JP2023040556A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2023040556A
JP2023040556A JP2021147614A JP2021147614A JP2023040556A JP 2023040556 A JP2023040556 A JP 2023040556A JP 2021147614 A JP2021147614 A JP 2021147614A JP 2021147614 A JP2021147614 A JP 2021147614A JP 2023040556 A JP2023040556 A JP 2023040556A
Authority
JP
Japan
Prior art keywords
motor
engine
mode
braking torque
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021147614A
Other languages
English (en)
Inventor
宗志 浅田
Motoshi Asada
浩八 田中
Kohachi Tanaka
満 山口
Mitsuru Yamaguchi
智洋 中野
Tomohiro Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021147614A priority Critical patent/JP2023040556A/ja
Publication of JP2023040556A publication Critical patent/JP2023040556A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】トルクショックの発生を抑制したハイブリッド車両の制御装置を提供することを課題とする。【解決手段】駆動源としてエンジン及びモータを備えたハイブリッド車両に適用され、前記モータを駆動源として走行するモータモード又は前記エンジンを駆動源として走行するエンジンモードに走行モードを切り替えるハイブリッド車両の制御装置において、走行モードが前記モータモードの場合に減速要求があるか否かを判定する判定部と、前記判定部により肯定判定がなされた場合に、前記モータの回生運転を実行してモータ回転数に基づいてモータ制動トルクを制御するモータ制御部と、を備え、前記モータ制御部は、前記モータ制動トルクを、走行モードが前記エンジンモードでありエンジン回転数が前記モータ回転数であって前記エンジンで燃料カットを実行した場合でのエンジン制動トルクに対応させる、ハイブリッド車両の制御装置。【選択図】図3

Description

本発明は、ハイブリッド車両の制御装置に関する。
駆動源としてエンジン及びモータを備えたハイブリッド車両が知られている。このようなハイブリッド車両では、モータを駆動源として走行するモータモード又はエンジンを駆動源として走行するエンジンモードに走行モードを切り替えることができる。モータモードで走行中に減速要求がある場合には、モータの回生運転によりモータ制動トルクを生じさせて減速を図る。エンジンモードで走行中に減速要求がある場合には、燃料カットによりエンジン制動トルクを生じさせて減速を図る(例えば特許文献1参照)。
特開2013-180695号公報
例えば減速中にモータモードからエンジンモードに切り替えられた場合には、トルクショックが発生するおそれがある。
そこで本発明は、トルクショックの発生を抑制したハイブリッド車両の制御装置を提供することを目的とする。
上記目的は、駆動源としてエンジン及びモータを備えたハイブリッド車両に適用され、前記モータを駆動源として走行するモータモード又は前記エンジンを駆動源として走行するエンジンモードに走行モードを切り替えるハイブリッド車両の制御装置において、走行モードが前記モータモードの場合に減速要求があるか否かを判定する判定部と、前記判定部により肯定判定がなされた場合に、前記モータの回生運転を実行してモータ回転数に基づいてモータ制動トルクを制御するモータ制御部と、を備え、前記モータ制御部は、前記モータ制動トルクを、走行モードが前記エンジンモードでありエンジン回転数が前記モータ回転数であって前記エンジンで燃料カットを実行した場合でのエンジン制動トルクに対応させる、ハイブリッド車両の制御装置によって達成できる。
本発明によれば、トルクショックの発生を抑制したハイブリッド車両の制御装置を提供できる。
