上1質量%以下である。
[加水分解工程]
 加水分解工程では、メチオニンヒダントインは、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸水素カリウム等のアルカリ化合物の存在下で加水分解させられる。これにより、メチオニン塩を含む液(以下、加水分解反応液と記すことがある。)が得られる。加水分解工程では、圧力は通常、約0.5~1.0MPaGの範囲で設定される。温度は、150~200℃の範囲で設定される。
[晶析工程]
 晶析工程では、加水分解工程で得た加水分解反応液に二酸化炭素が導入される。これにより、メチオニンが析出し、メチオニンのスラリーが得られる。晶析工程では、晶析温度は通常0~50℃、好ましくは10~30℃である。晶析時間は、二酸化炭素が反応液に飽和してメチオニンが十分に析出するまでの時間を目安とするが、通常30分~24時間である。
[分離工程]
 分離工程では、晶析工程で得たメチオニンのスラリーが、例えば、遠心分離機などの固液分離機によって、固体成分であるメチオニンのケーキと、液体成分である母液とに固液分離される。この製造方法では、通常、この分離工程で得たメチオニンのケーキを水洗水で洗浄して精製した後、このケーキを乾燥することにより、製品としての粉体のメチオニンが得られる。
[除去工程]
 この製造方法では、通常、除去工程は加水分解工程の前に行なわれる。この除去工程では、ヒダントイン化工程で得られるヒダントイン液に不活性ガスが吹き込まれる。前述したように、ヒダントイン液には、アンモニアが含まれている。このため、ヒダントイン液に不活性ガスを吹き込むことにより、すなわちヒダントイン液を不活性ガスでバブリングすることで、このヒダントイン液に残存するアンモニアが放散され、このヒダントイン液から不活性ガスとアンモニアとを含む気体(以下、排出ガスと記すことがある。)が排出される。これにより、この除去工程では、ヒダントイン液からアンモニアが除去される。ヒダントイン液にメチルメルカプタンが含まれている場合には、不活性ガスの吹き込みにより、メチルメルカプタンも放散される。このため、ヒダントイン液から排出される排出ガスにはメチルメルカプタンも含まれる。
 この除去工程で吹き込まれる不活性ガスとしては、窒素ガス、空気等が挙げられる。不活性ガスの吹込み量は、ヒダントイン液1000kgに対して、1時間当たり、通常5~200kg、好ましくは10~100kg、さらに好ましくは20~60kgである。
 この除去工程では、不活性ガスを細かな気泡としてヒダントイン液に分散できる観点から、不活性ガスの吹込みは、好ましくは、スパージャー等を用いて行われる。
 不活性ガスを吹き込む際のヒダントイン液の温度は、通常30~70℃、好ましくは40~60℃である。このヒダントイン液のpHは、通常、9~14である。不活性ガスの吹込み時間は、通常200~1200分、好ましくは、400~800分である。
 除去工程では、ヒダントイン液に不活性ガスを吹き込むことでアンモニアを含む排出ガスが得られる。この製造方法では、次の回収工程において、除去工程で得た排出ガスを洗浄液と接触させることにより、この排出ガスに含まれるアンモニアが回収される。
[回収工程]
 図1には、本発明の一実施形態に係るメチオニンの製造方法で用いられる設備2の一部が示されている。除去工程で得たアンモニアを含む排出ガスの処理は、この設備2を用いて行われる。
 この設備2は、反応槽4と、3基の洗浄塔6と、貯槽8と、吸収塔10とを備えている。この製造方法では、反応槽4において、ヒダントイン化工程が行われる。このヒダントイン化工程の後、この反応槽4において、除去工程が行われる。
 この設備2では、3基の洗浄塔6は、第一洗浄塔6a、第二洗浄塔6b及び第三洗浄塔6cで構成されている。この設備2は、洗浄塔6として、第一洗浄塔6a、第二洗浄塔6b及び第三洗浄塔6cを備えている。
 この設備2では、反応槽4、3基の洗浄塔6、貯槽8及び吸収塔10はそれぞれ、気体を流すガス管12及び液体を流す液管14で繋げられている。この設備2では、反応槽4から排出される排出ガスは、第一洗浄塔6a、第二洗浄塔6b及び第三洗浄塔6cの順にこの第一洗浄塔6a、第二洗浄塔6b及び第三洗浄塔6cを通過するように構成されている。この排出ガスの流れを基準に、反応槽4、3基の洗浄塔6及び吸収塔10の位置を表した場合、第一洗浄塔6aは、反応槽4よりも下流側に位置している。第二洗浄塔6bは、第一洗浄塔6aよりも下流側に位置している。第三洗浄塔6cは、第二洗浄塔6bよりも下流側に位置している。吸収塔10は、第三洗浄塔6cよりも下流側に位置している。
