WO2019116588A1 - ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2019116588A1
WO2019116588A1 PCT/JP2017/045222 JP2017045222W WO2019116588A1 WO 2019116588 A1 WO2019116588 A1 WO 2019116588A1 JP 2017045222 W JP2017045222 W JP 2017045222W WO 2019116588 A1 WO2019116588 A1 WO 2019116588A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
hybrid vehicle
engine
battery
setting
Prior art date
Application number
PCT/JP2017/045222
Other languages
English (en)
French (fr)
Inventor
真介 樋口
秀勝 秋山
梓 小林
恵介 河合
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780097672.0A priority Critical patent/CN111465541B/zh
Priority to PCT/JP2017/045222 priority patent/WO2019116588A1/ja
Priority to KR1020207019263A priority patent/KR102365417B1/ko
Priority to US16/772,591 priority patent/US11529944B2/en
Priority to RU2020121798A priority patent/RU2741447C1/ru
Priority to MX2020006164A priority patent/MX2020006164A/es
Priority to BR112020011927-0A priority patent/BR112020011927B1/pt
Priority to EP17934796.8A priority patent/EP3725619B1/en
Priority to JP2019558877A priority patent/JP6988913B2/ja
Publication of WO2019116588A1 publication Critical patent/WO2019116588A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a control method of a hybrid vehicle and a control device of the hybrid vehicle.
  • the control method of a hybrid vehicle is a control method of a hybrid vehicle including a generator that charges a battery using the power of an engine and an electric motor that drives driving wheels by the power of the battery.
  • the control method controls the generator and the electric motor, and sets one of the normal mode, the regenerative traveling mode in which the regenerative braking force by the electric motor is larger than that in the normal mode, and the manner mode in which the charge by the engine is limited. If the normal mode is set, the setting of the manner mode is not received. If the regenerative traveling mode is set, the setting of the manner mode is received.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle of the present embodiment.
  • FIG. 2 is a diagram showing the configuration of the engine 1.
  • FIG. 3 is a view showing traveling modes which can be selected by the mode switch 10.
  • FIG. 4 is a graph showing the relationship between the charge amount of the battery and time when the normal mode or the eco mode is selected.
  • FIG. 1 is a block diagram showing the configuration of a hybrid vehicle according to an embodiment of the present invention.
  • a hybrid vehicle 100 controls an engine (internal combustion engine) 1, a generator 2, a battery 3, an electric motor 4, a gear 5, an axle 6, driving wheels 7, and a drive system of the hybrid vehicle 100.
  • the motor controller 8 is provided.
  • the hybrid vehicle 100 supplies the electric power generated by the generator 2 to the battery 3 using the power of the engine 1 and drives the drive wheel 7 by rotating the electric motor 4 based on the electric power of the battery 3. It is configured as a hybrid vehicle. Therefore, in the hybrid vehicle 100, the motive power of the engine 1 is not used as a motive power source for causing the vehicle to travel, but as a motive power source for causing the generator 2 to generate power.
  • the engine 1 is mechanically coupled to the generator 2 via a reduction gear (not shown).
  • the generator 2 is connected to the battery 3 so as to be capable of transmitting and receiving power. Power transmission and reception are also connected between the battery 3 and the motor controller 8 and between the motor controller 8 and the electric motor 4.
  • the electric motor 4 is mechanically connected to the axle 6 via the gear 5, and the axle 6 is mechanically connected to the drive wheel 7.
  • the driving force of the engine 1 is transmitted to the generator 2, and the generator 2 generates electric power by the driving force of the engine 1.
  • the power generated by the generator 2 is charged to the battery 3.
  • the power of the battery 3 is transmitted to the electric motor 4 via the motor controller 8.
  • the electric motor 4 is driven by the power of the battery 3.
  • the driving force of the electric motor 4 is transmitted to the drive wheel 7 via the gear 5 and the axle 6.
  • the driving wheel 7 is rotated by the driving force of the electric motor 4 to drive the vehicle.
  • Hybrid vehicle 100 includes a vehicle controller 9 that controls the entire hybrid vehicle 100 including motor controller 8, a mode switch 10 that selects a plurality of travel modes alternatively, and a brake hydraulic pressure sensor 11 that detects a braking force. And an accelerator position sensor that detects an accelerator opening degree.
  • the vehicle controller 9 functions as a control device according to the embodiment.
  • the vehicle controller 9 is electrically connected to each of the mode switch 10, the brake hydraulic pressure sensor 11, and the accelerator position sensor 12.
  • the vehicle controller 9 receives a signal indicating the selected traveling mode from the mode switch 10, receives a signal indicating the brake hydraulic pressure from the brake hydraulic pressure sensor 11, and receives a signal indicating the accelerator opening degree from the accelerator position sensor 12.
  • the mode switch includes two types of switches (not shown), one is a switch capable of selectively switching between the normal mode and the eco mode, and the other is a switch capable of selectively switching between the manner mode and the charge mode. Details of the normal mode, the eco mode, the manner mode, and the charge mode will be described later.
  • the vehicle controller 9 is electrically connected to the motor controller 8.
  • the vehicle controller 9 transmits a command torque to the motor controller 8.
  • the vehicle controller 9 receives from the motor controller 8 a signal indicating the motor rotation number of the electric motor 4 and a signal indicating slope information of the road on which the vehicle travels.
  • the vehicle controller 9 can be realized by, for example, a general-purpose microcomputer including a CPU (central processing unit), a memory, and an input / output unit.
  • a computer program driving force control program for causing the microcomputer to function as the vehicle controller 9 is installed in the microcomputer and executed.
  • the general-purpose microcomputer functions as the vehicle controller 9.
  • the vehicle controller 9 is realized by software, it is of course possible to prepare the dedicated hardware for executing each information processing described below and configure the vehicle controller 9 is there.
  • the plurality of units included in the vehicle controller 9 may be configured by individual hardware.
  • the motor controller 8 can be realized as software or dedicated hardware in the same manner.
  • the vehicle controller 9 and the motor controller 8 may be combined with an electronic control unit (ECU) used for other control related to the vehicle.
  • ECU electronice control unit
  • FIG. 2 is a diagram showing the configuration of the engine 1.
  • the engine 1, the generator 2, and the battery 3 are directly connected.
  • the fuel supplied from the fuel tank (not shown) is taken in via the intake throttle 21 and burned using the intake air flowing in via the intake passage 22. Further, in the intake passage 22, the negative pressure passage 23 is branched, and is connected to the master back 24.
  • the master back 24 is a device that assists the driver's brake pedal depression force using the intake negative pressure of the engine 1 supplied from the negative pressure passage 23. Since the stepping operation is assisted by the function of the master back 24 as described above, a sufficient braking force can be obtained even if the brake pedal 11A is depressed with a light force.
  • the intake passage 22 is under negative pressure (atmospheric pressure lower than the atmospheric pressure), and this negative pressure is transmitted through the negative pressure passage 23 to the master back 24.
  • negative pressure atmospheric pressure lower than the atmospheric pressure
  • the interior of the master back 24 is divided into two chambers by a diaphragm, and when the driver does not depress the brake pedal 11A, negative pressure is introduced to both chambers.
  • both chambers of the master back 24 must have a negative pressure in order to assist the brake pedal depression force. Therefore, if both chambers of the master back 24 do not have a negative pressure when the brake pedal 11A is depressed, the generator 2 is driven by the power of the battery 3 to close the engine 1 with the intake throttle 21 closed. It is necessary to idle in power running to generate negative pressure. Such idle rotation of the engine 1 is referred to as motoring.
  • the master back 24 is connected to a brake ECU 9 B which is a part of the vehicle controller 9.
  • the brake ECU 9B can detect the pressure and the like in the master back.
  • the vehicle controller 9 also includes an engine ECU 9E, and the engine ECU 9E controls an intake throttle 21, VTC (Variable Timing Control) 1A of the engine 1, and the like.
  • VTC Vehicle Timing Control
  • the vehicle controller 9 controls the engine 1, the electric motor 4, and the like according to the traveling mode selected by the mode switch 10.
  • FIG. 3 is a view showing traveling modes which can be selected by the mode switch 10. These travel modes include a normal mode, an eco mode, a manner mode, and a charge mode. And the arrow in the figure indicates that change from one mode to another mode is possible. That is, the absence of an arrow between the two modes indicates that switching between the two modes is not possible.
  • the motor controller 8 sets the regenerative braking force by the electric motor 4 to zero or relative so that coasting traveling in a conventional gasoline engine becomes possible when the accelerator is turned off during traveling. Set smaller.
  • the motor controller 8 makes the acceleration response to the accelerator operation slower than when the normal mode is set, and the regenerative braking force by the electric motor 4 is relatively large. Control to be That is, when the eco mode is set, the motor controller 8 causes the electric motor 4 to generate a regenerative braking force larger than the braking force corresponding to the engine brake when the accelerator opening degree decreases.