図1は、ハイブリッド車両の概略構成図である。 図2は、エンジン及びモータの減速制御の一例を示したタイミングチャートである。 図3は、ECUが実行するモータの減速制御の一例を示したフローチャートである。 図4は、燃料カットによるエンジン制動トルクとエンジン回転数との関係を規定したマップである。
[ハイブリッド車両の概略構成]
図1は、ハイブリッド車両1の概略構成図である。ハイブリッド車両1には、エンジン10から車輪13までの動力伝達経路に、K0クラッチ14、モータ15、トルクコンバータ18、及び自動変速機19が順に設けられている。エンジン10及びモータ15は駆動源としてハイブリッド車両1に搭載されている。エンジン10は、例えばV型6気筒ガソリンエンジンであるが気筒数はこれに限定されず、また直列エンジンであってもよいし、ディーゼルエンジンであってもよい。K0クラッチ14、モータ15、トルクコンバータ18、及び自動変速機19は、変速ユニット11内に設けられている。変速ユニット11と左右の車輪13とは、ディファレンシャル12を介して駆動連結されている。
K0クラッチ14は、同動力伝達経路上のエンジン10とモータ15との間に設けられている。K0クラッチ14は、油圧の供給を受けて係合状態となって、エンジン10とモータ15との動力伝達を接続する。K0クラッチ14は、油圧供給の停止に応じて開放状態となって、エンジン10とモータ15との動力伝達を遮断する。
モータ15は、インバータ17を介してバッテリ16に接続されている。モータ15は、バッテリ16からの給電に応じて車両の駆動力を発生するモータとして機能する一方で、エンジン10や車輪13からの動力伝達に応じてバッテリ16に充電する電力を発電する発電機としても機能する。モータ15とバッテリ16との間で授受される電力は、インバータ17により調整されている。
インバータ17は、後述するECU40によって制御され、バッテリ16からの直流電圧を交流電圧に変換するか、またはモータ15からの交流電圧を直流電圧に変換する。モータ15がトルクを出力する力行運転の場合、インバータ17はバッテリ16の直流電圧を交流電圧に変換してモータ15に供給される電力を調整する。モータ15が発電する回生運転の場合、インバータ17はモータ15からの交流電圧を直流電圧に変換してバッテリ16に供給される電力を調整する。
トルクコンバータ18は、トルク増幅機能を有した流体継ぎ手である。自動変速機19は、ギア段の切替えにより変速比を多段階に切替える有段式の自動変速機である。自動変速機19は、動力伝達経路上のモータ15と車輪13の間に設けられている。トルクコンバータ18を介して、モータ15と自動変速機19とが連結されている。トルクコンバータ18には、油圧の供給を受けて係合状態となってモータ15と自動変速機19とを直結するロックアップクラッチ20が設けられている。
変速ユニット11には、更にオイルポンプ21と油圧制御機構22とが設けられている。オイルポンプ21で発生した油圧は、油圧制御機構22を介して、K0クラッチ14、トルクコンバータ18、自動変速機19、及びロックアップクラッチ20にそれぞれ供給されている。油圧制御機構22には、K0クラッチ14、トルクコンバータ18、自動変速機19、及びロックアップクラッチ20のそれぞれの油圧回路と、それらの作動油圧を制御するための各種の油圧制御弁と、が設けられている。
ハイブリッド車両1には、同車両の制御装置としてのECU(Electronic Control Unit)40が設けられている。ECU40は、車両の走行制御に係る各種演算処理を行う演算処理回路と、制御用のプログラムやデータが記憶されたメモリと、を備える電子制御ユニットである。ECU40は、ハイブリッド車両の制御装置の一例であり、詳しくは後述する判定部及びモータ制御部を機能的に実現する。
ECU40は、エンジン10及びモータ15の駆動を制御する。例えばECU40は、エンジン10のスロットル開度、点火時期、燃料噴射量を制御することにより、エンジン10のトルクや回転数を制御する。またECU40は、油圧制御機構22の制御を通じて、K0クラッチ14やロックアップクラッチ20、自動変速機19の駆動制御を行う。
ECU40は、インバータ17を制御して、モータ15とバッテリ16との間での電力の授受量を調整することで、モータ15の回転数やトルクを制御する。また詳しくは後述するがECU40は、回生運転でのモータ制動トルクが目標値となるように、インバータ17がモータ15からバッテリ16へ供給される電力を制御する。