 この製造方法では、前述したように、除去工程において、反応槽4内のヒダントイン液に不活性ガスとして、窒素ガスが吹き込まれ、メチルメルカプタン及びアンモニアがヒダントイン液から除かれる。メチルメルカプタン及びアンモニアが除かれたヒダントイン液は、加水分解工程を行なうために別の反応槽に供給される。この後、この反応槽4には、次のヒダントイン化反応を行なうために、メチオニンシアンヒドリンと、炭酸アンモニウム水とが供給される。
 この製造方法の回収工程では、第一洗浄塔6aにおいて、洗浄液として炭酸アンモニウム水を使用し、排出ガスに含まれるアンモニアを炭酸アンモニウム水に溶解させる工程(以下、第一工程とも記すことがある。)が実施される。
[第一工程]
 第一工程では、排出ガスは、第一洗浄塔6aの下部からこの第一洗浄塔6aに導入される。この製造方法では、反応槽4から排出される、メチルメルカプタン及びアンモニアを含む排出ガスが、第一洗浄塔6aに導入される。この排出ガスは、第一洗浄塔6a内を下部から上部に向かって移動し、この第一洗浄塔6aの上部から排出される。
 この製造方法では、貯槽8において、ヒダントイン化反応で用いられる炭酸アンモニウム水が調製される。第一工程では、この貯槽8に貯留されている炭酸アンモニウム水が洗浄液(以下、第一洗浄液と記すことがある。)として用いられる。この洗浄液は、第一洗浄塔6aの上部からこの第一洗浄塔6aに導入される。この洗浄液は、第一洗浄塔6a内を上部から下部に向かって移動し、この第一洗浄塔6aの下部から排出される。この第一洗浄塔6aにおいては、この洗浄液は、循環させられることなく、この第一洗浄塔6aを通過させられる。なお、この製造方法では、この第一洗浄塔6aにおいて、この洗浄液を循環させて使用し、この洗浄液が繰り返しこの第一洗浄塔6aを通過させられてもよい。
 前述したように、第一洗浄塔6aに供給される洗浄液、すなわち第一洗浄液は炭酸アンモニウム水である。言い換えれば、この第一洗浄液には、二酸化炭素及びアンモニアが溶解している。
 この製造方法では、第一洗浄液の二酸化炭素濃度は通常5質量%以上20質量%以下である。この第一洗浄液のアンモニア濃度は、5質量%以上20質量%以下である。なお、このアンモニア濃度は、前述のイオンクロマトグラフィーにて測定されたアンモニウムイオンの量をアンモニアの量に換算することにより得られる。
 この製造方法では、第一洗浄液は水を含んでいる。この水としては、純水、イオン交換水、水道水、工業用水等が挙げられる。
 第一工程では、第一洗浄塔6aに排出ガスと洗浄液とを導入し、この第一洗浄塔6a内において、排出ガスが洗浄液と接触させられる。これにより、排出ガスに含まれているアンモニアが洗浄液中に溶解させられる。このため、第一洗浄塔6aから排出される排出ガスのアンモニア濃度は、この第一洗浄塔6aに導入される排出ガスのアンモニア濃度よりも低い。第一洗浄塔6aから排出される洗浄液のアンモニア濃度は、この第一洗浄塔6aに導入される洗浄液のアンモニア濃度よりも高い。この第一工程では、第一洗浄塔6aにおいて、排出ガスに含まれているアンモニアが洗浄液に回収される。
前述の通り、排出ガスにはメチルメルカプタンが含まれている。しかし、このメチルメルカプタンは水に溶けないため、第一洗浄塔6aから排出される洗浄液には、メチルメルカプタンは含まれていない。
 この第一工程では、第一洗浄塔6aに導入直前の排出ガスの温度は、通常70~80℃である。第一洗浄塔6aから排出された直後の排出ガスの温度は、通常30~40℃である。第一洗浄液の温度は、第一洗浄塔6a導入直前において、通常10~30℃である。第一洗浄塔6aに導入される第一洗浄液の流量は、第一洗浄塔6aに導入される排出ガスの流量の通常1~10重量倍の範囲で設定される。
 この製造方法の回収工程では、第二洗浄塔6bにおいて、洗浄液として水を循環させて使用し、排出ガスに含まれるアンモニアを水に溶解させる工程(以下、第二工程とも記すことがある。)が実施される。
[第二工程]
 第二工程では、排出ガスは第二洗浄塔6bの下部からこの第二洗浄塔6bに導入される。この製造方法では、第一洗浄塔6aから排出された排出ガスが、第二洗浄塔6bに導入される。この排出ガスは、第二洗浄塔6b内を下部から上部に向かって移動し、この第二洗浄塔6bの上部から排出される。
