WO2019102648A1 - 発光部品、プリントヘッド、画像形成装置及び光照射装置 - Google Patents

発光部品、プリントヘッド、画像形成装置及び光照射装置 Download PDF

Info

Publication number
WO2019102648A1
WO2019102648A1 PCT/JP2018/027772 JP2018027772W WO2019102648A1 WO 2019102648 A1 WO2019102648 A1 WO 2019102648A1 JP 2018027772 W JP2018027772 W JP 2018027772W WO 2019102648 A1 WO2019102648 A1 WO 2019102648A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
thyristor
transfer
light
Prior art date
Application number
PCT/JP2018/027772
Other languages
English (en)
French (fr)
Inventor
近藤 崇
Original Assignee
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社 filed Critical 富士ゼロックス株式会社
Priority to CN201880059520.6A priority Critical patent/CN111095701B/zh
Publication of WO2019102648A1 publication Critical patent/WO2019102648A1/ja
Priority to US16/746,577 priority patent/US10809642B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04054Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by LED arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0402Exposure devices
    • G03G2215/0407Light-emitting array or panel
    • G03G2215/0409Light-emitting diodes, i.e. LED-array

Definitions

  • the present invention relates to a light emitting component, a print head, an image forming apparatus, and a light irradiation apparatus.
  • Patent Document 1 a large number of light emitting elements whose threshold voltage or threshold current can be controlled from the outside are arrayed one-dimensionally, two-dimensionally or three-dimensionally, and the threshold voltage or threshold current of each light emitting element A light emitting element array is described in which electrodes controlling the light emitting diodes are electrically connected to each other, and a clock line for applying a voltage or current from the outside to each light emitting element is connected.
  • Patent Document 2 discloses a substrate, a surface emitting semiconductor laser disposed in an array on the substrate, and a thyristor as a switch element arranged on the substrate to selectively turn on / off the light emission of the surface emitting semiconductor laser. And a self-scanning light source head is disclosed.
  • a light emitting element having a pnpn pn 6-layer semiconductor structure is configured, and electrodes are provided on the p-type first layer and the n-type sixth layer at both ends, and the p-type third layer and the n-type fourth layer in the center.
  • a self-scanning light emitting device in which a pn layer has a light emitting diode function and a pnpn 4 layer has a thyristor function.
  • a self-scanning light emitting element array including a light emitting unit and a driving unit
  • light emitting elements in the light emitting unit and transfer elements for sequentially driving the light emitting elements in the driving unit are made of the same stacked semiconductor layers. It was difficult to set the light emission characteristics of the device and the drive characteristics of the transfer device independently. For this reason, it is conceivable to configure the light emitting element with another laminated semiconductor layer and to set the light emission characteristic and the drive characteristic independently.
  • an operation failure may occur due to the characteristic of the element having a rectifying characteristic.
  • At least one embodiment of the present invention provides a light-emitting component or the like in which malfunction does not easily occur as compared to the case where a reference potential is supplied to an element controlling an element having a rectifying characteristic.
  • the invention according to the first aspect comprises a substrate, a plurality of light emitting elements provided on the substrate and having rectifying characteristics in which one terminal is connected to a predetermined reference potential, and the other terminal of the light emitting element
  • the light emitting component is a light emitting component including: light emitting elements connected by being connected in series and being turned on; or a plurality of thyristors that increase the light emitting amount of the light emitting elements.
  • the invention according to the second aspect is the light emitting component according to the first aspect, in which the plurality of thyristors are sequentially turned on by transferring the on state sequentially.
  • the invention according to the third aspect comprises a plurality of transfer thyristors that are connected to each of the plurality of thyristors and are sequentially transferred so that the connected thyristors can be shifted to the on state.
  • the light emitting component according to the first aspect is characterized in that
  • the invention according to the fourth aspect is that the voltage applied to the series connection of the light emitting element and the thyristor causes the light emitting element to emit light or increase the amount of light emission by switching the thyristor to the on state.
  • the light emitting component according to any one of the first to third aspects, characterized in that The invention of a fifth aspect is characterized in that the light emitting element and the thyristor are connected in series via a tunnel junction layer or a group III-V compound layer having metallic conductivity. It is a light emitting component of an aspect.
  • the invention in a sixth aspect is characterized in that the thyristor is formed of a laminated semiconductor layer in which a plurality of semiconductor layers are laminated, and the laminated semiconductor layer includes a voltage reduction layer that reduces a rising voltage of the thyristor.
  • the light emitting component according to the first aspect of the invention.
  • the light emitting element is formed of another laminated semiconductor layer in which a plurality of semiconductor layers are laminated, and the voltage reduction layer is formed of any semiconductor layer constituting the other laminated semiconductor layer.
  • the light emitting component of the sixth aspect is also characterized in that the band gap energy is small.
  • the invention of an eighth aspect is the light emitting component according to the sixth aspect, characterized in that the voltage reduction layer has a band gap energy smaller than that of the semiconductor layer constituting the light emitting layer of the light emitting element.
  • the invention of a ninth aspect is the light-emitting component according to any one of the first to third aspects, wherein the light-emitting element has a narrowed current path.
  • the invention of a tenth aspect is a print head including a light emitting unit including the light emitting component of the first aspect, and an optical unit for forming an image of light emitted from the light emitting unit.
  • the invention of an eleventh aspect comprises an image carrier, a charging unit for charging the image carrier, and an exposure unit for exposing the image carrier through an optical unit, including the light emitting component of the first aspect;
  • An image forming apparatus comprising: a developing unit for developing an electrostatic latent image exposed by the exposure unit and formed on the image carrier; and a transfer unit for transferring an image developed on the image carrier to a transferee is there.
  • the invention of a twelfth aspect is a light irradiation device which has the light emitting component of the first aspect and which irradiates the light emitted from the light emitting component to the irradiation object in a two-dimensional manner.
  • the operation failure hardly occurs as compared with the case where the reference potential is supplied to the element controlling the element having the rectifying characteristic.
  • the size of the light emitting chip can be reduced as compared with the case where the on state is not sequentially transferred to the thyristor.
  • lighting control of light emission / non-light emission of the light emitting element can be performed as compared with the case where the transfer thyristor is not used.
  • lighting control is facilitated as compared with the case where control is not performed by a voltage applied to series connection.
  • the voltage applied for light emission can be reduced as compared with the case where the tunnel junction layer or the group III-V compound layer having metallic conductivity is not interposed.
  • the voltage in the on state of the device used for driving can be reduced as compared with the case where the voltage reduction layer is not provided.
  • selection of the voltage reduction layer is facilitated as compared to the case where the voltage reduction layer is not set by the band gap energy.
  • power consumption can be reduced as compared with the case where the current path is not narrowed.
  • the malfunction of the print head is less likely to occur as compared to the case where the reference potential is supplied to the element controlling the element having the rectifying characteristic.
  • the operation failure of the image forming apparatus hardly occurs as compared with the case where the reference potential is supplied to the element controlling the element having the rectifying characteristic.
  • operation failure of the light irradiation device is less likely to occur compared to the case where the reference potential is supplied to the element controlling the element having the rectifying characteristic.
  • FIG. 1 is a diagram showing an example of the entire configuration of an image forming apparatus to which a first embodiment is applied. It is a sectional view showing an example of composition of a print head. It is a top view of an example of a light-emitting device.
  • FIG. 4 is a view showing an example of the configuration of a light emitting chip, the configuration of a signal generation circuit of a light emitting device, and the configuration of wirings (lines) on a circuit board 62.
  • FIG. 2 is an equivalent circuit diagram for explaining a circuit configuration of a light emitting chip on which a self-scanning light emitting element array (SLED) according to the first embodiment is mounted.
  • SLED self-scanning light emitting element array
  • FIG. 6A is an example of a plan layout view and a sectional view of the light emitting chip according to the first embodiment
  • FIG. 6A is a plan layout view of the light emitting chip
  • FIG. 6B is an example of FIG. It is a sectional view in the VIB-VIB line
  • FIG. 7 is an enlarged cross-sectional view of an island provided with a laser diode and a setting thyristor, an island provided with a transfer thyristor and the like, and an island provided with a power supply line resistance in the light emitting chip according to the first embodiment. It is a figure which further demonstrates the laminated structure of a laser diode and a setting thyristor. (A) of FIG.
  • FIG. 8 is a schematic energy band diagram in the laminated structure of the laser diode and the setting thyristor
  • (b) of FIG. 8 is an energy band diagram in the reverse bias state of the tunnel junction layer
  • (c) of FIG. Shows the current-voltage characteristic of the tunnel junction layer.
  • 5 is a timing chart illustrating the operation of the light emitting device and the light emitting chip.
  • FIG. 6 is an equivalent circuit diagram showing a circuit configuration of a light emitting chip C ′ that can be mounted on a self-scanning light emitting element array (SLED) shown for comparison.
  • SLED self-scanning light emitting element array
  • FIG. 11C is a laminated semiconductor layer separating step. These are figures explaining the manufacturing method of a light emitting chip. 12D shows a current blocking portion forming step, FIG. 12E shows a p gate layer extraction etching step, and FIG. 12F shows a p ohmic electrode forming step. These are figures explaining the manufacturing method of a light emitting chip. 13G is a protective layer forming step, FIG. 13H is a wiring and back electrode forming step, and FIG. 13I is a light emitting surface forming step. It is a figure explaining the material which comprises metallic electroconductive III-V compound layer. FIG. 14 (a) shows the band gap of InNAs to the composition ratio x of InN, FIG.
  • FIG. 14 (b) shows the band gap of InNSb to the composition ratio x of InN
  • FIG. It is a figure which shows the lattice constant of a III-V compound with respect to a band gap.
  • FIG. 16 is an expanded sectional view of the island in which the laser diode and the setting thyristor provided with the voltage reduction layer were laminated
  • (A) of FIG. 16 is a cross-sectional view of a thyristor provided with a voltage reduction layer
  • (b) of FIG. 16 is a cross-sectional view of a thyristor not provided with a voltage reduction layer
  • FIG. 18 is an enlarged cross-sectional view of an island in which a laser diode and a setting thyristor are stacked, for explaining a modification 1-1.
  • FIG. 16 is an enlarged cross-sectional view of an island in which a laser diode and a setting thyristor are stacked, for explaining Modification Example 1-2.
  • FIG. 18 is an enlarged cross-sectional view of an island in which a laser diode and a setting thyristor are stacked, for explaining Modification Example 1-3.
  • FIG. 21 is an enlarged cross-sectional view of an island in which a light emitting diode and a setting thyristor are stacked, for explaining a modification example 2-1.
  • FIG. 21 is an enlarged cross-sectional view of an island in which a light emitting diode and a setting thyristor are stacked, for explaining Modification Example 2-2.
  • FIG. 21 is an enlarged cross-sectional view of an island in which a light emitting diode and a setting thyristor are stacked, for explaining Modification Example 2-2.
  • FIG. 21 is an enlarged cross-sectional view of an island in which a light emitting diode and a setting thyristor are stacked, for explaining Modification Example 2-3. It is an expanded sectional view of the island where the vertical cavity surface emitting laser of the light emitting chip concerning a 3rd embodiment and the setting thyristor were laminated.
  • FIG. 21 is an enlarged cross-sectional view of an island in which a vertical cavity surface emitting laser and a setting thyristor are stacked, for explaining modification example 3-1.
  • FIG. 31 is an enlarged cross-sectional view of an island in which a vertical cavity surface emitting laser and a setting thyristor are stacked, for explaining modification example 3-2.
  • FIG. 18 is an enlarged cross-sectional view of an island provided with a laser diode, an island provided with a setting thyristor, and an island provided with a transfer thyristor T and the like in the light emitting chip according to the fifth embodiment.
  • FIG. 21 is an equivalent circuit diagram for explaining a circuit configuration of a light emitting chip on which a self-scanning light emitting element array (SLED) according to a sixth embodiment is mounted.
  • SLED self scanning scanning light emitting element array
  • FIG. 1 is a view showing an example of the entire configuration of an image forming apparatus 1 to which the first embodiment is applied.
  • the image forming apparatus 1 shown in FIG. 1 is an image forming apparatus generally called a tandem type.
  • the image forming apparatus 1 includes an image forming process unit 10 for forming an image according to image data of each color, an image output control unit 30 for controlling the image forming process unit 10, such as a personal computer (PC) 2 or an image reading apparatus 3 and an image processing unit 40 which performs predetermined image processing on image data received from these.
  • PC personal computer
  • the image forming process unit 10 includes image forming units 11Y, 11M, 11C, and 11K (in the case of no distinction, described as the image forming unit 11) arranged in parallel at predetermined intervals.
  • the image forming unit 11 includes a photosensitive drum 12 as an example of an image holder that forms an electrostatic latent image and holds a toner image, and an example of a charging unit that charges the surface of the photosensitive drum 12 at a predetermined potential. And a print head 14 for exposing the photosensitive drum 12 charged by the charger 13, and a developing unit 15 as an example of a developing unit for developing an electrostatic latent image obtained by the print head 14.
  • the image forming units 11Y, 11M, 11C, and 11K form toner images of yellow (Y), magenta (M), cyan (C), and black (K), respectively. Further, the image forming process unit 10 performs multiple transfer of the toner images of the respective colors formed on the photosensitive drums 12 of the respective image forming units 11Y, 11M, 11C, and 11K onto the recording sheet 25 as an example of the transfer target.
  • a fixing unit 24 for fixing the toner image on the recording sheet 25.
  • the image forming process unit 10 performs an image forming operation based on various control signals supplied from the image output control unit 30.
  • the image data received from the personal computer (PC) 2 or the image reading device 3 is subjected to image processing by the image processing unit 40 and supplied to the image forming unit 11 under the control of the image output control unit 30. Ru.
  • the photosensitive drum 12 is charged to a predetermined potential by the charger 13 while rotating in the direction of arrow A, and the image supplied from the image processing unit 40 It is exposed by the print head 14 which emits light based on the data. Thereby, an electrostatic latent image relating to a black (K) color image is formed on the photosensitive drum 12.
  • the electrostatic latent image formed on the photosensitive drum 12 is developed by the developing device 15, and a black (K) toner image is formed on the photosensitive drum 12. Also in the image forming units 11Y, 11M, and 11C, toner images of respective colors of yellow (Y), magenta (M), and cyan (C) are formed.
  • Each color toner image on the photosensitive drum 12 formed by each image forming unit 11 is applied to the transfer roll 23 to the recording sheet 25 supplied along with the movement of the sheet conveyance belt 21 moving in the arrow B direction.
  • electrostatic transfer is sequentially performed to form a composite toner image in which the toners of the respective colors are superimposed on the recording sheet 25.
  • the recording sheet 25 on which the composite toner image is electrostatically transferred is conveyed to the fixing device 24.
  • the composite toner image on the recording sheet 25 conveyed to the fixing unit 24 is subjected to a fixing process by heat and pressure by the fixing unit 24, fixed on the recording sheet 25, and discharged from the image forming apparatus 1.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the print head 14.
  • the print head 14 as an example of the exposure unit includes a light emitting unit 63 including a housing 61 and a plurality of light emitting elements for exposing the photosensitive drum 12 (in the first embodiment, the light emitting element is a laser diode LD).
  • a light emitting device 65 as an example of a unit, and a rod lens array 64 as an example of an optical unit for forming the light emitted from the light source unit 63 on the surface of the photosensitive drum 12 are provided.
  • the light emitting device 65 includes a circuit board 62 on which the light source unit 63 and the signal generation circuit 110 (see FIG. 3 described later) for driving the light source unit 63 described above are mounted.
  • the housing 61 is made of metal, for example, and supports the circuit board 62 and the rod lens array 64.
  • the light emitting surface of the light emitting element of the light source unit 63 is set to be the focal plane of the rod lens array 64.
  • the rod lens array 64 is disposed along the axial direction of the photosensitive drum 12 (main scanning direction, which is the X direction in (b) of FIG. 3 and FIG. 4 described later).
  • FIG. 3 is a top view of an example of the light emitting device 65.
  • the light source unit 63 is a light emitting chip C1 to C40 as an example of 40 light emitting components on the circuit board 62 (if not distinguished, it is described as a light emitting chip C).
  • the configurations of the light emitting chips C1 to C40 may be the same.
  • “to” refers to a plurality of components that are each distinguished by a number, and is meant to include those described before and after “to” and those between the numbers.
  • the light emitting chips C1 to C40 include the light emitting chips C1 to the light emitting chips C40 in numerical order.
  • the light emitting device 65 is mounted with a signal generating circuit 110 for driving the light source unit 63.
  • the signal generation circuit 110 is configured by, for example, an integrated circuit (IC).
  • the light emitting device 65 may not have the signal generation circuit 110 mounted thereon.
  • the signal generation circuit 110 is provided outside the light emitting device 65, and supplies a control signal or the like for controlling the light emitting chip C through a cable or the like.
  • the light emitting device 65 is described as including the signal generating circuit 110. Details of the arrangement of the light emitting chips C will be described later.
  • FIG. 4 is a view showing an example of the configuration of the light emitting chip C, the configuration of the signal generation circuit 110 of the light emitting device 65, and the configuration of the wirings (lines) on the circuit board 62.
  • FIG. 4A shows the configuration of the light emitting chip C
  • FIG. 4B shows the configuration of the signal generation circuit 110 of the light emitting device 65 and the configuration of the wiring (line) on the circuit board 62.
  • FIG. 4B of the light emitting chips C1 to C40, portions of the light emitting chips C1 to C9 are shown.
  • the light emitting chip C has a plurality of light emitting elements (laser diodes in the first embodiment) provided in a row along the long side on the side closer to one side of the long side on the surface of the substrate 80 whose surface shape is rectangular.
  • the light emitting unit 102 is configured to include the LD 1 to the LD 128 (in the case of no distinction, the laser diode is described as a laser diode).
  • the light emitting chip C has terminals ( ⁇ 1 terminal, ⁇ 2 terminal, Vga terminal, ⁇ I terminal) which are a plurality of bonding pads for capturing various control signals and the like at both ends in the long side direction of the surface of the substrate 80 Prepare. Note that these terminals are provided in the order of the ⁇ I terminal and the ⁇ 1 terminal from one end of the substrate 80, and in the order of the Vga terminal and the ⁇ 2 terminal from the other end of the substrate 80.
  • the light emitting unit 102 is provided between the ⁇ 1 terminal and the ⁇ 2 terminal.
  • a back surface electrode 91 (see FIG. 6 described later) is provided on the back surface of the substrate 80 as a Vsub terminal.
  • the laser diode LD is an example of a light emitting element (an element used for light emission).
  • each light emitting element may be disposed with a shift amount in a direction orthogonal to the column direction.
  • the light emitting elements may be alternately arranged between adjacent light emitting elements, or may be arranged in a zigzag manner for each of a plurality of light emitting elements.
  • the configuration of the signal generation circuit 110 of the light emitting device 65 and the configuration of the wirings (lines) on the circuit board 62 will be described with reference to FIG.
  • the signal generating circuit 110 and the light emitting chips C1 to C40 are mounted on the circuit board 62 of the light emitting device 65, and wirings (lines) for connecting the signal generating circuit 110 and the light emitting chips C1 to C40 are provided. ing.
  • the signal generation circuit 110 receives image data subjected to image processing and various control signals from the image output control unit 30 and the image processing unit 40 (see FIG. 1).
  • the signal generation circuit 110 rearranges the image data, corrects the light amount, and the like based on the image data and various control signals.
  • the signal generation circuit 110 includes a transfer signal generation unit 120 that transmits the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 to the light emitting chips C1 to C40 based on various control signals. Furthermore, the signal generation circuit 110 transmits a lighting signal generation unit to the lighting chips ⁇ 1 to ⁇ 40 (if not distinguished, the lighting signal ⁇ 1 is written) to the light emitting chips C1 to C40 based on various control signals.
  • the signal generation circuit 110 supplies a reference potential supply unit 160 for supplying a reference potential Vsub serving as a potential reference to the light emitting chips C1 to C40, and a power supply potential for supplying a power supply potential Vga for driving the light emitting chips C1 to C40.
  • the supply unit 170 is provided.
  • the reference potential Vsub and the power supply potential Vga do not necessarily have to be fixed values, and may fluctuate within the range where the light emitting chip C performs an operation described later. The same applies to the first transfer signal ⁇ 1, the second transfer signal ⁇ 2, and the lighting signals ⁇ I1 to ⁇ I40.
  • the light emitting chips C1, C3, C5,... Of odd numbers are arranged in a line at intervals in the long side direction of the respective substrates 80.
  • the even-numbered light emitting chips C2, C4, C6,... are similarly arranged in a line at intervals in the long side direction of the respective substrates 80.
  • the odd numbered light emitting chips C1, C3, C5,... And the even numbered light emitting chips C2, C4, C6,... are mutually different so that the long sides on the light emitting portion 102 side provided in the light emitting chip C face each other. They are arranged in a staggered manner while rotating 180 °.
  • the positions are set so that the laser diodes LD are arranged at predetermined intervals in the main scanning direction (X direction) also between the light emitting chips C.
  • the direction of the array of laser diodes LD shown in (a) of FIG. 4 is indicated by arrows.
  • the circuit substrate 62 is connected from the reference potential supply unit 160 of the signal generation circuit 110 to the back surface electrode 91 (see FIG. 6 described later) which is a Vsub terminal provided on the back surface of the substrate 80 of the light emitting chip C.
  • a power supply line 200a for supplying Vsub is provided.
  • the circuit board 62 is provided with a power supply line 200 b which is connected to the Vga terminal provided on the light emitting chip C from the power supply potential supply unit 170 of the signal generation circuit 110 and supplies the power supply potential Vga for driving. There is.
  • the first transfer signal line 201 for transmitting the first transfer signal ⁇ 1 to the ⁇ 1 terminals of the light emitting chips C1 to C40 from the transfer signal generating unit 120 of the signal generating circuit 110 on the circuit board 62, and the light emitting chips C1 to C40.
  • a second transfer signal line 202 for transmitting a second transfer signal ⁇ 2 to the ⁇ 2 terminal is provided.
  • the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 are transmitted to the light emitting chips C1 to C40 in common (in parallel).
  • the lighting signal generating unit 140 of the signal generating circuit 110 transmits the lighting signals ⁇ I1 to ⁇ I40 to the respective ⁇ I terminals of the light emitting chips C1 to C40 via the current limiting resistors RI.
  • Lighting signal lines 204-1 to 204-40 (if not distinguished, they are denoted as lighting signal lines 204) are provided.
  • the reference potential Vsub and the power supply potential Vga are commonly supplied to all the light emitting chips C1 to C40 on the circuit board 62.
  • the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 are also transmitted to the light emitting chips C1 to C40 in common (in parallel).
  • the lighting signals ⁇ I1 to ⁇ I40 are individually transmitted to the light emitting chips C1 to C40.
  • FIG. 5 is an equivalent circuit diagram for explaining the circuit configuration of the light emitting chip C on which the self-scanning light emitting element array (SLED: Self-Scanning Light Emitting Device) according to the first embodiment is mounted.
  • SLED Self-Scanning Light Emitting Device
  • the elements described below are arranged based on the layout on the light emitting chip C (see FIG. 6 described later) except for the terminals ( ⁇ 1 terminal, ⁇ 2 terminal, Vga terminal, ⁇ I terminal).