ECU40には、イグニッションスイッチ31、クランク角センサ32、モータ回転数センサ33、アクセル開度センサ34、ブレーキ開度センサ35、SOC(State Of Charge)センサ36等からの信号が入力される。クランク角センサ32は、エンジン10のクランクシャフトの回転速度を検出する。モータ回転数センサ33は、モータ15の出力軸の回転速度を検出する。アクセル開度センサ34は、運転者のアクセルペダルの踏込量であるアクセルペダル開度を検出する。ブレーキ開度センサ35は、運転者のブレーキペダルの踏込量であるブレーキペダル開度を検出する。SOCセンサ36は、バッテリ16のSOCを検出する。尚、SOCはバッテリ16の蓄電残量を示し、たとえば満充電状態の蓄電量に対する現在の蓄電量の割合を0~100%で表わしたものである。
ECU40は、モータモード及びハイブリッドモードの何れかの走行モードでハイブリッド車両を走行させる。モータモードでは、ECU40はK0クラッチ14を解放し、モータ15を駆動源とする。ハイブリッドモードでは、ECU40はK0クラッチ14を係合して少なくともエンジン10を駆動源とする。具体的には、ハイブリッドモードでは、エンジン10を駆動源として走行するモード、モータ15を力行運転させてエンジン10及びモータ15の双方を駆動源として走行するモードを含む。本明細書では、ハイブリッドモードに含まれるエンジン10を駆動源として走行するモードを、エンジンモードと称する。
走行モードの切り替えは、車速やアクセル開度から求められた車両の要求駆動力と、バッテリ16の充電状態などに基づいて行われる。例えば、要求駆動力が比較的小さく、バッテリ16のSOCが比較的高い場合には、燃費を向上させるためにエンジン10を停止した電気走行モードが選択される。要求駆動力が比較的大きい場合や、バッテリ16のSOCが比較的低い場合には、少なくともエンジン10が駆動したハイブリッド走行モードが選択される。
例えば、モータモードにおいて減速要求がある場合には、モータ15による回生運転が行われ、モータ15の発電電力がバッテリ16に充電されながらモータ制動トルクにより減速が実現される。しかしながら、このような減速中にバッテリ16のSOCが100%になると、それ以上モータ15の発電電力をバッテリ16に充電することができずに、この結果回生運転による減速を継続することができない。このため、このような場合にはECU40は、モータモードからエンジンモードに切り替えてエンジン10で燃料カットを実行し、燃料カットにより生じるエンジン制動トルクにより減速を継続する。ECU40は、このような減速中でのモータモードからエンジンモードに切り替えの際に、モータ制動トルクとエンジン制動トルクとの差に起因してトルクショックが発生することを抑制する制御を実行する。
[エンジン及びモータの減速制御]
次に、ECU40が実行するエンジン10及びモータ15の減速制御について説明する。図2は、エンジン10及びモータ15の減速制御の一例を示したタイミングチャートである。図2には、エンジン回転数[rpm]、モータ回転数[rpm]、エンジントルク[Nm]、モータトルク[Nm]、システム軸トルク[Nm]、及びK0クラッチ14の状態を示している。図2では、モータ回転数及びモータトルクを実線で示し、エンジン回転数及びエンジントルクは点線で示し、システム軸トルクは破線で示す。システム軸トルクは、ハイブリッド車両1全体のトルクであり、エンジントルクとモータトルクとの合計に相当する。図2では、減速中にモータモードからエンジンモードに移行する場合を示す。
時刻t0では、モータモードでアクセル及びブレーキがOFFで減速中であり、モータ15は回生運転中であり、モータトルクが負トルクとなるモータ制動トルクが発生している。本実施例ではモータ制動トルクは、モータ回転数の低下するにつれて0に近づくが、詳しくは後述する。尚、上述したようにモータモードではK0クラッチ14は解放状態であり、エンジン10は停止しているためエンジントルク及びエンジン回転数は共に0である。
時刻t1でバッテリ16のSOCが100%になると、モータモードからエンジンモードの切替制御が開始される。具体的には、オイルポンプ21から油圧が供給されてK0クラッチ14はスリップ状態となり、モータ15によるエンジン10のクランキングが開始されエンジン回転数は上昇する。この際のモータトルクは、予め定められたエンジン10のクランキングに必要な分のトルクだけ、モータ制動トルクから増大される。これにより、モータトルクは負トルクから正トルクに転じる。尚、システム軸トルクは、クランキングに消費されるトルク分がモータ制動トルクに加算されただけであるため、一定である。