 前述したように、この第二工程では、水が洗浄液(以下、第二洗浄液と記すことがある。)として用いられる。この洗浄液は、第二洗浄塔6bの上部からこの第二洗浄塔6bに導入される。洗浄液は、第二洗浄塔6b内を上部から下部に向かって移動し、この第二洗浄塔6bの下部から排出される。
 この製造方法では、第二洗浄塔6bに導入される第二洗浄液としての水に、特に、制限はない。この水としては、純水、イオン交換水、水道水、工業用水等が挙げられる。
 この製造方法では、第二工程においても、洗浄液と排出ガスとが導入され、洗浄液と排出ガスとが接触させられる。これにより、排出ガスに含まれているアンモニアが洗浄液中に溶解させられる。このため、第二洗浄塔6bから排出される排出ガスのアンモニア濃度は、この第二洗浄塔6bに導入される排出ガスのアンモニア濃度よりも低い。第二洗浄塔6bから排出される洗浄液のアンモニア濃度は、この第二洗浄塔6bに導入される洗浄液のアンモニア濃度よりも高い。つまり、第二工程においても、排出ガスに含まれているアンモニアが洗浄液中に回収される。
この製造方法では、第二洗浄塔6bにおいて、洗浄液は循環させて使用される。これにより、洗浄液は繰り返し第二洗浄塔6bを通過させられる。そして、洗浄液のアンモニア濃度が所定濃度以上に到達した時点で、この洗浄液は貯槽8に供給され、新たに、水が洗浄液として第二洗浄塔6bに導入される。このように、第二洗浄塔6bにおいては、洗浄液を循環させて用いるので、洗浄液の使用量を削減することができる。
 この製造方法では、第一洗浄塔6aでアンモニアの回収処理が行なわれた排出ガスが第二洗浄塔6bに導入される。この製造方法では、第二洗浄塔6bにおけるアンモニアの回収にかかる負荷の低減が図られている。この第二洗浄塔6bでは、アンモニアの回収処理を安定に実行することができる。
 この製造方法では、第二洗浄塔6bに導入直前の排出ガスの温度は、通常30~40℃である。第二洗浄塔6bから排出された直後の排出ガスの温度は、通常20~35℃である。第二洗浄液の温度は、第二洗浄塔6b導入直前において、通常10~30℃である。第二洗浄塔6bに導入される第二洗浄液の流量は、第二洗浄塔6bに導入される排出ガスの流量の通常1~10重量倍の範囲で設定される。
 この製造方法の回収工程では、第三洗浄塔6cにおいて、洗浄液として水を使用し、排出ガスに含まれるアンモニアを水に溶解させる工程(以下、第三工程とも記すことがある。)が実施される。
[第三工程]
 第三工程では、排出ガスは、第三洗浄塔6cの下部からこの第三洗浄塔6cに導入される。この製造方法では、第二洗浄塔6bから排出された排出ガスが、第三洗浄塔6cに導入される。この排出ガスは、第三洗浄塔6c内を下部から上部に向かって移動し、この第三洗浄塔6cの上部から排出される。
 前述したように、この第三工程においては、水が洗浄液(以下、第三洗浄液と記すことがある。)として用いられる。この洗浄液は、第三洗浄塔6cの上部からこの第三洗浄塔6cに導入される。この洗浄液は、第三洗浄塔6c内を上部から下部に向かって移動し、この第三洗浄塔6cの下部から排出される。
 この製造方法では、第三洗浄塔6cに導入される第三洗浄液としての水に、特に、制限はない。この水としては、純水、イオン交換水、水道水、工業用水等が挙げられる。
 この製造方法では、第三工程においても、洗浄液と排出ガスとが導入され、洗浄液と排出ガスとが接触させられる。これにより、排出ガスに含まれているアンモニアが洗浄液中に溶解させられる。このため、第三洗浄塔6cから排出される排出ガスのアンモニア濃度は、この第三洗浄塔6cに導入される排出ガスのアンモニア濃度よりも低い。第三洗浄塔6cから排出される洗浄液のアンモニア濃度は、この第三洗浄塔6cに導入される洗浄液のアンモニア濃度よりも高い。つまり、この第三工程においても、排出ガスに含まれているアンモニアが洗浄液中に回収される。
 この製造方法では、第三洗浄塔6cに導入直前の排出ガスの温度は、通常20~35℃である。第三洗浄塔6cから排出された直後の排出ガスの温度は、通常15~30℃である。第三洗浄液の温度は、第三洗浄塔6c導入直前において、通常10~30℃である。第三洗浄塔6cに導入される第三洗浄液の流量は、第三洗浄塔6cに導入される排出ガスの流量の通常1~10重量倍の範囲で設定される。
