WO2019116585A1 - 燃費表示制御方法及び燃費表示制御システム - Google Patents

燃費表示制御方法及び燃費表示制御システム Download PDF

Info

Publication number
WO2019116585A1
WO2019116585A1 PCT/JP2017/045219 JP2017045219W WO2019116585A1 WO 2019116585 A1 WO2019116585 A1 WO 2019116585A1 JP 2017045219 W JP2017045219 W JP 2017045219W WO 2019116585 A1 WO2019116585 A1 WO 2019116585A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel consumption
instantaneous
display control
power
engine
Prior art date
Application number
PCT/JP2017/045219
Other languages
English (en)
French (fr)
Inventor
真介 樋口
一彦 沖野
隆三 野口
純司 宮地
哲也 篠原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP17934502.0A priority Critical patent/EP3725576B1/en
Priority to KR1020207017224A priority patent/KR102407501B1/ko
Priority to BR112020011909A priority patent/BR112020011909A8/pt
Priority to MX2020006160A priority patent/MX2020006160A/es
Priority to CN201780097744.1A priority patent/CN111542448B/zh
Priority to PCT/JP2017/045219 priority patent/WO2019116585A1/ja
Priority to RU2020121416A priority patent/RU2742068C1/ru
Priority to JP2019558874A priority patent/JP6923001B2/ja
Priority to US16/771,980 priority patent/US11535230B2/en
Publication of WO2019116585A1 publication Critical patent/WO2019116585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/10Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • B60K35/81Arrangements for controlling instruments for controlling displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/169Remaining operating distance or charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/174Economic driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a fuel consumption display control method and a fuel consumption display control system.
  • JP2013-032152A in a vehicle (EV vehicle) in which a traveling motor is driven by power from a battery, traveling can be performed per unit power consumption based on battery power consumed by traveling and charge power by regeneration. A method is presented to calculate the distance (cost of electricity).
  • traveling is possible only with the driving force of the traveling motor, and basically the engine is not used as a traveling drive source during traveling by the traveling motor, so the accelerator pedal operation amount and the engine output (fuel consumption ) Is not directly linked.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a fuel consumption display control method and fuel consumption which can suitably promote driving operation in which the driver is conscious of eco-drive in a hybrid vehicle. To provide a display control system.
  • a method of controlling fuel consumption display of a hybrid vehicle in which driving power supplied from a battery to a traveling motor is generated by a power generation device that consumes fuel and generates power.
  • the fuel consumption display control method includes a power cost calculation step of calculating an instantaneous power cost according to the output of the traveling motor. Further, the fuel consumption display control method has a fuel consumption calculation step of calculating an instantaneous fuel consumption equivalent to the instantaneous power consumption according to the driving condition set in the power generation device.
  • the fuel consumption display control method further includes a display step of displaying the instantaneous fuel consumption on a display device disposed in the vehicle compartment.
  • fuel consumption display control mounted on a hybrid vehicle that charges electric power generated by a power generation device that consumes fuel and generates electric power to the battery and supplies driving electric power from the battery to the traveling motor
  • the fuel consumption display control system includes a display device that displays the travel distance with respect to predetermined fuel consumption as instantaneous fuel consumption, and a display control device that calculates the instantaneous fuel consumption. Then, the display control device calculates the instantaneous power cost from the traveling distance with respect to the power consumption of the travel motor, and displays the instantaneous power cost or a value obtained by correcting the instantaneous power cost by a predetermined coefficient on the display device as the instantaneous fuel consumption.
  • FIG. 1 is a diagram for explaining a schematic configuration of a hybrid vehicle in which the fuel efficiency display control method of the first embodiment is executed.
  • FIG. 2 is a diagram for explaining the display mode of the meter panel of the first embodiment.
  • FIG. 3 is a block diagram for explaining the function of the fuel consumption display control system of the first embodiment.
  • FIG. 4 is a flow chart for explaining the flow of the fuel efficiency display control method of the first embodiment.
  • FIG. 5 is a diagram showing a conversion table for determining a conversion coefficient from instantaneous power consumption to instantaneous fuel consumption.
  • FIG. 6 is a view showing an example of a display mode in the fuel consumption display area of the first embodiment.
  • FIG. 7 is a block diagram for explaining the function of the fuel consumption display control system of the second embodiment.
  • FIG. 1 is a diagram for explaining a schematic configuration of a hybrid vehicle in which the fuel efficiency display control method of the first embodiment is executed.
  • FIG. 2 is a diagram for explaining the display mode of the meter panel of
  • FIG. 8 is a flowchart showing the flow of the average actual fuel consumption display control.
  • FIG. 9 is a view showing an example of a display mode in the fuel efficiency display area of the second embodiment.
  • FIG. 10 is a view for explaining the display mode of the meter panel of the second embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid vehicle 100 in which the fuel display method of the present embodiment is executed.
  • the hybrid vehicle 100 of the present embodiment includes an engine 1 (internal combustion engine) as a power generation device, a generator motor (hereinafter referred to as a generator 2), and an electric motor (hereinafter referred to as a travel motor 6) that generates a driving force used for traveling. And a so-called series hybrid vehicle.
  • engine 1 internal combustion engine
  • generator 2 generator motor
  • travel motor 6 electric motor
  • the hybrid vehicle 100 of the present embodiment includes the generator inverter 3, the battery 4, the motor inverter 5, the traveling motor 6, the reduction gear 7, the engine controller 9, the battery controller 10, and the motor controller 11. , A vehicle controller 12, a generator controller 14, and a meter panel 20.
  • the engine 1 is connected to the generator 2 via a gear (not shown), and transmits motive power for the generator 2 to generate power to the generator 2. That is, engine 1 of hybrid vehicle 100 is used as a drive source for power generation by generator 2.
  • the generator 2 is configured to be able to execute cranking of the engine 1 at the time of starting the engine 1 and motoring that causes the engine 1 to rotate to rotate the engine 1 in response to a command from the generator controller 14. It is done.
  • the generator inverter 3 is connected to the generator 2, the battery 4, and the motor inverter 5. Further, the generator inverter 3 converts alternating current power generated by the generator 2 into direct current power in accordance with a command from the generator controller 14. Furthermore, the generator inverter 3 converts direct current power supplied from the battery 4 into alternating current power according to a command from the generator controller 14, and supplies the alternating current power to the generator 2.
  • the motor inverter 5 converts direct current power supplied from the battery 4 or the generator inverter 3 into alternating current power based on a command from the motor controller 11 and supplies the alternating current power to the traveling motor 6. Further, the motor inverter 5 converts the regenerative AC power generated by the traveling motor 6 into DC power based on a command from the motor controller 11 and supplies the DC power to the battery 4.
  • the traveling motor 6 generates a driving force by the alternating current supplied from the motor inverter 5 and transmits the driving force to the driving wheels through the reduction gear 7.
  • the traveling motor 6 recovers the kinetic energy of the vehicle as electric energy by generating regenerative driving force when it is rotated by the drive wheels and rotated during deceleration of the vehicle or while traveling with the coast.
  • the engine controller 9 sets the intake air amount by the throttle actuator so that the operating point of the engine 1 (the engine torque Te and the engine speed Ne) approaches the engine torque command value and the engine speed command value received from the vehicle controller 12; And adjust the fuel injection amount Fij by the injector.
  • the battery controller 10 measures the state of charge (SOC: State Of Charge) based on the current or voltage charged / discharged to the battery 4, and transmits the measured information to the vehicle controller 12. Further, according to the temperature of the battery 4, the internal resistance, and the SOC, the input available power and the output available power of the battery 4 are calculated, and the calculated values are transmitted to the vehicle controller 12.
  • SOC State Of Charge
  • the motor controller 11 controls the switching of the motor inverter 5 in accordance with the state of the rotational speed or voltage of the traveling motor 6 so that the traveling motor torque realizes the motor torque command value from the vehicle controller 12.
  • the vehicle controller 12 calculates a motor torque command value to the traveling motor 6 based on information such as the accelerator opening APO and the vehicle speed Vs according to the operation amount of the accelerator pedal of the driver. Further, the vehicle controller 12 calculates the motor output OP as the output power of the traveling motor 6 based on the number of revolutions, the voltage, and the motor torque command value of the traveling motor 6.
  • the vehicle controller 12 calculates the target generated power in the power generation using the engine 1 based on the motor outputs OP and SOC. Furthermore, the vehicle controller 12 calculates the engine torque Te and the engine rotation speed Ne of the engine 1 based on the SOC of the battery 4, the sound vibration performance, and the efficiency of the engine 1 while satisfying the target generated power. Then, the vehicle controller 12 transmits the calculated engine torque Te and engine rotational speed Ne to the engine controller 9.
  • the vehicle controller 12 calculates the rotation speed command value according to the above-mentioned engine rotation speed command value, and transmits it to the generator controller 14.
  • the generator controller 14 sets the generator inverter 3 according to the detected rotational speed of the generator 2 and the state of the voltage, etc., so that the generator rotational speed matches the generator rotational speed command value from the vehicle controller 12. Switch control.
  • the above-mentioned engine controller 9, battery controller 10, motor controller 11, vehicle controller 12, and generator controller 14 are provided with various arithmetic and control devices such as CPU, various storage devices such as ROM and RAM, and input / output interface etc. It is configured as an electronic control unit composed of a microcomputer.
  • the vehicle controller 12 is programmed to be able to execute the fuel consumption display control method according to the present embodiment.
  • the Meter panel 20 is disposed in the cabin of hybrid vehicle 100.
  • the meter panel 20 is realized by, for example, a liquid crystal display, an organic EL, an LED, and the like, and can display various information according to the driving state of the hybrid vehicle 100.
  • the meter panel 20 is configured by, for example, a so-called instrument panel disposed in front of the driver's seat of the hybrid vehicle 100.
  • FIG. 2 is a view for explaining the display mode of the meter panel 20. As shown in FIG.
  • the meter panel 20 of the present embodiment has a first display area 200 located at a position closer to the right in the figure and a second display area 202 located at a position closer to the left in the figure.
  • the first display area 200 includes an eco level gauge 22 that displays an eco level indicating the eco driving degree according to the driving operation of the driver, a direction indication display unit 50, a vehicle speed display unit 52, and the like.
  • the second display area 202 shows the vehicle energy state display unit 54, the time display unit 56, the traveling mode display unit 58 for displaying the currently set traveling mode and range, and the traveling distance during one trip.
  • a trip information display unit 60 a travelable distance display unit 62 for displaying a travelable distance based on the remaining amount of fuel stored in a fuel tank (not shown) for power generation of the engine 1, and the remaining amount of fuel in the fuel tank
  • the remaining fuel amount display unit 64 shown the fuel supply port position display unit 66 for displaying the position (right or left position) where the fuel supply port for supplying fuel in the hybrid vehicle 100 is installed, and the charge amount of the battery 4
  • a charge amount display unit 68 for displaying (SOC).
  • the vehicle energy state display unit 54 is configured with a fuel consumption display screen 24 for displaying an instantaneous fuel consumption FCM_i described later.
  • FIG. 3 is a block diagram for explaining the function of the fuel consumption display control system 30 in the present embodiment.
  • the fuel consumption display control system 30 of the present embodiment is configured by a vehicle controller 12 as a display control device and a meter panel 20 as a display device.
  • the vehicle controller 12 calculates the instantaneous fuel consumption according to the driving state of the engine 1 described later based on the accelerator opening APO detected by an accelerator stroke sensor (not shown) and the vehicle speed Vs detected by a vehicle speed sensor (not shown) Calculate FCM_i.
  • the vehicle controller 12 of the present embodiment repeatedly executes this calculation of the instantaneous fuel consumption FCM_i every predetermined time (for example, 5 seconds), and sets the latest calculation result as the instantaneous fuel consumption FCM_i.
  • the vehicle controller 12 transmits the calculated instantaneous fuel consumption FCM_i to the meter panel 20, and performs processing for displaying the instantaneous fuel consumption FCM_i on the fuel consumption display screen 24 of the meter panel 20.
  • the meter panel 20 displays the instantaneous fuel consumption FCM_i based on the command of the vehicle controller 12.
  • FIG. 4 is a flowchart for explaining the flow of the fuel consumption display control method according to the present embodiment. Note that each step shown in this flowchart is repeatedly executed every predetermined operation cycle. Moreover, the order of processing of each step can be arbitrarily interchanged as far as possible.
  • the vehicle controller 12 acquires the accelerator opening degree APO and the vehicle speed Vs.