  • the eco mode the same electric motor control as that described in JP6233420B is performed. Specifically, as shown in FIG. 3 of JP6233420B, the regenerative torque is large when the accelerator is released, and the regenerative torque is set to occur up to zero vehicle speed. That is, it is possible to start and stop only by operating the accelerator.
  • the vehicle controller 9 When the manner mode is set, the vehicle controller 9 does not drive the engine 1 and does not generate the battery 3 by the generator 2.
  • the silent mode is suitable for traveling in a residential area or the like because power generation by the engine 1 is not performed and no engine noise is generated.
  • the vehicle controller 9 drives the engine 1 to cause the generator 2 to generate the battery 3.
  • the charge mode is set, power generation by the generator 2 by the driving force of the engine 1 is preferentially performed so that the charge amount of the battery 3 reaches the reference value.
  • the charge mode is assumed to be used to increase the charge amount of the battery 3 in advance before the eco mode in which the engine 1 is stopped.
  • the vehicle controller 9 always receives switching between the normal mode and the eco mode in accordance with the operation of the mode switch 10.
  • the manner mode and the charge mode are configured to receive switching only when the eco mode is in effect.
  • the manner mode and the charge mode are configured to be selectable only in the case of the eco mode for the following reasons.
  • the eco mode When the eco mode is selected, positive regenerative braking is performed, whereas when the normal mode is selected, regenerative braking by the electric motor 4 is relatively suppressed.
  • the manner mode in which the driving of the engine 1 is suppressed it is desirable to positively perform the regenerative braking to prevent the decrease in the charge amount of the battery 3. Therefore, the eco mode in which the aggressive regenerative braking is performed It is possible to select the manner mode only when
  • the engine 1 When the charge mode is set, the engine 1 is actively driven to increase the charge amount of the battery 3. Such charge mode should be performed before charging by the engine 1 is inhibited, such as in the manner mode. Therefore, by configuring the charge mode to be selectable only in the eco mode in which the manner mode can be selected, it is possible to achieve an integrated operation of the manner mode and the charge mode.
  • the motor controller 8 performs control shown in FIG.
  • FIG. 4 is a graph showing the charge amount (SOC) of the battery 3 and time t when the normal mode or the eco mode is selected. The charge amount is shown on the vertical axis, and the time is shown on the horizontal axis.
  • the battery 3 is charged by power generation by the engine 1 and regenerative braking by the electric motor 4.
  • the motor controller 8 drives the engine 1 to lower the battery 3 by the generator 2 when the charge amount of the battery 3 falls below 45% (lower limit).
  • the motor controller 8 stops the engine 1 and stops the charge of the battery 3. Note that such power generation control is performed when the normal mode or the eco mode is selected.
  • the relationship between the change to the manner mode and the charge amount of the battery 3 when the eco mode is set is as follows.
  • the motor controller 8 enables the selection of the manner mode when the SOC exceeds a first predetermined value (manner mode permission threshold value) of, for example, 51%, and the second predetermined value (manner mode of 48%) If it falls below the release threshold value, the set manner mode is released and the eco mode is reset.
  • 45% which is a lower limit is a threshold which starts charge using engine 1 when charge amount of battery 3 becomes low. If the lower limit value is small, there is a high possibility that the hybrid vehicle 100 can not run. On the other hand, if the lower limit value is large, there is a possibility that the charging frequency may become high. It is set.
  • the second predetermined value (manner mode release threshold) of 48% is a value having a margin such that the power generation by the engine 1 is not started immediately when the manner mode in which the engine 1 is not driven is released. If the second predetermined value is 45%, which is the same as the lower limit value, the engine 1 is driven immediately after the manner mode is canceled and charging is started. In order to suppress such driving of the engine 1, the second predetermined value is set to be 3% higher than the lower limit value.
  • the value of 3% is defined as follows. That is, it is determined that charging by driving the engine 1 is not immediately started even if the accelerator pedal is strongly depressed after the manner mode is canceled and the mode is switched to the eco mode. Specifically, for example, the reduction in the charge amount of the battery 3 is 3% when accelerating from 20 km / h to 50 km / h at a predetermined acceleration (0.3 G) when strong acceleration is performed. I assume. Under such conditions, 48%, which is larger than the lower limit 45% by 3%, is set as the second predetermined value. By setting the second predetermined value in this manner, even if strong acceleration is performed, the amount of charge of the battery 3 does not fall below the lower limit value (SOC: 45%), so the drive of the engine 1 is suppressed. Can.
  • 51% which is a first predetermined value (manner mode permission threshold value), is set to be 3% higher than 48%, which is a second predetermined value.
  • the 3% is set as follows. In the manner mode, since the engine 1 is stopped, silent driving is possible, and the driver selects in the home neighborhood. Statistically, the distance from the main road to the home is 300 meters, and the amount of charge of the battery 3 required to travel this 300 meters is 3%. Therefore, 51%, which is 3% larger than the second predetermined value 48%, is set as the first predetermined value. By setting the first predetermined value in this manner, the amount of charge at the time of returning home does not fall below 48%, so it is possible to suppress cancellation of the manner mode before returning home.
  • a sport mode may be provided in addition to the modes described above.
  • the sports mode is a mode in which regenerative braking is performed more frequently than the normal mode as in the eco mode, and the responsiveness of the accelerator is higher than in the normal mode, and the driving performance is enhanced. Therefore, the eco mode and the sport mode in which regenerative braking is performed more often than in the normal mode may be referred to as a regenerative travel mode.
  • the present invention is not limited to this.
  • the driving noise of the engine 1 may be reduced by rotating the engine 1 at a low rotational speed.
  • the function of the manner mode can also be realized by driving the engine 1 with low output.
  • the normal mode in the hybrid vehicle 100 that is a series hybrid that charges the battery 3 using the driving force of the engine 1, the normal mode, the regenerative travel mode (eco mode, and sports It is configured to be able to receive mode settings of mode) and manner mode.
  • the regenerative travel mode When the regenerative travel mode is selected, the manner mode can be accepted, but when the normal mode is selected, the manner mode is not accepted.
  • the regenerative travel mode When the regenerative travel mode is selected, positive regenerative braking is performed, so the charge amount of the battery 3 tends to be larger than that in the normal mode.
  • the manner mode in which the driving of the engine 1 is suppressed When the manner mode in which the driving of the engine 1 is suppressed is selected, the battery 3 is not charged, so the amount of charge of the battery 3 at the time of setting the manner mode is high, and regenerative braking is positively performed. It is preferable that it is a regeneration traveling mode. Therefore, the setting of the manner mode is accepted only when the regenerative traveling mode is selected.
  • the charge mode can be further selected.
  • the engine 1 is actively driven to increase the charge amount of the battery 3.
  • Such charge mode should be performed before the charging of the battery 3 by the engine 1 is suppressed, such as the manner mode. Therefore, by configuring the charge mode to be selectable only in the eco mode in which the manner mode can be selected, it is possible to operate the manner mode and the charge mode in an integrated manner, so that the drivability can be improved. .
  • the negative pressure passage 23 branched from the intake passage 22 of the engine 1 is provided.
  • the negative pressure generated by closing the intake throttle 21 provided in the intake passage 22 is supplied to the two chambers of the master back 24 via the negative pressure passage 23.
  • Such a negative pressure of the master back 24 assists the depression operation of the brake pedal 11A.
  • the operation by the brake pedal 11A is relatively not performed. Therefore, by making the manner mode selectable only in the eco mode, it is possible to suppress motoring caused by the depression of the brake pedal 11A, and therefore the quietness of the hybrid vehicle 100 can be maintained.
  • the engine 1 is driven to start the power generation by the generator 2.
  • the charge amount of the battery 3 is larger than the lower limit value of the forced charge start, more specifically, the first predetermined value larger than the second predetermined value (the manner mode cancellation threshold)
  • the manner mode permission threshold When (the manner mode permission threshold) is exceeded, selection of the manner mode is permitted.
  • the first predetermined value is set to the second predetermined value (manner mode cancellation)
  • the manner mode is canceled and the eco The mode is selected.
  • a second predetermined value (manner mode release threshold) larger than the lower limit value of the forced charge start in the state where the manner mode is selected
  • the manner mode is canceled and the eco The mode is selected.
  • the second predetermined value (manner mode release threshold) is larger than the lower limit value of the forced charge start, so the charge amount does not fall below the lower limit value of the forced charge start, and the forced by the drive of the electric motor 4 The start of charging is suppressed, and recovery of the charge amount by regenerative braking can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