 この製造方法では、第三洗浄塔6cから排出された排出ガスは、吸収塔10の下部からこの吸収塔10に導入される。排出ガスは、吸収塔10内を下部から上部に向かって移動し、この吸収塔10の上部から排出される。
 前述したように、排出ガスにはメチルメルカプタンが含まれている。このため、この製造方法では、このメチルメルカプタンの回収のために、この吸収塔10には、メチオニンアルデヒドがこの吸収塔10の上部から導入される。このメチオニンアルデヒドは、吸収塔10内を上部から下部に向かって移動し、この吸収塔10の下部からメチルメルカプタンとともに排出される。これにより、メチルメルカプタンが排出ガスから回収される。回収されたメチルメルカプタンは、原材料として、メチオニンの製造に再利用される。なお、図1において「MA」はメチオニンアルデヒドを意味する。
 この製造方法では、第一洗浄塔6aにおいて排出ガスから回収したアンモニアを含む洗浄液は反応槽4に供給される。この製造方法では、第一工程で排出ガスから回収したアンモニアはヒダントイン化工程で用いられる。
 この製造方法では、第二洗浄塔6bにおいて排出ガスから回収したアンモニアを含む洗浄液は、貯槽8において、炭酸アンモニウム水の調製に用いられる。前述したように、この製造方法では、貯槽8に貯留されている炭酸アンモニウム水は洗浄液として第一洗浄塔6aに供給される。そして、第一洗浄塔6aから排出される洗浄液は反応槽4に供給される。したがって、この製造方法では、第一洗浄塔6aで排出ガスから回収したアンモニアだけでなく、第二洗浄塔6bで排出ガスから回収したアンモニアも、反応槽4に供給される。この製造方法では、第一工程及び第二工程で排出ガスから回収したアンモニアがヒダントイン化工程で用いられる。
 この製造方法では、貯槽8に貯留されている炭酸アンモニウム水が反応槽4に直接供給されてもよい。この場合、第二工程で回収したアンモニアは第一洗浄塔6aを経由することなく反応槽4に供給される。
 この製造方法では、例えば、第三洗浄塔6cから排出される洗浄液を反応槽4に供給することにより第三工程で回収したアンモニアも、反応槽4において実施されるヒダントイン化工程に用いることができる。その一方で、第三洗浄塔6cから排出される洗浄液は、アンモニア濃度が低いため、生物処理により無害化を図ることができる。このため、第三洗浄塔6cから排出される洗浄液は生物処理して排水することもできる。
 この製造方法では、設備2に設けられる洗浄塔6が第一洗浄塔6aのみで構成されてもよい。この場合、第一洗浄塔6aから排出される排出ガスは吸収塔10に導入される。第一洗浄塔6aから排出される洗浄液は、反応槽4に供給される。
 この製造方法では、洗浄塔6が第二洗浄塔6bのみで構成されてもよい。この場合、反応槽4から排出される排出ガスは第二洗浄塔6bに導入される。この第二洗浄塔6bから排出される排出ガスは、吸収塔10に導入される。さらに第二洗浄塔6bにおいて排出ガスからアンモニアを回収した洗浄液は、貯槽8において炭酸アンモニウム水の調製に用いられ、この炭酸アンモニウム水が反応槽4に供給される。
 この製造方法では、第一工程又は第二工程において、除去工程で得た排出ガスからアンモニアが回収される。回収したアンモニアは、前述したように、例えば、ヒダントイン化工程において、再利用することができる。この製造方法では、メチオニンの製造設備から排出されるガスにアンモニアはほとんど含まれない。この製造方法では、環境への配慮が考慮されたメチオニンの製造が可能である。
 このメチオニンの製造方法では、回収工程は、第一工程及び第二工程を含むのが好ましい。かかる構成により、除去工程で得た排出ガスに対して、第一工程及び第二工程が実施される。この製造方法では、排出ガスからアンモニアが十分に回収される。この製造方法では、環境への配慮を高めたメチオニンの製造が可能である。
 このメチオニンの製造方法では、第一工程が実施された後の排出ガスに対して、第二工程が実施されるのが、より好ましい。かかる構成により、第一工程に次いで第二工程が実施されるので、この製造方法は、除去工程で得た排出ガスからアンモニアをさらに効率よく回収できる。しかも第二工程においては、洗浄液としての水を循環させてアンモニアの回収が行われるので、アンモニアの回収のために用いられる水の使用量が効果的に削減される。その上、第一工程においてアンモニアが回収された排出ガスに対して第二工程が実施されるので、第二工程ではアンモニアの回収にかかる負荷が低減される。この製造方法は、アンモニアの回収処理を安定に実行することができる。この製造方法では、環境への配慮を高めたメチオニンの製造が可能である。