  • the positions of the terminals ( ⁇ 1 terminal, ⁇ 2 terminal, Vga terminal, ⁇ I terminal) are different from those in FIG. 4A, but are shown at the left end in the figure for the explanation of the connection with the signal generating circuit 110. There is.
  • the Vsub terminal provided on the back surface of the substrate 80 is shown drawn out of the substrate 80.
  • the light emitting chip C will be described taking the light emitting chip C1 as an example in relation to the signal generating circuit 110. Therefore, in FIG. 5, the light emitting chip C is referred to as a light emitting chip C1 (C).
  • the configuration of the other light emitting chips C2 to C40 is the same as that of the light emitting chip C1.
  • the light emitting chip C1 (C) includes the light emitting unit 102 (see (a) in FIG. 4) configured by the laser diodes LD1 to LD128.
  • the light emitting chip C1 (C) includes setting thyristors S1 to S128 (in the case of not being distinguished, it is described as a setting thyristor S).
  • the laser diode LD of the same number and the setting thyristor S are connected in series.
  • the cathode of the laser diode LD and the anode of the setting thyristor S are connected.
  • the setting thyristors S are stacked on the laser diodes LD arranged in a line on the substrate 80.
  • the setting thyristors S1 to S128 are also arranged in a row.
  • the setting thyristor S emits light or increases the light emission amount of the laser diode LD by being turned on as described later. That is, the setting thyristor S sets the laser diode LD in a light emitting state or a light emitting amount increasing state. Therefore, it is described as a setting thyristor S. In addition, a current is supplied to the laser diode LD via the setting thyristor S.
  • the light emitting element (laser diode LD, light emitting diode LED and vertical cavity surface emitting laser VCSEL in other embodiments to be described later, etc.) is an element (two-terminal element) having rectifying characteristics
  • the setting thyristor S is It is an element for controlling an element having a rectifying characteristic.
  • the set thyristor S may be described as a thyristor.
  • transfer thyristors T1 to T128 (in the case of no distinction, they are referred to as transfer thyristors T) arranged in a row like the laser diodes LD1 to LD128 and setting thyristors S1 to S128.
  • the light emitting chip C1 (C) is provided with lower diodes UD1 to UD128 (in the case of not being distinguished, they are described as lower diodes UD) having the same structure as the laser diodes LD1 to LD128.
  • the transfer thyristor T is described as an example of the transfer element, another circuit element may be used as long as the element is turned on in order.
  • a circuit combining a shift register or a plurality of transistors An element may be used.
  • the light emitting chip C1 (C) two transfer thyristors T1 to T128 are paired in numerical order, and coupling diodes D1 to D127 (referred to as coupling diodes D if not distinguished) between the respective pairs. ).
  • the light emitting chip C1 (C) includes power supply line resistances Rg1 to Rg128 (when not distinguished, it is described as a power supply line resistance Rg).
  • the light emitting chip C1 (C) includes one start diode SD. Then, it is provided to prevent an excessive current from flowing in a first transfer signal line 72 to which a first transfer signal ⁇ 1 described later is transmitted and a second transfer signal line 73 to which a second transfer signal ⁇ 2 is transmitted.
  • the drive unit 101 includes the setting thyristors S1 to S128, the transfer thyristors T1 to T128, the lower diodes UD1 to UD128, the power supply line resistances Rg1 to Rg128, the coupling diodes D1 to D127, the start diode SD, and the current limiting resistances R1 and R2. Be done.
  • the setting thyristor S and the transfer thyristor T in the drive unit 101 will be described as a drive element, and the setting thyristor S and the transfer thyristor T in the drive unit 101 will be described as driving the light emitting unit 102. Then, the drive unit 101 describes a characteristic related to driving of the light emitting unit 102 as a drive characteristic, and a characteristic related to light emission of the light emitting unit 102 as a light emission characteristic.
  • the laser diodes LD1 to LD128 of the light emitting unit 102, the setting thyristors S1 to S128, the transfer thyristors T1 to T128, and the lower diodes UD1 to UD128 of the driving unit 101 are arranged in numerical order from the left in FIG. Further, the coupling diodes D1 to D127 and the power supply line resistances Rg1 to Rg128 are also arranged in numerical order from the left side in the drawing.
  • the light emitting chip C includes a power supply line 71 to which the power supply potential Vga is supplied, a first transfer signal line 72 to which the first transfer signal ⁇ 1 is supplied, and a second transfer signal line 73 to which the second transfer signal ⁇ 2 is supplied.
  • a lighting signal line 75 for supplying a current for lighting the laser diode LD is provided.
  • the number of laser diodes LD in the light emitting unit 102, setting thyristors S in the driving unit 101, transfer thyristors T, lower diodes UD, and power supply line resistances Rg are 128, respectively.
  • the number of coupling diodes D is 127, which is one less than the number of transfer thyristors T.
  • the number of laser diodes LD and the like is not limited to the above, and may be a predetermined number.
  • the number of transfer thyristors T may be larger than the number of laser diodes LD.
  • the diode (laser diode LD, lower diode UD, coupling diode D, start diode SD) is a two-terminal semiconductor device including an anode terminal (anode) and a cathode terminal (cathode), thyristors (setting thyristor S, transfer thyristor T) Is a semiconductor device having three terminals of an anode terminal (anode), a gate terminal (gate), and a cathode terminal (cathode).
  • the diodes (laser diode LD, lower diode UD, coupling diode D, start diode SD) and thyristors (setting thyristor S, transfer thyristor T) are an anode terminal configured as an electrode, a gate terminal, a cathode In some cases, the terminal may not be provided. Therefore, in the following, a terminal may be abbreviated and described in ().
  • the respective anodes of the laser diode LD and the lower diode UD are connected to the substrate 80 of the light emitting chip C1 (C) (anode common). These anodes are connected to the power supply line 200a (see (b) in FIG. 4) via the back electrode 91 (see (b) in FIG. 6 described later) which is a Vsub terminal provided on the back of the substrate 80. .
  • the power supply line 200 a is supplied with the reference potential Vsub from the reference potential supply unit 160.
  • this connection is a configuration when using a p-type substrate 80, and when using an n-type substrate, the polarity is reversed, and when using an intrinsic (i) -type substrate to which no impurity is added.
  • a terminal connected to the power supply line 200a for supplying the reference potential Vsub is provided on the side where the driving unit 101 and the light emitting unit 102 of the substrate are provided.
  • the cathodes of the laser diodes LD are connected to the anodes of the setting thyristors S. Further, the cathode of each lower diode UD is connected to the anode of the transfer thyristor T. That is, the laser diode LD and the setting thyristor S are connected in series. Similarly, the lower diode UD and the transfer thyristor T are also connected in series.
  • the cathodes of the setting thyristors S are connected to the lighting signal line 75.
  • the lighting signal line 75 is connected to the ⁇ I terminal.
  • the ⁇ I terminal is connected to the lighting signal line 204-1 via the current limiting resistor RI provided outside the light emitting chip C1 (C), and the lighting signal ⁇ I1 is transmitted from the lighting signal generation unit 140 (See (b) in FIG. 4).
  • the lighting signal ⁇ I1 supplies a current for lighting to the laser diodes LD1 to LD128.
  • the lighting signal lines 204-2 to 204-40 are connected to the ⁇ I terminals of the other light emitting chips C2 to C40 through the current limiting resistors RI, respectively, and the lighting signals ⁇ I2 to ⁇ I40 are transmitted from the lighting signal generation unit 140. (See FIG. 4 (b)).
  • the cathodes of the odd-numbered transfer thyristors T 1, T 3,... are connected to the first transfer signal line 72 along the arrangement of the transfer thyristors T.
  • the first transfer signal line 72 is connected to the ⁇ 1 terminal through the current limiting resistor R1.
  • the first transfer signal line 201 (see (b) in FIG. 4) is connected to the ⁇ 1 terminal, and the first transfer signal ⁇ 1 is transmitted from the transfer signal generation unit 120.
  • the cathodes of the even-numbered transfer thyristors T 2, T 4,... are connected to the second transfer signal line 73.
  • the second transfer signal line 73 is connected to the ⁇ 2 terminal through the current limiting resistor R2.
  • the second transfer signal line 202 (see (b) in FIG. 4) is connected to the ⁇ 2 terminal, and the second transfer signal ⁇ 2 is transmitted from the transfer signal generation unit 120.
  • the gates Gt1 to Gt128 of each of the transfer thyristors T1 to T128 are denoted as the gates Gs1 to Gs128 (in the case of no distinction, the gate Gs) of the setting thyristors S1 to S128 of the same number. ) Are connected one-on-one. Therefore, the gates Gt1 to Gt128 and the gates Gs1 to Gs128 have the same numbers and are electrically at the same potential. Therefore, for example, the gate Gt1 (gate Gs1) indicates that the potential is the same.
  • Coupling diodes D1 to D127 are respectively connected between the gates Gt in which the gates Gt1 to Gt128 of the transfer thyristors T1 to T128 are paired in order of number. That is, the coupling diodes D1 to D127 are connected in series so as to be respectively sandwiched between the gates Gt1 to Gt128. The direction of the coupling diode D1 is connected in the direction in which current flows from the gate Gt1 to the gate Gt2. The same applies to the other coupling diodes D2 to D127.
  • the gates Gt of the transfer thyristors T are connected to the power supply line 71 via power supply line resistances Rg provided corresponding to the respective transfer thyristors T.
  • the power supply line 71 is connected to the Vga terminal.
  • the power supply line 200 b (see FIG. 4B) is connected to the Vga terminal, and the power supply potential Vga is supplied from the power supply potential supply unit 170. Since the gate Gs of the setting thyristor S is connected to the gate Gt of the transfer thyristor T, the gate Gs of the setting thyristor S is also connected to the power supply line 71 via the power supply line resistance Rg.
  • the gate Gt1 of the transfer thyristor T1 is connected to the cathode of the start diode SD.
  • the anode of the start diode SD is connected to the second transfer signal line 73.
  • FIG. 6 is an example of a plan layout view and a cross sectional view of the light emitting chip C according to the first embodiment.
  • 6 (a) is a plan layout view of the light emitting chip C
  • FIG. 6 (b) is a cross-sectional view taken along the line VIB-VIB of FIG. 6 (a).
  • the connection relationship between the light emitting chip C and the signal generation circuit 110 is not shown, it is not necessary to take the light emitting chip C1 as an example. Therefore, the light emitting chip C is described.
  • FIG. 6A shows portions centered on the laser diodes LD1 to LD4, the setting thyristors S1 to S4, the transfer thyristors T1 to T4, and the lower diodes UD1 to UD4.
  • the positions of the terminals ( ⁇ 1 terminal, ⁇ 2 terminal, Vga terminal, ⁇ I terminal) are different from those in (a) of FIG. 4, but are shown at the left end in the drawing for the convenience of description.
  • the Vsub terminal (back electrode 91) provided on the back surface of the substrate 80 is drawn out of the substrate 80 and shown. Assuming that the terminals are provided corresponding to FIG. 4A, the ⁇ 2 terminal, the ⁇ I terminal, and the current limiting resistor R2 are provided at the right end of the substrate 80.
  • the start diode SD may be provided at the right end of the substrate 80. And in (a) of FIG. 6, the direction from which the light of laser diode LD radiate
  • FIG. 6B which is a cross-sectional view taken along the line VIB-VIB in FIG. 6A
  • the setting thyristor S1 / laser diode LD1, transfer thyristor T1 / lower diode UD1, coupling diode D1, power supply Line resistance Rg1 is shown.
  • the setting thyristor S1 is stacked on the laser diode LD1.
  • the transfer thyristor T1 is stacked on the lower diode UD1.
  • the main elements and terminals are described by names.
  • the direction of the arrangement of the laser diodes LD is the x direction
  • the direction orthogonal to the x direction is the y direction
  • the direction from the back surface to the front surface of the substrate 80 is taken as the z direction.
  • the direction along the xy plane may be referred to as the lateral direction, the z direction as the upper side, and the ⁇ z direction as the lower side.
  • a laser diode LD On a p-type substrate 80 (substrate 80), a laser diode LD, a p-type anode layer 81 (p-anode layer 81) constituting a lower diode UD, a light emitting layer 82, and an n-type cathode layer 83 (n cathode layer 83) ) Is provided.
  • a tunnel junction (tunnel diode) layer 84 (tunnel junction layer 84) is provided on the n cathode layer 83.
  • the notation in () is used. The same applies to the other cases.
  • the light emitting chip C is provided with the protective layer 90 comprised with the insulating material provided so that the surface and side surface of these islands might be covered.
  • the surface from which the light of the laser diode LD is emitted is, for example, a cleavage surface.
  • the protective layer 90 is not provided on the surface from which the light of the laser diode LD is emitted.
  • the protective layer 90 is transparent to the light emitted by the laser diode LD. Good to have.
  • a back surface electrode 91 to be a Vsub terminal is provided on the back surface of the substrate 80.
  • the p anode layer 81, the light emitting layer 82, the n cathode layer 83, the tunnel junction layer 84, the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88 are semiconductor layers, respectively. Monolithically stacked. Then, the semiconductor layer between the islands is removed by etching (mesa etching) so as to be a plurality of islands (islands 301, 302, 303,... Described later) separated from each other. In addition, the p anode layer 81 may double as the substrate 80.
  • the notation of the p anode layer 81 and the n cathode layer 83 corresponds to the function (function) in the case of forming the laser diode LD and the lower diode UD. That is, the p anode layer 81 functions as an anode, and the n cathode layer 83 functions as a cathode. In the laser diode LD, each of the p anode layer 81 and the n cathode layer 83 functions as a cladding. Therefore, it may be described as the p anode (cladding) layer 81 and the n cathode (cladding) layer 83.
  • the notations of the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88 correspond to the functions (functions) in the case of configuring the setting thyristor S and the transfer thyristor T. That is, the p anode layer 85 functions as an anode, the n gate layer 86, the p gate layer 87 functions as a gate, and the n cathode layer 88 functions as a cathode.
  • the coupling diode D and the power supply line resistance Rg are formed, they have different functions as described later.
  • the plurality of islands are p anode layer 81, light emitting layer 82, n cathode layer 83, tunnel junction layer 84, p anode layer 85, n gate layer 86, p gate layer 87, n cathode layer 88.
  • the island 301 does not include a portion of the n cathode layer 88.
  • the island 301 is provided with a laser diode LD1 and a setting thyristor S1.
  • the island 302 is provided with a lower diode UD1, a transfer thyristor T1 and a coupling diode D1.
  • the island 303 is provided with a power supply line resistance Rg1.
  • the island 304 is provided with a start diode SD.
  • the island 305 is provided with a current limiting resistor R1 and the island 306 is provided with a current limiting resistor R2.
  • a plurality of islands similar to the islands 301, 302, and 303 are formed in parallel.
  • These islands include laser diodes LD2, LD3, LD4,..., Setting thyristors S2, S3, S4,..., Transfer thyristors T2, T3, T4,. D 3, D 4,... are provided in the same manner as the islands 301, 302, 303.
  • the laser diode LD1 provided on the island 301 is composed of ap anode layer 81, a light emitting layer 82, and an n cathode layer 83.
  • the setting thyristor S1 includes a p-anode layer 85, an n-gate layer 86, a p-gate layer 87, and an n-cathode layer 88 stacked via a tunnel junction layer 84 stacked on the n cathode layer 83 of the laser diode LD1. ing.
  • the n-type ohmic electrode 321 (n ohmic electrode 321) provided on the n cathode layer 88 (region 311) is used as a cathode electrode.
  • the p-type ohmic electrode 331 (p ohmic electrode 331) provided on the p gate layer 87 exposed by removing the n cathode layer 88 may be described as an electrode of the gate Gs1 (gate terminal Gs1). And).
  • the p-anode layer 81 includes a current confinement layer 81 b (see FIG. 7 described later).
  • the current confinement layer 81 b is provided to limit (current confinement) the current flowing through the laser diode LD to the central portion of the laser diode LD. That is, the peripheral portion of the laser diode LD has many defects due to the mesa etching. Therefore, non-radiative recombination is likely to occur. Therefore, the current narrowing layer 81b is provided such that the central portion of the laser diode LD becomes a current passing portion ⁇ where current easily flows and the peripheral portion becomes a current blocking portion ⁇ where current hardly flows. As shown in the laser diode LD1 of FIG. 6A, the inside of the broken line is the current passing portion ⁇ , and the outside of the broken line is the current blocking portion ⁇ .
  • the light emitting surface (end surface) from which the light indicated by the arrow of the laser diode LD is emitted is a cleavage surface so as to remove the current blocking portion ⁇ .
  • the surface from which the light of the laser diode LD is emitted may be formed by etching, and when the loss is small, it is not necessary to remove the portion of the current blocking portion ⁇ .
  • the light extraction efficiency is the amount of light that can be extracted per power.
  • the current blocking portion ⁇ When the current blocking portion ⁇ is formed by oxidation as described later, a region equidistant from the periphery of the island 301 is the current blocking portion ⁇ , but in FIG. 6A, the current blocking portion ⁇ is schematically illustrated. And are not equidistant from the perimeter of the island 301. That is, the width of the current blocking portion ⁇ in the y direction of the island 301 in (a) of FIG. 6 is different from the width of the current blocking portion ⁇ in the ⁇ x direction.
  • the current confinement layer 81b will be described later.
  • the lower diode UD1 provided in the island 302 is composed of ap anode layer 81, a light emitting layer 82, and an n cathode layer 83.
  • the transfer thyristor T ⁇ b> 1 includes ap anode layer 85, an n gate layer 86, ap gate layer 87, and an n cathode layer 88. Then, the n ohmic electrode 323 provided on the n cathode layer 88 (region 313) is used as a cathode terminal.
  • the p ohmic electrode 332 provided on the p gate layer 87 exposed by removing the n cathode layer 88 is a terminal of the gate Gt1 (sometimes referred to as a gate terminal Gt1).
  • the coupling diode D1 provided in the island 302 is composed of ap gate layer 87 and an n cathode layer 88.
  • the n ohmic electrode 324 provided on the n cathode layer 88 (region 314) is used as a cathode terminal.
  • the p ohmic electrode 332 provided on the p gate layer 87 exposed by removing the n cathode layer 88 is used as an anode terminal.
  • the coupling diode D1 uses the p gate layer 87 as an anode and the n cathode layer 88 as a cathode.
  • the p-ohmic electrode 332 which is the anode terminal of the coupling diode D1 is the same as the gate Gt1 (gate terminal Gt1).
  • the power supply line resistance Rg1 provided in the island 303 is formed of the p gate layer 87. That is, the power supply line resistance Rg1 uses the p gate layer 87 between the p ohmic electrode 333 and the p ohmic electrode 334 provided on the p gate layer 87 exposed by removing the n cathode layer 88 as a resistance.
  • the start diode SD provided in the island 304 is composed of ap gate layer 87 and an n cathode layer 88. That is, the start diode SD uses the n ohmic electrode 325 provided on the n cathode layer 88 (region 315) as a cathode terminal. Furthermore, the p ohmic electrode 335 provided on the p gate layer 87 exposed by removing the n cathode layer 88 is used as an anode terminal. That is, the start diode SD uses the p gate layer 87 as an anode and the n cathode layer 88 as a cathode.
  • the current limiting resistor R1 provided in the island 305 and the current limiting resistor R2 provided in the island 306 are provided in the same manner as the power supply line resistance Rg1 provided in the island 303, and each has two p ohmic electrodes ) Between the p-gate layers 87).
  • the lighting signal line 75 includes a trunk 75a and a plurality of branches 75b.
  • the trunk 75a is provided to extend in the column direction of the setting thyristor S / laser diode LD.
  • the branch 75 b branches from the trunk 75 a and is connected to an n-ohmic electrode 321 which is a cathode terminal of the setting thyristor S 1 provided on the island 301.
  • the cathode terminals of the other setting thyristors S are similarly connected to the lighting signal line 75.
  • the lighting signal line 75 is connected to the ⁇ I terminal.
  • the first transfer signal line 72 is connected to an n-ohmic electrode 323 which is a cathode terminal of the transfer thyristor T ⁇ b> 1 provided in the island 302.
  • the cathode terminals of other odd-numbered transfer thyristors T provided on the same island as the island 302 are connected to the first transfer signal line 72.
  • the first transfer signal line 72 is connected to the ⁇ 1 terminal through the current limiting resistor R1 provided in the island 305.
  • the second transfer signal line 73 is connected to an n-ohmic electrode (no reference numeral) which is a cathode terminal of the even-numbered transfer thyristors T provided on the island to which the reference numeral is not attached.
  • the second transfer signal line 73 is connected to the ⁇ 2 terminal through the current limiting resistor R2 provided in the island 306.
  • the power supply line 71 is connected to a p-ohmic electrode 334 which is one terminal of the power supply line resistance Rg1 provided on the island 303. One terminal of the other power supply line resistance Rg is also connected to the power supply line 71.
  • the power supply line 71 is connected to the Vga terminal.
  • the p ohmic electrode 331 (gate terminal Gs1) of the setting thyristor S1 provided in the island 301 is connected to the p ohmic electrode 332 which is the gate terminal Gt1 of the transfer thyristor T1 provided in the island 302 by the connection wiring 76. There is.
  • the p ohmic electrode 332 which is the gate terminal Gt1 of the transfer thyristor T1 provided in the island 302 is connected to the p ohmic electrode 333 which is the other terminal of the power supply line resistance Rg1 provided in the island 303 by the connection wiring 77. ing.
  • An n-ohmic electrode 324 which is a cathode terminal of the coupling diode D1 provided in the island 302 is connected to a p-type ohmic electrode (without a reference numeral) which is a gate terminal Gt2 of the adjacent transfer thyristor T2 by a connection wiring 79.
  • the p ohmic electrode 332 which is the gate terminal Gt1 of the transfer thyristor T1 provided in the island 302 is connected to the n ohmic electrode 325 which is the cathode terminal of the start diode SD provided in the island 304 by the connection wiring 78.
  • a p-ohmic electrode 335 which is an anode terminal of the start diode SD is connected to the second transfer signal line 73.
  • a terminal connected to the power supply line 200a for supplying the reference potential Vsub is provided on the side of the substrate where the driver portion 101 and the light emitting portion 102 are provided.
  • the connection and configuration are the same as either of the cases of using an n-type substrate when using a p-type substrate.
  • the island 301 provided with the laser diode LD1 and the setting thyristor S1 the island 302 provided with the transfer thyristor T and the like, and the power supply line resistance Rg1 are provided.
  • the laser diode LD1 is composed of ap anode layer 81 acting as a cladding layer, a light emitting layer 82, and an n cathode layer 83 acting as a cladding layer. Therefore, the p anode layer 81 is referred to as the p anode (cladding) layer 81 and the n cathode (cladding) layer 83, and in FIG. 7, the p anode (cladding) layer 81 is p (cladding) and n cathode (cladding) layer 83 Is denoted by n (cladding).
  • the p anode (cladding) layer 81 is configured to include a current confinement layer 81 b. That is, the p-anode (cladding) layer 81 is composed of a lower p-anode (cladding) layer 81a, a current confinement layer 81b, and an upper p-anode (cladding) layer 81c.