ハイブリッド車両の制御方法は、エンジンの動力を用いてバッテリを充電する発電機と、バッテリの電力によって駆動輪を駆動させる電動モータとを備えるハイブリッド車両の制御方法である。制御方法は、発電機及び電動モータを制御するとともに、通常モード、通常モードよりも電動モータによる回生制動力が大きい回生走行モード、及び、エンジンによる充電を制限するマナーモードのうちのいずれかを設定するモード設定を受け付け、通常モードが設定される場合には、マナーモードの設定を受け付けず、回生走行モードが設定される場合には、マナーモードの設定を受け付ける。

Description

ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
 本発明は、ハイブリッド車両の制御方法及びハイブリッド車両の制御装置に関する。
 モータによって車輪を駆動させる電動車両の中には、モータの駆動源となるバッテリを充電する発電機をエンジンによって駆動するものがある。このような、電動車両は、エンジン、発電機、モータ、及び、車輪が直列(シリーズ)に接続されるため、シリーズハイブリッド車両と称されている。近年、JP4793233Bに開示されるように、走行状態に応じた様々な走行モードの開発が行われており、燃費や操作性の向上が図られており、シリーズハイブリッド車両においても同様のモード開発が行われている。また、JP6233420Bに開示されるように、アクセル開度が小さいときには、回生力を大きく設定し、且つ、車速がゼロになるまで回生力を付与することにより、アクセル操作だけで車両の発進、走行、停止を制御できる車両の開発も行われている。
 シリーズハイブリッド車両においては、バッテリの充電量が少なくなるとエンジンが駆動して発電機による充電が行われる。しかしながら、エンジンの駆動音はモータの駆動音よりも大きいので、このような駆動音を抑制するようなモードを適切な条件で選択できるような技術の開発が求められている。
 本発明のハイブリッド車両の制御方法は、エンジンの動力を用いてバッテリを充電する発電機と、バッテリの電力によって駆動輪を駆動させる電動モータとを備えるハイブリッド車両の制御方法である。制御方法は、発電機及び電動モータを制御するとともに、通常モード、通常モードよりも電動モータによる回生制動力が大きい回生走行モード、及び、エンジンによる充電を制限するマナーモードのうちのいずれかを設定するモード設定を受け付け、通常モードが設定される場合には、マナーモードの設定を受け付けず、回生走行モードが設定される場合には、マナーモードの設定を受け付ける。
図1は、本実施形態のハイブリッド車両の構成を示すブロック図である。 図2は、エンジン1に関する構成を示す図である。 図3は、モードスイッチ10により選択可能な走行モードを示す図である。 図4は、通常モード又はエコモードが選択される場合におけるバッテリの充電量と時間との関係を示すグラフである。
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本発明の実施形態に係るハイブリッド車両の構成を示すブロック図である。
 図1に示すように、ハイブリッド車両100は、エンジン(内燃機関)1、発電機2、バッテリ3、電動モータ4、ギア5、車軸6、駆動輪7、及び、ハイブリッド車両100の駆動系を制御するモータコントローラ8を備えている。ハイブリッド車両100は、エンジン1の動力を用いて発電機2で発電した電力をバッテリ3に供給し、バッテリ3の電力に基づいて電動モータ4を回転させることで駆動輪7を駆動するいわゆるシリーズ型のハイブリッド車両として構成されている。したがって、ハイブリッド車両100では、エンジン1の動力は、車両を走行させるための動力源としてではなく、発電機2を発電させるための動力源として使用される。
 エンジン1は、減速機(図示せず)を介して、発電機2に機械的に連結される。発電機2は、バッテリ3に対して送受電可能に接続されている。バッテリ3とモータコントローラ8との間、及びモータコントローラ8と電動モータ4との間も、送受電可能に接続されている。電動モータ4はギア5を介して車軸6に機械的に連結され、車軸6は駆動輪7に機械的に連結される。
 エンジン1の駆動力は発電機2に伝達され、発電機2はエンジン1の駆動力によって発電する。発電機2の発電電力はバッテリ3に充電される。バッテリ3の電力は、モータコントローラ8を介して、電動モータ4に伝達される。電動モータ4は、バッテリ3の電力によって駆動される。電動モータ4の駆動力は、ギア5及び車軸6を介して駆動輪7に伝達される。駆動輪7は電動モータ4の駆動力によって回転することにより、車両は走行する。
 ハイブリッド車両100は、モータコントローラ8を含めたハイブリッド車両100全体を制御する車両コントローラ9と、複数の走行モードを択一的に選択するモードスイッチ10と、ブレーキ力を検知するブレーキ油圧センサ11と、アクセル開度を検知するアクセルポジションセンサ12と、をさらに備える。車両コントローラ9は、実施形態に係わる制御装置として機能するものである。
 車両コントローラ9は、モードスイッチ10、ブレーキ油圧センサ11、及び、アクセルポジションセンサ12の各々に電気的に接続されている。車両コントローラ9は、選択される走行モードを示す信号をモードスイッチ10から受信し、ブレーキ油圧を示す信号をブレーキ油圧センサ11から受信し、アクセル開度を示す信号をアクセルポジションセンサ12から受信する。モードスイッチは図示しない2種類のスイッチからなり、一方は、通常モードとエコモードとを選択切り替え可能なスイッチであり、他方は、マナーモードとチャージモードとを選択切り替え可能なスイッチである。これら、通常モード、エコモード、マナーモード、チャージモードについての詳細については後述する。
 車両コントローラ9は、モータコントローラ8に電気的に接続されている。車両コントローラ9は、モータコントローラ8に対して指令トルクを送信する。車両コントローラ9は、モータコントローラ8から電動モータ4のモータ回転数を示す信号及び車両が走行する道路の勾配情報を示す信号を受信する。
 車両コントローラ9は、例えば、CPU(中央処理装置)、メモリ、及び入出力部を備える汎用のマイクロコンピュータにより実現可能である。マイクロコンピュータを車両コントローラ9として機能させるためのコンピュータプログラム(駆動力制御プログラム)を、マイクロコンピュータにインストールして実行する。これにより、汎用のマイクロコンピュータは、車両コントローラ9として機能する。なお、ここでは、ソフトウェアによって車両コントローラ9を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、車両コントローラ9を構成することも可能である。また、車両コントローラ9に含まれる複数のユニットを個別のハードウェアにより構成してもよい。さらに、車両コントローラ9のみならず、モータコントローラ8も、同様にして、ソフトウェア或いは専用のハードウェアとして実現可能である。さらに、車両コントローラ9及びモータコントローラ8は、車両にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。
 図2は、エンジン1に関する構成を示す図である。
 図1を用いて説明したように、エンジン1、発電機2、及び、バッテリ3が直接接続されている。
 エンジン1においては、燃料タンク(不図示)から供給される燃料が、吸気スロットル21を介して採り入れられ吸気通路22を介して流入する吸気を用いて燃焼が行われる。さらに、吸気通路22においては負圧通路23が分岐しており、マスタバック24に連設される。