 このメチオニンの製造方法では、回収工程が第三工程を含み、第二工程が実施された後の排出ガスに対して、この第三工程が実施されるのが、さらに好ましい。第一工程及び第二工程において、除去工程で得た排出ガスからアンモニアがほとんど回収されているため、第三工程が実施される排出ガスには、アンモニアは含まれていないか、アンモニアが含まれていてもこの排出ガスに含まれるアンモニアの量は至極微量である。この製造方法では、第三工程においても排出ガスからアンモニアが回収されるので、製造設備から排出されるガスによる、環境への影響が十分に抑えられる。
 このメチオニンの製造方法では、回収工程は、好適には、少なくとも第二工程を含み、第二工程における水の循環は、この水に溶解したアンモニアの濃度が0.5質量%以上になるまで続けられるのが好ましい。かかる構成により、アンモニアの回収のために用いられる水の使用量を、より効果的に削減できる。この製造方法では、環境への配慮を十分に高めたメチオニンの製造が可能である。この観点から、第二工程における水の循環は、この水に溶解したアンモニアの濃度が1質量%以上になるまで続けられるのがより好ましい。また、この水に溶解したアンモニアの濃度は10質量%以下が好ましい。
 以上の説明から明らかなように、本発明の製造方法では、環境への配慮が考慮されたメチオニンの製造が可能である。
 以下、実施例などにより、本発明をさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
実施例1
 [メチオニンの製造]
 メチオニンアルデヒド及び青酸を常温及び常圧下で反応させてメチオニンシアンヒドリンを合成した。このメチオニンシアンヒドリンに対し、炭酸アンモニウムを水中で、75℃で2.5時間反応させて、メチオニンヒダントインを15質量%、アンモニアを3.6質量%含む液、すなわち、ヒダントイン液を得た。
 このヒダントイン液に不活性ガスとして窒素ガスを吹き込んだ。
 窒素ガスの吹き込みが行われたヒダントイン液に、炭酸カリウム、炭酸水素カリウム及び水酸化カリウムを含む塩基性カリウム化合物を混合して得られた液(カリウム濃度:約7.5質量%)をオートクレーブの上部より連続して供給し(供給速度700g/時間)、圧力1.0MPaG、温度180℃に保持しながら加水分解反応を行い、メチオニン塩を含む液(以下、加水分解反応液)を得た。
 加水分解反応液には、0.35MPaG、20℃で二酸化炭素が導入された。これにより、メチオニンを析出させ、メチオニンのスラリーを得た。
 メチオニンのスラリーについては、遠心ろ過機(コクサン(株)H-112)を用いて固液分離を行なった。具体的には、メチオニンのスラリーを、1700毎分で回転させている遠心ろ過機に600g/毎分で流し込み、粗製メチオニンをろ布に張り付けた。次いで、回転数を3800毎分とし2分間水分を振り切った。これにより、メチオニンのスラリーを固液分離して、メチオニンのケーキと母液とを得た。なお、メチオニンのケーキについてメチオニン純分を測定すると49.0gであった(HPLC測定による換算)。
 メチオニンのケーキについては、洗浄液を吹き付けて洗浄して精製した後、微減圧下において85~105℃の温度下で乾燥することで、製品としての粉体メチオニン(純度=99.6%、収率=97%)を得た。母液については、濃縮器に導入し、0.2MPaGの加圧下で115℃、次いで140℃にて加熱し、濃縮した。詳述しないが、この濃縮により得た濃縮液についても、晶析及び固液分離を行い、濃縮液に含まれるメチオニンが回収された。
 図1に示された構成を有する設備において、反応槽内のヒダントイン液に窒素ガスを吹込むことで得た、アンモニアを含む排出ガスを、第一洗浄塔、第二洗浄塔及び第三洗浄塔の順に導入して、この排出ガスに含まれるアンモニアを回収した。第一洗浄液としては、炭酸アンモニウム水を用いた。第二洗浄液及び第三洗浄液には、水を用いた。第二洗浄液として水を循環させて使用した。この実施例では、第一洗浄塔及び第二洗浄塔で回収したアンモニアが反応槽に供給された。なお、この実施例では、窒素ガスの吹込み量は、ヒダントイン液1000kgに対して、1時間当たり、4.4kgに設定された。第一洗浄塔に導入される第一洗浄液の流量は、第一洗浄塔に導入される排出ガスの流量の5.0重量倍に設定された。第二洗浄塔に導入される第二洗浄液の流量は、第二洗浄塔に導入される排出ガスの流量の5.7重量倍に設定された。第三洗浄塔に導入される第三洗浄液の流量は、第三洗浄塔に導入される排出ガスの流量の4.0重量倍に設定された。