  • step S130 the vehicle controller 12 calculates the motor output OP. Specifically, the vehicle controller 12 calculates the required power of the traveling motor 6 calculated based on the accelerator opening APO, the vehicle speed Vs, etc. acquired in step S120 as the motor output OP.
  • step S140 the vehicle controller 12 calculates the instantaneous power cost PCM_i based on the calculated motor output OP and the vehicle speed Vs.
  • the instantaneous power cost PCM_i of the present embodiment corresponds to the travelable distance of the hybrid vehicle 100 per unit power consumption in the case of realizing the calculated motor output OP. That is, the instantaneous power cost PCM_i changes sequentially according to the fluctuation of the motor output OP.
  • the instantaneous power cost PCM_i can be expressed, for example, in the unit of [Km / Kwh], as is apparent from its definition.
  • the vehicle controller 12 of the present embodiment repeatedly executes this instantaneous power consumption PCM_i every predetermined time which is the same as the repetition cycle of the calculation of the instantaneous fuel consumption FCM_i, and uses the latest calculation result as the instantaneous power consumption PCM_i.
  • the calculation of the instantaneous power consumption PCM_i is executed on the premise that the power consumption when the hybrid vehicle 100 is traveling substantially corresponds to the power consumption by the drive of the traveling motor 6.
  • An example is described.
  • step S150 the vehicle controller 12 calculates the instantaneous fuel consumption FCM_i [Km / L] when the engine 1 is operated based on the set driving condition based on the instantaneous power cost PCM_i [Km / Kwh] calculated in step S140.
  • instantaneous power expense PCM_i that is, power consumption efficiency during traveling
  • PCM_i that is, power consumption efficiency during traveling
  • the instantaneous fuel consumption FCM_i is defined as the travelable distance D per unit power consumption amount Wc according to the motor output OP. Therefore, basically, the instantaneous fuel consumption FCM_i evaluates the fuel consumption Fuc consumed by the generation of the unit power consumption Wc when the engine 1 is operated at the set operation state (such as the optimum fuel consumption point), It can be obtained by calculating the possible distance D / fuel consumption Fuc).
  • the accuracy of the calculation of the instantaneous fuel consumption FCM_i by the simple travelable distance Dpo / fuel consumption Fuc is improved in consideration of the change in the operating condition of the engine 1 ing.
  • a conversion coefficient C_OP that takes into consideration changes in the operating state of the engine 1 according to the SOC of the battery 4 is used. More specifically, the vehicle controller 12 stores in advance a conversion table for determining a conversion coefficient C_OP for each motor output OP in a storage unit such as a memory of the vehicle controller 12, and calculates in step S130 from the conversion table. A conversion factor C_OP corresponding to the motor output OP is extracted.
  • FIG. 5 is a diagram showing an example of the conversion table.
  • a conversion factor C_OP for example, 2.2 to 3.2 [Kwh / L] set according to the range (for example, several KWh to 60 KWh) of motor output OP that can be obtained in the traveling scene of hybrid vehicle 100
  • This conversion table which shows an example of the above, is previously determined based on, for example, the characteristics according to the design of the traveling motor 6 and the engine 1.
  • the engine 1 is used for power generation, not as a driving source for traveling. Therefore, the operating state of engine 1 (engine torque Te and engine speed Ne) is basically directly linked to the increase or decrease of the SOC of battery 4 rather than motor output OP (accelerator opening APO) of hybrid vehicle 100. Do.
  • the amount of power generation of the engine 1 is controlled according to whether the SOC of the battery 4 is insufficient with respect to the motor output OP. Therefore, for example, even when the motor output OP fluctuates according to the change of the accelerator opening APO, when the SOC of the battery 4 is sufficiently sufficient with respect to the motor output OP before and after the fluctuation, It is assumed that the operating state of the engine 1 does not change with respect to the change of the motor output OP, such as not changing the operating state of the engine 1.
  • the conversion factor C_OP it is possible to set the conversion factor C_OP to a constant value, assuming that the engine speed Ne is constant with respect to the change of the motor output OP in calculating the instantaneous fuel consumption FCM_i. .
  • the battery 4 is charged even if the engine 1 is operated at the optimum fuel consumption point. It is assumed that sufficient power of the Therefore, in order to increase the generated power, it is required to set the engine 1 to an operating state in which the engine 1 is operated at a higher speed than the optimum fuel consumption point. As a result, the power generation efficiency of the engine 1 is reduced.
  • the SOC is sufficient, there may be a request to operate the engine 1 from the viewpoint of the warm-up request of the exhaust catalyst of the engine 1 or the like. Even though the SOC of the battery 4 is sufficient, if the engine 1 is operated at the optimum fuel consumption point when operating the engine 1 based on a request from a viewpoint other than the SOC, the SOC becomes excessive (the power Become surplus). Therefore, in such a scene, it is required to operate the engine 1 at a lower speed range than the optimum fuel consumption point from the viewpoint of suppressing the generated power. As a result, the power generation efficiency of the engine 1 is reduced.
  • the conversion factor C_OP has an instantaneous fuel consumption FCM_i calculated as the motor output OP is lower in the low load region II where the motor output OP is relatively low. It is set to be smaller (the power generation efficiency of the engine 1 is reduced). Further, even in the high load region IV where the motor output OP is relatively high, the conversion coefficient C_OP is set such that the instantaneous fuel consumption FCM_i calculated becomes smaller (the power generation efficiency of the engine 1 decreases) as the motor output OP becomes higher. Be done.
  • the coefficient C_OP is the highest and is set substantially constant with respect to the fluctuation of the motor output OP.
  • the SOC is basically considered not to be insufficient, and the engine 1 may be stopped or operated based on the minimum engine speed Ne based on the warm-up requirement of the exhaust catalyst. is assumed. Therefore, in this case, assuming that engine 1 is operated at a constant engine speed Ne independent of a change in motor output OP, conversion coefficient C_OP is set to a substantially constant value according to engine speed Ne. .
  • the vehicle controller 12 calculates the instantaneous fuel consumption FCM_i [Km / L] by multiplying the instantaneous power cost PCM_i [Km / Kwh] calculated in step S140 by the conversion coefficient C_OP [Kwh / L].
  • step S160 the vehicle controller 12 instructs the meter panel 20 to display the calculated instantaneous fuel consumption FCM_i. Specifically, the vehicle controller 12 instructs the meter panel 20 to display the calculated instantaneous fuel consumption FCM_i on the fuel consumption display screen 24 (FIG. 2). Thus, a driver or the like in the vehicle compartment can check the display of the instantaneous fuel consumption FCM_i on the fuel consumption display screen 24 of the meter panel 20.
  • FIG. 6 an example of the display mode in the fuel consumption display screen 24 of the meter panel 20 which displayed instantaneous fuel consumption FCM_i is shown.
  • a driver or the like in the vehicle interior of hybrid vehicle 100 can visually grasp instantaneous fuel consumption FCM_i.
  • the instantaneous fuel consumption FCM_i of the present embodiment is a value that fluctuates in conjunction with the fluctuation of the accelerator opening APO (motor output OP) according to the accelerator pedal operation amount by the driver. That is, the display of the instantaneous fuel consumption FCM_i on the meter panel 20 fluctuates in response to the driver's accelerator operation. Therefore, even in the hybrid vehicle 100 in which the driving state of the engine 1 is not directly interlocked with the accelerator opening APO, the driver can intuitively recognize the instantaneous fuel consumption of the hybrid vehicle 100 according to the driver's accelerator operation. It can promote awareness of eco-driving.
  • fuel consumption display control of the hybrid vehicle 100 is generated by the engine 1 as a power generation device that consumes fuel (gasoline) to generate drive power supplied from the battery 4 to the traveling motor 6.
  • a method is provided.
  • a power cost calculation step for calculating the instantaneous power cost PCM_i according to the motor output OP which is the output of the traveling motor 6 and the operation state (optimum fuel consumption point) set for the engine 1
  • Fuel consumption calculation step for calculating the instantaneous fuel consumption FCM_i corresponding to the instantaneous electricity cost PCM_i according to the engine rotational speed Ne based on (e.g.) and a meter as a display device arranged in the vehicle interior with the instantaneous fuel consumption FCM_i
  • the display process step S160 of FIG. 4 displayed on the panel 20.
  • the instantaneous fuel consumption FCM_i corresponding to the instantaneous power cost PCM_i is calculated and displayed on the meter panel 20.
  • the driver grasps in real time the instantaneous fuel consumption FCM_i interlocked with the accelerator operation of itself. And drive drivers to be conscious of eco-driving.
  • the operating state of the engine 1 is set based on the state of charge (SOC) of the battery 4.
  • SOC state of charge
  • the conversion factor C_OP is set based on the operation state of the engine 1 (for example, the engine speed Ne based on SOC) limited according to the motor output OP (step S150 in FIG. 4 and FIG.
  • the instantaneous fuel cost PCM_i is multiplied by the conversion factor C_OP to determine the instantaneous fuel consumption FCM_i (step S160 in FIG. 4).
  • the engine 1 is operated at the engine speed Ne out of the optimum fuel consumption point.
  • the instantaneous fuel consumption FCM_i is determined from the instantaneous power consumption PCM_i using the conversion factor C_OP in which the weighting according to the required number of revolutions Ne of the engine 1 is considered, and displayed on the meter panel 20 Can.
  • the driver or the like can recognize the instantaneous fuel consumption FCM_i appropriately interlocked by the accelerator opening APO, and the effect of urging the driver to be conscious of eco-drive is further improved.
  • a fuel consumption display control system 30 for realizing the fuel consumption display control method is provided.
  • the hybrid vehicle 100 is configured to charge the battery 4 with electric power generated by the engine 1 as a power generation device that consumes fuel and generates electric power, and supplies driving power from the battery 4 to the traveling motor 6.
  • a fuel consumption display control system 30 mounted is provided.
  • the fuel consumption display control system 30 includes a meter panel 20 (see FIG. 3) as a display device for displaying a travel distance with respect to predetermined fuel consumption as the instantaneous fuel consumption FCM_i and a vehicle controller as a display control device for calculating the instantaneous fuel consumption FCM_i. And 12).
  • the vehicle controller 12 calculates the instantaneous electricity cost PCM_i from the traveling distance with respect to the power consumption of the traveling motor 6 (corresponding to the motor output OP), and instantaneously corrects the instantaneous electricity cost PCM_i with the conversion coefficient C_OP as a predetermined coefficient. It displays on the meter panel 20 as fuel consumption FCM_i.
  • the operating state of the engine 1 is set based on the state of charge (SOC) of the battery 4.
  • the vehicle controller 12 stores the conversion table (FIG. 5) in which the conversion coefficient C_OP based on the operating state of the engine 1 limited according to the motor output OP is defined as the predetermined coefficient. Have a department. Then, the vehicle controller 12 extracts the conversion factor C_OP corresponding to the motor output OP from the conversion table, and multiplies the instantaneous conversion cost CPM by the extracted conversion factor C_OP to obtain the instantaneous fuel consumption FCM_i.
  • the conversion table FIG. 5
  • the conversion coefficient C_OP based on the operating state of the engine 1 limited according to the motor output OP is defined as the predetermined coefficient. Have a department. Then, the vehicle controller 12 extracts the conversion factor C_OP corresponding to the motor output OP from the conversion table, and multiplies the instantaneous conversion cost CPM by the extracted conversion factor C_OP to obtain the instantaneous fuel consumption FCM_i.
  • the fuel consumption display control method described above can be suitably implemented.
  • the hybrid vehicle 100 that generates driving power supplied from the battery 4 to the traveling motor 6 by the engine 1 as a power generation device that consumes fuel (gasoline) and generates power
  • the fuel consumption display control system 30 is provided.
  • the fuel consumption display control system 30 includes a vehicle controller 12 as a display control device, and a meter panel 20 as a display device disposed in the hybrid vehicle 100 and performing display based on a command from the vehicle controller 12 (FIG. 3). reference).
  • the vehicle controller 12 calculates the instantaneous power cost PCM_i according to the output of the traveling motor 6 (motor output OP). Furthermore, the vehicle controller 12 calculates the instantaneous fuel consumption FCM_i corresponding to the instantaneous power cost PCM_i according to the driving condition (engine rotation number Ne and the like based on the optimum fuel consumption point) set in the engine 1 and calculates the instantaneous fuel consumption FCM_i as a meter panel Display on 20.
  • the fuel consumption display control system 30 having such a configuration, the fuel consumption display control method described above can be suitably executed.
  • the instantaneous actual fuel consumption FCM_r of the engine 1 is obtained based on the vehicle speed Vs of the hybrid vehicle 100 and the fuel injection amount Fij of the engine 1 separately from the instantaneous fuel consumption FCM_i described in the first embodiment. Then, an average actual fuel consumption FCM_r_a which is an average value of the instantaneous actual fuel consumption FCM_r is determined, and this is displayed on the fuel consumption display screen 24 of the meter panel 20 together with the instantaneous fuel consumption FCM_i. This will be described more specifically below.
  • FIG. 7 is a block diagram for explaining the function of the fuel consumption display control system 30 in the present embodiment.
  • the fuel consumption display control system 30 of the present embodiment is configured by an engine controller 9, a vehicle controller 12, and a meter panel 20.