 マスタバック24は、負圧通路23から供給されるエンジン1の吸気負圧を利用して、ドライバのブレーキペダル踏力をアシストする装置である。このようなマスタバック24の機能によって、踏込操作がアシストされるので、軽い力でブレーキペダル11Aを踏んでも十分な制動力を得ることができる。
 具体的には、エンジン1の回転中に吸気スロットル21を閉じることにより、吸気通路22は負圧(大気圧よりも低い気圧)になり、この負圧が負圧通路23を介してマスタバック24に導入される。マスタバック24の内部はダイヤフラムで2つのチャンバに区画されており、ドライバがブレーキペダル11Aを踏み込んでいないときは両方のチャンバに負圧が導入される。
 ドライバがブレーキペダル11Aを踏み込むとペダル側のチャンバにのみ大気圧が導入され、チャンバ間に生じた圧力差によってドライバのブレーキペダル踏力がアシストされる。そのため、ドライバがブレーキペダル11Aによる制動を行う場合には、ブレーキペダル踏力をアシストするために、マスタバック24の両方のチャンバが負圧となっていなければならない。そのため、ブレーキペダル11Aが踏まれた時にマスタバック24の両方のチャンバが負圧となっていなければ、吸気スロットル21を閉じた状態で、バッテリ3の電力により発電機2を駆動させてエンジン1を力行運転にて空回しし、負圧を生成する必要がある。なお、このようなエンジン1の空回しはモータリングと称される。
 なお、マスタバック24は、車両コントローラ9の一部であるブレーキECU9Bと接続されている。ブレーキECU9Bは、マスタバック内の圧力などを検知することができる。
 また、車両コントローラ9は、エンジンECU9Eも備えており、エンジンECU9Eは、吸気スロットル21、及び、エンジン1のVTC(Variable Timig Control)1Aなどを制御する。
 ここで、車両コントローラ9は、モードスイッチ10により選択された走行モードに応じて、エンジン1や電動モータ4などを制御する。
 図3は、モードスイッチ10により選択可能な走行モードを示す図である。これらの走行モードには、通常モードと、エコモードと、マナーモードと、チャージモードとが含まれる。そして、図中の矢印は、一つのモードから他のモードへの変更が可能なことを示している。すなわち、2つのモードの間に矢印が記載されていないことは、両者のモードの切替が不可能であることを示している。
 通常モードが設定される場合には、走行中にアクセルをオフした場合、従来のガソリンエンジンにおけるコースティング走行が可能となるよう、モータコントローラ8は、電動モータ4による回生制動力をゼロもしくは相対的に小さく設定する。
 一方で、エコモードが設定される場合には、モータコントローラ8は、通常モードが設定される場合よりも、アクセル操作に対する加速応答が緩やか、かつ、電動モータ4による回生制動力が相対的に大きくなるように制御する。すなわち、エコモードが設定されている場合には、モータコントローラ8は、アクセル開度が小さくなると、エンジンブレーキに相当する制動力よりも大きな回生制動力を電動モータ4にて発生させる。エコモードが設定されているときは、JP6233420Bに記載されているものと同様の電動モータ制御を実施する。具体的には、JP6233420Bの図3に示されている通り、アクセルが解放されたときの回生トルクが大きく、且つ、車速ゼロまで回生トルクが生じるように設定されている。即ち、アクセル操作のみで発進、停止ができる。
 マナーモードが設定される場合には、車両コントローラ9は、エンジン1を駆動させず、発電機2によるバッテリ3の発電を行わない。マナーモードは、エンジン1による発電が行われずエンジン音が発生しないので、住宅街等の走行に適している。
 チャージモードが設定される場合には、車両コントローラ9は、エンジン1を駆動させて、発電機2によるバッテリ3の発電を行う。チャージモードが設定される場合には、バッテリ3の充電量が基準値に到達するようエンジン1の駆動力による発電機2による発電が優先的に行われる。チャージモードは、エンジン1を停止させるエコモードの前に予めバッテリ3の充電量を多くするために用いられることを想定したものである。
 車両コントローラ9においては、モードスイッチ10の操作に応じて、通常モードとエコモードとの切り替えを常時受け付ける。一方で、マナーモードとチャージモードとは、エコモードである場合にのみ切り替えを受け付けるように構成されている。このように、マナーモードとチャージモードとは、エコモードである場合にのみ選択可能に構成されているのは以下のような理由による。
 エコモードが選択される場合には積極的な回生制動が行われるのに対して、通常モードが選択される場合には電動モータ4による回生制動が比較的抑制されている。エンジン1の駆動が抑制されるマナーモードが選択される場合には、バッテリ3の充電量の低下を防ぐために回生制動を積極的に行うのが望ましいので、積極的な回生制動が行われるエコモードである場合にのみマナーモードを選択可能としている。
 また、チャージモードが設定される場合には、エンジン1を積極的に駆動させてバッテリ3の充電量を増加させる。このようなチャージモードは、マナーモードのようなエンジン1による充電が抑止される前段階でなされるべきである。そのため、マナーモードが選択可能なエコモードにおいてのみ、チャージモードを選択可能に構成することで、マナーモードとチャージモードとの一体的な運用を図ることができる。
 さらに、モータコントローラ8は、図4に示す制御を行う。
 図4は、通常モード又はエコモードが選択される場合におけるバッテリ3の充電量(SOC)と時間tとを示すグラフである。縦軸に充電量が、横軸に時間が示されている。
 本実施形態にて説明されたようなハイブリッド車両100においては、バッテリ3は、エンジン1による発電と、電動モータ4における回生制動によって充電される。運転状態によってはバッテリ3の充電量が低下するので、モータコントローラ8は、バッテリ3の充電量が45%(下限値)を下回る場合には、エンジン1を駆動させて発電機2によるバッテリ3の充電を開始させる。そして、モータコントローラ8は、バッテリ3の充電量が例えば60%になるとエンジン1を停止させてバッテリ3の充電を停止する。なお、このような発電制御は、通常モード又はエコモードが選択される場合になされる。
 そして、エコモードが設定される場合におけるマナーモードへの変更とバッテリ3の充電量との関係は以下のようになる。モータコントローラ8は、SOCが例えば51%である第1所定値(マナーモード許可閾値)を超える場合にマナーモードの選択を可能にするとともに、SOCが例えば48%である第2所定値(マナーモード解除閾値)を下回ると場合には設定されたマナーモードを解除してエコモードが再設定される。
 上述のように、下限値である45%は、バッテリ3の充電量が低くなる場合にエンジン1を用いた充電を開始する閾値である。下限値が小さい場合にはハイブリッド車両100が走行不能になるおそれが高くなり、一方で、下限値が大きい場合には充電頻度が高くなるおそれがあるので、両者のバランスを考慮して下限値は設定される。
 第2所定値(マナーモード解除閾値)である48%は、エンジン1を駆動させないマナーモードが解除された場合にすぐにエンジン1による発電が開始されないようなマージンを持たせた値である。仮に第2所定値が下限値と同じ45%である場合には、マナーモードが解除された直後からエンジン1が駆動して充電が開始されてしまう。このようなエンジン1の駆動を抑制するために、第2所定値は下限値よりも3%だけ高く設定されている。