時刻t2でK0クラッチ14が係合すると、エンジン回転数及びモータ回転数は同じ値となり、モータモードからエンジンモードへの切り替えが完了する。即ち、モータ15への電力供給が停止されモータトルクはゼロになる。エンジン10は、燃料カットが実行され、エンジントルクが負の値となるエンジン制動トルクにより減速が継続される。また、燃料カットによるエンジン制動トルクは、エンジン回転数が低下するほど0に近づく。
時刻t3で、エンジン回転数が燃料カットからの復帰制御を実行するための復帰回転数α以下となると、燃料噴射と着火が行われファイアリングが開始される。これにより、エンジントルクが負トルクから正トルクに転じて増大し、エンジン回転数及びモータ回転数は上昇する。
以上のように、時刻t0~t1までのモータ制動トルクの延長線上に、時刻t2~t3までのエンジン制動トルクが重なる。ここで、燃料カットによるエンジン制動トルクは、エンジン回転数によりほぼ一義的に決まり、上述したようにエンジン回転数が低下するほど0に近づく。これに対してモータ制動トルクは、インバータ17によりモータ15からバッテリ16へ供給される電力を制御することによって任意の値に可変制御することができる。従って本実施例では、モータ制動トルクがエンジン制動トルクに一致するように可変制御されている。
このため、減速中でのモータモードからエンジンモードへの切り替えの際の、モータ制動トルクとエンジン制動トルクとの差に起因するトルクショックの発生が抑制されている。
[ECUが実行するモータの減速制御]
図3は、ECU40が実行するモータ15の減速制御の一例を示したフローチャートである。本制御は、イグニッションがオンの状態で所定の周期ごとに繰り返し実行される。最初にECU40は、モータモードで減速要求があるか否かを判定する(ステップS1)。ステップS1でNoの場合には本制御を終了する。ステップS1の処理は判定部が実行する処理の一例である。
ステップS1でYesの場合、ECU40はモータ回転数センサ33の検出値に基づいてモータ回転数を取得し(ステップS2)、エンジン制動トルクを算出する(ステップS3)。エンジン制動トルクの算出は、図4のマップを参照して行われる。図4は、燃料カットによるエンジン制動トルクとエンジン回転数との関係を規定したマップである。縦軸はエンジン制動トルクを示し、横軸はエンジン回転数を示す。図4に示すように、エンジン制動トルクは、エンジン回転数が低下するほど0に近づく。図4のマップは、予め実験により算出されECU40のメモリに記憶されている。尚、図4のマップは一例であり、エンジン制動トルクとエンジン回転数との関係が直線的に限定されず、例えば曲線的であってもよい。また、図4のマップの代わりにエンジン回転数を引数とした演算式により燃料カットによるエンジン制動トルクを算出してもよい。
次にECU40は、モータ制動トルクが算出されたエンジン制動トルクに対応するようにモータ15の回生運転を実行する(ステップS4)。具体的には、モータ制動トルクの目標値をエンジン制動トルクに設定し、モータ制動トルクが目標値となるように、ECU40はインバータ17を制御してモータ15からバッテリ16へ供給される電力を制御する。これにより、モータモードからエンジンモードに切り替えられた際のトルクショックを抑制することができる。ステップS2~S4は、モータ制御部が実行する処理の一例である。
次に、ECU40はSOCセンサ36の検出値に基づいてバッテリ16のSOCが100%未満であるか否かを判定する(ステップS5)。ステップS5でYesの場合には本制御は終了する。ステップS5でNoの場合には、ECU40はモータモードからエンジンモードへと切り替える(ステップS6)。
上記実施例では、モータ制動トルクをエンジン制動トルクに対応するように制御したが、モータ制動トルクはエンジン制動トルクに完全一致している必要はない。例えばトルクショックが発生しない範囲でモータ制動トルクはエンジン制動トルクに対して数%程度ずれていてもよい。
上記実施例では、モータモードからエンジンモードに切り替えられる場合でのトルクショックを例に説明したが、これに限定されず、エンジンモードからモータモードに切り替えられる場合でのトルクショックも抑制することができる。
上記実施例では、単一のECU40によりハイブリッド車両を制御する場合を例示したが、これに限定されず、例えばエンジン10を制御するエンジンECU、モータ15を制御するモータECU、K0クラッチ14を制御するクラッチECU、バッテリ16を制御するバッテリECU等の複数のECUによって、上述した制御を実行してもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 エンジン
14 K0クラッチ
15 モータ
16 バッテリ