  • the vehicle controller 12 is programmed so that each process in fuel-consumption display control of this embodiment can be performed. Specifically, as in the first embodiment, the instantaneous fuel consumption FCM_i is calculated based on the accelerator opening APO and the vehicle speed Vs.
  • the vehicle controller 12 acquires a command value of the fuel injection amount Fij from the engine controller 9. Then, the vehicle controller 12 obtains the instantaneous actual fuel consumption FCM_r of the engine 1 based on the vehicle speed Vs and the fuel injection amount Fij.
  • the instantaneous actual fuel consumption FCM_r is the fuel consumption calculated based on the actual fuel injection amount Fij of the engine 1 and the vehicle speed Vs. More specifically, instantaneous actual fuel consumption FCM_r allows hybrid vehicle 100 to travel per unit fuel consumption based on current fuel injection amount Fij (fuel consumption) of engine 1 and current vehicle speed Vs. Is calculated as a calculated value. Furthermore, the vehicle controller 12 of the present embodiment calculates an average actual fuel consumption FCM_r_a that is an average value of the instantaneous actual fuel consumption FCM_r.
  • the vehicle controller 12 transmits the calculated average actual fuel consumption FCM_r_a to the meter panel 20 together with the instantaneous fuel consumption FCM_i described in the first embodiment, and the instantaneous fuel consumption FCM_i and the average actual fuel consumption are displayed on the fuel consumption display screen 24 of the meter panel 20. It instructs to display FCM_r_a in parallel.
  • the vehicle controller 12 executes the processing for calculating the instantaneous fuel consumption FCM_i according to step S110 to step S150 of the flowchart described in FIG. 4 according to the first embodiment. Then, the vehicle controller 12 executes the average actual fuel consumption display control in parallel with the processing for calculating the instantaneous fuel consumption FCM_i.
  • FIG. 8 is a flow chart for explaining the flow of the average actual fuel consumption display control.
  • the vehicle controller 12 acquires the fuel injection amount Fij and the vehicle speed Vs.
  • step S230 the vehicle controller 12 calculates the instantaneous actual fuel consumption FCM_r. Specifically, the vehicle controller 12 calculates the instantaneous actual fuel consumption FCM_r [Km / L] by dividing the fuel injection amount Fij [L] from the value obtained by applying a predetermined gain to the vehicle speed Vs as necessary. .
  • step S240 the vehicle controller 12 calculates the average actual fuel consumption FCM_r_a. Specifically, the vehicle controller 12 sequentially stores the instantaneous actual fuel consumption FCM_r [Km / L] for each predetermined calculation cycle, based on the detection timing of the operation of the display reset button (not shown) operated by the driver or the like.
  • the average actual fuel consumption FCM_r_a is calculated by calculating an average value over the sum of all the calculation cycles of the instantaneous actual fuel consumption FCM_r stored sequentially.
  • step S250 the vehicle controller 12 instructs the meter panel 20 to display the instantaneous fuel consumption FCM_i calculated through steps S110 to S150 and the average actual fuel consumption FCM_r_a calculated in step S240. More specifically, the vehicle controller 12 instructs the meter panel 20 to display the instantaneous fuel consumption FCM_i and the average actual fuel consumption FCM_r_a on the fuel consumption display screen 24 (FIG. 2). As a result, both the instantaneous fuel consumption FCM_i and the average actual fuel consumption FCM_r_a are displayed on the fuel consumption display screen 24 of the meter panel 20 in the vehicle compartment. Therefore, the driver etc. can select the average actual fuel consumption FCM_r_a together with the instantaneous fuel consumption FCM_i. The display can also be confirmed.
  • FIG. 9 an example of the display mode in the fuel consumption display screen 24 of this embodiment is shown.
  • FIG. 10 is a figure explaining the display mode of the whole meter panel 20 containing the fuel-consumption display screen 24 of this embodiment.
  • the driver inside the hybrid vehicle 100 can visually grasp the average actual fuel consumption FCM_r_a in addition to the instantaneous fuel consumption FCM_i linked to the accelerator operation of the hybrid vehicle 100. .
  • the engine based on the vehicle speed Vs of the hybrid vehicle 100 and the fuel supply amount (fuel injection amount Fij) to the engine 1
  • the instantaneous actual fuel consumption calculating step (step S230 of FIG. 8) for calculating the instantaneous actual fuel consumption FCM_r according to the actual driving condition of 1, and the average for calculating the average actual fuel consumption FCM_r as the average actual fuel consumption FCM_r_a
  • an actual fuel consumption cost calculation step step S240 in FIG. 8
  • the display step step S250 in FIG. 8
  • the instantaneous fuel consumption FCM_i and the average actual fuel consumption FCM_r_a are displayed.
  • the driver of hybrid vehicle 100 can recognize average actual fuel consumption FCM_r_a in addition to instantaneous fuel consumption FCM_i which changes suitably in conjunction with the accelerator operation amount of the driver via meter panel 20.
  • the instantaneous actual fuel consumption FCM_r is calculated based on the fuel injection amount Fij corresponding to the fuel consumption according to the actual operating state (power generation state) of the engine 1. Then, the average value of the instantaneous actual fuel consumption FCM_r over a predetermined time is calculated as the average actual fuel consumption FCM_r_a.
  • the driving state of the engine 1 basically does not follow the fluctuation of the motor output OP, so the accelerator operation amount of the driver does not necessarily interlock.
  • the instantaneous actual fuel consumption FCM_r calculated in the present embodiment is determined from the fuel injection amount Fij according to the actual operating state (power generation state) of the engine 1. Therefore, this instantaneous actual fuel consumption FCM_r is also not necessarily linked to the driver's accelerator operation basically.
  • the instantaneous actual fuel consumption FCM_r is directly calculated from the fuel injection amount Fij according to the actual operating condition of the engine 1, an average actual value which is an average value over a predetermined time of the instantaneous actual fuel consumption FCM_r
  • the fuel consumption FCM_r_a matches with the actual average fuel consumption with high accuracy.
  • the fuel consumption display control method of the present embodiment while displaying the instantaneous fuel consumption FCM_i suitably linked to the accelerator operation amount to promote the driver's awareness of eco-drive, the average that more suitably matches the actual fuel consumption
  • the actual fuel consumption FCM_r_a can be displayed to allow the driver to recognize highly accurate fuel consumption information.
  • the engine 1 is used for power generation by configuring the meter panel 20 to display both the instantaneous fuel consumption FCM_i and the average actual fuel consumption FCM_r_a in such a manner that the driver can grasp at first glance
  • a display similar to the display of the instantaneous fuel consumption / average actual fuel consumption in a vehicle using the conventional engine 1 as a traveling drive source can be realized.
  • the instantaneous fuel consumption of the vehicle using the existing engine 1 as a driving power source for the rider of the hybrid vehicle 100 such as a driver is possible to provide a display with less discomfort with respect to the average actual fuel consumption.
  • a fuel consumption display control system 30 for realizing the fuel consumption display control method of the present embodiment is provided.
  • the fuel consumption display control system 30 includes a meter panel 20 (see FIG. 3) as a display device for displaying a travel distance with respect to predetermined fuel consumption as the instantaneous fuel consumption FCM_i and a vehicle controller as a display control device for calculating the instantaneous fuel consumption FCM_i. And 12).
  • the vehicle controller 12 calculates the instantaneous electricity cost PCM_i from the traveling distance with respect to the power consumption of the traveling motor 6 (corresponding to the motor output OP), and instantaneously corrects the instantaneous electricity cost PCM_i with the conversion coefficient C_OP as a predetermined coefficient. It displays on the meter panel 20 as fuel consumption FCM_i.
  • the vehicle controller 12 determines the instantaneous actual fuel consumption FCM_r according to the actual driving state of the engine 1 based on the vehicle speed Vs of the hybrid vehicle 100 and the fuel supply amount (fuel injection amount Fij) to the engine 1. Is calculated, and the average value of the instantaneous actual fuel consumption FCM_r at a predetermined time is calculated as the average actual fuel consumption FCM_r_a. Then, in the display step (step S250 in FIG. 8), the instantaneous fuel consumption FCM_i and the average actual fuel consumption FCM_r_a are displayed.
  • the fuel consumption display control method of the present embodiment can be suitably executed by the fuel consumption display control system 30 having such a configuration.
  • each above-mentioned embodiment showed only a part of application example of the present invention, and limited the technical scope of the present invention to the concrete composition of each above-mentioned embodiment. It is not the purpose to do.
  • a display controller having a function to execute the fuel consumption display control method of the above embodiment may be separately provided. Further, the processing relating to the fuel consumption display control method may be distributed and executed by the vehicle controller 12 and the display controller.
  • the instantaneous fuel consumption FCM_i is calculated by multiplying the instantaneous power cost PCM_i calculated based on the motor output OP by the conversion coefficient C_OP described in FIG.
  • the calculation method of the instantaneous fuel consumption FCM_i is not limited to this, and other calculation methods may be used.
  • the vehicle controller 12 is operated for a predetermined time (for example, 5 seconds) based on the driving state (the engine rotation speed Ne) of the engine 1 set according to the target generated power. Assuming that, the predicted value of the amount of fuel delivered from the fuel pump to the fuel injection valve by the operation and the predicted value of the travel distance during the predetermined time based on the vehicle speed Vs are calculated.
  • the instantaneous fuel consumption FCM_i may be calculated by dividing it by the predicted value of the travel distance.
  • a hybrid vehicle that charges the battery 4 with power generated by a power generation device (for example, engine 1) that consumes fuel and generates power, and supplies drive power from the battery 4 to the traveling motor
  • a power generation device for example, engine 1
  • a fuel consumption display control system 30 mounted on the vehicle 100, the meter panel 20 as a display device for displaying a travel distance for a predetermined fuel consumption as the instantaneous fuel consumption FCM_i, and a vehicle as a display control device for calculating the instantaneous fuel consumption FCM_i
  • the vehicle controller 12 calculates the instantaneous power cost PCM_i from the travel distance with respect to the power consumption of the travel motor 6 (corresponding to the motor output OP), and the vehicle controller 12 calculates the power consumption of the travel motor 6 (motor
  • the instantaneous electricity cost PCM_i is calculated from the travel distance for the output OP), and the instantaneous The subject which displays M_i as the instantaneous fuel consumption FCM_i (by converting the dimension) on the meter
  • the conversion coefficient C_OP at the time of regeneration may be set to zero, and the display of the instantaneous fuel consumption FCM_i on the meter panel 20 at the time of the regeneration may be "0".
  • the fuel consumption display screen 24 is configured in the second display area 202 of the meter panel 20a illustrated in FIG.
  • the vehicle controller 12 and the meter panel 20 a are configured to switch the fuel consumption display screen 24 to a screen indicating another vehicle state according to a switching operation of the second display area 202 by, for example, a driver of the hybrid vehicle 100. May be configured.
  • the screen displayed in the second display area 202 corresponds to the flow of electric power among the fuel consumption display screen 24, the engine 1, the battery 4, and the traveling motor 6 in accordance with a switching operation by a driver or the like and Display screen of energy flow showing the display screen, display screen of the odometer showing the integrated travel distance and travel distance during one trip, display screen of charge history information to the battery 4 by regeneration and power generation of the engine 1, and charge / discharge power of the battery 4
  • the meter panel 20a may be configured to be arbitrarily switched between the display screen of the power meter showing the drive power and the regenerative power of the hybrid vehicle 100 based on the above.
  • the hybrid vehicle 100 is a series hybrid vehicle that drives the engine 1 for power generation and is not used as a driving source for traveling.
  • the fuel consumption display control method of the present embodiment may be applied in the operation mode.
  • the hybrid vehicle 100 in which the driving power supplied from the battery 4 to the traveling motor 6 is generated by the engine 1 that consumes fuel (gasoline) and generates power.
  • the above fuel consumption display control method or the configuration of the fuel consumption display control system 30 is applied to a hybrid vehicle that generates drive power supplied from the battery 4 to the traveling motor 6 using another power generation device that consumes fuel other than gasoline and generates power. You may apply
  • the configuration of the present embodiment can be applied to a vehicle equipped with a fuel cell such as SOFC (solid oxide fuel cell) as a power generation device. That is, in the hybrid vehicle (range extender vehicle) which generates the driving power supplied from the battery to the traveling motor by the fuel cell which generates electric power by consuming fuel such as alcohol mixed water, the fuel consumption display control method described in the above embodiment Can be applied. For example, the instantaneous power cost according to the output of the traveling motor is calculated, the instantaneous fuel consumption corresponding to the instantaneous power cost is calculated according to the driving condition (target current etc.) set in the SOFC, and the calculated instantaneous fuel consumption It can be displayed on the display device to be arranged.
  • a fuel cell such as SOFC (solid oxide fuel cell)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Instrument Panels (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