 なお、この3%という値は、以下のように定めたものとする。すなわち、マナーモードが解除されてエコモードに遷移した後に、強めにアクセルペダルが踏まれても直ちにエンジン1の駆動による充電を開始しないように定めたものである。具体的には、例えば、強めの加速がなされる場合に、所定の加速度(0.3G)で20km/hから50km/hへと加速する場合のバッテリ3の充電量の低下が3%であるとする。このような条件の下で、下限値である45%よりも3%だけ大きな48%を、第2所定値として設定する。このようにして第2所定値を設定することにより、強めの加速がなされたとしても、バッテリ3の充電量が下限値(SOC:45%)を下回らないので、エンジン1の駆動を抑制することができる。
 第1所定値(マナーモード許可閾値)である51%は、第2所定値である48%よりも3%だけ高く設定されている。この3%は、以下のように設定されている。マナーモードは、エンジン1が停止しているため静音走行が可能であり、ドライバは自宅近所において選択する。統計的には幹線道路から自宅までの間の距離は300メートルであり、この300メートルを走行するのに必要はバッテリ3の充電量は3%である。そこで、第2所定値である48%よりも3%だけ大きな51%を、第1所定値として設定する。このようにして第1所定値を設定することにより、帰宅時における充電量は48%を下回らないので、帰宅するまでの間にマナーモードが解除されることが抑制される。
 なお、上述の実施形態に示した値は一例であって、これらの数値に限定されるものではない。
 上述のモードの他に、スポーツモードを備えていてもよい。スポーツモードは、エコモードと同様に通常モードよりも回生制動が多く行われるモードであるとともに、通常モードよりもさらにアクセルの応答性が高く運転性能が高められたものである。したがって、通常モードよりも回生制動が多く行われるエコモード及びスポーツモードを、回生走行モードと称してもよい。
 なお、本実施形態においてはマナーモードにおいてエンジン1を駆動させない例を用いて説明したが、これに限らない。マナーモードにおいて、エンジン1を低い回転速度で回転させることにより、エンジン1の駆動音を低減するように構成してもよい。エンジン1を低出力で駆動させることによっても、マナーモードの機能を実現することができる。
 本実施形態によれば、以下の効果を得ることができる。
 本実施形態のハイブリッド車両の制御方法によれば、エンジン1の駆動力を用いてバッテリ3を充電するようなシリーズハイブリッドであるハイブリッド車両100において、通常モード、回生走行モード(エコモード、及び、スポーツモード)、及び、マナーモードのモード設定を受け付け可能に構成されている。そして、回生走行モードが選択されている場合にはマナーモードは受け付け可能であるが、通常モードが選択されている場合にはマナーモードを受け付けない。
 回生走行モードが選択される場合には積極的な回生制動が行われるので、バッテリ3の充電量は通常モードよりも大きくなりやすい。エンジン1の駆動が抑制されるマナーモードが選択される場合には、バッテリ3の充電がされないので、マナーモード設定時のバッテリ3の充電量が高く、かつ、積極的に回生制動を行うような回生走行モードであることが好ましい。したがって、回生走行モードが選択されている場合にのみマナーモードの設定を受け付けるように構成されている。
 本実施形態のハイブリッド車両の制御方法によれば、チャージモードがさらに選択可能である。チャージモードは、エンジン1を積極的に駆動させてバッテリ3の充電量を増加させる。このようなチャージモードは、マナーモードのようなエンジン1によるバッテリ3の充電が抑制される前段階でなされるべきである。そのため、マナーモードが選択可能なエコモードにおいてのみ、チャージモードを選択可能に構成することで、マナーモードとチャージモードとの一体的な運用を図ることができるため、運転性を向上させることができる。
 本実施形態のハイブリッド車両の制御方法によれば、エンジン1の吸気通路22から分岐する負圧通路23が設けられている。吸気通路22に設けられる吸気スロットル21を閉じることにより生成された負圧が、負圧通路23を介してマスタバック24の2つのチャンバへと供給される。このようなマスタバック24の負圧によって、ブレーキペダル11Aの踏込操作がアシストされる。
 ブレーキペダル11Aが踏まれる場合において、マスタバック24の2つのチャンバが負圧となっていなければ、負圧を生成するためにエンジン1を作動させなければならない。仮に、マスタバック24の2つのチャンバが負圧でなく、かつ、エンジン1が駆動していない状態において、ブレーキペダル11Aが踏まれると仮定する。この仮定においては、吸気スロットル21が閉じられた状態のままで、バッテリ3を用いて発電機2を駆動させてエンジン1を力行運転させる(モータリング制御)必要がある。しかしながら、モータリング制御時には、エンジン1の回転音が生じてしまうおそれがある。
 ここで、通常モードに比べて回生制動の頻度が高いエコモードにおいては、ブレーキペダル11Aによる操作は比較的行われない。そこで、マナーモードはエコモードにおいてのみ選択可能にすることで、ブレーキペダル11Aが踏まれることに起因するモータリングを抑制できるので、ハイブリッド車両100の静音性を保つことができる。
 本実施形態のハイブリッド車両の制御方法によれば、バッテリ3の充電量が強制充電開始の下限値を下回ると、エンジン1を駆動させて発電機2による発電を開始する。
 エコモードが選択されている場合であって、バッテリ3の充電量が強制充電開始の下限値よりも大きな、より詳細には、第2所定値(マナーモード解除閾値)よりも大きな第1所定値(マナーモード許可閾値)を上回る場合に、マナーモードの選択を許容する。ここで、マナーモードは、ドライバが自宅に向かう場合に幹線道路から住宅街に入った時に選択することが考えられるため、第1所定値(マナーモード許可閾値)を第2所定値(マナーモード解除閾値)よりも大きくして設定しておくことで、自宅に到着した時点においてマナーモードが解除されるおそれを低減することができる。
 また、マナーモードが選択される状態において、バッテリ3の充電量が強制充電開始の下限値よりも大きな第2所定値(マナーモード解除閾値)を下回る場合には、マナーモードが解除されるとともにエコモードが選択される。ここで、バッテリ3の充電量が第2所定値(マナーモード解除閾値)を下回りマナーモードが解除された時に、さらに強めの加速要求があったと仮定する。このような仮定において、強制充電開始の下限値よりも第2所定値(マナーモード解除閾値)が大きいので、充電量が強制充電開始の下限値を下回らず、電動モータ4の駆動による強制的な充電の開始が抑制され、回生制動による充電量の回復を期待することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  エンジンの動力を用いてバッテリを充電する発電機と、前記バッテリの電力によって駆動輪を駆動させる電動モータとを備えるハイブリッド車両の制御方法であって、
      前記発電機及び前記電動モータを制御するとともに、通常モード、前記通常モードよりも前記電動モータによる回生制動力が大きい回生走行モード、及び、前記エンジンによる充電を制限するマナーモードのうちのいずれかを設定するモード設定を受け付け、
      前記通常モードが設定される場合には、前記マナーモードの設定を受け付けず、