  • the light emitting layer 82 is a quantum well structure in which well layers and barrier layers are alternately stacked.
  • the light emitting layer 82 may be an intrinsic (i) layer to which no impurity is added.
  • the light emitting layer 82 may have a structure other than the quantum well structure, and may be, for example, a quantum wire (quantum wire) or a quantum box (quantum dot).
  • the light emitted from the light emitting layer 82 is confined between the p anode (cladding) layer 81 and the n cathode (cladding) layer 83, the p anode ( A cladding layer 81, an n cathode (cladding) layer 83, and a light emitting layer 82 are set.
  • light is emitted parallel to the substrate 80 with the side surface (end surface) of the light emitting layer 82 as a light emission surface, as shown by the arrow.
  • Tunnel junction layer 84 is n-type impurity (dopant) is constituted by a n ++ layer 84a was added at a high concentration (dope) was added p-type impurity at a high concentration and p ++ layer 84b.
  • the setting thyristor S ⁇ b> 1 includes ap anode layer 85, an n gate layer 86, ap gate layer 87, and an n cathode layer 88.
  • the p anode layer 85 is described as a p anode or p
  • the n gate layer 86 as an n gate or n
  • the p gate layer 87 as a p gate or p
  • an n cathode layer 88 as an n cathode or n.
  • the lower diode UD1 and the transfer thyristor T1 provided in the island 302 have the same configuration as the laser diode LD1 and the setting thyristor S1.
  • FIG. 8 is a diagram further illustrating the laminated structure of the laser diode LD and the setting thyristor S.
  • FIG. 8A is a schematic energy band diagram in the laminated structure of the laser diode LD and the setting thyristor S.
  • FIG. 8B is an energy band diagram in the reverse bias state of the tunnel junction layer 84.
  • C shows the current-voltage characteristic of the tunnel junction layer 84.
  • the energy band diagram of FIG. 8A when a voltage is applied between the n ohmic electrode 321 and the back surface electrode 91 of FIG. 7 so that the laser diode LD and the setting thyristor S are forward biased.
  • Tunnel junction layer 84 is bonded to the n ++ layer 84a doped with an n-type impurity at a high concentration, the p ++ layer 84b doped with the p-type impurity at a high concentration. Therefore, when the width of the depletion region is narrow and forward biased, electrons tunnel from the conduction band (conduction band) on the n ++ layer 84 a side to the valence band (valence band) on the p ++ layer 84 b side. At this time, negative resistance characteristics appear. On the other hand, as shown in FIG.
  • the relationship between the lower diode UD and the transfer thyristor T is the same as the relationship between the laser diode LD and the setting thyristor S.
  • light emission from the lower diode UD is not used. Therefore, when light emitted from the lower diode UD may be leaked light, it is preferable to reduce the size of the lower diode UD or to shield the light with a material forming the wiring.
  • a thyristor is a semiconductor device having three terminals of an anode terminal (anode), a cathode terminal (cathode), and a gate terminal (gate).
  • anode layer 85, p gate layer 87), and n type semiconductor layers are stacked on the substrate 80. That is, the thyristor has a pnpn structure.
  • the forward potential (diffusion potential) Vd of the pn junction formed of the p-type semiconductor layer and the n-type semiconductor layer will be described as 1.5 V as an example.
  • the reference potential Vsub supplied to the back surface electrode 91 which is a Vsub terminal is 0 V as a high level potential (hereinafter referred to as “H”).
  • the supplied power supply potential Vga will be described as -5 V as a low level potential (hereinafter referred to as "L”).
  • the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 are signals having “H” (0 V) and “L” ( ⁇ 5 V).
  • the lighting signal ⁇ I is a signal having “H” (0 V) and “L” ( ⁇ 5 V). In the following, it may be described as “H” (0 V) and “L” (-5 V), and may be abbreviated as “H” and "L”.
  • the operation of the thyristor alone will be described.
  • the anode of the thyristor is 0V.
  • the threshold voltage of the thyristor is a value obtained by subtracting the forward potential Vd (1.5 V) of the pn junction from the potential of the gate.
  • Vd 1.5 V
  • the cathode of the thyristor in the on state has a potential close to the potential obtained by subtracting the forward potential Vd (1.5 V) of the pn junction from the potential of the anode.
  • the cathode of the thyristor in the on state has a potential close to -1.5 V (a negative potential greater than 1.5 V in absolute value).
  • the potential of the cathode is set in relation to a power supply that supplies a current to the thyristor in the on state.
  • the thyristor in the on state has a potential (negative potential with a small absolute value, 0 V or positive potential) higher than the potential required to maintain the on state (potential close to -1.5 V above) , Transition to the off state (turn off).
  • a potential lower than the potential required to maintain the on state (a negative potential equal to or greater than the absolute value) is continuously applied to the cathode of the on-state thyristor to maintain the on-state When the current is supplied, the thyristor maintains the on state.
  • the laser diode LD and the setting thyristor S are stacked and connected in series.
  • the operations of the laser diode LD and the setting thyristor S connected in series will be described using the laser diode LD1 and the setting thyristor S1 of the light emitting chip C1 (C) shown in FIGS. 5 and 7.
  • a reference potential Vsub (“H” (0 V))
  • a potential of lighting signal ⁇ I1 (“H” (0 V) or "L” (-5 V)
  • Ru the potential of the lighting signal ⁇ I1 is divided into the laser diode LD1 and the setting thyristor S1.
  • the voltage applied to the laser diode LD1 is -1.7 V, for example.
  • -3.3 V is applied to the setting thyristor S1.
  • the threshold voltage of the setting thyristor S1 in the off state is -3.3 V or less (in the absolute value, the above negative voltage)
  • the setting thyristor S1 is turned on. Then, current flows through the laser diode LD1 and the setting thyristor S1 connected in series, and the laser diode LD1 is lighted (emitted).
  • the threshold voltage of the setting thyristor S1 is larger than -3.3 V (at a negative voltage less than the absolute value)
  • the setting thyristor S1 is not turned on and is maintained in the off state. Therefore, the laser diode LD1 also maintains non-lighting (non-emission).
  • the voltage applied to the laser diode LD1 and the setting thyristor S1 connected in series decreases at an absolute value.
  • the voltage applied to the setting thyristor S1 is a voltage that maintains the on state of the setting thyristor S1
  • the setting thyristor S1 maintains the on state.
  • the laser diode LD1 also continues lighting (emission). The same applies to the other laser diodes LD and the setting thyristors S.
  • the voltage shown above is an example, and changes according to the characteristics of the setting thyristor S, the transfer thyristor T, and / or the light emission wavelength or the light amount of the laser diode LD. In that case, "L" may be adjusted.
  • the thyristors are made of a semiconductor such as GaAs, they may emit light between the n gate layer 86 and the p gate layer 87 in the on state.
  • the amount of light emitted from the thyristor is determined by the area of the cathode and the current flowing between the cathode and the anode.
  • Unwanted light when light emission from a thyristor is not used, for example, the area of the cathode is reduced, or an electrode (an n ohmic electrode 321 in the setting thyristor S1 or an n ohmic electrode 323 in the transfer thyristor T1) or a material forming a wiring Unwanted light may be suppressed by shielding the light by light.
  • FIG. 9 is a timing chart for explaining the operation of the light emitting device 65 and the light emitting chip C.
  • FIG. 9 shows a timing chart of a portion for controlling (referred to as lighting control) the lighting (emission) or non-lighting (non-emission) of the five laser diodes LD of the laser chips LD1 to LD5 of the light emitting chip C1.
  • lighting control the lighting (emission) or non-lighting (non-emission) of the five laser diodes LD of the laser chips LD1 to LD5 of the light emitting chip C1.
  • the laser diodes LD1, LD2, LD3 and LD5 of the light emitting chip C1 are turned on, and the laser diode LD4 is turned off.
  • the laser diode LD1 is turned on in the period T (1)
  • the laser diode LD2 is turned on in the period T (2)
  • the laser diode LD3 is turned on in the period T (3)
  • the laser diode LD4 is turned on or off in the period T (4).
  • Lighting control (lighting control) is performed.
  • the laser diode LD of which the number is 5 or more is controlled to be lit in the same manner.
  • the periods T (1), T (2), T (3),... Have the same length, and are referred to as the period T when they are not distinguished from one another.
  • the first transfer signal ⁇ 1 transmitted to the ⁇ 1 terminal (see FIGS. 5 and 6) and the second transfer signal ⁇ 2 transmitted to the ⁇ 2 terminal (see FIGS. 5 and 6) are “H” (0 V) and “L” Signal ( ⁇ 5 V).
  • the waveforms of the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 are repeated in units of two consecutive periods T (for example, period T (1) and period T (2)).
  • the first transfer signal ⁇ 1 shifts from “H” (0 V) to “L” ( ⁇ 5 V) at the start time b of the period T (1), and shifts from “L” to “H” at time f. Then, at the end time i of the period T (2), the state transitions from “H” to “L”.
  • the second transfer signal ⁇ 2 is “H” (0 V) at the start time b of the period T (1), and shifts from “H” (0 V) to “L” ( ⁇ 5 V) at time e. Then, the transition from “L” to “H” is made at the end time i of the period T (2).
  • the second transfer signal ⁇ 2 corresponds to the first transfer signal ⁇ 1 shifted behind the period T on the time axis.
  • the waveform indicated by the broken line and the waveform in the period T (2) in the period T (1) are repeated after the period T (3).
  • the waveform of the period T (1) of the second transfer signal ⁇ 2 is different from that of the period T (3) or later, because the period T (1) is a period in which the light emitting device 65 starts operation.
  • the pair of transfer signals of the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 is the same as the transfer thyristor T in the on state by transferring (propagating) the on state of the transfer thyristor T in order of numbers as described later.
  • the laser diode LD of the number is designated as a target of lighting (emission) or non-lighting (non-emission) control (lighting control).
  • the lighting signal ⁇ I1 transmitted to the ⁇ I terminal of the light emitting chip C1 will be described.
  • the lighting signals ⁇ I2 to ⁇ I40 are transmitted to the other light emitting chips C2 to C40, respectively.
  • the lighting signal ⁇ I1 is a signal having two potentials of “H” (0 V) and “L” ( ⁇ 5 V).
  • the lighting signal ⁇ I1 will be described in a period T (1) of lighting control of the laser diode LD1 of the light emitting chip C1.
  • the lighting signal ⁇ I1 is “H” (0 V) at the start time b of the period T (1), and shifts from “H” (0 V) to “L” ( ⁇ 5 V) at time c. Then, it shifts from “L” to "H” at time d, and maintains "H” at time e.
  • the reference potential supply unit 160 of the signal generation circuit 110 of the light emitting device 65 sets the reference potential Vsub to “H” (0 V).
  • Power supply potential supply unit 170 sets power supply potential Vga to “L” ( ⁇ 5 V).
  • the power supply line 200a on the circuit board 62 of the light emitting device 65 becomes "H" (0 V) of the reference potential Vsub, and each Vsub terminal of the light emitting chips C1 to C40 becomes “H”.
  • the power supply line 200b becomes "L” (-5 V) of the power supply potential Vga, and each Vga terminal of the light emitting chips C1 to C40 becomes “L” (see FIG. 4).
  • the power supply lines 71 of the light emitting chips C1 to C40 become “L” (see FIG. 5).
  • the transfer signal generation unit 120 of the signal generation circuit 110 sets the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 to “H” (0 V). Then, the first transfer signal line 201 and the second transfer signal line 202 become “H” (see FIG. 4). As a result, the ⁇ 1 terminal and the ⁇ 2 terminal of each of the light emitting chips C1 to C40 become “H”. The potential of the first transfer signal line 72 connected to the ⁇ 1 terminal through the current limiting resistor R1 also becomes “H”, and the second transfer signal line 73 connected to the ⁇ 1 terminal through the current limiting resistor R2 is also It becomes “H” (see FIG. 5).
  • the lighting signal generation unit 140 of the signal generating circuit 110 sets the lighting signals ⁇ I1 to ⁇ I40 to “H” (0 V). Then, the lighting signal lines 204-1 to 204-40 become “H” (see FIG. 4). As a result, each ⁇ I terminal of the light emitting chips C1 to C40 becomes “H” via the current limiting resistor RI, and the lighting signal line 75 connected to the ⁇ I terminal also becomes “H” (0 V) (FIG. 5) reference).
  • the anode (p anode layer 85) of the setting thyristor S is connected to the cathode (n cathode (cladding) layer 83) of the laser diode LD through the tunnel junction layer 84, and the anode (n anode (cladding) of the laser diode LD
  • the layer 81) is connected to the Vsub terminal set to “H”.
  • the anode (p anode layer 85) of the transfer thyristor T is connected to the cathode (n cathode (cladding) layer 83) of the lower diode UD via the tunnel junction layer 84, and the anode (n anode (cladding) of the lower diode UD
  • the layer 81) is connected to the Vsub terminal set to “H”.
  • the cathodes of the odd-numbered transfer thyristors T1, T3, T5,... Are connected to the first transfer signal line 72, and are set to "H” (0 V).
  • the cathodes of the even-numbered transfer thyristors T2, T4, T6,... Are connected to the second transfer signal line 73, and are set to "H”. Therefore, in the transfer thyristor T, both of the anode and the cathode become “H”, and are in the off state. In the lower diode UD, both the anode and the cathode are "H" and are in the off state.
  • the cathode terminal of the setting thyristor S is connected to the lighting signal line 75 of “H” (0 V). Therefore, both the anode and the cathode of the setting thyristor S become “H” and are in the off state. In addition, both the anode and the cathode of the laser diode LD are “H” and are in the off state.
  • the gate Gt1 is connected to the cathode of the start diode SD, as described above.
  • the gate Gt1 is connected to the power supply line 71 of the power supply potential Vga ("L" (-5 V)) through the power supply line resistance Rg1.
  • the anode terminal of the start diode SD is connected to the second transfer signal line 73, and is connected to the ⁇ 2 terminal of “H” (0 V) through the current limiting resistor R2. Therefore, the start diode SD is forward biased, and the cathode (gate Gt1) of the start diode SD is the anode potential ("H" (0 V)) of the start diode SD to the forward potential Vd (1.5 V) of the pn junction. Minus the value (-1.5 V).
  • the coupling diode D1 when the gate Gt1 becomes -1.5 V, the coupling diode D1 has the anode (gate Gt1) at -1.5 V and the cathode at the power supply line 71 ("L" (-5 V)) via the power supply line resistance Rg2. Because it is connected to, it becomes forward bias. Therefore, the potential of the gate Gt2 is ⁇ 3 V obtained by subtracting the forward potential Vd (1.5 V) of the pn junction from the potential ( ⁇ 1.5 V) of the gate Gt1. Further, the coupling diode D2 is forward biased since the anode (gate Gt1) is at -3 V and the cathode is connected to the power supply line 71 ("L" (-5 V)) via the power supply line resistance Rg2.
  • the potential of the gate Gt3 is ⁇ 4.5 V obtained by subtracting the forward potential Vd (1.5 V) of the pn junction from the potential ( ⁇ 3 V) of the gate Gt2.
  • the gate Gt of four or more numbers is not affected by the fact that the anode of the start diode SD is “H” (0 V), and the potential of these gates Gt is the potential of the power supply line 71 “L "(-5V).
  • the threshold voltage of the transfer thyristor T and the setting thyristor S is a value obtained by subtracting the forward potential Vd (1.5 V) of the pn junction from the potential of the gate Gt (gate Gs).
  • the threshold voltage of the transfer thyristor T1 and the setting thyristor S1 is -3 V
  • the threshold voltage of the transfer thyristor T2 and the setting thyristor S2 is -4.5 V
  • the threshold voltage of the transfer thyristor T3 and the setting thyristor S3 is -6 V and the number There are four or more transfer thyristors T
  • the threshold voltage of the setting thyristor S is -6.5V.
  • the potential of the first transfer signal line 72 is changed from the potential of the cathode of the transfer thyristor T1 (-1.7 V which is the potential applied to the lower diode UD1) to the forward potential Vd of the pn junction. It becomes a potential close to -3.2 V (negative potential greater than 3.2 V in absolute value) minus (1.5 V).
  • the potential of the first transfer signal line 72 is assumed to be -3.2V.
  • the transfer thyristor T3 has a threshold voltage of -6 V, and the transfer thyristors T having an odd number of 5 or more have a threshold voltage of -6.5 V. Since the voltage applied to the transfer thyristor T3 and the odd-numbered transfer thyristors T whose number is 5 or more is -5 V, the transfer thyristors T3 and the odd-numbered transfer thyristors T whose number is 5 or more do not turn on. On the other hand, the even-numbered transfer thyristors T can not be turned on because the second transfer signal ⁇ 2 is “H” (0 V) and the second transfer signal line 73 is “H” (0 V).
  • the potential of the gate Gt1 changes from “H” (0 V) which is the potential of the anode of the transfer thyristor T1 to ⁇ 1.7 V which is the potential applied to the lower diode UD1.
  • the potential of the gate Gt2 becomes -3.2 V
  • the potential of the gate Gt3 becomes -4.7 V
  • the potential of the gate Gt whose number is 4 or more becomes "L”.
  • the threshold voltage of the setting thyristor S1 is -3.2 V
  • the threshold voltage of the transfer thyristor T2 and the setting thyristor S2 is -4.7 V
  • the threshold voltage of the transfer thyristor T3 and the setting thyristor S3 is -6.2 V
  • the threshold voltages of the transfer thyristors T and the setting thyristors S whose numbers are four or more become -6.5V.
  • the first transfer signal line 72 is at -3.2 V by the on-state transfer thyristor T1. That is, since the voltage applied to the transfer thyristor T in the off state is -3.2 V, the transfer thyristors T in the off state are not turned on.
  • the second transfer signal line 73 is “H” (0 V)
  • the even-numbered transfer thyristors T are not turned on.
  • the lighting signal line 75 is "H" (0 V)
  • none of the laser diodes LD are lit.
  • the transfer thyristor T1 and the lower diode UD1 are in the on state.
  • the other transfer thyristors T, the lower diode UD, the setting thyristor S, and the laser diode LD are in the off state.
  • the potential of the lighting signal line 75 is ⁇ 3.2V.
  • the threshold voltage of the setting thyristor S2 is -4.7 V
  • the voltage applied to the setting thyristor S2 is -3.2 V, so the setting thyristor S2 is not turned on.
  • the transfer thyristor T1, the lower diode UD1, and the setting thyristor S1 are in the on state, and the laser diode LD1 is lit (emit light).
  • the transfer thyristor T1 is in the on state.
  • the second transfer signal ⁇ 2 shifts from “H” (0 V) to “L” ( ⁇ 5 V).
  • the period T (1) for controlling the lighting of the laser diode LD1 ends, and the period T (2) for controlling the lighting of the laser diode LD2 starts.
  • the second transfer signal ⁇ 2 shifts from “H” to “L”
  • the potential of the second transfer signal line 73 shifts from “H” to “L” via the ⁇ 2 terminal.
  • the transfer thyristor T2 is turned on because the threshold voltage is -4.7V. At this time, a current also flows through the lower diode UD2 to shift from the off state to the on state.
  • the potential of the gate terminal Gt2 (gate terminal Gs2) is -1.7 V, which is the potential applied from the "H” (0 V) to the lower diode UD2, and the potential of the gate Gt3 (gate Gs3) is -3.2 V, The potential of the gate Gt4 (gate Gs4) becomes -4.7V. Then, the potential of the gate Gt (gate Gs) whose number is 5 or more becomes -5V.
  • the transfer thyristors T1 and T2 and the lower diodes UD1 and UD2 are in the on state.
  • the potential of the gate Gt1 changes toward the power supply potential Vga (“L” ( ⁇ 5 V)) of the power supply line 71 via the power supply line resistance Rg1.
  • Vga (“L” ( ⁇ 5 V)
  • Rg1 the power supply potential
  • the influence that the gate Gt2 (gate Gs2) is -1.7 V does not affect the gate Gt1 (gate Gs1). That is, the transfer thyristor T having the gate Gt connected by the reverse bias coupling diode D has a threshold voltage of ⁇ 6.5 V, and the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is “L” ( ⁇ Even if it becomes 5V, it does not turn on.
  • the transfer thyristor T2 and the lower diode UD2 are in the on state.
  • the first transfer signal ⁇ 1 shifts from “H” (0 V) to “L” ( ⁇ 5 V) at time i, as in the case of the transfer thyristor T1 at time b or the transfer thyristor T2 at time e,
  • the transfer thyristor T3 with a threshold voltage of -3 V is turned on.
  • the period T (2) for controlling the lighting of the laser diode LD2 ends, and the period T (3) for controlling the lighting of the laser diode LD3 starts. The following is a repetition of what has been described.
  • the lighting signal ⁇ I may be kept at “H” (0 V).
  • the gate terminals Gt of the transfer thyristors T are mutually connected by the coupling diode D. Therefore, when the potential of the gate Gt changes, the potential of the gate Gt connected to the gate Gt whose potential has changed via the forward-biased coupling diode D changes. Then, the threshold voltage of the transfer thyristor T having the gate whose potential has changed is changed.
  • the threshold voltage of the transfer thyristor T is higher than ⁇ 1.5 V (a negative value with a small absolute value)
  • the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 changes from “H” (0 V) to “L” ( ⁇ Turn on at the timing of transition to 5 V).
  • the setting thyristor S whose gate Gs is connected to the gate Gt of the transfer thyristor T in the on state has a threshold voltage of ⁇ 1.5 V, so that the lighting signal ⁇ I changes from “H” (0 V) to “L” ( When the voltage shifts to ⁇ 5 V), the laser diode LD is turned on, and the laser diode LD connected in series to the setting thyristor S lights (emits light).
  • the lighting signal ⁇ I of “L” ( ⁇ 5 V) turns on the setting thyristor S connected in series to the laser diode LD to be subjected to lighting control, and turns on the laser diode LD.
  • the lighting signal ⁇ I of “H” (0 V) maintains the setting thyristor S in the OFF state and keeps the laser diode LD in the non-lighting state. That is, the lighting signal ⁇ I sets lighting / non-lighting of the laser diode LD.
  • the lighting signal ⁇ I is set according to the image data to control lighting or non-lighting of each laser diode LD.
  • the laser diode LD is provided on the side to which the reference potential Vsub is supplied, and the side to which the lighting signal ⁇ I is supplied (applied)
  • the setting thyristor S is provided on the side to which the lighting signal line 75 is connected. That is, as described in FIG.
  • the p anode (cladding) layer 81, the light emitting layer 82, and the n cathode (cladding) layer 83 are stacked on the p-type substrate 80 constituting the laser diode LD.
  • the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88, which constitute the setting thyristor S, are stacked via the tunnel junction layer 84. As shown in FIG.
  • the lighting signal is supplied with the reference potential Vsub from the back surface electrode 91 of the substrate 80 and becomes “H” (0 V) or “L” ( ⁇ 5 V) to the n ohmic electrode 321 of the n cathode layer 88 ⁇ I (in the light emitting chip C1, the lighting signal ⁇ I1) is applied.