バッテリから走行モータに供給される駆動電力を、燃料を消費して発電する発電装置によって生成するハイブリッド車両の燃費表示制御方法であって、走行モータの出力に応じた瞬間電費を演算する電費演算工程と、発電装置に設定される運転状態に応じて瞬間電費に相当する瞬間燃費を演算する燃費演算工程と、瞬間燃費を車室内に配置される表示装置に表示する表示工程と、を有する、燃費表示制御方法を提供する。

Description

燃費表示制御方法及び燃費表示制御システム
 この発明は、燃費表示制御方法及び燃費表示制御システムに関する。
 エンジンを駆動源とする車両において、エンジンの運転状態に応じた瞬間燃費を演算し、車室内のドライバに表示する表示システムを備えた車両が知られている。また、JP2013-032152Aには、バッテリからの電力で走行モータを駆動させる車両(EV車両)において、走行により消費したバッテリの電力、及び回生による充電電力に基づいて、単位消費電力量あたりの走行可能距離(電費)を算出する方法が提示されている。
 近年、走行モータに供給される駆動電力をエンジンの駆動による発電で生成するハイブリッド車両が開発されている。
 この種のハイブリッド車両では、走行モータの駆動力のみで走行が可能であり、走行モータによる走行中は基本的にエンジンを走行駆動源としないため、アクセルペダル操作量とエンジンの出力(燃料消費量)は直接的には連動しない。
 したがって、瞬間燃費を表示しても、ドライバは自己のアクセル操作に連動した燃費の変化を実感し難いため、ドライバに対してエコドライブを意識させた運転操作(アクセルペダルの操作)を促す効果が低くなる。
 一方、変動する走行モータの出力(アクセルペダル操作量)に応じた電費(瞬間電費)を表示しても、ドライバ等は電費と供給すべき燃料の消費効率との関連性を直感的に認識できず、やはりドライバに対してエコドライブを意識させた運転操作を促す効果が低くなる。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、ハイブリッド車両において、ドライバに対してエコドライブを意識させた運転操作を好適に促すことのできる燃費表示制御方法及び燃費表示制御システムを提供することにある。
 本発明のある態様によれば、バッテリから走行モータに供給される駆動電力を、燃料を消費して発電する発電装置によって生成するハイブリッド車両の燃費表示制御方法が提供される。この燃費表示制御方法は、走行モータの出力に応じた瞬間電費を演算する電費演算工程を有する。また、燃費表示制御方法は、発電装置に設定される運転状態に応じて瞬間電費に相当する瞬間燃費を演算する燃費演算工程を有する。さらに、燃費表示制御方法は、瞬間燃費を車室内に配置される表示装置に表示する表示工程を有する。
 また、本発明の他の態様によれば、燃料を消費して発電する発電装置によって生成する電力をバッテリに充電し、バッテリから走行モータに駆動電力を供給するハイブリッド車両に搭載される燃費表示制御システムが提供される。この燃費表示制御システムは、所定の消費燃料に対する走行距離を瞬間燃費として表示を行う表示装置と、瞬間燃費を演算する表示制御装置と、を有する。そして、表示制御装置は、走行モータの消費電力に対する走行距離から瞬間電費を演算し、該瞬間電費を、若しくは該瞬間電費を所定の係数で補正した値を瞬間燃費として表示装置に表示する。
図1は、第1実施形態の燃費表示制御方法が実行されるハイブリッド車両の概略構成を説明する図である。 図2は、第1実施形態のメータパネルの表示態様を説明する図である。 図3は、第1実施形態の燃費表示制御システムの機能を説明するブロック図である。 図4は、第1実施形態の燃費表示制御方法の流れを説明するフローチャートである。 図5は、瞬間電費から瞬間燃費への換算係数を定める換算テーブルを示す図である。 図6は、第1実施形態の燃費表示領域における表示態様の一例を示す図である。 図7は、第2実施形態の燃費表示制御システムの機能を説明するブロック図である。 図8は、平均実燃費表示制御の流れを示すフローチャートである。 図9は、第2実施形態の燃費表示領域における表示態様の一例を示す図である。 図10は、第2実施形態のメータパネルの表示態様を説明する図である。
(第1実施形態)
 以下では、図1~図6を参照して本発明の第1実施形態について説明する。
 図1は、本実施形態の燃料表示方法が実行されるハイブリッド車両100の概略構成を示す図である。
 本実施形態のハイブリッド車両100は、発電装置としてのエンジン1(内燃機関)と、発電用モータ(以下、発電機2という)と、走行に用いる駆動力を生成する電動モータ(以下走行モータ6という)と、を搭載したいわゆるシリーズハイブリッド車両として構成される。
 さらに、本実施形態のハイブリッド車両100は、発電機インバータ3と、バッテリ4と、モータインバータ5と、走行モータ6と、減速機7と、エンジンコントローラ9と、バッテリコントローラ10と、モータコントローラ11と、車両コントローラ12と、発電機コントローラ14と、メータパネル20と、を備える。
 エンジン1は、図示しないギヤを介して発電機2と接続されており、発電機2が発電するための動力を発電機2へ伝達する。すなわち、ハイブリッド車両100のエンジン1は、発電機2による発電のための駆動源として用いられる。
 また、発電機2は、発電機コントローラ14からの指令に応じて、エンジン1の始動時におけるエンジン1のクランキング、及び力行作動してエンジン1を回転させるモータリングを実行可能となるように構成されている。
 発電機インバータ3は、発電機2、バッテリ4、及びモータインバータ5に接続されている。また、発電機インバータ3は、は、発電機コントローラ14からの指令に応じて、発電機2が発電する交流電力を直流電力に換算する。さらに、発電機インバータ3は、発電機コントローラ14からの指令に応じて、バッテリ4から供給される直流の電力を交流の電力に換算して、発電機2に供給する。
 モータインバータ5は、モータコントローラ11からの指令に基づいて、バッテリ4又は発電機インバータ3から供給される直流電力を交流電力に換算して、走行モータ6に供給する。また、モータインバータ5は、モータコントローラ11からの指令に基づいて、走行モータ6による回生交流電力を直流電力に換算して、バッテリ4に供給する。
 走行モータ6は、モータインバータ5から供給される交流電流により駆動力を発生し、減速機7を通して駆動輪に駆動力を伝達する。また、走行モータ6は、車両の減速時やコーストと走行中等に駆動輪に連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。
 エンジンコントローラ9は、エンジン1の運転点(エンジントルクTe及びエンジン回転数Ne)が、車両コントローラ12から受信するエンジントルク指令値及びエンジン回転数指令値に近づくように、スロットルアクチュエータによる吸入空気量、及びインジェクタによる燃料噴射量Fijを調節する。
 バッテリコントローラ10は、バッテリ4へ充放電される電流や電圧に基づいて充電状態(SOC:State Of Charge)を計測し、計測した情報を車両コントローラ12へ送信する。また、バッテリ4の温度、内部抵抗、およびSOCに応じて、バッテリ4の入力可能電力と出力可能電力を演算して、算出した値を車両コントローラ12へ送信する。
 モータコントローラ11は、走行モータトルクが車両コントローラ12からのモータトルク指令値を実現するように、走行モータ6の回転数や電圧などの状態に応じて、モータインバータ5をスイッチング制御する。
 車両コントローラ12は、ドライバのアクセルペダルの操作量に応じたアクセル開度APO、及び車速Vsなどの情報に基づいて、走行モータ6へのモータトルク指令値を演算する。また、車両コントローラ12は、走行モータ6の回転数、電圧、及びモータトルク指令値に基づいて、走行モータ6の出力電力としてのモータ出力OPを演算する。
 さらに、車両コントローラ12は、モータ出力OP及びSOCに基づいて、エンジン1を用いた発電における目標発電電力を演算する。さらに、車両コントローラ12は、この目標発電電力を満たしつつ、バッテリ4のSOC、音振性能、及びエンジン1の効率に基づいて、エンジン1のエンジントルクTe及びエンジン回転数Neを演算する。そして、車両コントローラ12は、演算したエンジントルクTe及びエンジン回転数Neをエンジンコントローラ9に送信する。
 さらに、車両コントローラ12は、上記エンジン回転数指令値に応じた回転数指令値を演算し、発電機コントローラ14に送信する。
 発電機コントローラ14は、発電機回転数が車両コントローラ12からの発電機回転数指令値と一致するように、発電機2の回転数検出値及び電圧などの状態に応じて、発電機インバータ3をスイッチング制御する。
 上述のエンジンコントローラ9、バッテリコントローラ10、モータコントローラ11、車両コントローラ12、及び発電機コントローラ14は、CPU等の各種演算・制御装置、ROM及びRAM等の各種記憶装置、並びに入出力インターフェース等を備えるマイクロコンピュータからなる電子制御ユニットとして構成されている。
 特に、本実施形態では、車両コントローラ12が、本実施形態に係る燃費表示制御方法を実行可能となるようにプログラムされている。
 メータパネル20は、ハイブリッド車両100の車室内に配置される。メータパネル20は、例えば液晶ディスプレイ、有機EL、及びLED等により実現され、ハイブリッド車両100の運転状態に応じた各種の情報を表示することが可能である。メータパネル20は、例えば、ハイブリッド車両100の運転席の前方に配置されるいわゆるインストルメントパネルにより構成される。
 図2は、メータパネル20の表示態様を説明する図である。
 本実施形態のメータパネル20は、図上右側寄り位置に位置する第1表示領域200と、図上左側寄り位置に位置する第2表示領域202と、を有している。
 第1表示領域200は、ドライバの運転操作などに応じてエコ運転度合を示すエコレベルを表示するエコレベルゲージ22、方向指示表示部50及び車速表示部52などを有している。
 また、第2表示領域202は、車両エネルギー状態表示部54と、時刻表示部56と、現在設定されている走行モード及びレンジを表示する走行モード表示部58と、1トリップ中の走行距離を示すトリップ情報表示部60と、エンジン1の発電用に図示しない燃料タンクに貯留された燃料の残量に基づく走行可能距離を表示する走行可能距離表示部62と、燃料タンク内の燃料の残量を示す燃料残量表示部64と、ハイブリッド車両100において燃料を供給するための給油口が設置されている位置(右側位置又は左側位置)を表示する給油口位置表示部66と、バッテリ4の充電量(SOC)を表示する充電量表示部68と、を有する。
 特に、本実施形態では、車両エネルギー状態表示部54に、後述する瞬間燃費FCM_iを表示する燃費表示画面24が構成される。
 図3は、本実施形態における燃費表示制御システム30の機能を説明するブロック図である。
 図示のように、本実施形態の燃費表示制御システム30は、表示制御装置としての車両コントローラ12、及び表示装置としてのメータパネル20により構成されている。
 具体的に、車両コントローラ12は、図示しないアクセルストロークセンサにより検出されるアクセル開度APO、及び図示しない車速センサにより検出される車速Vsに基づいて、後述するエンジン1の運転状態に応じた瞬間燃費FCM_iを演算する。なお、本実施形態の車両コントローラ12は、この瞬間燃費FCM_iの演算を所定時間(例えば5秒)ごとに繰り返し実行し、最新の演算結果を瞬間燃費FCM_iとする。
 さらに、車両コントローラ12は、演算した瞬間燃費FCM_iをメータパネル20に送信し、当該メータパネル20の燃費表示画面24に瞬間燃費FCM_iを表示する処理を行う。メータパネル20は、車両コントローラ12の指令に基づき、瞬間燃費FCM_iを表示する。以下では、この燃費表示制御方法にかかる処理をより詳細に説明する。
 図4は、本実施形態に係る燃費表示制御方法の流れを説明するフローチャートである。なお、本フローチャートで示される各ステップは、所定の演算周期ごとに繰り返し実行される。また、各ステップの処理の順番は、可能な範囲で任意に入れ替えることができる。
 ステップS110及びステップS120において、車両コントローラ12は、アクセル開度APO及び車速Vsを取得する。
 ステップS130において、車両コントローラ12は、モータ出力OPを演算する。具体的に、車両コントローラ12は、ステップS120で取得したアクセル開度APO及び車速Vs等に基づいて算出される走行モータ6の要求電力をモータ出力OPとして演算する。
 ステップS140において、車両コントローラ12は、演算したモータ出力OP及び車速Vsに基づいて、瞬間電費PCM_iを演算する。ここで、本実施形態の瞬間電費PCM_iとは、演算されたモータ出力OPを実現する場合における単位消費電力量あたりのハイブリッド車両100の走行可能距離に相当する。すなわち、瞬間電費PCM_iは、モータ出力OPの変動に応じて逐次的に変化する。瞬間電費PCM_iは、その定義から明らかなように、例えば[Km/Kwh]の単位で表すことができる。なお、本実施形態の車両コントローラ12は、この瞬間電費PCM_iは、上記瞬間燃費FCM_iの演算の繰り返し周期と同じ所定時間ごとに繰り返し実行し、最新の演算結果を瞬間電費PCM_iとしている。
 なお、本実施形態では、説明の簡略化のため、ハイブリッド車両100の走行時の消費電力が走行モータ6の駆動による電力消費に実質的に相当することを前提に瞬間電費PCM_iの演算を実行する例を説明している。しかしながら、走行モータ6の駆動による電力消費に加えて、ポンプ又はヒータ等のハイブリッド車両100に設けられる種々の補機類の電力消費を考慮して瞬間電費PCM_iの演算を行うことも可能である。