      前記回生走行モードが設定される場合には、前記マナーモードの設定を受け付ける、
     ハイブリッド車両の制御方法。
  2.  請求項1に記載のハイブリッド車両の制御方法であって、
      さらに、前記発電機による発電を行うチャージモードの設定をするモード設定を受け付けず、
      前記通常モードが設定される場合には、前記チャージモードの設定を受け付けず、
      前記回生走行モードが設定される場合には、前記チャージモードの設定を受け付ける、
     ハイブリッド車両の制御方法。
  3.  請求項1または2に記載のハイブリッド車両の制御方法であって、
     前記ハイブリッド車両は、前記エンジンの吸気通路に生成される負圧により踏込操作がアシストされるように構成されるブレーキペダルを有し、
     前記制御方法は、
      前記ブレーキペダルをアシストする負圧の生成が必要な場合には、前記バッテリによって前記発電機を駆動させて前記エンジンを力行運転させるモータリング制御を行うことにより、前記吸気通路において負圧が生成される、
     ハイブリッド車両の制御方法。
  4.  請求項1から3のいずれか1項に記載のハイブリッド車両の制御方法であって、
     前記制御方法は、
      前記バッテリの充電量が下限値を下回る場合には、前記エンジンを駆動させて前記発電機により前記バッテリを充電し、
      前記回生走行モードが選択される場合において、前記充電量が前記下限値よりも大きな第1所定値を越えている場合には、前記マナーモードの選択を受け付け、
      前記マナーモードが選択される場合において、前記充電量が前記下限値よりも大きく、かつ、前記第1所定値よりも小さい第2所定値を下回る場合には、前記マナーモードを解除して前記回生走行モードを設定する、
     ハイブリッド車両の制御方法。
  5.  エンジンの動力を用いてバッテリを充電する発電機と、前記バッテリの電力によって駆動輪を駆動させる電動モータとを備えるハイブリッド車両の制御装置であって、
     前記制御装置は、
      前記発電機及び前記電動モータを制御するとともに、通常モード、前記通常モードよりも前記電動モータによる回生制動力が大きい回生走行モード、及び、前記エンジンによる充電を制限するマナーモードのうちのいずれかを設定するモード設定を受け付け可能に構成され、
      前記通常モードが設定される場合には、前記マナーモードの設定を受け付けず、
      前記回生走行モードが設定される場合には、前記マナーモードの設定を受け付ける、
     ハイブリッド車両の制御装置。
  6.  請求項5のハイブリッド車両の制御装置であって、
     前記制御装置は、
      前記モード設定に応じて、さらに、前記発電機による発電を行うチャージモードの設定を受け付け可能に構成され、
      前記通常モードが設定される場合には、前記チャージモードの設定を受け付けず、
      前記回生走行モードが設定される場合には、前記チャージモードの設定を受け付ける、
     ハイブリッド車両の制御装置。
  7.  請求項5または6に記載のハイブリッド車両の制御装置であって、
     前記ハイブリッド車両は、前記エンジンの吸気通路に生成される負圧により踏込操作がアシストされるように構成されるブレーキペダルを有し、
     前記制御装置は、
      前記ブレーキペダルをアシストする負圧の生成が必要な場合には、前記バッテリによって前記発電機を駆動させて前記エンジンを力行運転させるモータリング制御を行うことにより、前記吸気通路において負圧が生成される、ハイブリッド車両の制御装置。
  8.  請求項5から7のいずれか1項に記載のハイブリッド車両の制御装置であって、
     前記制御装置は、
      前記バッテリの充電量が下限値を下回る場合には、前記エンジンを駆動させて前記発電機により前記バッテリを充電し、
      前記回生走行モードが選択される場合において、前記充電量が前記下限値よりも大きな第1所定値を越えている場合には、前記マナーモードの選択を受け付け、
      前記マナーモードが選択される場合において、前記充電量が前記下限値よりも大きく、かつ、前記第1所定値よりも小さい第2所定値を下回る場合には、前記マナーモードを解除して前記回生走行モードを設定する、ハイブリッド車両の制御装置。
PCT/JP2017/045222 2017-12-15 2017-12-15 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 WO2019116588A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201780097672.0A CN111465541B (zh) 2017-12-15 2017-12-15 混合动力车辆的控制方法和混合动力车辆的控制装置
PCT/JP2017/045222 WO2019116588A1 (ja) 2017-12-15 2017-12-15 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
KR1020207019263A KR102365417B1 (ko) 2017-12-15 2017-12-15 하이브리드 차량의 제어 방법 및 하이브리드 차량의 제어 장치
US16/772,591 US11529944B2 (en) 2017-12-15 2017-12-15 Control method for hybrid vehicle and control apparatus for hybrid vehicle
RU2020121798A RU2741447C1 (ru) 2017-12-15 2017-12-15 Способ управления гибридным транспортным средством и устройство управления гибридным транспортным средством
MX2020006164A MX2020006164A (es) 2017-12-15 2017-12-15 Metodo de control para vehiculo hibrido y aparato de control para vehiculo hibrido.
BR112020011927-0A BR112020011927B1 (pt) 2017-12-15 Método de controle para veículo híbrido e aparelho de controle para veículo híbrido
EP17934796.8A EP3725619B1 (en) 2017-12-15 2017-12-15 Control method for hybrid vehicle and control apparatus for hybrid vehicle
JP2019558877A JP6988913B2 (ja) 2017-12-15 2017-12-15 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045222 WO2019116588A1 (ja) 2017-12-15 2017-12-15 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2019116588A1 true WO2019116588A1 (ja) 2019-06-20