  • FIG. 10 is an equivalent circuit diagram showing a circuit configuration of a light emitting chip C ′ which can be mounted on a self-scanning light emitting element array (SLED) shown for comparison.
  • the light emitting chip C′1 (C ′) is used.
  • the setting thyristor S is provided on the side to which the reference potential Vsub is supplied
  • the laser diode LD is provided on the side to which the lighting signal ⁇ I is supplied (the side to which the lighting signal line 75 is connected). ing.
  • the transfer thyristor T is provided on the side to which the reference potential Vsub is supplied, and the lower diode UD is provided on the side to which the lighting signal ⁇ I is supplied (the side to which the lighting signal line 75 is connected). That is, in the light emitting chip C ′, the connection relationship between the reference potential Vsub and the lighting signal ⁇ I is opposite to that of the light emitting chip C.
  • N cathode layers 88 are stacked.
  • a p anode (cladding) layer 81, a light emitting layer 82, and the like, which constitute the laser diode LD and the lower diode UD, are formed on the regions 311, 313, 314 formed of the n cathode layer 88 via the tunnel junction layer 84.
  • An n cathode (cladding) layer 83 is stacked.
  • the lower diode UD is provided on the upper side of the transfer thyristor T, but is described as the lower diode UD in relation to the light emitting chip C.
  • the lighting signal ⁇ I1 is “H” (0 V) before the lighting signal ⁇ I1 at time c shifts from “H” (0 V) to “L” ( ⁇ 5 V). That is, both terminals of the series connection of the setting thyristor S1 and the laser diode LD1 are “H” (0 V). That is, the anode of the setting thyristor S1 is the reference potential Vsub ("H" (0 V)) of the back surface electrode 91 of the substrate 80, and the cathode of the laser diode LD1 connected to the lighting signal line 75 H "(0 V). Therefore, the connection point U 'between the setting thyristor S1 and the laser diode LD1 is "H” (0 V). The other series connection of the setting thyristor S and the laser diode LD is also the same.
  • the lighting signal line 75 changes from “H” (0 V) to “L” ( ⁇ 5 V). Since this voltage is larger in absolute value than the forward potential (diffuse potential) (here, 1.5 V) of the laser diode LD, all the laser diodes LD are forward-biased, and the lighting ( Light up). In this light emission, when the setting thyristor S is in the OFF state, the voltage between the connection point U ′ and the lighting signal line 75 is the forward potential (diffuse potential) of the laser diode LD (here, 1.). Stop at 5V). In this case, the potential at the connection point U 'is -3.5 V (charged).
  • the laser diode LD1 starts lighting (emitting light) and the other laser diodes LD simultaneously emit light for a short time (instantly) It will be.
  • the time during which the other laser diodes LD simultaneously light (emit light) is the connection point between the other setting thyristor S and the laser diode LD (the same connection point as the connection point U ′ between the setting thyristor S1 and the laser diode LD1) It continues until the voltage between the lighting signal line 75 reaches the forward potential (diffusion potential) of the laser diode LD.
  • the potential (-3.5 V) of the connection point U ' is maintained even when the lighting signal ⁇ I1 shifts from "L” (-5 V) to "H” (0 V).
  • the laser diode LD has a rectifying characteristic, when the lighting signal line 75 shifts to “H” (0 V), the laser diode LD has an anode of ⁇ 3.5 V and a cathode of “H” (0 V). It is because it becomes joining. Thereby, the cathode of the setting thyristor S is maintained at -3.5V.
  • the threshold voltage of the setting thyristor S becomes ⁇ 1.5 V, so the lighting signal ⁇ I1 is “H” (0 V
  • the setting thyristor S shifts from the off state to the on state.
  • the setting thyristors S whose threshold voltage is -3.5 V or less.
  • the setting thyristor S emits light. In this state, the potential at the connection point U 'quickly returns to "H" (0 V).
  • the lighting signal line 75 is connected to the cathode of the setting thyristor S. Even in this case, before time c, the connection point U between the setting thyristor S1 and the laser diode LD1 is “H” (0 V).
  • the lighting signal ⁇ I1 changes from “H” (0 V) to "L” (-5 V) and the lighting signal line 75 changes from "H” (0 V) to "L” (-5 V)
  • the setting thyristor S is turned off.
  • “L” ( ⁇ 5 V) of the lighting signal line 75 is applied to the setting thyristor S in the off state, and is not applied to the laser diode LD. That is, unlike the light emitting chip C ′, the other laser diodes LD do not simultaneously emit light for a short time (instantly).
  • the setting thyristor S can immediately start the operation of transition from the off state to the on state. That is, it is easy to drive the light emitting chip C at high speed. The same applies to the transfer thyristor T.
  • the light emitting chip C ′ shown in FIG. 10 when the lighting signal ⁇ I changes from “H” (0 V) to “L” at time c, the potential “L” is first applied to the laser diode LD Be done. Then, the voltage is divided into the setting thyristor S and the laser diode LD. Therefore, a time lag (lime lag) occurs when the setting thyristor S shifts from the off state to the on state. Therefore, it is difficult to drive the light emitting chip C 'at high speed. The same applies to the transfer thyristor T.
  • the voltage and laser which are required to turn on the setting thyristor S the potential described so far as “L” of the lighting signal ⁇ I is (-5 V) It is determined by the voltage for lighting (emitting) the diode LD. That is, when the setting thyristor S is turned on, the voltage between the anode and the cathode decreases. In particular, when the voltage reduction layer 89 described later is introduced between the n gate 86 and the p anode 85 as shown in FIG. 16A, the threshold voltage necessary to turn on is the n cathode.
  • the voltage between the anode and the cathode of the setting thyristor S in the on state is 0.8 V, while it is -1.5 V between 88 and the p gate 87.
  • the lighting signal line 75 at this time may be ⁇ 2.5 V. That is, when the potential of the gate Gt of the on-state transfer thyristor T becomes 0V, the threshold voltage of the setting thyristor S becomes -1.5V.
  • the setting thyristor S is applied with a threshold voltage of -1.5 V or less (a negative voltage which is greater than or equal to the absolute value). Turn it on. Immediately after that, the voltage between the anode and the cathode of the setting thyristor S becomes -0.8 V, and when the difference -0.7 V is applied to the laser diode LD and the lighting signal line 75 becomes -2.5 V The voltage applied to the diode LD becomes -1.7 V and current starts to flow.
  • the setting thyristor S is turned on and the lighting (light emission) of the laser diode LD is maintained .
  • the transfer thyristor T when the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 becomes “L”, the transfer thyristor T is turned on first, and the threshold voltage and the voltage between the anode and the cathode
  • the lowest voltage required for the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is the voltage between the anode and the cathode, and the voltage for passing the current to the lower diode UD, It is the sum of
  • the lighting signal ⁇ I1 is a forward voltage (1.7 V in this case) of the laser diode LD and a voltage ( ⁇ 1 for turning on the setting thyristor S). It must be the sum of .5 V).
  • the minimum necessary voltage for the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is a threshold voltage for turning on the transfer thyristor T and a voltage for passing a current to the lower diode UD. It is the sum of Therefore, in the light emitting chip C ′ shown in FIG. 10, the signal generating circuit 110 that generates a high voltage is required. Therefore, power consumption is increased, and high-speed driving is difficult.
  • the laser diode LD is provided on the side to which the reference potential Vsub is supplied, and the side to which the lighting signal ⁇ I is supplied (the lighting signal line 75
  • the setting thyristor S By providing the setting thyristor S on the side to be connected, an operation failure (malfunction) in which the laser diode LD other than the laser diode LD to be lighted (emit light) emits light for a short time is suppressed and the laser diode LD and the setting thyristor
  • the voltage of the lighting signal ⁇ I applied to the series connection with S can be reduced, and power consumption can be reduced.
  • the lower diode UD is provided on the side supplied with the reference potential Vsub, and the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is applied.
  • a transfer thyristor T is provided on the other side (the side to which the first transfer signal line 72 or the second transfer signal line 73 is connected).
  • the transfer thyristor T is provided on the side supplied with the reference potential Vsub, and the side to which the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is applied
  • the lower diode UD is provided on the side to which the first transfer signal line 72 or the second transfer signal line 73 is connected.
  • the operation of the light emitting chip C ' will be described with reference to FIG. 10 with the timing chart of FIG.
  • the first transfer signal ⁇ 1 changes from “H” (0 V) to “L” ( ⁇ 5 V) at time b, and the first transfer signal line 72 changes from “H” (0 V).
  • the odd-numbered lower diodes UD become forward biased and current flows, as in the laser diode LD described above.
  • charge is accumulated at a connection point between the lower diode UD and the transfer thyristor T (a connection point similar to the connection point V ′ between the lower diode UD1 and the transfer thyristor T1).
  • the second transfer signal ⁇ 2 changes from “L” ( ⁇ 5 V) to “H” (0 V)
  • the second transfer signal line 73 changes from “L” ( ⁇ 5 V) to “H” (0 V).
  • the transfer thyristor T2 is turned on.
  • the gate Gt2 shifts to 0V
  • the gate Gt3 becomes -1.5V.
  • the threshold voltage of the transfer thyristor T3 becomes -3V.
  • connection point between the transfer thyristor T3 and the lower diode UD3 (a connection point similar to the connection point V 'between the lower diode UD1 and the transfer thyristor T1), and is -3V or less (absolute value or more) (The negative voltage of (1)), the transfer thyristor T3 is turned on.
  • the transfer thyristor T4 When the transfer thyristor T3 is turned on, the transfer thyristor T4 is turned on in the same manner as the transfer thyristor T2 is turned on. In this way, all the transfer thyristors T are turned on, and an operation failure occurs such that transfer (propagation) of the on state by the transfer thyristors T can not be performed.
  • the first transfer signal ⁇ 1 changes from “L” ( ⁇ 5 V) to “H” (0 V)
  • the first transfer signal line 72 changes from “L” ( ⁇ 5 V) to “H” (0 V)
  • the charge accumulated at the connection point between the odd-numbered lower diode UD and the transfer thyristor T (the same connection point as the connection point V ′ between the lower diode UD1 and the transfer thyristor T1) is reverse biased by the lower diode UD. Therefore, it is maintained without being discharged.
  • the first transfer signal line 72 or the second transfer signal line 73 is connected to the cathode of the transfer thyristor T, and the anode of the transfer thyristor T is a substrate.
  • the reference voltage Vsub (“H” (0 V)) is connected through the back surface electrode 91 of FIG.
  • the other odd-numbered lower diodes UD are connected to the first transfer signal line 72 through the transfer thyristors T in the off state. Therefore, no charge is accumulated at the connection point between the lower diode UD and the transfer thyristor T (the same connection point as the connection point V ′ between the lower diode UD1 and the transfer thyristor T1).
  • the second transfer signal ⁇ 2 changes from “L” ( ⁇ 5 V) to “H” (0 V)
  • the second transfer signal line 73 changes from “L” ( ⁇ 5 V) to “H” (0 V).
  • the transfer thyristor T2 is turned on.
  • the gate Gt2 shifts to 0V
  • the gate Gt3 becomes -1.5V.
  • the threshold voltage of the transfer thyristor T3 becomes -3V.
  • the lower diode UD is provided on the side to which the reference potential Vsub is supplied, and the side to which the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is supplied.
  • FIG. 11A shows the laminated semiconductor layer forming process
  • FIG. 11B shows the n ohmic electrode forming process
  • FIG. 11C shows the laminated semiconductor layer separating process
  • FIG. Step of forming a current blocking portion (e) of FIG. 12 is an etching step of p gate layer extraction
  • (f) of FIG. 12 is a step of forming p ohmic electrode
  • (g) of FIG. 13 (h) is a wiring and back surface electrode forming step
  • FIG. 11A shows the laminated semiconductor layer forming process
  • FIG. 11B shows the n ohmic electrode forming process
  • FIG. 11C shows the laminated semiconductor layer separating process
  • FIG. Step of forming a current blocking portion (e) of FIG. 12 is an etching step of p gate layer extraction
  • (f) of FIG. 12 is a step of forming p ohmic electrode
  • (g) of FIG. 13 (h) is a wiring and back surface electrode forming step
  • FIG. 13 (i) is a light emitting surface forming step.
  • the cross-sectional views of these islands are cross-sectional views taken along the line VIB-VIB in (a) of FIG. 6, but are cross-sectional views seen from the -x direction opposite to (b) in FIG.
  • the island 303 is omitted because it is the same as the island 302.
  • the conductivity type of the impurity is denoted by p and n. These will be described in order.
  • the p anode (cladding) layer 81, the light emitting layer 82, the n cathode (cladding) layer 83, the tunnel junction layer 84, and the p anode are formed on the p type substrate 80.
  • the layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88 are epitaxially grown in order to form a laminated semiconductor layer.
  • the p anode (cladding) layer 81 is denoted as p
  • the n cathode (cladding) layer 83 is denoted as n.
  • the p anode (cladding) layer 81, the light emitting layer 82, and the n cathode (cladding) layer 83 are examples of other laminated semiconductor layers constituting the light emitting element.
  • the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88 provided on the tunnel junction layer 84 constitute a drive portion 101 including a thyristor (setting thyristor S, transfer thyristor T). It is an example of the laminated semiconductor layer to be
  • the substrate 80 is described using p-type GaAs as an example, n-type GaAs or intrinsic (i) GaAs not doped with impurities may be used.
  • semiconductor substrates made of InP, GaN, InAs, other III-V, II-VI materials, sapphire, Si, Ge or the like may be used.
  • the material monolithically stacked on the substrate uses a material that substantially matches (including a strain structure, a strain relaxation layer, and metamorphic growth) the lattice constant of the substrate.
  • InAs, InAsSb, GaInAsSb or the like is used on an InAs substrate
  • InP, InGaAsP or the like is used on an InP substrate
  • GaN, AlGaN, InGaN is used on a GaN substrate or sapphire substrate.
  • Si substrate Si, SiGe, GaP or the like may be used.
  • the semiconductor material does not have to be substantially lattice-matched with the supporting substrate.
  • the p anode (cladding) layer 81 is configured by sequentially laminating a lower p anode (cladding) layer 81a, a current confinement layer 81b, and an upper p anode (cladding) layer 81c.
  • the lower p (cladding) layer 81a and the upper p (cladding) layer 81c of the p anode (cladding) layer 81 are, for example, p-type Al 0.9 GaAs with an impurity concentration of 5 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1. Note that GaInP may be used.
  • the current confinement layer 81 b is, for example, p-type AlGaAs having a high impurity concentration of AlAs or Al. Any material may be used as long as Al is oxidized to form Al 2 O 3 to increase the electric resistance and narrow the current path.
  • the light emitting layer 82 has a quantum well structure in which well layers and barrier layers are alternately stacked.
  • the well layer is, for example, GaAs, AlGaAs, InGaAs, GaAsP, AlGaInP, GaInAsP, GaInP or the like
  • the barrier layer is AlGaAs, GaAs, GaInP, GaInAsP or the like.
  • the light emitting layer 82 may be a quantum wire (quantum wire) or a quantum box (quantum dot).
  • the n cathode (cladding) layer 83 is, for example, n-type Al 0.9 GaAs having an impurity concentration of 5 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1. Note that GaInP may be used.
  • the tunnel junction layer 84 is formed of a junction of an n ++ layer 84 a to which an n-type impurity is heavily doped and a p ++ layer 84 b to which an n-type impurity is heavily doped.
  • n ++ layer 84a and p ++ layer 84b is a high concentration of, for example an impurity concentration of 1 ⁇ 10 20 / cm 3.
  • the impurity concentration of the normal junction is 10 17 / cm 3 to 10 18 / cm 3 .
  • n ++ layer 84a / p ++ layer 84b The combination (hereinafter, referred to with n ++ layer 84a / p ++ layer 84b.) between the n ++ layer 84a and the p ++ layer 84b is, for example n ++ GaInP / p ++ GaAs, n ++ GaInP / p ++ AlGaAs, n ++ GaAs / p ++ GaAs, n ++ AlGaAs / p ++ AlGaAs, n ++ InGaAs / p ++ InGaAs, n ++ GaInAsP / p ++ GaInAsP, n ++ GaAsSb / p ++ GaAsSb.
  • the combinations may be mutually changed.
  • the p anode layer 85 is, for example, p-type Al 0.9 GaAs with an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • GaInP may be used.
  • the n gate layer 86 is, for example, n-type Al 0.9 GaAs having an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • GaInP may be used.
  • the p gate layer 87 is, for example, p-type Al 0.9 GaAs with an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • GaInP may be used.
  • the n cathode layer 88 is, for example, n-type Al 0.9 GaAs having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1. Note that GaInP may be used.
  • MOCVD metal organic chemical vapor deposition
  • MBE metal beam epitaxy
  • an n ohmic electrode (n ohmic electrodes 321, 323, 324, etc.) is formed on the n cathode layer 83.
  • the n-ohmic electrode is, for example, Au (AuGe) containing Ge that allows easy ohmic contact with an n-type semiconductor layer such as the n-cathode layer 88.
  • the n-ohmic electrode is formed by, for example, a lift-off method.
  • the anode layer 81 is sequentially etched and separated into islands (such as the islands 301 and 302 shown in FIG. 6A).
  • RIE dry etching
  • the etching in this laminated semiconductor layer separation step is sometimes called mesa etching or post etching.
  • the current confinement layer 81b whose side surface is exposed is oxidized from the side surface to form a current blocking portion ⁇ which blocks current in the laminated semiconductor layer separating step. .
  • the portion left without being oxidized becomes the current passing portion ⁇ .
  • Oxidation of the current confinement layer 81b is performed by, for example, steam oxidation at 300 to 400 ° C. to oxidize Al of the current confinement layer 81b such as AlAs, AlGaAs or the like.
  • oxidation proceeds from the exposed side surface, and a current blocking portion ⁇ is formed of Al 2 O 3 which is an oxide of Al around islands such as the islands 301 and 302.
  • the non-oxidized portion of the current confinement layer 81b becomes a current passing portion ⁇ .
  • the current blocking portion ⁇ is described as being different in distance from the side surface of the island, but this is for convenience of illustration. Since the oxidation proceeds the same distance from the side of the island such as the islands 301 and 302, the distance from the side of the island of the current blocking portion ⁇ to be formed is the same.
  • the current blocking portion ⁇ may be formed by implanting hydrogen ions (H + ) into a semiconductor layer such as GaAs or AlGaAs instead of using a semiconductor layer having a large Al composition ratio such as AlAs. (H + ion implantation). That is, the p anode (cladding) layer 81 is formed by integrating the lower p anode (cladding) layer 81 a and the upper p anode (cladding) layer 81 c without dividing the current constriction layer 81 b and forming a current blocking By implanting H + into the portion to be the portion ⁇ , the current blocking portion ⁇ may be formed in which the electrical resistance in which the impurity is inactivated is high.
  • the n cathode layer 88 is etched to expose the p gate layer 87.
  • a p ohmic electrode (p ohmic electrodes 331, 332, etc.) is formed on the p gate layer 87.
  • the p-ohmic electrode is, for example, Au (AuZn) containing Zn that can easily form an ohmic contact with a p-type semiconductor layer such as the p gate layer 87.
  • the p-ohmic electrode is formed by, for example, a lift-off method.
  • the protective layer 90 is provided so as to cover the surfaces of the islands 301 and 302 with an insulating material such as SiO 2 , SiON, or SiN. Then, through holes (openings) are provided in the protective layer 90 on the n ohmic electrodes 321, 323, 324 and the like and the p ohmic electrodes 331, 332 and the like.
  • an n ohmic electrode (n ohmic electrodes 321, 323, 324, etc.) and a p ohmic electrode (p ohmic) via through holes provided in the protective layer 90.
  • Wiring (a power supply line 71, a first transfer signal line 72, a second transfer signal line 73, a lighting signal line 75, etc.) for connecting the electrodes 331, 332, etc.) is formed.
  • the wiring is Al, Au or the like.
  • the substrate 80 and the laminated semiconductor layer are formed in the portion of the island 301 where the laser diode LD is formed. Will be released. At this time, cleavage is performed such that the current blocking portion ⁇ is not included in the light emission direction from the laser diode LD.
  • the light emitting surface may be formed by etching.
  • light may be emitted from the side surface (end surface) of the light emitting layer 82 without performing the light emitting surface forming step.
  • the laser diode LD and the setting thyristor S are stacked.
  • the light emitting chip C becomes a self-scanning type in which the laser diode LD is sequentially lighted by the transfer thyristor T and the setting thyristor S.
  • the number of terminals provided in the light emitting chip C decreases, and the light emitting chip C and the light emitting device 65 become smaller.
  • the setting thyristor S may be used as a laser thyristor (light emitting element) without providing the setting thyristor S on the laser diode LD. That is, the laser diode LD, the p anode (cladding) layer 81, the light emitting layer 82, and the n cathode (cladding) layer 83 constituting the lower diode UD are not provided. In this case, the drive characteristic and the light emission characteristic can not be set separately (independently). Therefore, it is difficult to achieve high-speed driving, high light output, high efficiency, low power consumption, low cost, and the like.
  • the laser diode LD can have a quantum well structure to improve the light emission characteristic and the like, and can also improve the drive characteristic and the like of the transfer thyristor T and the setting thyristor S. That is, the laser diode LD of the light emitting unit 102, and the transfer thyristor T and the setting thyristor S of the drive unit 101 can be set separately (independently). As a result, it is easy to achieve high-speed driving, high light output, high efficiency, low power consumption, low cost, and the like.
  • the laser diode LD and the setting thyristor S are stacked via the tunnel junction layer 84.
  • the tunnel junction layer 84 has a characteristic that current flows even in the reverse bias state. If the tunnel junction layer 84 is not provided, the junction between the laser diode LD and the setting thyristor S is reverse biased. For this reason, in order to flow a current to the laser diode LD and the setting thyristor S, a voltage at which the junction of the reverse bias breaks down is applied. That is, the drive voltage is increased.
  • the voltage of the lighting signal ⁇ I can be suppressed to a low level as compared with the case where the tunnel junction layer 84 is not interposed.
  • the tunnel junction layer 84 has a high impurity concentration as described above.
  • Si used as an impurity is different from GaAs, which is an example of a base semiconductor material, in lattice constant, bond strength, number of outermost electrons, and the like. Therefore, if a semiconductor layer such as GaAs is grown on the tunnel junction layer 84, a defect is likely to occur. The probability of occurrence of defects increases as the impurity concentration increases. Then, the defect propagates to the semiconductor layer formed thereon.
  • the semiconductor layer provided on the tunnel junction layer 84 deviates from the optimum growth conditions. As a result, the semiconductor layer provided on the tunnel junction layer 84 contains many defects.
  • the light emission characteristics of the light emitting element such as the laser diode LD are easily affected by the defects contained in the semiconductor layer.
  • the thyristors (setting thyristors S and transfer thyristors T) may be turned on to supply current to the laser diode LD and the lower diode. That is, the thyristors (setting thyristors S, transfer thyristors T) are less susceptible to defects.
  • the laser diode LD and the lower diode UD are provided on the substrate 80, and the setting thyristor S and the transfer thyristor T are provided thereon via the tunnel junction layer 84. It is like that. As a result, the occurrence of defects in the laser diode LD and the lower diode UD, in particular, the laser diode LD, is suppressed, so that the light emission characteristics are less affected by the defects.