 ステップS150において、車両コントローラ12は、ステップS140で演算した瞬間電費PCM_i[Km/Kwh]に基づいて、エンジン1を設定される運転状態に基づいて運転した場合の瞬間燃費FCM_i[Km/L]を演算する。
 ここで、瞬間燃費FCM_iとは、ハイブリッド車両100のモータ出力OPに応じた瞬間電費PCM_i(すなわち、走行における電力量消費効率)を、エンジン1の発電による単位消費燃料あたりの走行可能距離に変換した値である。
 上述したように瞬間燃費FCM_iは、モータ出力OPに応じた単位消費電力量Wcあたりの走行可能距離Dとして定義される。したがって、基本的、瞬間燃費FCM_iは、エンジン1を設定運転状態(最適燃費点など)で運転させた場合において上記単位消費電力量Wcの発電により消費される燃料消費量Fucを評価し、(走行可能距離D/燃料消費量Fuc)を演算することで求めることができる。
 一方で、本実施形態では、瞬間燃費FCM_iの演算においてエンジン1の運転状態の変化も考慮し、上述の単純な走行可能距離Dpo/燃料消費量Fucによる瞬間燃費FCM_iの演算に対する精度の向上を図っている。
 具体的には、バッテリ4のSOCに応じたエンジン1の運転状態の変化を加味した換算係数C_OPを用いる。より詳細には、車両コントローラ12は、モータ出力OPごとの換算係数C_OPを定める換算テーブルを当該の車両コントローラ12のメモリ等の記憶部に予め記憶しておき、当該換算テーブルからステップS130で演算したモータ出力OPに対応する換算係数C_OPを抽出する。
 図5は、換算テーブルの一例を示す図である。この換算テーブルでは、ハイブリッド車両100の走行シーンにおいて取り得るモータ出力OPのレンジ(例えば数KWh~60KWh)に応じて設定された換算係数C_OP(例えば2.2~3.2[Kwh/L])の例を示している、この換算テーブルは、例えば、走行モータ6及びエンジン1の設計に応じた特性に基づいて予め定められる。
 図5に示す換算係数C_OPの意義を説明する。本実施形態のハイブリッド車両100では、エンジン1が走行用の駆動源としてではなく発電用に用いられる。したがって、エンジン1の運転状態(エンジントルクTe及びエンジン回転数Ne)は、基本的に、ハイブリッド車両100のモータ出力OP(アクセル開度APO)よりも、バッテリ4のSOCの増減に直接的に連動する。
 すなわち、ハイブリッド車両100においては、基本的にモータ出力OPに対してバッテリ4のSOCが不足しているか否かに応じてエンジン1の発電量が制御されることとなる。このため、例えば、アクセル開度APOの変化に応じてモータ出力OPが変動した場合であっても、当該変動前後のモータ出力OPに対してバッテリ4のSOCが十分に足りている場合には、エンジン1の運転状態を変化させないなど、モータ出力OPの変化に対してエンジン1の運転状態が変化しないシーンが想定される。
 特に、ハイブリッド車両100においては、SOCが低下してバッテリ4への充電が要求される場合であっても、基本的にエンジン1の運転状態をモータ出力OPの変動に追従させる必要が無いため、エンジン1の運転状態を例えば最適燃費点などの効率の良い運転点に維持しつつ、当該エンジン1による発電を行うことができる。
 したがって、ハイブリッド車両100においては、瞬間燃費FCM_iの演算にあたり、モータ出力OPの変化に対してエンジン回転数Neが一定であると仮定して、換算係数C_OPを一定値に設定することも可能である。
 しかしながら、高負荷時などのモータ出力OPが相対的に大きくなってSOCが不足するシーン(図5の領域IV参照)では、エンジン1を最適燃費点で運転していてもバッテリ4を充電するための十分な電力が得られないことが想定される。したがって、発電電力を高くすべく、エンジン1を最適燃費点よりも高回転域で運転させる運転状態にすることが要求される。これにより、エンジン1による発電効率が低下することとなる。
 一方、逆に、低負荷時などのモータ出力OPが相対的に小さく、バッテリ4のSOCが余剰となるシーン(図5の領域II参照)では、エンジン1を最適燃費点で運転するとバッテリ4のSOCが過剰となることが想定される。この場合、基本的にはエンジン1による発電を行う必要は無いので、SOCの観点だけを考慮すればエンジン1を停止しても良い。
 しかしながら、SOCが十分であっても、エンジン1の排気触媒の暖機要求などの観点からエンジン1を作動させる要求が生じることがある。このようなバッテリ4のSOCは十分であるにもかかわらず、SOC以外の観点の要求に基づいてエンジン1を運転する場合、エンジン1を最適燃費点で運転すると、SOCが過剰となる(電力が余剰となる)。したがって、このようなシーンにおいては、発電電力を抑制する観点から、エンジン1を最適燃費点よりも低回転域で運転させることが要求される。これにより、エンジン1による発電効率が低下することとなる。
 以上のような要因によるエンジン1の運転状態の変化を考慮して、換算係数C_OPは、モータ出力OPが相対的に低い低負荷領域IIにおいて、モータ出力OPが低いほど演算される瞬間燃費FCM_iが小さくなる(エンジン1の発電効率が低下する)ように設定される。また、モータ出力OPが相対的に高い高負荷領域IVにおいても、換算係数C_OPは、モータ出力OPが高いほど演算される瞬間燃費FCM_iが小さくなる(エンジン1の発電効率が低下する)ように設定される。
 なお、中負荷領域IIIでは、エンジン1を最適燃費点に近い運転状態で運転してもSOCの過剰な不足又は余剰が生じず、且つ排気触媒の暖機要求も満たされるものと判断し、換算係数C_OPが最も高く、且つモータ出力OPの変動に対して略一定に設定されている。
 さらに、極低負荷領域Iでは、SOCは基本的に不足しないと考えられ、エンジン1は停止されるか、或いは排気触媒の暖機要求に基づく最小のエンジン回転数Neに基づき運転されることが想定される。したがって、この場合には、エンジン1をモータ出力OPの変化に依らない一定のエンジン回転数Neで運転すると仮定して、換算係数C_OPが当該エンジン回転数Neに応じた略一定値に設定される。
 そして、車両コントローラ12は、ステップS140で演算した瞬間電費PCM_i[Km/Kwh]に設定した換算係数C_OP[Kwh/L]を乗じて瞬間燃費FCM_i[Km/L]を演算する。
 これにより、エンジン1の運転状態がモータ出力OP(アクセル開度APO)に直接連動しないハイブリッド車両100において、モータ出力OPに応じた瞬間燃費FCM_iを演算することができる。
 ステップS160において、車両コントローラ12は、演算した瞬間燃費FCM_iをメータパネル20に表示する指令を行う。具体的に、車両コントローラ12は、メータパネル20に対して演算した瞬間燃費FCM_iを燃費表示画面24(図2)に表示させるよう指令を行う。これにより、車室内のドライバ等はメータパネル20の燃費表示画面24における瞬間燃費FCM_iの表示を確認することができる。
 図6において、瞬間燃費FCM_iを表示したメータパネル20の燃費表示画面24における表示態様の一例を示す。図に示す表示が行われることによって、ハイブリッド車両100の車室内のドライバ等は、瞬間燃費FCM_iを視覚的に把握することができる。
 既に説明したように、本実施形態の瞬間燃費FCM_iは、ドライバによるアクセルペダル操作量に応じたアクセル開度APO(モータ出力OP)の変動に連動して変動する値である。すなわち、ドライバのアクセル操作に応答してメータパネル20における瞬間燃費FCM_iの表示が変動することとなる。したがって、エンジン1の運転状態がアクセル開度APOに直接連動しないハイブリッド車両100においても、ドライバに対して自らのアクセル操作に応じたハイブリッド車両100の瞬間燃費を直感的に認識させることができ、いわゆるエコドライブの意識を促すことができる。
 以上説明した第1実施形態に係る燃費表示制御方法によれば、以下の作用効果を奏する。
 本実施形態の燃費表示制御方法は、バッテリ4から走行モータ6に供給される駆動電力を、燃料(ガソリン)を消費して発電する発電装置としてのエンジン1によって生成するハイブリッド車両100の燃費表示制御方法が提供される。
 この燃費表示制御方法は、走行モータ6の出力であるモータ出力OPに応じた瞬間電費PCM_iを演算する電費演算工程(図4のステップS140)と、エンジン1に設定される運転状態(最適燃費点に基づくエンジン回転数Neなど)に応じて瞬間電費PCM_iに相当する瞬間燃費FCM_iを演算する燃費演算工程(図4のステップS150)と、瞬間燃費FCM_iを車室内に配置される表示装置としてのメータパネル20に表示する表示工程(図4のステップS160)と、を有する。
 すなわち、モータ出力OPに応じた瞬間電費PCM_iから、当該瞬間電費PCM_iに相当する瞬間燃費FCM_iを演算してメータパネル20に表示する。
 これにより、設定されるエンジン1の運転状態がモータ出力OP(アクセル開度APO)に直接連動しないハイブリッド車両100においても、ドライバは、自己のアクセル操作と連動した瞬間燃費FCM_iをリアルタイムに把握することができ、ドライバに対してエコドライブの意識を促すことができる。
 特に、エンジン1の運転状態は、バッテリ4の充電状態(SOC)に基づいて設定される。これにより、バッテリ4のSOCの高低に応じたエンジン1の運転状態の変化が考慮されたより高精度の瞬間燃費FCM_iを表示することができる。
 また、本実施形態では、モータ出力OPに応じて制限されるエンジン1の運転状態(例えば、SOCに基づくエンジン回転数Ne)に基づく換算係数C_OPを設定し(図4のステップS150及び図5)、換算係数C_OPを瞬間電費PCM_iに乗じて瞬間燃費FCM_iを求める(図4のステップS160)。
 すなわち、モータ出力OPの大小に応じたバッテリ4のSOCの過不足等のエンジン1の運転状態が制限されるシーンに応じて、エンジン1を最適燃費点から外れたエンジン回転数Neで運転させることが要求される場合であっても、要求されるエンジン1の回転数Neに応じた重み付けが考慮した換算係数C_OPを用いて、瞬間電費PCM_iから瞬間燃費FCM_iを求め、メータパネル20に表示することができる。
 これにより、ドライバ等は、アクセル開度APOにより好適に連動した瞬間燃費FCM_iを認識することができるので、ドライバに対してエコドライブの意識を促す効果がより向上する。
 さらに、本実施形態では、上記燃費表示制御方法を実現するための燃費表示制御システム30が提供される。
 より詳細には、本実施形態では、燃料を消費して発電する発電装置としてのエンジン1によって生成する電力をバッテリ4に充電し、バッテリ4から走行モータ6に駆動電力を供給するハイブリッド車両100に搭載される燃費表示制御システム30が提供される。
 この燃費表示制御システム30は、所定の消費燃料に対する走行距離を瞬間燃費FCM_iとして表示を行う表示装置としてのメータパネル20(図3参照)と、瞬間燃費FCM_iを演算する表示制御装置としての車両コントローラ12と、を有する。
 そして、車両コントローラ12は、走行モータ6の消費電力(モータ出力OPに相当)に対する走行距離から瞬間電費PCM_iを演算し、当該瞬間電費PCM_iを所定の係数である換算係数C_OPで補正した値を瞬間燃費FCM_iとしてメータパネル20に表示する。
 特に、上記エンジン1の運転状態は、バッテリ4の充電状態(SOC)に基づいて設定される。
 さらに、本実施形態では、車両コントローラ12は、モータ出力OPに応じて制限されるエンジン1の運転状態に基づいた換算係数C_OPを上記所定の係数として規定した換算テーブル(図5)を記憶する記憶部を有する。そして、車両コントローラ12は、換算テーブルからモータ出力OPに応じた換算係数C_OPを抽出し、抽出した換算係数C_OPを瞬間電費PCM_iに乗じて瞬間燃費FCM_iを求める。
 このような構成を有する燃費表示制御システム30によって、上記燃費表示制御方法を好適に実行することができる。
 さらに、本実施形態では、バッテリ4から走行モータ6に供給される駆動電力を、燃料(ガソリン)を消費して発電する発電装置としてのエンジン1によって生成するハイブリッド車両100に搭載される他の態様の燃費表示制御システム30が提供される。
 この燃費表示制御システム30は、表示制御装置としての車両コントローラ12と、ハイブリッド車両100内に配され車両コントローラ12の指令に基づいて表示を行う表示装置としてのメータパネル20と、を有する(図3参照)。
 そして、車両コントローラ12は、走行モータ6の出力(モータ出力OP)に応じた瞬間電費PCM_iを演算する。さらに、車両コントローラ12は、エンジン1に設定される運転状態(最適燃費点に基づくエンジン回転数Neなど)に応じて瞬間電費PCM_iに相当する瞬間燃費FCM_iを演算し、該瞬間燃費FCM_iをメータパネル20に表示する。
 このような構成を有する燃費表示制御システム30によっても、上記燃費表示制御方法を好適に実行することができる。
 (第2実施形態)
 以下では、図7~図10を参照して第2実施形態について説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。
 本実施形態では、特に、第1実施形態で説明した瞬間燃費FCM_iとは別に、ハイブリッド車両100の車速Vs及びエンジン1の燃料噴射量Fijに基づいて、エンジン1の瞬間実燃費FCM_rを求める。そして、瞬間実燃費FCM_rの平均値である平均実燃費FCM_r_aを求め、これを瞬間燃費FCM_iとともにメータパネル20の燃費表示画面24に表示する。以下でより具体的に説明する。
 図7は、本実施形態における燃費表示制御システム30の機能を説明するブロック図である。
 図示のように、本実施形態の燃費表示制御システム30は、エンジンコントローラ9、車両コントローラ12、及びメータパネル20により構成されている。