Family

ID=66820115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045222 WO2019116588A1 (ja) 2017-12-15 2017-12-15 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置

Country Status (8)

Country Link
US (1) US11529944B2 (ja)
EP (1) EP3725619B1 (ja)
JP (1) JP6988913B2 (ja)
KR (1) KR102365417B1 (ja)
CN (1) CN111465541B (ja)
MX (1) MX2020006164A (ja)
RU (1) RU2741447C1 (ja)
WO (1) WO2019116588A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138150A (ja) * 2020-02-28 2021-09-16 ダイハツ工業株式会社 ハイブリッド車の制御装置
JP7543076B2 (ja) 2020-10-14 2024-09-02 ダイハツ工業株式会社 ハイブリッド車両の制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988913B2 (ja) * 2017-12-15 2022-01-05 日産自動車株式会社 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
US12060053B1 (en) 2021-08-13 2024-08-13 Oshkosh Defense, Llc Military vehicle with control modes
US12083995B1 (en) 2021-08-13 2024-09-10 Oshkosh Defense, Llc Power export system for a military vehicle
US12030479B1 (en) 2021-08-13 2024-07-09 Oshkosh Defense, Llc Prioritized charging of an energy storage system of a military vehicle
US11465486B1 (en) 2021-08-13 2022-10-11 Oshkosh Defense, Llc Electrified military vehicle
US11498409B1 (en) 2021-08-13 2022-11-15 Oshkosh Defense, Llc Electrified military vehicle
CN116118530A (zh) 2021-11-12 2023-05-16 通用汽车环球科技运作有限责任公司 用于电池电动车的多功能dc-dc转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233420B2 (ja) 1980-09-29 1987-07-21 Daihatsu Motor Co Ltd
JPH07279702A (ja) * 1994-04-13 1995-10-27 Mitsubishi Motors Corp ハイブリッド車用エンジンの制御装置
JP2009137405A (ja) * 2007-12-05 2009-06-25 Toyota Motor Corp ハイブリッド車両
JP4793233B2 (ja) 2006-11-24 2011-10-12 トヨタ自動車株式会社 動力出力装置、それを搭載した車両及びその制御方法
JP2015214265A (ja) * 2014-05-12 2015-12-03 トヨタ自動車株式会社 車両