  • the setting thyristors S and the transfer thyristors T are epitaxially grown and monolithically stacked.
  • FIG. 14 is a view for explaining the material constituting the metallic conductive III-V compound layer.
  • FIG. 14 (a) shows the band gap of InNAs to the composition ratio x of InN, FIG. 14
  • FIG. 14 (b) shows the band gap of InNSb to the composition ratio x of InN
  • InNAs and InNSb described as an example of the material of the metallic conductive group III-V compound layer have a negative band gap energy in a range of a composition ratio x as shown in (a) and (b) of FIG. It is known to be.
  • the fact that the band gap energy is negative means that there is no band gap. Therefore, the conductive property (conductive property) similar to that of metal is exhibited. That is, the metallic conductive property (conductive property) means that a current flows if there is a gradient in electric potential as in the case of metal.
  • InNAs has a negative band gap energy, for example, when the composition ratio x of InN is in the range of about 0.1 to about 0.8. As shown in FIG.
  • InNSb has a negative band gap energy, for example, when the composition ratio x of InN is in the range of about 0.2 to about 0.75. That is, InNAs and InNSb show metallic conductive properties (conductivity) in the above-mentioned range. In the region where the band gap energy outside the above range is small, since the electrons have energy by the thermal energy, it is possible to make a small band gap transition, and as in the case where the band gap energy is negative or metal. When the potential has a gradient, it has a characteristic that current easily flows. Then, even if Al, Ga, Ag, P, etc. are contained in InNAs and InNSb, the band gap energy can be maintained near 0 or negative depending on the composition, and a current flows if the potential has a gradient.
  • the lattice constant of III-V compounds such as GaAs and InP is in the range of 5.6 ⁇ to 5.9 ⁇ . And, this lattice constant is close to about 5.43 ⁇ of the lattice constant of Si and about 5.66 ⁇ of the lattice constant of Ge.
  • the lattice constant of InN which is also a III-V compound, is about 5.0 ⁇ in the zinc blende structure, and the lattice constant of InAs is about 6.06 ⁇ .
  • the lattice constant of InNAs which is a compound of InN and InAs
  • the lattice constant of InSb which is a III-V compound
  • the lattice constant of InN is about 5.0 ⁇
  • the lattice constant of InNSb which is a compound of InSb and InN, can be a value close to 5.6 ⁇ to 5.9 ⁇ such as GaAs.
  • InNAs and InNSb can be epitaxially grown monolithically on a layer of a III-V compound (semiconductor) such as GaAs.
  • a layer of a III-V compound (semiconductor) such as GaAs can be monolithically laminated on the layer of InNAs or InNSb by epitaxial growth.
  • the laser diode LD and the setting thyristor S are stacked in series via the metallic conductive III-V compound layer instead of the tunnel junction layer 84, the n cathode of the laser diode LD Reverse bias of the cladding layer 83 and the p anode layer 85 of the setting thyristor S is suppressed.
  • the metallic conductive III-V group compound layer composed of InNAs, InNSb, etc. theoretically has a negative band gap, it is difficult to grow and inferior in quality as compared with GaAs, InP and the like. In particular, when the N composition is increased, the degree of difficulty in growth rises dramatically. Therefore, if a semiconductor layer such as GaAs is grown on the metallic conductive III-V compound layer, defects are likely to occur. As described above, the light emission characteristics of the light emitting element such as the laser diode LD are susceptible to the defects contained in the semiconductor layer.
  • the thyristors (setting thyristors S and transfer thyristors T) may be turned on to supply current to the laser diode LD and the lower diode. That is, the thyristors (setting thyristors S, transfer thyristors T) are less susceptible to defects.
  • the laser diode LD and the lower diode UD are provided on the substrate 80, and the setting thyristor S and the transfer thyristor T are provided thereon via the metallic conductive III-V compound layer. It should be provided. As a result, the occurrence of defects in the laser diode LD and the lower diode UD, in particular, the laser diode LD is suppressed, and the light emission characteristics are less susceptible to the defects. Also, the setting thyristors S and the transfer thyristors T can be laminated monolithically.
  • the voltage applied to the thyristor (setting thyristor S, transfer thyristor T) is reduced Voltage reduction layer 89 may be used.
  • FIG. 15 is an enlarged cross-sectional view of the island 301 in which the laser diode LD and the setting thyristor S provided with the voltage reduction layer 89 are stacked.
  • FIG. 15 is the one in which a voltage reduction layer 89 is added to FIG. Therefore, the same parts as those in FIG. 7 are denoted by the same reference numerals, and the description thereof will be omitted, and different parts will be described.
  • the voltage reduction layer 89 is provided between the p-anode layer 85 and the n-gate layer 86 of the setting thyristor S. The same applies to the transfer thyristor T.
  • the voltage reduction layer 89 may be p-type with an impurity concentration similar to that of the p anode layer 85 as a part of the p anode layer 85, and an impurity similar to that of the n gate layer 86 as a part of the n gate layer 86. It may be n-type of concentration. Further, the voltage reduction layer 89 may be an i layer.
  • FIG. 16 is a diagram for explaining the structure of a thyristor and the characteristics of the thyristor.
  • (A) of FIG. 16 is a cross-sectional view of the thyristor S A with a voltage reduction layer 89
  • (b) in FIG. 16 is a cross-sectional view of the thyristor S B without a voltage reduction layer 89, in FIG. 16 (c) , Thyristor characteristics.
  • FIGS. 16A and 16B correspond to, for example, the cross section of the setting thyristor S not stacked on the laser diode LD.
  • the back surface electrode 91 is provided on the back surface of the p anode layer 85.
  • the thyristor S A is provided between the p anode layer 85 and the n gate layer 86 includes a voltage reduction layer 89. If the voltage reduction layer 89 is p-type with the same impurity concentration as the p-anode layer 85, it functions as part of the p-anode layer 85, and if it is n-type with the same impurity concentration as the n-gate layer 86, Act as part of the n gate layer 86.
  • the voltage reduction layer 89 may be an i layer.
  • Thyristors S B shown in (b) of FIG. 16 does not include a voltage reduction layer 89.
  • the rising voltage Vr (see (c) of FIG. 16) in the thyristor is determined by the energy (band gap energy) of the smallest band gap in the semiconductor layer constituting the thyristor.
  • the rising voltage Vr in the thyristor is a voltage when the current in the on state of the thyristor is extrapolated to the voltage axis.
  • the thyristor S in A compared to the p anode layer 85, n gate layer 86, p gate layer 87, n cathode layer 88, the voltage reduction layer 89 band gap energy is small layer Is provided.
  • the rise voltage Vr of the thyristor S A (A) is lower than the rising voltage Vr of the thyristors S B without a voltage reduction layer 89 (B).
  • the voltage reduction layer 89 is, for example, a layer having a band gap smaller than the band gap of the light emitting layer 82.
  • a thyristor (setting thyristor S, transfer thyristor T) is not used as a light emitting element, and functions as a part of a drive unit 101 that drives a light emitting element such as a laser diode LD. Therefore, the band gap is determined regardless of the emission wavelength of the light emitting element that actually emits light. Therefore, by providing the voltage reduction layer 89 having a band gap smaller than the band gap of the light emitting layer 82, the rise voltage Vr of the thyristor is reduced. Thereby, the voltage applied to the thyristor and the light emitting element is reduced while the thyristor and the light emitting element are turned on.
  • FIG. 17 is a diagram for explaining the band gap energy of the material forming the semiconductor layer.
  • the lattice constant of GaAs is about 5.65 ⁇ .
  • the lattice constant of AlAs is about 5.66 ⁇ .
  • materials close to this lattice constant can be epitaxially grown on a GaAs substrate.
  • AlGaAs or Ge which is a compound of GaAs and AlAs, can be epitaxially grown on a GaAs substrate.
  • the lattice constant of InP is about 5.87 ⁇ . Materials close to this lattice constant can be epitaxially grown on an InP substrate.
  • the lattice constant of GaN differs depending on the growth surface, but the a-plane is 3.19 ⁇ and the c-plane is 5.17 ⁇ . Materials close to this lattice constant can be epitaxially grown on the GaN substrate.
  • the band gap energy at which the rise voltage of the thyristor decreases is a material in the range shown by the halftone dots in FIG. That is, when a material in the range indicated by the halftone dots is used as a layer constituting the thyristor, the rise voltage Vr of the thyristor becomes the band gap energy of the material in the region indicated by the halftone dots.
  • the band gap energy of GaAs is about 1.43 eV. Therefore, if the voltage reduction layer 89 is not used, the rise voltage Vr of the thyristor is about 1.43V.
  • the rise voltage Vr of the thyristor can be more than 0 V and less than 1.43 V (0 V ⁇ Vr ⁇ 1.43 V ). This reduces power consumption when the thyristor is in the on state.
  • a material in the range shown by halftone dots is Ge with a band gap energy of about 0.67 eV for GaAs. There is also InAs with a band gap energy of about 0.36 eV for InP.
  • a material having a small band gap energy can be used for a compound of GaAs and InP, a compound of InN and InSb, a compound of InN and InAs, or the like with respect to a GaAs substrate or an InP substrate.
  • mixed compounds based on GaInNAs are suitable. These may include Al, Ga, As, P, Sb and the like.
  • GaNP can be the voltage reduction layer 89 for GaN.
  • InN layer corresponds to twice the lattice constant (a-plane) of (1) InN layer, InGaN layer, (2) InN, InGaN, InNAs, InNSb by metamorphic growth etc., and (3) GaN.
  • a-plane lattice constant
  • These may include Al, Ga, N, As, P, Sb, and the like.
  • the rise voltage Vr of the thyristor has been described, the holding voltage Vh, which is the minimum voltage at which the thyristor maintains the on state, and the voltage applied to the on thyristor are the same (see FIG. 16C). ).
  • the switching voltage Vs of the thyristor (see (c) in FIG. 16) is determined by the depletion layer of the reverse biased semiconductor layer. Therefore, the voltage reduction layer 89 has less influence on the switching voltage Vs of the thyristor.
  • the voltage reduction layer 89 reduces the rising voltage Vr while maintaining the switching voltage Vs of the thyristor. As a result, the voltage applied to the on-state thyristor is reduced, and the power consumption is reduced.
  • the switching voltage Vs of the thyristor is set to an arbitrary value by adjusting the material, impurity concentration, and the like of the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88. However, the switching voltage Vs changes depending on the insertion position of the voltage reduction layer 89.
  • FIG. 15 shows an example in which one voltage reduction layer 89 is provided
  • a plurality of voltage reduction layers may be provided.
  • a voltage reduction layer 89 is provided between the p anode layer 85 and the n gate layer 86 and between the p gate layer 87 and the n cathode layer 88, or one in the n gate layer 86
  • Another p gate layer 87 may be provided.
  • two or three layers out of the p anode layer 85, the n gate layer 86, the p gate layer 87, and the n cathode layer 88 may be selected and provided in each layer.
  • the conductivity type of these voltage reduction layers may be combined with the anode layer provided with the voltage reduction layer, the cathode layer, or the gate layer, or may be i-type.
  • the material used as the voltage reduction layer 89 is more difficult to grow and inferior in quality compared to GaAs, InP, and the like. Therefore, a defect is easily generated inside the voltage reduction layer 89, and the defect extends in a semiconductor such as GaAs which is grown thereon.
  • the light emission characteristics of the light emitting element such as the laser diode LD are susceptible to the defects contained in the semiconductor layer.
  • the thyristors (setting thyristors S and transfer thyristors T) may be turned on to supply current to the laser diode LD and the lower diode UD. Therefore, if the thyristor including the voltage reduction layer 89 is not used as a light emitting layer but is used for voltage reduction, the semiconductor layer constituting the thyristor may include a defect.
  • the laser diode LD and the lower diode UD are provided on the substrate 80, and the setting thyristor S including the voltage reduction layer 89 thereon A transfer thyristor T may be provided.
  • the occurrence of defects in the laser diode LD and the lower diode UD, in particular, the laser diode LD is suppressed, and the light emission characteristics are less susceptible to the defects.
  • the setting thyristors S and the transfer thyristors T can be laminated monolithically.
  • FIG. 18 is an enlarged cross-sectional view of the island 301 in which the laser diode LD and the setting thyristor S are stacked for explaining the modification 1-1.
  • the current confinement layer (the current confinement layer 85b in the modification 1-1) is provided in the p-anode layer 85 instead of the p-anode (cladding) layer 81. That is, the p-anode layer 85 is composed of the lower p-anode layer 85a, the current confinement layer 85b, and the upper p-anode layer 85c.
  • the other configuration is the same as that of the light emitting chip C according to the first embodiment.
  • the modification 1-1 is manufactured by changing the method of manufacturing the light emitting chip C according to the first embodiment shown in FIGS. 11, 12 and 13. That is, the current confinement layer 85 b may be oxidized from the side surface as the lower p anode layer 85 a, the current confinement layer 85 b, and the upper p anode layer 85 c.
  • the step becomes smaller the process becomes easier, the heat dissipation is improved, and the laser characteristics are improved.
  • the flow of current is restricted to the current passing portion ⁇ in the central portion of the laser diode LD, so the power consumed for non-radiative recombination is suppressed to reduce power consumption. And the light extraction efficiency is improved.
  • the current confinement layer may be provided on the n cathode (cladding) layer 83 of the laser diode LD or the n cathode layer 88 of the setting thyristor S.
  • FIG. 19 is an enlarged cross-sectional view of the island 301 in which the laser diode LD and the setting thyristor S are stacked for explaining the modification 1-2.
  • a tunnel junction layer 84 is provided in a portion corresponding to the current passing portion ⁇ , instead of the current narrowing layer 81b.
  • the other configuration is the same as that of the light emitting chip C according to the first embodiment. As described above, the tunnel junction layer 84 tends to flow current in the reverse bias state.
  • the tunnel junction layer 84 is provided in the portion corresponding to the current passing portion ⁇ , the current flowing to the laser diode LD is limited to the central portion.
  • the light emitting chip C of the modified example 1-2 is manufactured by changing the manufacturing method of the light emitting chip C according to the first embodiment shown in FIGS. 11, 12 and 13. That is, in FIG. 10A, the p anode (cladding) layer 81, the light emitting layer 82, the n cathode (cladding) layer 83, and the tunnel junction layer 84 are sequentially stacked on the substrate 80. Thereafter, the portion of the tunnel junction layer 84 to be the current blocking portion ⁇ is removed, and the portion of the tunnel junction layer 84 to be the current passing portion ⁇ is left. Thereafter, the p-anode layer 85 is laminated on and around the remaining tunnel junction layer 84.
  • the n gate layer 86, the p gate layer 87, and the n cathode layer 88 are sequentially stacked.
  • the n-cathode (cladding) layer 83 may be buried around the remaining tunnel junction layer 84.
  • the method of using the tunnel junction layer 84 in the light emitting chip C of the modification 1-2 for current confinement may be applied to the case of using a semiconductor material to which steam oxidation is difficult to apply.
  • FIG. 20 is an enlarged cross-sectional view of the island 301 in which the laser diode LD and the setting thyristor S are stacked to explain the modification 1-3.
  • the n cathode (cladding) layer 83 is a Distributed Bragg Reflector (DBR) (hereinafter, referred to as a DBR layer).
  • the DBR layer is configured by laminating a plurality of semiconductor layers provided with a refractive index difference.
  • the DBR layer is configured to reflect the light emitted from the laser diode LD.
  • the other configuration is the same as that of the light emitting chip C according to the first embodiment.
  • a DBR layer is provided between the light emitting layer 82 and the tunnel junction layer 84, and the tunnel junction layer 84 is provided at a position corresponding to a node of a standing wave generated in the DBR layer. In this way, band edge absorption by the semiconductor material used for the tunnel junction layer 84 is significantly suppressed.
  • the DBR layer is composed of, for example, a combination of a low refractive index layer of a high Al composition of Al 0.9 Ga 0.1 As and a high refractive index layer of a low Al composition of Al 0.2 Ga 0.8 As, for example ing.
  • the film thickness (optical path length) of each of the low refractive index layer and the high refractive index layer is set to, for example, 0.25 (1/4) of the center wavelength.
  • the composition ratio of Al between the low refractive index layer and the high refractive index layer may be changed in the range of 0 to 1.
  • a metallic conductive group III-V compound layer may be used instead of the tunnel junction layer 84, and the setting thyristor S and the transfer thyristor T may be A voltage reduction layer 89 may be added.
  • the light emitting element is a laser diode LD.
  • the light emitting element is a light emitting diode LED.
  • the configuration other than the stacked configuration of the light emitting diode LED (including the lower diode UD) and the setting thyristor S (including the transfer thyristor T) in the light emitting chip C is the same as the first embodiment
  • the laser diode LD may be replaced with a light emitting diode LED. Therefore, the description of similar parts is omitted, and different parts will be described.
  • FIG. 21 is an enlarged cross-sectional view of the island 301 in which the light emitting diode LED and the setting thyristor S in the light emitting chip C according to the second embodiment are stacked.
  • the p anode layer 81, the light emitting layer 82, and the n cathode layer 83 constituting the light emitting diode LED are stacked on the p type substrate 80, and the tunnel junction layer 84 is interposed.
  • the p-anode layer 85, the n-gate layer 86, the p-gate layer 87, and the n-cathode layer 88 that constitute the setting thyristor S are stacked. These layers are laminated monolithically.
  • the p-anode layer 81 is composed of the lower p-anode layer 81a, the current confinement layer 81b, and the upper p-anode layer 81c.
  • the lower p anode layer 81a and the upper p anode layer 81c are, for example, p-type Al 0.9 GaAs with an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • GaInP may be used.
  • the n cathode layer 83 is, for example, n-type Al 0.9 GaAs having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • GaInP may be used.
  • the other parts are the same as in the first embodiment.
  • the light emitting diode LED emits light in a direction orthogonal to the substrate 80 as indicated by an arrow. Therefore, it can be used when utilizing the light emitted in the direction orthogonal to the substrate 80.
  • the central portion of the n ohmic electrode 321 is open. In this case, light exits through the tunnel junction layer 84.
  • the tunnel junction layer 84 may absorb light because it contains impurities at a high concentration. Even in this case, it can be used for applications where the amount of light may be small. For example, it may be used in applications where the light quantity may be nW or ⁇ W or the like in radiant energy. The same applies to other modifications and other embodiments.
  • a metallic conductive III-V compound layer may be used instead of the tunnel junction layer 84.
  • a voltage reduction layer 89 may be added to the setting thyristor S and the transfer thyristor T. Similar to the tunnel junction layer 84, the metallic conductive III-V compound layer and the voltage reduction layer 89 may also absorb the light emitted by the light emitting diode LED.
  • the setting thyristor S is partially or entirely formed in the central opening of the n ohmic electrode 321
  • a part or all of the n cathode layer 88, the p gate layer 87, the n gate layer 86, the p anode layer 85, and the tunnel junction layer 84 in the thickness direction may be removed by etching.
  • part or all of the metallic conductive III-V compound layer may be etched away in the thickness direction.
  • the voltage reduction layer 89 it may be removed in the same manner.
  • the p-anode layer 85 of the setting thyristor S may be provided with a current confinement layer.
  • a current confinement layer may be provided on the n cathode layer 83 of the light emitting diode LED and the n cathode layer 88 of the setting thyristor S.
  • the tunnel junction layer 84 may be used as a current confinement layer instead of the current confinement layer by steam oxidation.
  • the n cathode layer 88 side is referred to as another substrate (hereinafter, a transfer substrate and referred to as transfer substrate 100).
  • the light emitting chip C may be manufactured by removing the substrate 80 (by peeling off) and performing the steps after (b) in FIG.
  • the substrate 80 is a substrate for growth (growth substrate).
  • the stacked semiconductor layers are inverted and stacked on the transfer substrate 100.
  • FIG. 22 is an enlarged cross-sectional view of the island 301 in which the light emitting diodes LED and the setting thyristors S in the light emitting chip C formed on the transfer substrate 100 are stacked.
  • the stacked semiconductor layers shown in FIG. 21 are repeatedly stacked and formed on the transfer substrate 100 in reverse. Therefore, when the back surface electrode 91 is provided on the back surface of the transfer substrate 100, the transfer substrate 100 is n-type. That is, the cathode becomes common, and the polarity of the circuit is reversed.
  • the light emitted from the light emitting diode LED is suppressed from being absorbed by the tunnel junction layer 84.
  • the metallic conductive III-V compound layer or the voltage reduction layer 89 is used, the light emitted from the light emitting diode LED is absorbed by the metallic conductive III-V compound layer or the voltage reduction layer 89 Is suppressed.
  • the position where the current constriction layer is provided may be changed, and the tunnel junction layer 84 or the metallic conductive III-V compound layer may be used as the current constriction layer. You may provide.
  • the attachment structure to the transfer substrate 100 can be applied to the other embodiments. Hereinafter, a modification of the light emitting chip C according to the second embodiment will be described.
  • FIG. 23 is an enlarged cross-sectional view of the island 301 in which the light emitting diode LED and the setting thyristor S are stacked for explaining the modified example 2-1.
  • the light emitting layer 82 is sandwiched between two DBR layers. That is, the p anode layer 81 and the n cathode layer 83 are configured as a DBR layer.
  • the p-anode layer 81 includes a current confinement layer 81b.
  • the p-anode layer 81 is stacked in the order of the lower p-anode layer 81a, the current confinement layer 81b, and the upper p-anode layer 81c, and the lower p-anode layer 81a and the upper p-anode layer 81c are configured as a DBR layer.
  • the lower p anode layer 81a, the upper p anode layer 81c, and the n cathode layer 83 are referred to as a lower p anode (DBR) layer 81a, an upper p anode (DBR) layer 81c, and an n cathode (DBR) layer 83.
  • DBR lower p anode
  • DBR upper p anode
  • DBR n cathode
  • the configuration of the DBR layer is the same as that of modification 1-3 in the first embodiment.
  • the film thickness (optical path length) of the current confinement layer 81 b in the p-anode (DBR) layer 81 is determined by the structure to be adopted. When importance is given to the extraction efficiency and the process reproducibility, it is preferable to be set to an integral multiple of the film thickness (optical path length) of the low refractive index layer and the high refractive index layer constituting the DBR layer. It is set to .75 (3/4). In the case of an odd multiple, the current confinement layer 81 b may be sandwiched between the high refractive index layer and the high refractive index layer.
  • the current confinement layer 81b may be sandwiched between the high refractive index layer and the low refractive index layer. That is, the current confinement layer 81 b may be provided to suppress the disturbance of the refractive index period due to the DBR layer.
  • the film thickness of the current confinement layer 81b is preferably several tens of nm, and is inserted into the standing wave node part standing in the DBR layer. Is preferred.
  • the p anode (DBR) layer 81 and the n cathode (DBR) layer 83 are configured to reflect light emitted from the light emitting layer 82 of the light emitting diode LED. That is, the p anode (DBR) layer 81 and the n cathode (DBR) layer 83 constitute a resonator (cavity), and the light emitted from the light emitting layer 82 is enhanced by resonance and output. That is, in the modified example 2-1, the setting thyristor S is stacked on the resonant type light emitting diode LED. Further, since the current confinement layer 81b is provided, the power consumed for non-radiative recombination is suppressed, and the reduction in power consumption and the light extraction efficiency are improved.