 そして、車両コントローラ12は、本実施形態の燃費表示制御における各処理を実行可能となるようにプログラムされている。具体的に、第1実施形態と同様に、アクセル開度APO、及び車速Vsに基づいて瞬間燃費FCM_iを演算する。
 さらに、本実施形態において、車両コントローラ12は、エンジンコントローラ9から燃料噴射量Fijの指令値を取得する。そして、車両コントローラ12は、車速Vs及び燃料噴射量Fijに基づき、エンジン1の瞬間実燃費FCM_rを求める。
 ここで、瞬間実燃費FCM_rとは、エンジン1の実際の燃料噴射量Fij、及び車速Vsに基づいて算出される燃費である。すなわち、より詳細には、瞬間実燃費FCM_rは、現在のエンジン1の燃料噴射量Fij(燃料消費量)と、現在の車速Vsと、に基づいて単位燃料消費量あたりにハイブリッド車両100が走行可能となる距離を算出した値として演算されるものである。さらに、本実施形態の車両コントローラ12は、瞬間実燃費FCM_rの平均値である平均実燃費FCM_r_aを演算する。
 そして、車両コントローラ12は、演算された平均実燃費FCM_r_aを、第1実施形態で説明した瞬間燃費FCM_iとともにメータパネル20に送信し、メータパネル20の燃費表示画面24に瞬間燃費FCM_i及び平均実燃費FCM_r_aを並列して表示させる指令を行う。以下では、本実施形態の燃費表示制御方法にかかる処理をより詳細に説明する。
 なお、車両コントローラ12は、第1実施形態に係る図4で説明したフローチャートのステップS110~ステップS150による瞬間燃費FCM_iの演算にかかる処理を実行する。そして、車両コントローラ12は、瞬間燃費FCM_iの演算にかかる処理に並行して平均実燃費表示制御を実行する。
 図8は、平均実燃費表示制御の流れを説明するフローチャートである。
 ステップS210及びステップS220において、車両コントローラ12は、燃料噴射量Fij及び車速Vsを取得する。
 ステップS230において、車両コントローラ12は、瞬間実燃費FCM_rを演算する。具体的に、車両コントローラ12は、車速Vsに対して必要に応じて所定のゲインを施した値から燃料噴射量Fij[L]を除して、瞬間実燃費FCM_r[Km/L]を演算する。
 ステップS240において、車両コントローラ12は、平均実燃費FCM_r_aを演算する。具体的に、車両コントローラ12は、ドライバ等に操作される図示しない表示リセットボタンの操作の検出タイミングを基点として、所定の演算周期毎に瞬間実燃費FCM_r[Km/L]を逐次記憶する。逐次記憶された各瞬間実燃費FCM_rにおける全演算周期の総和に亘る平均値を算出することで平均実燃費FCM_r_aを演算する。
 ステップS250において、車両コントローラ12は、ステップS110~ステップS150を経て演算された瞬間燃費FCM_i、及びステップS240で演算した平均実燃費FCM_r_aをメータパネル20に表示する指令を行う。より詳細には、車両コントローラ12は、メータパネル20に対して瞬間燃費FCM_i及び平均実燃費FCM_r_aを燃費表示画面24(図2)に表示させるよう指令を行う。これにより、車室内のメータパネル20の燃費表示画面24に、瞬間燃費FCM_i及び平均実燃費FCM_r_aの双方が表示されることとなるため、ドライバ等は、瞬間燃費FCM_iと併せて平均実燃費FCM_r_aの表示も確認することができる。
 図9において、本実施形態の燃費表示画面24における表示態様の一例を示す。また、図10には、本実施形態の燃費表示画面24を含むメータパネル20の全体の表示態様を説明する図である。
 これらの図に示す燃費表示が行われることによって、ハイブリッド車両100の車室内のドライバは、自己のアクセル操作に連動した瞬間燃費FCM_iに加えて、平均実燃費FCM_r_aを視覚的に把握することができる。
 以上説明した第2実施形態に係る燃費表示制御方法によれば、以下の作用効果を奏する。
 本実施形態の燃費表示制御方法は、第1実施形態の燃費表示制御方法に対してさらに、ハイブリッド車両100の車速Vs及びエンジン1への燃料供給量(燃料噴射量Fij)に基づいて、該エンジン1の実際の運転状態に応じて瞬間実燃費FCM_rを演算する瞬間実燃費電費演算工程(図8のステップS230)と、瞬間実燃費FCM_rの所定時間における平均値を平均実燃費FCM_r_aとして演算する平均実燃費電費演算工程(図8のステップS240)と、を有する。そして、表示工程(図8のステップS250)において、瞬間燃費FCM_i及び平均実燃費FCM_r_aを表示する。
 これにより、ハイブリッド車両100のドライバは、メータパネル20を介して、自らのアクセル操作量に好適に連動して変化する瞬間燃費FCM_iに加えて、平均実燃費FCM_r_aも認識することができる。
 特に、本実施形態の燃費表示制御方法では、瞬間実燃費FCM_rは、エンジン1の実際の運転状態(発電状態)に応じた燃料消費量に相当する燃料噴射量Fijに基づいて演算される。そして、この瞬間実燃費FCM_rの所定時間に亘る平均値を平均実燃費FCM_r_aとして演算する。
 ここで、既に説明したように、本実施形態のハイブリッド車両100においては、エンジン1の運転状態は基本的にモータ出力OPの変動に追従しないため、ドライバのアクセル操作量が必ずしも連動しない。これに対して、本実施形態で演算される瞬間実燃費FCM_rは、実際のエンジン1の運転状態(発電状態)に応じて燃料噴射量Fijから定められるものである。したがって、この瞬間実燃費FCM_rも、基本的にはドライバのアクセル操作に必ずしも連動しない。
 しかしながら、瞬間実燃費FCM_rは、現実のエンジン1の運転状態に応じた燃料噴射量Fijから直接的に演算されるものであるので、当該瞬間実燃費FCM_rの所定時間に亘る平均値である平均実燃費FCM_r_aは、現実の平均燃費と高い精度で整合することとなる。
 したがって、本実施形態の燃費表示制御方法によれば、アクセル操作量に好適に連動する瞬間燃費FCM_iを表示してドライバのエコドライブの意識を促進しつつ、より好適に現実の燃費に整合する平均実燃費FCM_r_aを表示してドライバに高精度な燃費情報を認識させることができる。
 特に、図9に示すように、メータパネル20が、瞬間燃費FCM_i及び平均実燃費FCM_r_aの双方をドライバが一見して把握できる程度に表示するように構成されることで、エンジン1を発電に用いるハイブリッド車両100において、従来のエンジン1を走行駆動源とする車両における瞬間燃費/平均実燃費の表示と同様の表示を実現することができる。
 結果として、シリーズハイブリッド方式等のエンジン1を発電に用いるハイブリッド車両100であっても、ドライバ等のハイブリッド車両100の乗車者に対して、既存のエンジン1を走行動力源とする車両の瞬間燃費/平均実燃費に対して違和感の少ない表示を提供することができる。
 さらに、本実施形態では、本実施形態の燃費表示制御方法を実現するための燃費表示制御システム30が提供される。
 より詳細には、燃料を消費して発電する発電装置としてのエンジン1によって生成する電力をバッテリ4に充電し、バッテリ4から走行モータ6に駆動電力を供給するハイブリッド車両100に搭載される燃費表示制御システム30が提供される。
 この燃費表示制御システム30は、所定の消費燃料に対する走行距離を瞬間燃費FCM_iとして表示を行う表示装置としてのメータパネル20(図3参照)と、瞬間燃費FCM_iを演算する表示制御装置としての車両コントローラ12と、を有する。
 そして、車両コントローラ12は、走行モータ6の消費電力(モータ出力OPに相当)に対する走行距離から瞬間電費PCM_iを演算し、当該瞬間電費PCM_iを所定の係数である換算係数C_OPで補正した値を瞬間燃費FCM_iとしてメータパネル20に表示する。
 さらに、本実施形態の車両コントローラ12は、ハイブリッド車両100の車速Vs及びエンジン1への燃料供給量(燃料噴射量Fij)に基づいて、該エンジン1の実際の運転状態に応じて瞬間実燃費FCM_rを演算し、瞬間実燃費FCM_rの所定時間における平均値を平均実燃費FCM_r_aとして演算する。そして、表示工程(図8のステップS250)において、瞬間燃費FCM_i及び平均実燃費FCM_r_aを表示する。
 このような構成を有する燃費表示制御システム30によって、本実施形態の燃費表示制御方法を好適に実行することができる。
 以上、本発明の各実施形態について説明したが、上記各実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記各実施形態の具体的構成に限定する趣旨ではない。
 車両コントローラ12に代えて、上記実施形態の燃費表示制御方法を実行させる機能を持つ表示用のコントローラを別途設けても良い。また、車両コントローラ12とこの表示用のコントローラにより、燃費表示制御方法にかかる処理を分散して実行するようにしても良い。
 なお、上記各実施形態における瞬間燃費FCM_iは、モータ出力OPに基づいて演算した瞬間電費PCM_iに対して図5で説明した換算係数C_OPを乗じて演算する例を説明した。しかしながら、瞬間燃費FCM_iの演算方法はこれに限定されるものではなく、他の演算方法を用いても良い。
 瞬間燃費FCM_iの他の演算方法として、例えば、車両コントローラ12が目標発電電力に応じて設定されたエンジン1の運転状態(エンジン回転数Ne)に基づいて所定時間(例えば5秒)の間作動したことを仮定し、当該作動によって燃料ポンプから燃料噴射弁へ送出される燃料量の予測値及び車速Vsに基づく当該所定時間の間の走行距離の予測値を算出し、この燃料量の予測値を走行距離の予測値で除して瞬間燃費FCM_iを演算するようにしても良い。
 また、本発明の技術的範囲には、燃料を消費して発電する発電装置(例えばエンジン1)によって生成する電力をバッテリ4に充電し、バッテリ4から走行モータ6に駆動電力を供給するハイブリッド車両100に搭載される燃費表示制御システム30であって、所定の消費燃料に対する走行距離を瞬間燃費FCM_iとして表示を行う表示装置としてのメータパネル20と、瞬間燃費FCM_iを演算する表示制御装置としての車両コントローラ12と、を有し、車両コントローラ12は、走行モータ6の消費電力(モータ出力OPに相当)に対する走行距離から瞬間電費PCM_iを演算し、車両コントローラ12が、走行モータ6の消費電力(モータ出力OPに相当)に対する走行距離から瞬間電費PCM_iを演算し、この瞬間電費PCM_iを瞬間燃費FCM_iとして(次元を変換して)メータパネル20に表示する主題が含まれる。
 上記実施形態では、説明の簡略化の観点から、瞬間燃費FCM_iの演算において、モータ出力OPが正の値の場合(すなわち、ハイブリッド車両100の走行時に電力が消費される場合)について焦点を当てて説明した。しかしながら、これ限られず、モータ出力OPが負の値(すなわち回生時)の場合に、上記実施形態の燃費表示制御方法を適用することもできる。例えば、回生時の換算係数C_OPをゼロに設定し、当該回生時のメータパネル20における瞬間燃費FCM_iの表示が「0」となるようにしても良い。
 また、上記各実施形態においては、図2に示すメータパネル20aの第2表示領域202に燃費表示画面24が構成されている例を説明した。一方で、第2表示領域202を、例えば、ハイブリッド車両100のドライバ等による切り替え操作に応じて、燃費表示画面24を他の車両状態を示す画面に切り替えられるように、車両コントローラ12及びメータパネル20aを構成しても良い。
 例えば、ドライバ等による切り替え操作及び車両コントローラ12から指令に応じて、第2表示領域202に表示される画面が、燃費表示画面24、エンジン1、バッテリ4、及び走行モータ6の間における電力の流れを示すエネルギーフローの表示画面、積算走行距離と1トリップ中における走行距離を示すオドメータの表示画面、回生及びエンジン1の発電によるバッテリ4への充電履歴情報の表示画面、並びにバッテリ4の充放電電力などに基づくハイブリッド車両100の駆動電力及び回生電力を示すパワーメータの表示画面の間で任意に切り替えることができるようにメータパネル20aを構成しても良い。
 また、上記実施形態では、ハイブリッド車両100が、エンジン1を発電のために駆動させて、走行のための駆動源としては用いないシリーズハイブリッド車両である場合について説明した。しかしながら。エンジン1を発電用及び走行駆動源の双方に用いる車両であって、エンジン1を発電用に作動させるモードと走行駆動源として用いるモードとの間で選択可能である車両において、エンジン1を発電用に作動させるモードにおいて本実施形態の燃費表示制御方法を適用しても良い。
 さらに、上記実施形態では、バッテリ4から走行モータ6に供給される駆動電力を、燃料(ガソリン)を消費して発電するエンジン1によって生成するハイブリッド車両100の例を説明した。しかしながら、バッテリ4から走行モータ6に供給される駆動電力を、ガソリン以外の燃料を消費して発電する他の発電装置によって生成するハイブリッド車両に、上記燃費表示制御方法又は燃費表示制御システム30の構成を適用しても良い。
 例えば、発電装置としてSOFC(固体酸化物形燃料電池:solid oxide fuel cell)等の燃料電池を搭載した車両に本実施形態の構成を適用することもできる。すなわち、バッテリから走行モータに供給される駆動電力を、アルコール混合水等の燃料を消費して発電する燃料電池によって生成するハイブリッド車両(レンジエクステンダ車両)において、上記実施形態において説明した燃費表示制御方法を適用することができる。例えば、走行モータの出力に応じた瞬間電費を演算し、SOFCに設定される運転状態(目標電流等)に応じて当該瞬間電費に相当する瞬間燃費を演算し、演算した瞬間燃費を車室内に配置される表示装置に表示することができる。