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127337B2 (en) * 2003-10-14 2006-10-24 General Motors Corporation Silent operating mode for reducing emissions of a hybrid electric vehicle
CN1944139A (zh) * 2006-11-08 2007-04-11 北京理工大学 串联式混合动力车辆的整车控制策略
CN101959730B (zh) * 2008-03-03 2013-12-18 日产自动车株式会社 用于控制混合动力车辆的控制设备和方法
US8566013B2 (en) * 2008-05-15 2013-10-22 Eaton Corporation Electric vehicle (EV) driving mode optimization for a parallel hybrid electric vehicle
JP2011093335A (ja) * 2009-10-27 2011-05-12 Toyota Motor Corp ハイブリッド車両の制御装置
JP2012086742A (ja) 2010-10-21 2012-05-10 Hino Motors Ltd 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム
EP2808520A4 (en) * 2012-01-23 2016-04-20 Toyota Motor Co Ltd THERMAL MOTOR RESTART CONTROL DEVICE, VEHICLE AND VEHICLE CONTROL METHOD
JP5609898B2 (ja) * 2012-01-26 2014-10-22 トヨタ自動車株式会社 走行制御装置
US9457798B2 (en) * 2013-01-11 2016-10-04 Honda Motor Co., Ltd. Hybrid vehicle and method for controlling same
JP6146014B2 (ja) * 2013-01-16 2017-06-14 三菱自動車工業株式会社 車両の制御装置
EP3078537B1 (en) 2013-12-02 2020-04-08 Nissan Motor Co., Ltd Electric vehicle control device and electric vehicle control method
JP6248596B2 (ja) * 2013-12-10 2017-12-20 トヨタ自動車株式会社 ハイブリッド車両のモータ制御装置
KR101429423B1 (ko) * 2014-03-21 2014-08-13 강명구 하이브리드 차량의 동력전달장치
JP6398475B2 (ja) * 2014-08-29 2018-10-03 三菱自動車工業株式会社 回生制御装置
WO2019116586A1 (ja) * 2017-12-15 2019-06-20 日産自動車株式会社 ハイブリッド車両の制御方法、及び、制御装置
EP3725614A4 (en) * 2017-12-15 2021-01-06 Nissan Motor Co., Ltd. HYBRID VEHICLE CONTROL PROCESS AND DEVICE
JP6988913B2 (ja) * 2017-12-15 2022-01-05 日産自動車株式会社 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233420B2 (ja) 1980-09-29 1987-07-21 Daihatsu Motor Co Ltd
JPH07279702A (ja) * 1994-04-13 1995-10-27 Mitsubishi Motors Corp ハイブリッド車用エンジンの制御装置
JP4793233B2 (ja) 2006-11-24 2011-10-12 トヨタ自動車株式会社 動力出力装置、それを搭載した車両及びその制御方法
JP2009137405A (ja) * 2007-12-05 2009-06-25 Toyota Motor Corp ハイブリッド車両
JP2015214265A (ja) * 2014-05-12 2015-12-03 トヨタ自動車株式会社 車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725619A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138150A (ja) * 2020-02-28 2021-09-16 ダイハツ工業株式会社 ハイブリッド車の制御装置
JP7433711B2 (ja) 2020-02-28 2024-02-20 ダイハツ工業株式会社 ハイブリッド車の制御装置
JP7543076B2 (ja) 2020-10-14 2024-09-02 ダイハツ工業株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
CN111465541B (zh) 2023-04-28
JPWO2019116588A1 (ja) 2021-02-12
EP3725619A1 (en) 2020-10-21
MX2020006164A (es) 2020-08-13
CN111465541A (zh) 2020-07-28
KR102365417B1 (ko) 2022-02-23
BR112020011927A2 (pt) 2020-11-17
US20200384977A1 (en) 2020-12-10
JP6988913B2 (ja) 2022-01-05
US11529944B2 (en) 2022-12-20
EP3725619B1 (en) 2021-08-18
EP3725619A4 (en) 2020-12-30
RU2741447C1 (ru) 2021-01-26
KR20200090900A (ko) 2020-07-29

Similar Documents

Publication Publication Date Title
WO2019116588A1 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JP4519085B2 (ja) 内燃機関の制御装置
JP3715158B2 (ja) エンジンの停止・始動制御装置
US9636989B2 (en) Device for controlling hybrid vehicle
JP4260385B2 (ja) ハイブリッド車両の制御装置
JP6852802B2 (ja) ハイブリッド車両の制御方法および制御装置
JP2011239605A (ja) 車両の制御装置
JP2008094238A (ja) ハイブリッド車の制御装置
KR101806961B1 (ko) 마일드 하이브리드 차량용 크루즈 제어 방법 및 장치
JP7252996B2 (ja) 車両制御装置
JP3649201B2 (ja) ハイブリッド車両の制御装置
JP7433698B2 (ja) モータ制御装置
JP4028361B2 (ja) エンジンの自動停止始動制御装置
JP2011235809A (ja) 車両用制御装置および車両用制御方法
KR20100020382A (ko) 하이브리드 자동차의 브레이크 제어 장치 및 방법
JP2014104857A (ja) 制御装置
JP7043472B2 (ja) 電動車両用制御装置
JP7235784B2 (ja) 車両制御装置
JP2008239131A (ja) ハイブリッド車両
JPH10201012A (ja) パラレルハイブリッド車両の制御装置
JP2004257259A (ja) ハイブリッド自動車
JP3861822B2 (ja) ハイブリッド車両の制御装置
JP2023040556A (ja) ハイブリッド車両の制御装置
JP2023026959A (ja) 内燃機関の制御装置
JP2020100328A (ja) 電動車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019263

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017934796

Country of ref document: EP

Effective date: 20200715

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011927

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011927

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200612