  • the light emitting chip C of the modified example 2-1 is manufactured by partially changing the manufacturing method shown in FIGS. 11, 12 and 13 in the first embodiment. That is, in the laminated semiconductor layer forming step of FIG. 11A, the lower p anode layer 81a, the upper p anode layer 81c, and the n cathode layer 83 of the p anode layer 81 may be formed as a DBR layer.
  • the position at which the current confinement layer is provided may be changed, and a tunnel junction layer 84 or a metallic conductive III-V compound layer may be used as the current confinement layer, and a voltage reduction layer 89 may be provided.
  • the transfer substrate 100 When the light from the light emitting diode LED is absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., and the amount of emitted light is reduced, the transfer substrate 100 is used.
  • the laminated semiconductor layer may be manufactured in a state of being repeatedly laminated in reverse.
  • a setting thyristor is formed in part or all of the central opening of the n ohmic electrode 321.
  • n cathode layer 88, p gate layer 87, n gate layer 86, p anode layer 85, and tunnel junction layer 84 in the thickness direction of S may be removed by etching.
  • a metallic conductive III-V compound layer is used instead of the tunnel junction layer 84, part or all of the metallic conductive III-V compound layer may be etched away in the thickness direction.
  • the voltage reduction layer 89 it may be removed in the same manner.
  • FIG. 24 is an enlarged cross-sectional view of the island 301 in which the light emitting diode LED and the setting thyristor S are stacked for explaining the modification 2-2.
  • the n cathode (DBR) layer 81 of the light emitting chip C shown in FIG. 23 is an n cathode layer 83 not a DBR layer, and instead, an n cathode layer 88 is a DBR layer.
  • the n cathode layer 88 is referred to as an n cathode (DBR) layer 88.
  • DBR n cathode
  • the n cathode (DBR) layer 83 and the p anode (DBR) layer 85 constitute a resonator (cavity), and light emitted from the light emitting layer 82 is enhanced by resonance and output. .
  • the light emitting chip C of the modified example 2-2 is manufactured by partially changing the manufacturing method shown in FIGS. 11, 12 and 13 in the first embodiment. That is, in the laminated semiconductor layer forming step of (a) of FIG. 11, the p anode (DBR) layer 85 and the n anode (DBR) layer 83 may be formed as a DBR layer.
  • the p anode (DBR) layer 85 and the n anode (DBR) layer 83 may be formed as a DBR layer.
  • the position at which the current confinement layer is provided may be changed, the tunnel junction layer 84 or the metallic conductive group III-V compound layer may be used as the current confinement layer, and the voltage reduction layer 89 may be provided.
  • the light from the light emitting diode LED may be absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., and the amount of emitted light may be reduced. Even in this case, it can be used for applications where the amount of light may be small.
  • FIG. 25 is an enlarged cross-sectional view of the island 301 in which the light emitting diode LED and the setting thyristor S are stacked for explaining the modification 2-3.
  • the n cathode (DBR) layer 83 of the light emitting chip C shown in FIG. The other configuration is the same as the light emitting chip C according to the first embodiment.
  • the p-anode (DBR) layer 81 is provided under the light emitting layer 82 (substrate 80).
  • the light emitted from the light emitting layer 82 is intensified by resonance and is output.
  • the light directed to the substrate 80 side is reflected and directed to the light exit side. Therefore, the light utilization efficiency is improved as compared with the case where the p anode layer 81 is not a DBR layer.
  • the light emitting chip C of the modified example 2-3 is manufactured by partially changing the manufacturing method shown in FIG. 11, FIG. 12 and FIG. 13 in the first embodiment. That is, in the laminated semiconductor layer forming step of FIG. 11A, the lower p anode layer 81a and the upper p anode layer 81c of the p anode layer 81 may be formed as a DBR layer.
  • the position at which the current confinement layer is provided may be changed, and a tunnel junction layer 84 or a metallic conductive III-V compound layer may be used as the current confinement layer, and a voltage reduction layer 89 may be provided.
  • the light from the light emitting diode LED may be absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., and the amount of emitted light may be reduced. Therefore, it may be used for applications where the amount of light may be small.
  • the laminated semiconductor layer may be repeatedly formed in reverse by using the transfer substrate 100 while the layer 83 is a DBR layer and the p-anode layer 81 is not a DBR layer.
  • the light emitting element is a laser diode LD, and in the light emitting chip C according to the second embodiment, the light emitting element is a light emitting diode LED.
  • a vertical cavity surface emitting laser VCSEL
  • the configuration other than the stacked configuration of the vertical cavity surface emitting laser VCSEL (including the lower diode UD) and the setting thyristor S (including the transfer thyristor T) in the light emitting chip C is the same as that of the first embodiment.
  • the laser diode LD may be replaced with a vertical cavity surface emitting laser VCSEL. Therefore, the description of similar parts is omitted, and different parts will be described.
  • FIG. 26 is an enlarged sectional view of an island 301 in which the vertical cavity surface emitting laser VCSEL of the light emitting chip C according to the third embodiment and the setting thyristor S are stacked.
  • the vertical cavity surface emitting laser VCSEL and the setting thyristor S are stacked.
  • the basic configuration is the same as that of the light emitting chip C according to the second embodiment shown in FIG.
  • the vertical cavity surface emitting laser VCSEL resonates light to cause laser oscillation.
  • the reflectance of two DBR layers p anode (DBR) layer 81 and n cathode (DBR) layer 83
  • laser oscillation occurs.
  • a metallic conductive III-V compound layer may be used instead of the tunnel junction layer 84.
  • a voltage reduction layer 89 may be added to the setting thyristor S and the transfer thyristor T. Similar to the tunnel junction layer 84, the metallic conductive III-V compound layer and the voltage reduction layer 89 may also absorb the light emitted by the light emitting diode LED.
  • the p-anode layer 85 of the setting thyristor S may be provided with a current confinement layer.
  • a current confinement layer may be provided on the n cathode layer 83 of the light emitting diode LED and the n cathode layer 88 of the setting thyristor S.
  • the light from the vertical cavity surface emitting laser VCSEL may be absorbed by the tunnel junction layer 84, the metallic conductive group III-V compound layer, the voltage reduction layer 89 and the like to reduce the amount of emitted light. Therefore, it may be used for applications where the amount of light may be small. Also, in the case where the light from the vertical cavity surface emitting laser VCSEL is absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., the amount of emitted light is reduced.
  • the transfer substrate 100 may be used to repeatedly manufacture the laminated semiconductor layer.
  • the setting thyristor S is partially or entirely formed in the central opening of the n ohmic electrode 321
  • a part or all of the n cathode layer 88, the p gate layer 87, the n gate layer 86, the p anode layer 85, and the tunnel junction layer 84 in the thickness direction may be removed by etching.
  • part or all of the metallic conductive III-V compound layer may be etched away in the thickness direction.
  • the voltage reduction layer 89 it may be removed in the same manner.
  • the portion of the island 301 of the light emitting chip C in which the vertical cavity surface emitting laser VCSEL and the setting thyristor S are stacked is described, but the portion in which the lower diode UD and the transfer thyristor T are stacked is also described. It is similar.
  • the other configuration is the same as that of the light emitting chip C described above, so different parts will be described, and description of similar parts will be omitted.
  • FIG. 27 is an enlarged cross-sectional view of the island 301 in which the vertical cavity surface emitting laser VCSEL and the setting thyristor S are stacked for explaining the modified example 3-1.
  • the basic configuration of the modification 3-1 is the same as that of the modification 2-2 of the light-emitting chip C according to the second embodiment shown in FIG.
  • the vertical cavity surface emitting laser VCSEL causes light to resonate in the light emitting layer 82 sandwiched between two DBR layers (p anode (DBR) layer 81 and n cathode (DBR) layer 88) to cause laser oscillation .
  • DBR anode
  • DBR cathode
  • the position where the current confinement layer is provided may be changed.
  • a metallic conductive III-V compound layer may be used instead of the tunnel junction layer 84.
  • a tunnel junction layer 84 or a metallic conductive III-V compound layer may be used as the current confinement layer.
  • a voltage reduction layer 89 may be provided on the thyristor (setting thyristor S, transfer thyristor T).
  • the light from the light emitting diode LED may be absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., and the amount of emitted light may be reduced. Even in this case, it can be used for applications where the amount of light may be small.
  • FIG. 28 is an enlarged cross-sectional view of the island 301 in which the vertical cavity surface emitting laser VCSEL and the setting thyristor S are stacked for explaining the modification 3-2.
  • the basic configuration of the modification 3-2 is the same as that of the modification 1-2 of the light-emitting chip C according to the first embodiment shown in FIG. 19 and includes the p anode layer 81 and the p anode layer 85. It is a DBR layer.
  • the other configuration is the same as that of the modification 1-2, so the description will be omitted.
  • Vertical cavity surface emitting laser VCSEL emits light by resonating light in two DBR layers (p anode (DBR) layer 81 and p anode (DBR) layer 85) sandwiching a light emitting layer 82 and an n cathode layer 83 I am doing it.
  • DBR anode
  • DBR p anode
  • the current confinement layer 81b since the current confinement layer 81b is not used, it is easy to apply to a semiconductor material on a substrate such as InP, GaN, sapphire or the like which is difficult to apply steam oxidation. Since the tunnel junction layer 84 is used for current confinement, the power consumed for non-radiative recombination is suppressed, and power consumption reduction and light extraction efficiency are improved.
  • a metallic conductive III-V compound layer may be used instead of the tunnel junction layer 84.
  • a voltage reduction layer 89 may be provided on the thyristor (setting thyristor S, transfer thyristor T).
  • the light from the light emitting diode LED may be absorbed by the tunnel junction layer 84, the metallic conductive III-V compound layer, the voltage reduction layer 89, etc., and the amount of emitted light may be reduced. Even in this case, it can be used for applications where the amount of light may be small.
  • the transfer thyristor T is formed on the lower diode UD, and the lower diode UD and the transfer thyristor T are connected in series. Therefore, the potential “L” of the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 supplied to the transfer thyristor T is applied to the lower diode UD and the transfer thyristor T connected in series. For this reason, for example, it was "L" (-5 V).
  • the transfer thyristor T is configured not to be connected in series with the lower diode UD. Therefore, the potential "L" of the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 supplied to the transfer thyristor T is lowered, and the potential may be applied to the anode and the cathode of the transfer thyristor T.
  • “L" (-3.3 V) may be used.
  • the structure is the same as that of the first embodiment except for the structure of the light emitting chip C. Therefore, the description of the same parts will be omitted, and different parts will be described.
  • FIG. 29 is an equivalent circuit diagram for explaining the circuit configuration of a light emitting chip C on which the self-scanning light emitting element array (SLED) according to the fourth embodiment is mounted.
  • the light emitting chip C1 (C) includes the light emitting unit 102 (see (a) in FIG. 4) configured by the laser diodes LD1 to LD128.
  • the light emitting chip C1 (C) is driven by setting thyristors S1 to S128, transfer thyristors T1 to T128, coupling diodes D1 to D127, power supply line resistances Rg1 to Rg128, start diodes SD, and current limiting resistances R1 and R2.
  • a unit 101 is provided. That is, the light emitting chip C according to the fourth embodiment does not include the lower diodes UD1 to UD128 provided in the light emitting chip C according to the first embodiment shown in FIG.
  • FIG. 30 is a cross-sectional view of the islands 301, 302, and 303 of the light emitting chip C according to the fourth embodiment.
  • the planar layout of the light emitting chip C according to the fourth embodiment is the same as the planar layout of the light emitting chip C according to the first embodiment shown in (a) of FIG. Therefore, the description is omitted.
  • the cross sectional view of the islands 301 and 302 of the light emitting chip C according to the fourth embodiment shown in FIG. 30 is a cross section taken along the line VIB-VIB in FIG.
  • (b) of FIG. 6 is a cross-sectional view as seen from the reverse -x direction.
  • the p anode layer 85 of the transfer thyristor T and the p type substrate 80 form an ohmic contact with the p type semiconductor layer. It is connected by the connection wiring 51 comprised by Au (AuZn) etc. which contain easy Zn.
  • the p-anode layer 85 of the transfer thyristor T is set to the reference potential Vsub ("H" (0 V)) supplied to the back surface electrode 91 of the substrate 80.
  • connection wiring 51 In the lower diode UD below the transfer thyristor T, the side surfaces of the p anode layer 81, the light emitting layer 82, and the n cathode layer 83 are shorted by the connection wiring 51. Thus, the lower diode UD is present but does not operate. The entire side surface of the island 302 may be covered with a protective layer 90.
  • the connection wire 51 may be provided in other parts as long as the lower diode UD does not operate.
  • the connection wiring 51 may be connected to the n cathode (cladding) layer 83 of the lower diode UD1 of the island 302.
  • FIG. 31 is a timing chart for explaining the operation of the light emitting chip C according to the fourth embodiment.
  • “L” of the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 is “L ′”.
  • the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 are applied between the anode and the cathode of the transfer thyristor T. Therefore, the voltage may be smaller in absolute value than the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 of the light emitting chip C according to the first embodiment. That is, the voltage applied to the lower diode UD (here, 1.7 V) is unnecessary.
  • the configuration of the light emitting chip C according to the fourth embodiment may be applied to the light emitting chip C according to the first to third embodiments.
  • the setting thyristors S are stacked on the light emitting elements (laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL) and connected in series.
  • the light emitting element and the setting thyristor S are not stacked, and are connected in series by connection wiring.
  • the light emitting element is described as a laser diode LD.
  • FIG. 32 shows an enlarged cross section of an island 301a provided with the laser diode LD1, an island 301b provided with the setting thyristor S1, an island 302 provided with the transfer thyristor T1 and the like in the light emitting chip C according to the fifth embodiment.
  • FIG. 3 since the island 303 is the same as the island 303 shown in FIG. 7, description is abbreviate
  • the island 301 is divided into an island 301a and an island 301b. ing. That is, the p anode (cladding) layer 81, the light emitting layer 82, and the n cathode (cladding) layer 83 are stacked on the island 301a to constitute the laser diode LD1.
  • the island 301 b has the same layer configuration as the island 301 in FIG. 7.
  • the p anode (cladding) layer 81, the light emitting layer 82, the n cathode (cladding) layer 83, the tunnel junction layer 84, the p anode layer 85, the n gate layer 86, the p gate layer 87, the n cathode layer 88 are stacked.
  • the p anode (cladding) layer 81, the light emitting layer 82, and the n cathode (cladding) layer 83 of the island 301b do not function as the laser diode LD, and become the lower diode UD′1 similar to the lower diode UD1 of the island 302. ing.
  • the island 302 is, similarly to the connection wiring 51 of the island 302 in FIG. 30, Au containing Zn that allows the p-anode layer 85 of the transfer thyristor T and the p-type substrate 80 to easily make ohmic contact with the p-type semiconductor layer. It is connected by the connection wiring 52 comprised by (AuZn) etc.
  • the connection wiring 52 is provided in a portion different from the connection wiring 51 in the case of FIG.
  • the n cathode (cladding) layer 83 which is the cathode of the laser diode LD1 of the island 301a, and the p anode layer 85 of the setting thyristor S1 of the island 301b are connected by the connection wiring 74. That is, the laser diode LD1 and the setting thyristor S1 are connected in series. Then, the anode (cladding) layer 81 of the laser diode LD1 is connected to the reference potential Vsub ("H" (0 V)) through the substrate 80, and the n cathode layer 88 of the setting thyristor S1 is connected to the lighting signal line 75. There is.
  • connection wiring 74 may be connected to the n cathode (cladding) layer 83 of the lower diode UD ′ 1 of the island 301 b.
  • the fifth embodiment operates without the tunnel junction layer 84 of each island, and therefore has advantages such as an increase in life and an improvement in yield without deteriorating the crystal quality.
  • the light emitting chip C according to the fifth embodiment has the circuit configuration shown in the equivalent circuit diagram of FIG. 29 similarly to the light emitting chip C according to the fourth embodiment. Therefore, it operates according to the timing chart shown in FIG. That is, the laser diode LD and the setting thyristor S may be connected in series by being stacked, or may be connected in series by connection wiring.
  • the light emitting element may be the light emitting diode LED or the vertical cavity surface emitting laser VCSEL described in the above-described modification or another embodiment, instead of the laser diode LD.
  • the light emitting chip C according to the first to fifth embodiments is driven by transferring (propagating) the on state of the transfer thyristor T in order.
  • the light emitting chip C according to the sixth embodiment does not include the transfer thyristor T.
  • the other configuration is the same as that of the first embodiment, so the light emitting chip C will be described below.
  • FIG. 33 is an equivalent circuit diagram for explaining the circuit configuration of a light emitting chip C on which the self-scanning light emitting element array (SLED) according to the sixth embodiment is mounted. Similar to the light emitting chip C according to the first embodiment shown in FIG. 5, the light emitting chip C will be described taking the light emitting chip C1 as an example in relation to the signal generating circuit 110. Therefore, in FIG. 33, the light emitting chip C is referred to as a light emitting chip C1 (C). The configuration of the other light emitting chips C2 to C40 is the same as that of the light emitting chip C1.
  • the lower diode UD replaces the laser diode LD
  • the transfer thyristor T is a setting thyristor S.
  • the setting thyristor S has the function of the transfer thyristor T.
  • the laser diode LD is lighted (emitted).
  • the light emission amount of the laser diode LD may be controlled by superimposing the lighting signal ⁇ I on the first transfer signal ⁇ 1 and the second transfer signal ⁇ 2 supplied to the setting thyristor S. By doing this, the number of elements used for the light emitting chip C is reduced, and the size of the light emitting chip C is reduced.
  • the light emitting chip C does not include the island 301 in the plan layout view of the light emitting chip C according to the first embodiment shown in (a) of FIG. Therefore, also in the light emitting chip C, the laser diode LD and the setting thyristor S are connected in series via the tunnel junction layer 84. Then, the anode (cladding) layer 81 of the laser diode LD is connected to the reference potential Vsub ("H" (0 V)) through the substrate 80, and the n cathode layer 88 of the setting thyristor S is the first transfer signal line 72 or 2 is connected to the transfer signal line 73.
  • Vsub reference potential
  • the laser diode LD is provided on the side of the reference potential Vsub and the side to which the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is supplied (the side to which the first transfer signal line 72 or the second transfer signal line 73 is connected)
  • the setting thyristors S are provided in FIG.
  • the setting thyristor S is provided on the side of the reference potential Vsub and the laser diode LD is provided on the side to which the signal is supplied, the influence of the lower diode UD described in the first embodiment on the operation of the transfer thyristor T In the same manner, an operation failure (malfunction) that the on-state transfer (propagation) can not be performed by the setting thyristor S occurs.
  • the laser diode LD is provided on the side to which the reference potential Vsub is supplied, and the side to which the first transfer signal ⁇ 1 or the second transfer signal ⁇ 2 is supplied (the first transfer signal line 72 or the second transfer signal line 73 is connected).
  • the light emitting element may be the light emitting diode LED or the vertical cavity surface emitting laser VCSEL described in the above-described modification or another embodiment, instead of the laser diode LD.
  • the laser diode LD, the light emitting diode LED, and the vertical cavity surface emitting laser VCSEL have been described as the light emitting element.
  • Other light emitting elements may be used.
  • a transistor is also included in a light-emitting element having the same rectification characteristic as a diode by inputting an on / off signal to the base or shorting the base to the collector and the emitter.
  • a self-scanning light emitting element array includes a light emitting unit 102 including a light emitting element (laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL)
  • the drive unit 101 includes the setting thyristor S, the lower diode UD, the transfer thyristor T, and the like.
  • a control thyristor or the like is provided between the setting thyristor S and the transfer thyristor T or the like. May be Furthermore, other members such as diodes and resistors may be included.
  • the transfer thyristors T are connected by the coupling diode D, they may be connected by a member such as a resistor capable of transmitting a change in potential.
  • the light emitting element laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL
  • setting thyristor S lower diode UD
  • the conduction type of the transfer thyristor T may be reversed, and the polarity of the circuit may be changed. That is, the anode common may be a cathode common and the cathode common may be an anode common.
  • the light emitting element laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL
  • a minute current of a threshold current or more is injected into the light emitting element in advance.
  • the light emission state or the oscillation state may be slightly set. That is, the light emitting element is made to slightly emit light before the setting thyristor S is turned on, and when the setting thyristor S is turned on, the amount of light emission of the light emitting element is increased to obtain a predetermined light amount. It is also good.
  • an electrode is formed on the anode layer of a light emitting element (laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL), and a voltage source or current source is connected to this electrode.
  • the weak current may be injected from the voltage source or the current source to the light emitting element before the setting thyristor S is turned on.
  • the structure of the transfer thyristor T and the setting thyristor S in each embodiment even if it is a structure having the functions of the transfer thyristor T and the setting thyristor S in each embodiment, it may be other than pnpn four-layer structure Good.
  • a pinin structure having a thyristor characteristic, a pipin structure, an npip structure, or a pnin structure may be used.
  • an i layer, an n layer, an i layer sandwiched between p and n of a pinin structure, and an n layer or i layer sandwiched between p and n of a pnin structure become a gate layer, and a gate layer
  • the n-ohmic electrode provided above may be used as a terminal of the gate Gt (gate Gs).
  • an i-layer, a p-layer, an i-layer sandwiched between n and p in an npip structure, or a p-layer or an i-layer sandwiched between n and p in an npip structure is a gate layer on the gate layer
  • the p-ohmic electrode 332 provided on the gate Gt may be a terminal of the gate Gt (gate Gs).
  • the semiconductor structure in which a plurality of semiconductor layers constituting a thyristor and a plurality of semiconductor layers constituting a light emitting element are stacked via a semiconductor layer constituting a tunnel junction is a self-scanning type. It can be used for applications other than light emitting element arrays (SLEDs). For example, it is composed of one light emitting element (laser diode LD, light emitting diode LED, vertical cavity surface emitting laser VCSEL, etc.) and setting thyristor S stacked thereon, and is inputted by an external electric signal or optical signal. It can be used as a single light emitting component that lights up. In this case, the light emitting element constitutes the light emitting unit 102, and the setting thyristor S constitutes the driving unit 101.
  • SLEDs light emitting element arrays
  • p-type GaAs is mainly described as an example of the substrate 80.
  • An example of each semiconductor layer (laminated semiconductor layer formed in the laminated semiconductor layer forming step of FIG. 10A) when another substrate is used will be described.
  • the p-anode layer 81 is, for example, p-type Al 0.9 GaN with an impurity concentration of 1 ⁇ 10 18 / cm 3 , for example.
  • the Al composition may be changed in the range of 0 to 1. Since it is difficult to use an oxide confinement layer as a current confinement layer on a GaN substrate, the configuration using a tunnel junction layer for current confinement (FIGS. 19 and 28) or a metallic conductive III-V compound layer The configuration used for current confinement is the preferred configuration. Alternatively, it is also effective to use ion implantation as a current confinement method.