 [アンモニアの回収率]
 各洗浄塔に導入される排出ガスに含まれるアンモニア量、及び、各洗浄塔において回収されたアンモニア量を計測した。次の式に基づいて、各洗浄塔におけるアンモニアの回収率(%)を得た。
 (アンモニアの回収率)=(洗浄塔において回収されたアンモニア量)/(洗浄塔に導入されるアンモニア量)×100
 その結果、第一洗浄塔のアンモニア回収率は98.3%であり、第二洗浄塔のアンモニア回収率は98.1%であり、第三洗浄塔のアンモニア回収率は98.0%であった。第一洗浄塔及び第二洗浄塔におけるアンモニア回収量を合計した場合、回収率は99.96%であった。この評価結果から、本発明では、ヒダントイン化反応で得たヒダントイン液に不活性ガスを吹込むことで得た排出ガスに含まれるアンモニアのほぼ全てが回収され、回収されたアンモニアはメチオニンの製造に再利用できる、すなわち、本発明の製造方法では、環境への配慮が考慮されたメチオニンの製造が可能であることは明らかである。
 以上説明されたメチオニンの製造方法によれば、環境への配慮が考慮されたメチオニンの製造技術が提供できる。
 2・・・設備
 4・・・反応槽
 6・・・洗浄塔
 6a・・・第一洗浄塔
 6b・・・第二洗浄塔
 6c・・・第三洗浄塔
 8・・・貯槽
 10・・・吸収塔
 12・・・ガス管
 14・・・液管

Claims (5)

  1.  3-メチルメルカプトプロピオンアルデヒド及び青酸を、又はこれらを反応させて得られる化合物を、二酸化炭素及びアンモニアと反応させることにより、5-(2-メチルメルカプトエチル)ヒダントインを含む液を得るヒダントイン化工程、
     前記5-(2-メチルメルカプトエチル)ヒダントインを加水分解する加水分解工程、
     前記加水分解工程で得られるメチオニン塩を含む液に二酸化炭素を導入して、メチオニンを析出させる晶析工程、及び、
     前記晶析工程で得られるメチオニンのスラリーを固液分離する分離工程を含む、メチオニンの製造方法であって、
     前記5-(2-メチルメルカプトエチル)ヒダントインを含む液に不活性ガスを吹き込むことにより、当該液に残存するアンモニアを放散させて、当該アンモニアを含む排出ガスを得る除去工程と、
     前記排出ガスを洗浄液と接触させて、当該排出ガスに含まれるアンモニアを回収する回収工程と
    を含み、
     前記回収工程が、
     前記洗浄液として炭酸アンモニウム水を使用し、前記排出ガスに含まれるアンモニアを当該炭酸アンモニウム水に溶解させる第一工程、及び、
     前記洗浄液として水を循環させて使用し、前記排出ガスに含まれるアンモニアを当該水に溶解させる第二工程
    からなる群から選択される少なくとも1つの工程を含む、メチオニンの製造方法。
  2.  前記回収工程が前記第一工程及び前記第二工程を含む、請求項1に記載の方法。
  3.  前記第一工程が実施された後の前記排出ガスに対して、前記第二工程が実施される、請求項2に記載の方法。
  4.  前記回収工程が、
     前記洗浄液として水を使用し、前記排出ガスに含まれるアンモニアを当該水に溶解させる第三工程
    を含み、
     前記第二工程が実施された後の前記排出ガスに対して、前記第三工程が実施される、請求項3に記載の方法。
  5.  前記回収工程が少なくとも前記第二工程を含み、
     前記第二工程における水の循環が、当該水に溶解したアンモニアの濃度が0.5質量%以上になるまで続けられる、請求項1から4のいずれかに記載の方法。
PCT/JP2018/045602 2017-12-13 2018-12-12 メチオニンの製造方法 WO2019117180A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019559681A JP7048641B2 (ja) 2017-12-13 2018-12-12 メチオニンの製造方法