17 インバータ
40 ECU(判定部、モータ制御部)

Claims (1)

  1. 駆動源としてエンジン及びモータを備えたハイブリッド車両に適用され、前記モータを駆動源として走行するモータモード又は前記エンジンを駆動源として走行するエンジンモードに走行モードを切り替えるハイブリッド車両の制御装置において、
    走行モードが前記モータモードの場合に減速要求があるか否かを判定する判定部と、
    前記判定部により肯定判定がなされた場合に、前記モータの回生運転を実行してモータ回転数に基づいてモータ制動トルクを制御するモータ制御部と、を備え、
    前記モータ制御部は、前記モータ制動トルクを、走行モードが前記エンジンモードでありエンジン回転数が前記モータ回転数であって前記エンジンで燃料カットを実行した場合でのエンジン制動トルクに対応させる、ハイブリッド車両の制御装置。
JP2021147614A 2021-09-10 2021-09-10 ハイブリッド車両の制御装置 Pending JP2023040556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021147614A JP2023040556A (ja) 2021-09-10 2021-09-10 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021147614A JP2023040556A (ja) 2021-09-10 2021-09-10 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
JP2023040556A true JP2023040556A (ja) 2023-03-23

Family

ID=85632518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021147614A Pending JP2023040556A (ja) 2021-09-10 2021-09-10 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP2023040556A (ja)

Similar Documents

Publication Publication Date Title
JP6301991B2 (ja) ハイブリッド車両システム
JP3514142B2 (ja) 車両制御装置
KR101371482B1 (ko) 하이브리드 차량의 엔진클러치의 전달토크 학습 시스템 및 방법
US10486685B2 (en) Driving control mechanism and driving control device
JP2002218602A (ja) パラレル・ハイブリッド電気自動車における回生制動エネルギーの回収方法及び装置
JP2014084083A (ja) 車両の走行制御装置
US11207968B2 (en) Hybrid vehicle cruise control device
US9789874B2 (en) Vehicle travel control device for controlling a running mode of an engine
JP6817767B2 (ja) ハイブリッド車両システムの制御装置及び制御方法
CN111278700B (zh) 混合动力车辆的控制方法及控制装置
JP2000287304A (ja) 内燃機関の駆動装置
CN115195691A (zh) 车辆控制装置
JP2023040556A (ja) ハイブリッド車両の制御装置
JP5171177B2 (ja) ハイブリッド車両
JP4986677B2 (ja) ハイブリッド車両
CN115123186B (zh) 车辆控制装置
US20230234556A1 (en) Hybrid electric vehicle
JP2001103602A (ja) ハイブリッド車の回生制御方法
JP2019025986A (ja) ハイブリッド車両
JP2023118396A (ja) ハイブリッド車両の制御装置
JP2024018554A (ja) ハイブリッド車両の制御装置
JP7003516B2 (ja) 車両の制御装置
JP2004257259A (ja) ハイブリッド自動車
JP2023045599A (ja) ハイブリッド車両の制御装置
JP2023115606A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240214