  • the light emitting layer 82 has a quantum well structure in which well layers and barrier layers are alternately stacked.
  • the well layer is, for example, GaN, InGaN, AlGaN or the like
  • the barrier layer is AlGaN, GaN or the like.
  • the light emitting layer 82 may be a quantum wire (quantum wire) or a quantum box (quantum dot).
  • the n cathode layer 83 is, for example, n-type Al 0.9 GaN having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • the tunnel junction layer 84 is formed of a junction (see FIG. 10B) of an n ++ layer 84 a heavily doped with n-type impurities and ap ++ layer 84 b heavily doped with n-type impurities. ing. n ++ layer 84a and p ++ layer 84b is a high concentration of, for example an impurity concentration of 1 ⁇ 10 20 / cm 3. The impurity concentration of the normal junction is 10 17 / cm 3 to 10 18 / cm 3 .
  • n ++ layer 84a / p ++ layer 84b The combination (hereinafter, referred to with n ++ layer 84a / p ++ layer 84b.) between the n ++ layer 84a and the p ++ layer 84b is, for example n ++ GaN / p ++ GaN, n ++ GaInN / p ++ GaInN, n ++ AlGaN / p ++ AlGaN.
  • the combinations may be mutually changed.
  • the p anode layer 85 is, for example, p-type Al 0.9 GaN with an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • the n gate layer 86 is, for example, n-type Al 0.9 GaN having an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • the p gate layer 87 is, for example, p-type Al 0.9 GaN with an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • the n cathode layer 88 is, for example, n-type Al 0.9 GaN with an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Al composition may be changed in the range of 0 to 1.
  • the p-anode layer 81 is, for example, p-type InGaAsP having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1. Since it is difficult to use an oxide confinement layer as a current confinement layer on an InP substrate, a configuration using a tunnel junction layer for current confinement (FIGS. 19 and 28) or a metallic conductive III-V compound layer may be used.
  • the configuration used for current confinement is the preferred configuration. Alternatively, it is also effective to use ion implantation as a current confinement method.
  • the light emitting layer 82 has a quantum well structure in which well layers and barrier layers are alternately stacked.
  • the well layer is, for example, InAs, InGaAsP, AlGaInAs, GaInAsPSb or the like
  • the barrier layer is InP, InAsP, InGaAsP, AlGaInAsP or the like.
  • the light emitting layer 82 may be a quantum wire (quantum wire) or a quantum box (quantum dot).
  • the n cathode layer 83 is, for example, n-type InGaAsP having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1.
  • the tunnel junction layer 84 is formed of a junction (see FIG. 10B) of an n ++ layer 84 a heavily doped with n-type impurities and ap ++ layer 84 b heavily doped with n-type impurities. ing. n ++ layer 84a and p ++ layer 84b is a high concentration of, for example an impurity concentration of 1 ⁇ 10 20 / cm 3. The impurity concentration of the normal junction is 10 17 / cm 3 to 10 18 / cm 3 .
  • n ++ layer 84a / p ++ layer 84b The combination (hereinafter, referred to with n ++ layer 84a / p ++ layer 84b.) between the n ++ layer 84a and the p ++ layer 84b is, for example n ++ InP / p ++ InP, n ++ InAsP / p ++ InAsP, n ++ InGaAsP / p ++ InGaAsP, n ++ InGaAs PSb / p ++ InGaAs PSb.
  • the combinations may be mutually changed.
  • the p anode layer 85 is, for example, p-type InGaAsP having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1.
  • the n gate layer 86 is, for example, n-type InGaAsP having an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1.
  • the p gate layer 87 is, for example, p-type InGaAsP having an impurity concentration of 1 ⁇ 10 17 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1.
  • the n cathode layer 88 is, for example, n-type InGaAsP having an impurity concentration of 1 ⁇ 10 18 / cm 3 .
  • the Ga composition and the Al composition may be changed in the range of 0 to 1.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the light emitting device 65 is applied to the image forming apparatus 1.
  • the light emitting device 65 may be used as a light source for recognizing a two-dimensional shape or a three-dimensional shape of an object or measuring a distance. It is also good. That is, the light emitting device 65 may be applied to a light emitting device which two-dimensionally applies light to an object to be irradiated.
  • a plurality of light emitting devices 65 may be arranged in a direction intersecting the arrangement direction of the plurality of light emitting elements in the light emitting device 65 to configure a light irradiation device that emits light in a two-dimensional manner.
  • a scanning unit may be provided which scans light emitted from the light emitting device 65 in a row in a direction intersecting the row. That is, the light irradiation device may be configured to irradiate light in a two-dimensional manner by scanning light sequentially emitted in the main scanning direction based on the lighting control signal in the sub-scanning direction intersecting this row.
  • a polygon mirror, a MEMS mirror or the like is an example of the scanning unit.
  • SYMBOLS 1 ... Image forming apparatus, 10 ... Image formation process part, 11 ... Image formation unit, 12 ... Photosensitive drum, 14 ... Print head, 30 ... Image output control part, 40 ... Image processing part, 51, 52, 74, 76 , 77, 78, 79 ... connection wiring, 62 ... circuit board, 63 ... light source section, 64 ... rod lens array, 65 ... light emitting device, 71 ... power supply line, 72 ... first transfer signal line, 73 ...
  • second transfer signal Line 75 lighting signal line 80: substrate 81: p anode layer p anode (cladding) layer p anode (DBR) layer 81b, 85b current constriction layer 82 light emitting layer 83 n cathode layer N cathode (cladding) layer n cathode (DBR) layer 84 tunnel junction layer 84a n ++ layer 84b p ++ layer 85 anode layer 86 n gate layer 87 p gate layer , 88 ...
  • Laser diode SD ... Start diode, T (T1 to T128) ... Transfer thyristor, VCSEL (VCSEL 1 to VCSEL 128) ... Vertical cavity surface emitting Laser, Vga ... the power supply potential, Vsub ... reference potential

Abstract

発光チップCは、基板80と、基板80上に設けられ、一方の端子が予め定められた基準電位に接続された整流特性を有する複数のレーザダイオードLDと、レーザダイオードLDの他方の端子とそれぞれが直列接続され、オン状態となることで接続されたレーザダイオードLDを発光、又は、レーザダイオードLDの発光量を増加させる複数の設定サイリスタSとを備える。

Description

発光部品、プリントヘッド、画像形成装置及び光照射装置
 本発明は、発光部品、プリントヘッド、画像形成装置及び光照射装置に関する。
 特許文献1には、しきい電圧もしくはしきい電流が外部から制御可能な発光素子多数個を、一次元、二次元、もしくは三次元的に配列し、各発光素子のしきい電圧もしくはしきい電流を制御する電極を互いに電気的手段にて接続し、各発光素子に、外部から電圧もしくは電流を印加させるクロックラインを接続した、発光素子アレイが記載されている。
 特許文献2には、基板と基板上にアレイ状に配設された面発光型半導体レーザと基板上に配列され前記面発光型半導体レーザの発光を選択的にオン・オフさせるスイッチ素子としてのサイリスタとを備える自己走査型の光源ヘッドが記載されている。
 特許文献3には、pnpnpn6層半導体構造の発光素子を構成し、両端のp型第1層とn型第6層、および中央のp型第3層およびn型第4層に電極を設け、pn層に発光ダイオード機能を担わせ、pnpn4層にサイリスタ機能を担わせた自己走査型発光装置が記載されている。
日本国特開平1-238962号公報 日本国特開2009-286048号公報 日本国特開2001-308385号公報
 ところで、例えば、発光部と駆動部とを備える自己走査型の発光素子アレイにおいて、発光部における発光素子と、駆動部における発光素子を順に駆動する転送素子とを同じ積層半導体層で構成すると、発光素子の発光特性と、転送素子の駆動特性とを独立に設定しにくかった。このため、発光素子を別の積層半導体層で構成し、発光特性と駆動特性とを独立して設定することが考えられる。このとき、発光素子などの整流特性を有する素子とこれを制御する素子とを接続する場合、整流特性を有する素子の特性に起因した動作不良(誤動作)が生じるおそれがある。
 本発明の少なくとも一の実施形態は、基準電位が整流特性を有する素子を制御する素子に供給される場合に比べ、動作不良が生じにくい発光部品などを提供する。
 第1の態様の発明は、基板と、前記基板上に設けられ、一方の端子が予め定められた基準電位に接続された整流特性を有する複数の発光素子と、前記発光素子の他方の端子とそれぞれが直列接続され、オン状態となることで接続された当該発光素子を発光、又は、当該発光素子の発光量を増加させる複数のサイリスタとを備える発光部品である。
 第2の態様の発明は、複数の前記サイリスタは、順にオン状態が転送されることで、複数の前記発光素子を順にオン状態とする第1の態様の発光部品である。
 第3の態様の発明は、複数の前記サイリスタのそれぞれに接続され、順に転送されるオン状態となることで、接続されたサイリスタをオン状態に移行可能な状態にさせる複数の転送サイリスタを備えることを特徴とする第1の態様の発光部品である。
 第4の態様の発明は、前記発光素子と前記サイリスタとの直列接続に印加される電圧により、当該サイリスタをオン状態に移行させることで、当該発光素子を発光、又は、発光量を増加させることを特徴とする第1の態様から第3の態様のいずれか1つの発光部品である。
 第5の態様の発明は、前記発光素子と前記サイリスタとは、トンネル接合層又は金属的な導電性を有するIII-V族化合物層を介して直列接続されていることを特徴とする第1の態様の発光部品である。
 第6の態様の発明は、前記サイリスタは、複数の半導体層が積層された積層半導体層で構成され、当該積層半導体層は、当該サイリスタの立ち上がり電圧を低減する電圧低減層を備えることを特徴とする第1の態様の発光部品である。
 第7の態様の発明は、前記発光素子は、複数の半導体層が積層された他の積層半導体層で構成され、前記電圧低減層は、当該他の積層半導体層を構成するいずれの半導体層よりもバンドギャップエネルギが小さいことを特徴とする第6の態様の発光部品である。
 第8の態様の発明は、前記電圧低減層は、前記発光素子の発光層を構成する半導体層よりバンドギャップエネルギが小さいことを特徴とする第6の態様の発光部品である。
 第9の態様の発明は、前記発光素子は、電流経路が狭窄されていることを特徴とする第1の態様から第3の態様のいずれか1つの発光部品である。
 第10の態様の発明は、第1の態様の発光部品を含む発光部と、前記発光部から出射される光を結像させる光学部とを備えるプリントヘッドである。
 第11の態様の発明は、像保持体と、前記像保持体を帯電する帯電部と、第1の態様の発光部品を含み、光学部を介して前記像保持体を露光する露光部と、前記露光部により露光され前記像保持体に形成された静電潜像を現像する現像部と、前記像保持体に現像された画像を被転写体に転写する転写部とを備える画像形成装置である。
 第12の態様の発明は、第1の態様の発光部品を有し、前記発光部品から出射される光を二次元状に被照射物に照射する光照射装置である。
 第1の態様の発明によれば、基準電位が整流特性を有する素子を制御する素子に供給される場合に比べ、動作不良が生じにくい。
 第2の態様の発明によれば、サイリスタが順にオン状態が転送されない場合に比べ、発光チップのサイズが小さくできる。
 第3の態様の発明によれば、転送サイリスタを用いない場合に比べ、発光素子の発光/非発光の点灯制御ができる。
 第4の態様の発明によれば、直列接続に印加する電圧で制御しない場合に比べ、点灯制御が容易になる。
 第5の態様の発明によれば、トンネル接合層又は金属的な導電性を有するIII-V族化合物層を介さない場合に比べ、発光のために印加する電圧が低減できる。
 第6の態様の発明によれば、電圧低減層を備えない場合に比べ、駆動に用いる素子のオン状態における電圧が低減できる。
 第7の態様と第8の態様の発明によれば、電圧低減層をバンドギャップエネルギで設定しない場合に比べ、電圧低減層の選定が容易になる。
 第9の態様の発明によれば、電流経路を狭窄しない場合に比べ、低消費電力化ができる。
 第10の態様の発明によれば、基準電位が整流特性を有する素子を制御する素子に供給される場合に比べ、プリントヘッドの動作不良が生じにくい。
 第11の態様の発明によれば、基準電位が整流特性を有する素子を制御する素子に供給される場合に比べ、画像形成装置の動作不良が生じにくい。
 第12の態様の発明によれば、基準電位が整流特性を有する素子を制御する素子に供給される場合に比べ、光照射装置の動作不良が生じにくい。
第1の実施の形態が適用される画像形成装置の全体構成の一例を示した図である。 プリントヘッドの構成の一例を示した断面図である。 発光装置の一例の上面図である。 発光チップの構成、発光装置の信号発生回路の構成及び回路基板62上の配線(ライン)の構成の一例を示した図である。 第1の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップの回路構成を説明する等価回路図である。 第1の実施の形態に係る発光チップの平面レイアウト図及び断面図の一例であるり、図6の(a)は、発光チップの平面レイアウト図、図6の(b)は、(a)のVIB-VIB線での断面図である。 第1の実施の形態に係る発光チップにおいて、レーザダイオード及び設定サイリスタが設けられたアイランド、転送サイリスタなどが設けられたアイランド及び電源線抵抗が設けられたアイランドの拡大断面図である。 レーザダイオードと設定サイリスタとの積層構造をさらに説明する図である。図8の(a)は、レーザダイオードと設定サイリスタとの積層構造における模式的なエネルギーバンド図、図8の(b)は、トンネル接合層の逆バイアス状態におけるエネルギーバンド図、図8の(c)は、トンネル接合層の電流電圧特性を示す。 発光装置及び発光チップの動作を説明するタイミングチャートである。 比較のために示す自己走査型発光素子アレイ(SLED)に搭載可能な発光チップC′の回路構成を示す等価回路図である。 は、発光チップの製造方法を説明する図である。図11の(a)は、積層半導体層形成工程、図11の(b)は、nオーミック電極形成工程、図11の(c)は、積層半導体層分離工程である。 は、発光チップの製造方法を説明する図である。図12の(d)は、電流阻止部形成工程、図12の(e)は、pゲート層出しエッチング工程、図12の(f)は、pオーミック電極形成工程である。 は、発光チップの製造方法を説明する図である。図13の(g)は、保護層形成工程、図13の(h)は、配線及び裏面電極形成工程、図13の(i)は、光出射面形成工程である。 金属的導電性III-V族化合物層を構成する材料を説明する図である。図14の(a)は、InNの組成比xに対するInNAsのバンドギャップ、図14の(b)は、InNの組成比xに対するInNSbのバンドギャップ、図14の(c)は、VI族元素及びIII-V族化合物の格子定数をバンドギャップに対して示す図である。 レーザダイオードと電圧低減層を備えた設定サイリスタとが積層されたアイランドの拡大断面図である。 サイリスタの構造とサイリスタの特性を説明する図である。図16の(a)は、電圧低減層を備えるサイリスタの断面図、図16の(b)は、電圧低減層を備えないサイリスタの断面図、図16の(c)は、サイリスタ特性である。 半導体層を構成する材料のバンドギャップエネルギを説明する図である。 変形例1-1を説明するレーザダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例1-2を説明するレーザダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例1-3を説明するレーザダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第2の実施の形態に係る発光チップにおける発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 転写基板に形成した発光チップにおける発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例2-1を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例2-2を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例2-3を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第3の実施の形態に係る発光チップの垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例3-1を説明する垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 変形例3-2を説明する垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 第4の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップの回路構成を説明する等価回路図である。 第4の実施の形態に係る発光チップのアイランドの断面図である。 第4の実施の形態に係る発光チップの動作を説明するタイミングチャートである。 第5の実施の形態に係る発光チップにおいて、レーザダイオードが設けられたアイランド、設定サイリスタが設けられたアイランド及び転送サイリスタTなどが設けられたアイランドの拡大断面図である。 第6の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップの回路構成を説明する等価回路図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 なお、以下では、アルミニウムをAlとするなど、元素記号を用いて表記する。
[第1の実施の形態]
 ここでは、発光部品の一例である発光チップCを、一例として画像形成装置1に適用するとして説明する。
(画像形成装置1)
 図1は、第1の実施の形態が適用される画像形成装置1の全体構成の一例を示した図である。図1に示す画像形成装置1は、一般にタンデム型と呼ばれる画像形成装置である。この画像形成装置1は、各色の画像データに対応して画像形成を行なう画像形成プロセス部10、画像形成プロセス部10を制御する画像出力制御部30、例えばパーソナルコンピュータ(PC)2や画像読取装置3に接続され、これらから受信された画像データに対して予め定められた画像処理を施す画像処理部40を備える。
 画像形成プロセス部10は、予め定められた間隔を置いて並列に配置される画像形成ユニット11Y、11M、11C、11K(区別しない場合は、画像形成ユニット11と表記する。)を備える。画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定められた電位で帯電する帯電部の一例としての帯電器13、帯電器13によって帯電された感光体ドラム12を露光するプリントヘッド14、プリントヘッド14によって得られた静電潜像を現像する現像部の一例としての現像器15を備える。各画像形成ユニット11Y、11M、11C、11Kは、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
 また、画像形成プロセス部10は、各画像形成ユニット11Y、11M、11C、11Kの感光体ドラム12にて形成された各色のトナー像を被転写体の一例としての記録用紙25に多重転写させるために、この記録用紙25を搬送する用紙搬送ベルト21と、用紙搬送ベルト21を駆動させる駆動ロール22と、感光体ドラム12のトナー像を記録用紙25に転写させる転写部の一例としての転写ロール23と、記録用紙25にトナー像を定着させる定着器24とを備える。
 この画像形成装置1において、画像形成プロセス部10は、画像出力制御部30から供給される各種の制御信号に基づいて画像形成動作を行う。そして、画像出力制御部30による制御の下で、パーソナルコンピュータ(PC)2や画像読取装置3から受信された画像データは、画像処理部40によって画像処理が施され、画像形成ユニット11に供給される。そして、例えば黒(K)色の画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら、帯電器13により予め定められた電位に帯電され、画像処理部40から供給された画像データに基づいて発光するプリントヘッド14により露光される。これにより、感光体ドラム12上には、黒(K)色画像に関する静電潜像が形成される。そして、感光体ドラム12上に形成された静電潜像は現像器15により現像され、感光体ドラム12上には黒(K)色のトナー像が形成される。画像形成ユニット11Y、11M、11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。
 各画像形成ユニット11で形成された感光体ドラム12上の各色トナー像は、矢印B方向に移動する用紙搬送ベルト21の移動に伴って供給された記録用紙25に、転写ロール23に印加された転写電界により、順次静電転写され、記録用紙25上に各色トナーが重畳された合成トナー像が形成される。
 その後、合成トナー像が静電転写された記録用紙25は、定着器24まで搬送される。定着器24に搬送された記録用紙25上の合成トナー像は、定着器24によって熱及び圧力による定着処理を受けて記録用紙25上に定着され、画像形成装置1から排出される。