EP18887316.0A EP3725770B1 (en) 2017-12-13 2018-12-12 Method for producing methionine
US16/771,892 US11180447B2 (en) 2017-12-13 2018-12-12 Method for producing methionine
SG11202005533RA SG11202005533RA (en) 2017-12-13 2018-12-12 Method for producing methionine
CN201880080165.0A CN111491916B (zh) 2017-12-13 2018-12-12 甲硫氨酸的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-238230 2017-12-13
JP2017238230 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019117180A1 true WO2019117180A1 (ja) 2019-06-20

Family

ID=66820330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045602 WO2019117180A1 (ja) 2017-12-13 2018-12-12 メチオニンの製造方法

Country Status (6)

Country Link
US (1) US11180447B2 (ja)
EP (1) EP3725770B1 (ja)
JP (1) JP7048641B2 (ja)
CN (1) CN111491916B (ja)
SG (1) SG11202005533RA (ja)
WO (1) WO2019117180A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100358A (en) * 1979-01-25 1980-07-31 Sumitomo Chem Co Ltd Recovery of effective component from exhaust gas of methionine synthesis
JP2012012316A (ja) * 2010-06-29 2012-01-19 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2014108956A (ja) 2012-12-04 2014-06-12 Sumitomo Chemical Co Ltd メチオニンの製造方法
EP2759537A1 (en) * 2012-04-28 2014-07-30 Chongqing Unisplendour Tianhua Methionine Co., Ltd Device and method for preparing hydantoin
JP2015526485A (ja) * 2012-09-03 2015-09-10 ゼァージァン ヌウ カンパニー リミテッド クリーンなdl−メチオニンの製造方法
CN106565608A (zh) * 2016-09-30 2017-04-19 宁夏紫光天化蛋氨酸有限责任公司 一种高纯度5‑(2‑甲硫基乙基)‑乙内酰脲的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636098A (en) * 1966-07-02 1972-01-18 Sumitomo Chemical Co Process for producing methionine
DE102004035465A1 (de) * 2004-07-22 2006-02-16 Degussa Ag Verfahren zur Reinigung von CO2-Gasströmen
JP5028987B2 (ja) 2006-04-25 2012-09-19 住友化学株式会社 メチオニンの製造方法
CN105671587B (zh) 2015-12-10 2018-02-13 浙江工业大学 一种制备蛋氨酸和回收副产物二氧化碳的方法及其装置