Claims (8)

  1.  バッテリから走行モータに供給される駆動電力を、燃料を消費して発電する発電装置によって生成するハイブリッド車両の燃費表示制御方法であって、
     前記走行モータの出力に応じた瞬間電費を演算する電費演算工程と、
     前記発電装置に設定される運転状態に応じて前記瞬間電費に相当する瞬間燃費を演算する燃費演算工程と、
     前記瞬間燃費を車室内に配置される表示装置に表示する表示工程と、を有する、
     燃費表示制御方法。
  2.  請求項1に記載の燃費表示制御方法であって、
     前記発電装置の運転状態は、前記バッテリの充電状態に基づいて設定される、
     燃費表示制御方法。
  3.  請求項1又は2に記載の燃費表示制御方法であって、
     前記燃費演算工程では、前記走行モータの出力に応じて制限される前記発電装置の運転状態に基づいた換算係数を設定し、該換算係数を前記瞬間電費に乗じて前記瞬間燃費を求める、
     燃費表示制御方法。
  4.  請求項1~3の何れか1項に記載の燃費表示制御方法であって、
     さらに、
     前記ハイブリッド車両の車速及び前記発電装置への燃料供給量に基づいて、該発電装置の実際の運転状態に応じた瞬間実燃費を演算する瞬間実燃費電費演算工程と、
     前記瞬間実燃費の所定時間に亘る平均値を平均実燃費として演算する平均実燃費電費演算工程と、
     を有し、
     前記表示工程において、前記瞬間燃費及び前記平均実燃費を前記表示装置に表示する、
     燃費表示制御方法。
  5.  燃料を消費して発電する発電装置によって生成する電力をバッテリに充電し、バッテリから走行モータに駆動電力を供給するハイブリッド車両に搭載される燃費表示制御システムであって、
     所定の消費燃料に対する走行距離を瞬間燃費として表示を行う表示装置と、前記瞬間燃費を演算する表示制御装置と、を有し、
     前記表示制御装置は、
     前記走行モータの消費電力に対する走行距離から瞬間電費を演算し、
     該瞬間電費を、若しくは該瞬間電費を所定の係数で補正した値を前記瞬間燃費として前記表示装置に表示する、
     燃費表示制御システム。
  6.  請求項5に記載の燃費表示制御システムであって、
     前記発電装置の運転状態は、前記バッテリの充電状態に基づいて設定される、
     燃費表示制御システム。
  7.  請求項5又は6に記載の燃費表示制御システムであって、
     前記走行モータの出力に応じて制限される前記発電装置の運転状態に基づいた換算係数を前記所定の係数として規定した換算テーブルを記憶する記憶部をさらに有し、
     前記表示制御装置は、
     前記換算テーブルから前記走行モータの出力に応じた前記換算係数を抽出し、
     抽出した前記換算係数を前記瞬間電費に乗じて前記瞬間燃費を求める、
     燃費表示制御システム。
  8.  請求項5~7の何れか1項に記載の燃費表示制御システムであって、
     前記表示制御装置は、さらに、
     前記ハイブリッド車両の車速及び前記発電装置への燃料供給量に基づいて、該発電装置の実際の運転状態に応じた瞬間実燃費を演算し、
     前記瞬間実燃費の所定時間に亘る平均値を平均実燃費として演算する演算し、
     前記瞬間燃費及び前記平均実燃費を前記表示装置に表示する、
     燃費表示制御システム。
PCT/JP2017/045219 2017-12-15 2017-12-15 燃費表示制御方法及び燃費表示制御システム WO2019116585A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP17934502.0A EP3725576B1 (en) 2017-12-15 2017-12-15 Fuel economy display control method and fuel economy display control system
KR1020207017224A KR102407501B1 (ko) 2017-12-15 2017-12-15 연비 표시 제어 방법 및 연비 표시 제어 시스템
BR112020011909A BR112020011909A8 (pt) 2017-12-15 2017-12-15 Método de controle de exibição de economia de combustível e sistema de controle de exibição de economia de combustível
MX2020006160A MX2020006160A (es) 2017-12-15 2017-12-15 Metodo de control de despliegue del ahorro de combustible y sistema de control de despliegue del ahorro de combustible.
CN201780097744.1A CN111542448B (zh) 2017-12-15 2017-12-15 燃料消耗显示控制方法和燃料消耗显示控制系统
PCT/JP2017/045219 WO2019116585A1 (ja) 2017-12-15 2017-12-15 燃費表示制御方法及び燃費表示制御システム
RU2020121416A RU2742068C1 (ru) 2017-12-15 2017-12-15 Способ управления отображением расхода топлива и система управления отображением расхода топлива
JP2019558874A JP6923001B2 (ja) 2017-12-15 2017-12-15 燃費表示制御方法及び燃費表示制御システム
US16/771,980 US11535230B2 (en) 2017-12-15 2017-12-15 Fuel economy display control method and fuel economy display control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045219 WO2019116585A1 (ja) 2017-12-15 2017-12-15 燃費表示制御方法及び燃費表示制御システム