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100358A (en) * 1979-01-25 1980-07-31 Sumitomo Chem Co Ltd Recovery of effective component from exhaust gas of methionine synthesis
JP2012012316A (ja) * 2010-06-29 2012-01-19 Sumitomo Chemical Co Ltd メチオニンの製造方法
EP2759537A1 (en) * 2012-04-28 2014-07-30 Chongqing Unisplendour Tianhua Methionine Co., Ltd Device and method for preparing hydantoin
JP2015526485A (ja) * 2012-09-03 2015-09-10 ゼァージァン ヌウ カンパニー リミテッド クリーンなdl−メチオニンの製造方法
JP2014108956A (ja) 2012-12-04 2014-06-12 Sumitomo Chemical Co Ltd メチオニンの製造方法
CN106565608A (zh) * 2016-09-30 2017-04-19 宁夏紫光天化蛋氨酸有限责任公司 一种高纯度5‑(2‑甲硫基乙基)‑乙内酰脲的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725770A4

Also Published As

Publication number Publication date
JPWO2019117180A1 (ja) 2020-12-03
CN111491916A (zh) 2020-08-04
JP7048641B2 (ja) 2022-04-05
EP3725770A1 (en) 2020-10-21
US11180447B2 (en) 2021-11-23
EP3725770A4 (en) 2021-09-22
EP3725770B1 (en) 2022-08-10
SG11202005533RA (en) 2020-07-29
US20210070704A1 (en) 2021-03-11
CN111491916B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
JP6120854B2 (ja) メチオニン塩の製造法
JP6778212B2 (ja) メチオニンの製造方法
JP4881299B2 (ja) Co2ガス流を浄化するための方法
RU2367656C2 (ru) Способ производства чистого меламина
WO2019117180A1 (ja) メチオニンの製造方法
WO2013129405A1 (ja) 精製メチオニンの製造方法
WO2019131726A1 (ja) メチオニンの製造方法
JP2008044942A (ja) ビウレット及びシアヌル酸の製造方法及び製造装置
JP7090646B2 (ja) メチオニンの製造方法
JP5734429B2 (ja) ジシクロヘキシルジスルフィドの製造方法
US11577190B2 (en) Recovered-carbon-dioxide purifying method and methionine manufacturing method including recovered-carbon-dioxide purifying step
JP6983256B2 (ja) 精製メチオニンの製造方法
JP7050353B2 (ja) 2-アミノエチルスルホン酸の製造方法
JP2000211905A (ja) フリーヒドロキシルアミン水溶液の製造方法
JP2011195517A (ja) メチオニンの製造方法
JPS6041608B2 (ja) 高純度亜硫安および酸性亜硫安水溶液の製法
JPWO2018030533A1 (ja) N−(α−アルコキシエチル)ホルムアミドの製造方法
JPS62164660A (ja) 2−スルフアミド安息香酸メチルエステルの製造方法
JPS5929525B2 (ja) 無水亜二チオン酸ナトリウム製造母液の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887316

Country of ref document: EP

Effective date: 20200713