Publications (1)

Publication Number Publication Date
WO2019116585A1 true WO2019116585A1 (ja) 2019-06-20

Family

ID=66820111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045219 WO2019116585A1 (ja) 2017-12-15 2017-12-15 燃費表示制御方法及び燃費表示制御システム

Country Status (9)

Country Link
US (1) US11535230B2 (ja)
EP (1) EP3725576B1 (ja)
JP (1) JP6923001B2 (ja)
KR (1) KR102407501B1 (ja)
CN (1) CN111542448B (ja)
BR (1) BR112020011909A8 (ja)
MX (1) MX2020006160A (ja)
RU (1) RU2742068C1 (ja)
WO (1) WO2019116585A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958479B2 (ja) * 2018-05-18 2021-11-02 トヨタ自動車株式会社 車両のエンジン回転表示制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863697U (ja) * 1981-10-22 1983-04-28 ダイハツ工業株式会社 ハイブリツド車の情報表示装置
JP2007269257A (ja) * 2006-03-31 2007-10-18 Fuji Heavy Ind Ltd ハイブリッド車両の駆動制御装置
JP2013032152A (ja) 2010-09-28 2013-02-14 Mitsubishi Electric Corp 充電表示装置
JP2014101103A (ja) * 2012-11-22 2014-06-05 Mitsubishi Motors Corp 航続距離演算装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646987B2 (ja) * 2001-09-05 2005-05-11 日本輸送機株式会社 電気車両の制御装置
JP3780504B2 (ja) * 2002-02-06 2006-05-31 日本輸送機株式会社 電気車両の制御装置
JP2005035413A (ja) 2003-07-16 2005-02-10 Toyota Motor Corp 車両用表示装置および車両
JP2007112195A (ja) * 2005-10-18 2007-05-10 Nissan Motor Co Ltd ハイブリッド車両のモータ電力供給制御装置
JP4561658B2 (ja) * 2006-03-06 2010-10-13 トヨタ自動車株式会社 ハイブリッド車両の表示装置および表示方法
JP4512056B2 (ja) * 2006-03-31 2010-07-28 富士重工業株式会社 ハイブリッド車両の駆動制御装置
JP4311451B2 (ja) * 2007-01-16 2009-08-12 トヨタ自動車株式会社 車両およびその制御方法
JP2008197076A (ja) * 2007-02-09 2008-08-28 Masaji Sasaki 燃費表示の方法及び装置
JP4591487B2 (ja) * 2007-08-24 2010-12-01 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の告知方法およびその告知方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
KR100992755B1 (ko) * 2007-12-13 2010-11-05 기아자동차주식회사 하이브리드 차량의 soc별 최적 운전점 결정 방법
JP5042816B2 (ja) * 2007-12-28 2012-10-03 本田技研工業株式会社 内燃機関制御装置
JP4495234B2 (ja) * 2008-07-31 2010-06-30 富士通テン株式会社 省燃費運転診断装置、省燃費運転診断システム及び省燃費運転診断方法
US20100057281A1 (en) * 2008-08-29 2010-03-04 Paccar Inc Information display systems and methods for hybrid vehicles
US7865276B2 (en) * 2008-10-28 2011-01-04 Ford Global Technologies, Llc System and method for displaying an overall efficiency of a hybrid electric vehicle
US8706330B2 (en) * 2008-11-14 2014-04-22 Hybrid Innovation Technologies Llc Electronic system and method of automating, controlling, and optimizing the operation of one or more energy storage units and a combined serial and parallel hybrid marine propulsion system
US9506781B2 (en) * 2009-10-22 2016-11-29 Ford Global Technologies, Llc Vehicle information display and method
JP5445676B2 (ja) * 2010-04-27 2014-03-19 トヨタ自動車株式会社 車両の制御装置
DE102010062866B4 (de) * 2010-12-10 2013-09-05 Robert Bosch Gmbh Verfahren zur Erzeugung einer Betriebsstrategie für ein Elektrofahrzeug mit Range-Extender
IN2014CN02509A (ja) * 2011-09-05 2015-06-26 Honda Motor Co Ltd
CN103764469A (zh) * 2011-09-05 2014-04-30 本田技研工业株式会社 混合动力车辆的控制装置和控制方法
KR20130036948A (ko) * 2011-10-05 2013-04-15 현대자동차주식회사 하이브리드 차량의 경제운전 유도 장치 및 그 방법
KR101620400B1 (ko) * 2011-12-26 2016-05-23 엘지전자 주식회사 전기 차량의 제어 장치 및 그 방법
KR20130119771A (ko) * 2012-04-24 2013-11-01 현대모비스 주식회사 하이브리드 차량에서 동력 흐름을 표시 방법 및 이를 표시하는 장치
KR101394867B1 (ko) * 2012-09-28 2014-05-13 기아자동차주식회사 친환경 차량의 주행가능거리 산출 방법
US20140200793A1 (en) * 2013-01-16 2014-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for determining and displaying a fuel-equivalent distance-per-energy consumption rate
BR112015019050A2 (pt) * 2013-02-08 2017-07-18 Toyota Motor Co Ltd dispositivo de exibição
GB2513618B (en) * 2013-05-01 2016-02-10 Jaguar Land Rover Ltd Method and system for providing feedback to a driver of a hybrid or electric vehicle
US9193351B2 (en) * 2013-08-06 2015-11-24 Ford Global Technologies, Llc Real-time fuel consumption estimation
GB2517472A (en) * 2013-08-21 2015-02-25 Jaguar Land Rover Ltd State of charge indication
JP2015154602A (ja) * 2014-02-14 2015-08-24 トヨタ自動車株式会社 運転支援装置及び運転支援方法
US9454402B2 (en) * 2014-03-04 2016-09-27 International Business Machines Corporation Information display for displaying different types of performance data using a single integrated visual indicator
JP5936647B2 (ja) * 2014-04-25 2016-06-22 三菱電機株式会社 走行制御装置
US20150345958A1 (en) * 2014-05-27 2015-12-03 Atieva, Inc. Method of Controlling an Auxiliary Vehicle System
JP6156419B2 (ja) * 2015-03-19 2017-07-05 トヨタ自動車株式会社 車両
JP6268118B2 (ja) 2015-04-01 2018-01-24 株式会社豊田中央研究所 ハイブリッド自動車の制御装置
US20170008525A1 (en) * 2015-07-09 2017-01-12 Sung-Suk KO Intelligent vehicle management system
JP6665586B2 (ja) * 2016-03-02 2020-03-13 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR20180086782A (ko) * 2017-01-23 2018-08-01 현대자동차주식회사 하이브리드 차량의 주행 제어 방법
US10549636B2 (en) * 2017-03-03 2020-02-04 Ford Global Technologies, Llc Information display systems and method for display an efficiency gauge and target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863697U (ja) * 1981-10-22 1983-04-28 ダイハツ工業株式会社 ハイブリツド車の情報表示装置
JP2007269257A (ja) * 2006-03-31 2007-10-18 Fuji Heavy Ind Ltd ハイブリッド車両の駆動制御装置
JP2013032152A (ja) 2010-09-28 2013-02-14 Mitsubishi Electric Corp 充電表示装置
JP2014101103A (ja) * 2012-11-22 2014-06-05 Mitsubishi Motors Corp 航続距離演算装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725576A4

Also Published As

Publication number Publication date
US11535230B2 (en) 2022-12-27
EP3725576A4 (en) 2021-01-13
MX2020006160A (es) 2020-08-13
KR102407501B1 (ko) 2022-06-13
EP3725576A1 (en) 2020-10-21
CN111542448B (zh) 2024-01-09
BR112020011909A8 (pt) 2022-12-06
RU2742068C1 (ru) 2021-02-02
KR20200086349A (ko) 2020-07-16
JP6923001B2 (ja) 2021-08-25
CN111542448A (zh) 2020-08-14
BR112020011909A2 (pt) 2020-11-24
US20200398814A1 (en) 2020-12-24
EP3725576B1 (en) 2021-09-15
JPWO2019116585A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
JP5547699B2 (ja) 車両の駆動装置
US7523797B2 (en) Power output apparatus, method of controlling power output apparatus, and automobile with power output apparatus mounted thereon
US7108088B2 (en) Hybrid vehicle and control method of hybrid vehicle
WO2013098990A1 (ja) プラグインハイブリッド車両
JP2007239511A (ja) 車両の駆動制御装置
US20140303820A1 (en) Hybrid vehicle and control method thereof
JP2010018128A (ja) 制御装置、及び制御方法
JP2016175485A (ja) 車両
US9252630B2 (en) Battery charge control apparatus
EP2848482A2 (en) Vehicle and vehicle control method
JP2009027772A (ja) 電池の余力表示装置及び方法
EP3725579B1 (en) Operating status display method and operating status display system
JPWO2019030910A1 (ja) ハイブリッド車両の制御方法及び制御装置
WO2019116585A1 (ja) 燃費表示制御方法及び燃費表示制御システム
JP2017100469A (ja) ハイブリッド車両の制御装置
JP5927792B2 (ja) 車両用制御装置および車両用制御方法
JP2012106672A (ja) ハイブリッド自動車
JP5659941B2 (ja) 充電制御装置
JP2013129379A (ja) 車両の制御装置
JP5910083B2 (ja) 車両
JP2010023739A (ja) ハイブリッド車及びハイブリッド車の制御方法
KR20170040666A (ko) 모터 토크 제어 장치 및 방법
KR101755515B1 (ko) 하이브리드 차량용 엔진 제어 장치 및 방법
JP2013154719A (ja) ハイブリッド車両の電費算出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017224

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934502

Country of ref document: EP

Effective date: 20200715

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011909

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011909

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200612