(プリントヘッド14)
 図2は、プリントヘッド14の構成の一例を示した断面図である。露光部の一例としてのプリントヘッド14は、ハウジング61、感光体ドラム12を露光する複数の発光素子(第1の実施の形態では、発光素子はレーザダイオードLD)を備える光源部63を備えた発光部の一例としての発光装置65、光源部63から出射された光を感光体ドラム12の表面に結像させる光学部の一例としてのロッドレンズアレイ64を備える。
 発光装置65は、前述した光源部63、光源部63を駆動する信号発生回路110(後述の図3参照)等を搭載する回路基板62を備える。
 ハウジング61は、例えば金属で形成され、回路基板62及びロッドレンズアレイ64を支持し、光源部63の発光素子の発光面がロッドレンズアレイ64の焦点面となるように設定されている。また、ロッドレンズアレイ64は、感光体ドラム12の軸方向(主走査方向であって、後述する図3、図4の(b)のX方向)に沿って配置されている。
(発光装置65)
 図3は、発光装置65の一例の上面図である。
 図3に例として示す発光装置65では、光源部63は、回路基板62上に、40個の発光部品の一例としての発光チップC1~C40(区別しない場合は、発光チップCと表記する。)が、主走査方向であるX方向に二列に千鳥状に配置して構成されている。発光チップC1~C40の構成は同じであってよい。
 本明細書では、「~」は、番号によってそれぞれが区別された複数の構成要素を示すもので、「~」の前後に記載されたもの及びその間の番号のものを含むことを意味する。例えば、発光チップC1~C40は、発光チップC1から番号順に発光チップC40までを含む。
 なお、第1の実施の形態では、発光チップCの数として、合計40個を用いたが、これに限定されない。
 そして、発光装置65は、光源部63を駆動する信号発生回路110を搭載している。信号発生回路110は、例えば集積回路(IC)などで構成されている。なお、発光装置65が信号発生回路110を搭載していなくともよい。このときは、信号発生回路110は、発光装置65の外部に設けられ、発光チップCを制御する制御信号などを、ケーブルなどを介して供給する。ここでは、発光装置65は信号発生回路110を備えるとして説明する。
 発光チップCの配列についての詳細は後述する。
 図4は、発光チップCの構成、発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成の一例を示した図である。図4の(a)は発光チップCの構成を示し、図4の(b)は発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成を示す。なお、図4の(b)では、発光チップC1~C40の内、発光チップC1~C9の部分を示している。
 はじめに、図4の(a)に示す発光チップCの構成を説明する。
 発光チップCは、表面形状が矩形である基板80の表面において、長辺の一辺に近い側に長辺に沿って列状に設けられた複数の発光素子(第1の実施の形態ではレーザダイオードLD1~LD128(区別しない場合は、レーザダイオードLDと表記する。))を含んで構成される発光部102を備える。さらに、発光チップCは、基板80の表面の長辺方向の両端部に、各種の制御信号等を取り込むための複数のボンディングパッドである端子(φ1端子、φ2端子、Vga端子、φI端子)を備える。なお、これらの端子は、基板80の一端部からφI端子、φ1端子の順に設けられ、基板80の他端部からVga端子、φ2端子の順に設けられている。そして、発光部102は、φ1端子とφ2端子との間に設けられている。さらに、基板80の裏面にはVsub端子として裏面電極91(後述する図6参照)が設けられている。
 ここで、レーザダイオードLDは、発光素子(発光に用いる素子)の一例である。
 なお、「列状」とは、図4の(a)に示したように複数の発光素子が一直線上に配置されている場合に限らず、複数の発光素子のそれぞれの発光素子が、列方向と直交する方向に対して、互いに異なるずれ量を有して配置されている状態でもよい。例えば、それぞれの発光素子が、列方向と直交する方向にずれ量をもって配置されていてもよい。また、隣接する発光素子間で交互に、又は複数の発光素子毎に、ジグザグに配置されていてもよい。
 次に、図4の(b)により、発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成を説明する。
 前述したように、発光装置65の回路基板62には、信号発生回路110及び発光チップC1~C40が搭載され、信号発生回路110と発光チップC1~C40とを接続する配線(ライン)が設けられている。
 まず、信号発生回路110の構成について説明する。
 信号発生回路110には、画像出力制御部30及び画像処理部40(図1参照)より、画像処理された画像データ及び各種の制御信号が入力される。信号発生回路110は、これらの画像データ及び各種の制御信号に基づいて、画像データの並び替えや光量の補正等を行う。
 そして、信号発生回路110は、各種の制御信号に基づき、発光チップC1~C40に、第1転送信号φ1、第2転送信号φ2を送信する転送信号発生部120を備える。
 そしてまた、信号発生回路110は、各種の制御信号に基づき、発光チップC1~C40に、点灯信号φI1~φI40(区別しない場合は、点灯信号φIと表記する。)をそれぞれ送信する点灯信号発生部140を備える。
 さらにまた、信号発生回路110は、発光チップC1~C40に電位の基準となる基準電位Vsubを供給する基準電位供給部160、発光チップC1~C40の駆動のための電源電位Vgaを供給する電源電位供給部170を備える。
 なお、基準電位Vsub及び電源電位Vgaは、必ずしも一定の固定値である必要はなく、発光チップCが後述する動作を行う範囲において変動してもよい。第1転送信号φ1、第2転送信号φ2、点灯信号φI1~φI40についても同様である。
 次に、発光チップC1~C40の配列について説明する。
 奇数番号の発光チップC1、C3、C5、…は、それぞれの基板80の長辺方向に間隔を設けて一列に配列されている。偶数番号の発光チップC2、C4、C6、…も、同様にそれぞれの基板80の長辺の方向に間隔を設けて一列に配列されている。そして、奇数番号の発光チップC1、C3、C5、…と偶数番号の発光チップC2、C4、C6、…とは、発光チップCに設けられた発光部102側の長辺が向かい合うように、互いに180°回転した状態で千鳥状に配列されている。そして、発光チップC間においてもレーザダイオードLDが主走査方向(X方向)に予め定められた間隔で並ぶように位置が設定されている。なお、図4の(b)に示す発光チップC1~C40に、図4の(a)に示したレーザダイオードLDの並び(レーザダイオードLD1~LD128の番号順)の方向を矢印で示している。
 信号発生回路110と発光チップC1~C40とを接続する配線(ライン)について説明する。
 回路基板62には、信号発生回路110の基準電位供給部160から、発光チップCの基板80の裏面に設けられたVsub端子である裏面電極91(後述の図6参照)に接続され、基準電位Vsubを供給する電源ライン200aが設けられている。
 そして、回路基板62には、信号発生回路110の電源電位供給部170から、発光チップCに設けられたVga端子に接続され、駆動のための電源電位Vgaを供給する電源ライン200bが設けられている。
 回路基板62には、信号発生回路110の転送信号発生部120から、発光チップC1~C40のφ1端子に第1転送信号φ1を送信するための第1転送信号ライン201、発光チップC1~C40のφ2端子に第2転送信号φ2を送信するための第2転送信号ライン202が設けられている。第1転送信号φ1、第2転送信号φ2は、発光チップC1~C40に共通(並列)に送信される。
 そしてまた、回路基板62には、信号発生回路110の点灯信号発生部140から、各発光チップC1~C40のそれぞれのφI端子に、それぞれ電流制限抵抗RIを介して、点灯信号φI1~φI40を送信する点灯信号ライン204-1~204-40(区別しない場合は、点灯信号ライン204と表記する。)が設けられている。
 以上説明したように、回路基板62上のすべての発光チップC1~C40に、基準電位Vsub、電源電位Vgaが共通に供給される。第1転送信号φ1、第2転送信号φ2も、発光チップC1~C40に共通(並列)に送信される。一方、点灯信号φI1~φI40は、発光チップC1~C40にそれぞれ個別に送信される。
(発光チップC)
 図5は、第1の実施の形態に係る自己走査型発光素子アレイ(SLED:Self-Scanning Light Emitting Device)が搭載された発光チップCの回路構成を説明する等価回路図である。以下において説明する各素子は、端子(φ1端子、φ2端子、Vga端子、φI端子)を除き、発光チップC上のレイアウト(後述する図6参照)に基づいて配置されている。なお、端子(φ1端子、φ2端子、Vga端子、φI端子)の位置は、図4の(a)と異なるが、信号発生回路110との接続の関係の説明のため、図中左端に示している。そして、基板80の裏面に設けられたVsub端子を、基板80の外に引き出して示している。
 ここでは、信号発生回路110との関係において発光チップC1を例に、発光チップCを説明する。そこで、図5において、発光チップCを発光チップC1(C)と表記する。他の発光チップC2~C40の構成は、発光チップC1と同じである。
 発光チップC1(C)は、レーザダイオードLD1~LD128で構成される発光部102(図4の(a)参照)を備える。
 そして、発光チップC1(C)は、設定サイリスタS1~S128(区別しない場合は、設定サイリスタSと表記する。)を備える。レーザダイオードLD1~LD128及び設定サイリスタS1~S128は、同じ番号のレーザダイオードLDと設定サイリスタSとが直列接続されている。ここでは、レーザダイオードLDのカソードと設定サイリスタSのアノードとが接続されている。なお、後述する図6の(b)に示すように、設定サイリスタSは、基板80上に列状に配列されたレーザダイオードLD上に積層されている。よって、設定サイリスタS1~S128も列状に配列されている。
 設定サイリスタSは、後述するようにオン状態になることで、レーザダイオードLDを発光、又は、発光量を増加させる。つまり、設定サイリスタSは、レーザダイオードLDを発光した状態、又は、発光量が増加した状態に設定する。よって、設定サイリスタSと表記する。また、設定サイリスタSを介して、レーザダイオードLDに電流が供給される。つまり、発光素子(レーザダイオードLDや後述する他の実施の形態における発光ダイオードLED及び垂直共振器面発光レーザVCSELなど)は、整流特性を有する素子(二端子素子)であり、設定サイリスタSは、整流特性を有する素子を制御する素子である。そして、設定サイリスタSをサイリスタと表記することがある。
 さらに、発光チップC1(C)は、レーザダイオードLD1~LD128、設定サイリスタS1~S128と同様に列状に配列された転送サイリスタT1~T128(区別しない場合は、転送サイリスタTと表記する。)を備える。
 そして、発光チップC1(C)は、レーザダイオードLD1~LD128と同様な構造の下部ダイオードUD1~UD128(区別しない場合は、下部ダイオードUDと表記する。)を備える。下部ダイオードUD1~UD128及び転送サイリスタT1~T128は、同じ番号の下部ダイオードUDと転送サイリスタTとが直列接続されている。
 なお、後述する図6の(b)に示すように、転送サイリスタTは、基板80上に列状に配列された下部ダイオードUD上に積層されている。よって、下部ダイオードUD1~UD128も列状に配列されている。
 なお、ここでは転送素子の一例として転送サイリスタTを用いて説明するが、順にオン状態になる素子であれば他の回路素子であってもよく、例えば、シフトレジスタや複数のトランジスタを組み合わせた回路素子を用いてもよい。
 また、発光チップC1(C)は、転送サイリスタT1~T128をそれぞれ番号順に2つをペアにして、それぞれのペアの間に結合ダイオードD1~D127(区別しない場合は、結合ダイオードDと表記する。)を備える。
 さらに、発光チップC1(C)は、電源線抵抗Rg1~Rg128(区別しない場合は、電源線抵抗Rgと表記する。)を備える。
 また、発光チップC1(C)は、1個のスタートダイオードSDを備える。そして、後述する第1転送信号φ1が送信される第1転送信号線72と第2転送信号φ2が送信される第2転送信号線73とに過剰な電流が流れるのを防止するために設けられた電流制限抵抗R1、R2を備える。
 ここでは、設定サイリスタS1~S128、転送サイリスタT1~T128、下部ダイオードUD1~UD128、電源線抵抗Rg1~Rg128、結合ダイオードD1~D127、スタートダイオードSD、電流制限抵抗R1、R2により駆動部101が構成される。なお、駆動部101における設定サイリスタS及び転送サイリスタTを駆動素子と表記し、駆動部101における設定サイリスタS及び転送サイリスタTが発光部102を駆動すると表記する。そして、駆動部101が発光部102の駆動に関する特性を駆動特性、発光部102の発光に関する特性を発光特性と表記する。
 発光部102のレーザダイオードLD1~LD128、駆動部101の及び設定サイリスタS1~S128、転送サイリスタT1~T128、下部ダイオードUD1~UD128は、図5中において、左側から番号順に配列されている。さらに、結合ダイオードD1~D127、電源線抵抗Rg1~Rg128も、図中左側から番号順に配列されている。
 そして、発光チップCは、電源電位Vgaが供給される電源線71、第1転送信号φ1が供給される第1転送信号線72、第2転送信号φ2が供給される第2転送信号線73、レーザダイオードLDに点灯のための電流を供給する点灯信号線75を備える。
 第1の実施の形態では、発光部102におけるレーザダイオードLD、駆動部101における設定サイリスタS、転送サイリスタT、下部ダイオードUD、電源線抵抗Rgはそれぞれ128個とした。なお、結合ダイオードDの数は、転送サイリスタTの数より1個少ない127個である。
 レーザダイオードLDなどの数は、上記に限らず、予め定められた個数とすればよい。そして、転送サイリスタTの数は、レーザダイオードLDの数より多くてもよい。
 上記のダイオード(レーザダイオードLD、下部ダイオードUD、結合ダイオードD、スタートダイオードSD)は、アノード端子(アノード)、カソード端子(カソード)を備える2端子の半導体素子、サイリスタ(設定サイリスタS、転送サイリスタT)は、アノード端子(アノード)、ゲート端子(ゲート)、カソード端子(カソード)の3端子を有する半導体素子である。
 なお、後述するように、ダイオード(レーザダイオードLD、下部ダイオードUD、結合ダイオードD、スタートダイオードSD)、サイリスタ(設定サイリスタS、転送サイリスタT)は、電極として構成されたアノード端子、ゲート端子、カソード端子を必ずしも備えない場合がある。よって、以下では、端子を略して( )内で表記する場合がある。
 では次に、発光チップC1(C)における各素子の電気的な接続について説明する。
 レーザダイオードLD、下部ダイオードUDのそれぞれのアノードは、発光チップC1(C)の基板80に接続される(アノードコモン)。これらのアノードは、基板80の裏面に設けられたVsub端子である裏面電極91(後述の図6の(b)参照)を介して電源ライン200a(図4の(b)参照)に接続される。この電源ライン200aは、基準電位供給部160から基準電位Vsubが供給される。
 なお、この接続はp型の基板80を用いた際の構成であり、n型の基板を用いる場合は極性が逆となり、不純物を添加していないイントリンシック(i)型の基板を用いる場合には、基板の駆動部101及び発光部102が設けられる側に、基準電位Vsubを供給する電源ライン200aと接続される端子が設けられる。
 そして、レーザダイオードLDのそれぞれのカソードは、設定サイリスタSのアノードに接続されている。また、下部ダイオードUDのそれぞれのカソードは、転送サイリスタTのアノードに接続されている。すなわち、レーザダイオードLDと設定サイリスタSとは、直列接続されている。同様に、下部ダイオードUDと転送サイリスタTも、直列接続されている。
 設定サイリスタSのそれぞれのカソードは、点灯信号線75に接続されている。点灯信号線75は、φI端子に接続されている。発光チップC1では、φI端子は、発光チップC1(C)の外側に設けられた電流制限抵抗RIを介して点灯信号ライン204-1に接続され、点灯信号発生部140から点灯信号φI1が送信される(図4の(b)参照)。点灯信号φI1は、レーザダイオードLD1~LD128に点灯のための電流を供給する。なお、他の発光チップC2~C40のφI端子には、それぞれ電流制限抵抗RIを介して点灯信号ライン204-2~204-40が接続され、点灯信号発生部140から点灯信号φI2~φI40が送信される(図4の(b)参照)。
 転送サイリスタTの配列に沿って、奇数番号の転送サイリスタT1、T3、…のカソードは、第1転送信号線72に接続されている。そして、第1転送信号線72は、電流制限抵抗R1を介してφ1端子に接続されている。このφ1端子には、第1転送信号ライン201(図4の(b)参照)が接続され、転送信号発生部120から第1転送信号φ1が送信される。
 一方、転送サイリスタTの配列に沿って、偶数番号の転送サイリスタT2、T4、…のカソードは、第2転送信号線73に接続されている。そして、第2転送信号線73は、電流制限抵抗R2を介してφ2端子に接続されている。このφ2端子には、第2転送信号ライン202(図4の(b)参照)が接続され、転送信号発生部120から第2転送信号φ2が送信される。
 転送サイリスタT1~T128のそれぞれのゲートGt1~Gt128(区別しない場合は、ゲートGtと表記する。)は、同じ番号の設定サイリスタS1~S128のゲートGs1~Gs128(区別しない場合は、ゲートGsと表記する。)に、1対1で接続されている。よって、ゲートGt1~Gt128とゲートGs1~Gs128とは、同じ番号のものが電気的に同電位になっている。よって、例えばゲートGt1(ゲートGs1)と表記して、電位が同じであることを示す。
 転送サイリスタT1~T128のそれぞれのゲートGt1~Gt128を番号順に2個ずつペアとしたゲートGt間に、結合ダイオードD1~D127がそれぞれ接続されている。すなわち、結合ダイオードD1~D127はそれぞれがゲートGt1~Gt128のそれぞれの間に挟まれるように直列接続されている。そして、結合ダイオードD1の向きは、ゲートGt1からゲートGt2に向かって電流が流れる方向に接続されている。他の結合ダイオードD2~D127についても同様である。
 転送サイリスタTのゲートGtは、転送サイリスタTのそれぞれに対応して設けられた電源線抵抗Rgを介して、電源線71に接続されている。電源線71はVga端子に接続されている。Vga端子には、電源ライン200b(図4の(b)参照)が接続され、電源電位供給部170から電源電位Vgaが供給される。なお、設定サイリスタSのゲートGsは、転送サイリスタTのゲートGtに接続されているので、設定サイリスタSのゲートGsも、電源線抵抗Rgを介して、電源線71に接続されている。
 そして、転送サイリスタT1のゲートGt1は、スタートダイオードSDのカソードに接続されている。一方、スタートダイオードSDのアノードは、第2転送信号線73に接続されている。
 図6は、第1の実施の形態に係る発光チップCの平面レイアウト図及び断面図の一例である。図6の(a)は、発光チップCの平面レイアウト図、図6の(b)は、図6の(a)のVIB-VIB線での断面図である。ここでは、発光チップCと信号発生回路110との接続関係を示さないので、発光チップC1を例とすることを要しない。よって、発光チップCと表記する。
 図6の(a)では、レーザダイオードLD1~LD4、設定サイリスタS1~S4、転送サイリスタT1~T4及び下部ダイオードUD1~UD4を中心とした部分を示している。なお、端子(φ1端子、φ2端子、Vga端子、φI端子)の位置は、図4の(a)と異なるが、説明の便宜上、図中左端部に示している。そして、基板80の裏面に設けられたVsub端子(裏面電極91)は、基板80の外に引き出して示している。図4の(a)に対応させて端子を設けるとすると、φ2端子、φI端子、電流制限抵抗R2は、基板80の右端部に設けられる。また、スタートダイオードSDは基板80の右端部に設けられてもよい。
 そして、図6の(a)では、矢印でレーザダイオードLDの光が出射する方向を示す。ここでは、レーザダイオードLDの光が出射する面を劈開面としている。レーザダイオードLDの光が出射する面を劈開面とする理由は後述する。
 図6の(a)のVIB-VIB線での断面図である図6の(b)では、図中下より設定サイリスタS1/レーザダイオードLD1、転送サイリスタT1/下部ダイオードUD1、結合ダイオードD1、電源線抵抗Rg1が示されている。なお、レーザダイオードLD1上に設定サイリスタS1が積層されている。同様に、下部ダイオードUD1上に転送サイリスタT1が積層されている。
 そして、図6の(a)、(b)の図中には、主要な素子や端子を名前により表記している。なお、基板80の表面において、レーザダイオードLD(レーザダイオードLD1~LD4)の配列の方向がx方向、x方向と直交する方向がy方向である。そして、基板80の裏面から表面に向かう方向をz方向とする。なお、xy平面に沿った方向を横方向、z方向を上方、-z方向を下方と呼ぶことがある。
 まず、発光チップCの断面構造を、図6の(b)により説明する。
 p型の基板80(基板80)上に、レーザダイオードLD、下部ダイオードUDを構成するp型のアノード層81(pアノード層81)、発光層82、n型のカソード層83(nカソード層83)が設けられている。
 そして、nカソード層83上に、トンネル接合(トンネルダイオード)層84(トンネル接合層84)が設けられている。
 さらに、トンネル接合層84上に、設定サイリスタS、転送サイリスタT、結合ダイオードD1、電源線抵抗Rg1を構成するp型のアノード層85(pアノード層85)、n型のゲート層86(nゲート層86)、p型のゲート層87(pゲート層87)、n型のカソード層88(nカソード層88)が順に設けられている。
 なお、以下では、( )内の表記を用いる。他の場合も同様とする。
 そして、発光チップCには、図6の(b)に示すように、これらのアイランドの表面及び側面を覆うように設けられた絶縁材料で構成された保護層90が設けられている。前述したように、レーザダイオードLDの光が出射する面は、一例として劈開面となっている。このため、レーザダイオードLDの光が出射する面には、保護層90は設けられていない。
 後述するように、保護層90を除去しないで、レーザダイオードLDの光を保護層90を介して出射させる場合には、保護層90は、レーザダイオードLDが出射する光に対して透光性であることがよい。
 そして、これらのアイランドと電源線71、第1転送信号線72、第2転送信号線73、点灯信号線75などの配線とが、保護層90に設けられたスルーホール(図6の(a)では○で示す。)を介して接続されている。以下の説明では、保護層90及びスルーホールについての説明を省略する。
 また、図6の(b)に示すように、基板80の裏面にはVsub端子となる裏面電極91が設けられている。
 pアノード層81、発光層82、nカソード層83、トンネル接合層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88は、それぞれが半導体層であって、エピタキシャル成長によりモノリシックに積層される。
 そして、相互に分離された複数のアイランド(島)(後述するアイランド301、302、303、…)になるように、アイランド間の半導体層がエッチング(メサエッチング)により除去されている。また、pアノード層81が基板80を兼ねてもよい。
 ここでは、pアノード層81、nカソード層83の表記は、レーザダイオードLD及び下部ダイオードUDを構成する場合の機能(働き)に対応させている。すなわち、pアノード層81はアノード、nカソード層83はカソードとして機能する。なお、レーザダイオードLDでは、pアノード層81、nカソード層83のそれぞれはクラッドとして機能する。よって、pアノード(クラッド)層81、nカソード(クラッド)層83と表記することがある。
 また、pアノード層85、nゲート層86、pゲート層87、nカソード層88の表記は、設定サイリスタS及び転送サイリスタTを構成する場合の機能(働き)に対応させている。すなわち、pアノード層85はアノード、nゲート層86、pゲート層87はゲート、nカソード層88はカソードとして機能する。
 なお、結合ダイオードD、電源線抵抗Rgを構成する場合には、後述するように異なる機能を有する。
 以下に説明するように、複数のアイランドは、pアノード層81、発光層82、nカソード層83、トンネル接合層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88の複数の層の内、層の一部を備えていないものを含む。例えば、アイランド301は、nカソード層88の一部を備えない。
 次に、発光チップCの平面レイアウトを、図6の(a)により説明する。
 アイランド301には、レーザダイオードLD1及び設定サイリスタS1が設けられている。アイランド302には、下部ダイオードUD1、転送サイリスタT1及び結合ダイオードD1が設けられている。アイランド303には、電源線抵抗Rg1が設けられている。アイランド304には、スタートダイオードSDが設けられている。アイランド305には電流制限抵抗R1が、アイランド306には電流制限抵抗R2が設けられている。
 そして、発光チップCには、アイランド301、302、303と同様なアイランドが、並列して複数形成されている。これらのアイランドには、レーザダイオードLD2、LD3、LD4、…、設定サイリスタS2、S3、S4、…、転送サイリスタT2、T3、T4、…、下部ダイオードUD2、UD3、UD4、…、結合ダイオードD2、D3、D4、…等が、アイランド301、302、303と同様に設けられている。
 ここで、図6の(a)、(b)により、アイランド301~アイランド306について詳細に説明する。
 アイランド301に設けられたレーザダイオードLD1は、pアノード層81、発光層82、nカソード層83で構成されている。設定サイリスタS1は、レーザダイオードLD1のnカソード層83上に積層されたトンネル接合層84を介して積層されたpアノード層85、nゲート層86、pゲート層87、nカソード層88から構成されている。そして、nカソード層88(領域311)上に設けられたn型のオーミック電極321(nオーミック電極321)をカソード電極とする。
 そして、nカソード層88を除去して露出させたpゲート層87上に設けられたp型のオーミック電極331(pオーミック電極331)をゲートGs1の電極(ゲート端子Gs1と表記することがある。)とする。
 なお、pアノード層81には、電流狭窄層81b(後述する図7参照)が含まれている。電流狭窄層81bは、レーザダイオードLDに流れる電流を、レーザダイオードLDの中央部に制限する(電流狭窄する)ために設けられている。すなわち、レーザダイオードLDの周辺部は、メサエッチングに起因して欠陥が多い。このため、非発光再結合が起こりやすい。そこで、レーザダイオードLDの中央部が電流の流れやすい電流通過部αとなり、周辺部が電流の流れにくい電流阻止部βとなるように、電流狭窄層81bが設けられている。図6の(a)のレーザダイオードLD1に示すように、破線の内側が電流通過部α、破線の外側が電流阻止部βである。
 レーザダイオードLDの光が出射する側に電流阻止部βがあると、損失が発生し、光量が低下するおそれがある。そこで、レーザダイオードLDの矢印で示す光が出射する光出射面(端面)は、電流阻止部βを除去するように劈開面としている。このため、レーザダイオードLDの光出射面側(図6の(a)の-y方向)には、電流阻止部βがない。なお、エッチングによりレーザダイオードLDの光が出射する面を形成してもよく、損失が小さい場合には、電流阻止部βの部分を除去することを要しない。また、電流阻止部βの部分を除去しないメリットとして、光が出射する部分に発光しない部分(窓構造)を設けることで、端面出射型において高光出力時に問題となるCOD(Catastrophic Optical Damage)を回避しうる。
 電流狭窄層81bを設けると非発光再結合に消費される電力が抑制されるので、低消費電力化が図れるとともに光取り出し効率が向上する。なお、光取り出し効率とは、電力当たりに取り出すことができる光量である。
 電流阻止部βを、後述するように酸化により形成する場合には、アイランド301の周囲から等距離の領域が電流阻止部βとなるが、図6の(a)では、電流阻止部βを模式的に示しており、アイランド301の周囲から等距離としてない。つまり、図6の(a)のアイランド301のy方向の電流阻止部βの幅と、±x方向の電流阻止部βの幅とが異なるように表記している。
 なお、電流狭窄層81bについては、後述する。
 アイランド302に設けられた下部ダイオードUD1は、pアノード層81、発光層82、nカソード層83で構成されている。転送サイリスタT1は、pアノード層85、nゲート層86、pゲート層87、nカソード層88から構成されている。そして、nカソード層88(領域313)上に設けられたnオーミック電極323をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極332をゲートGt1の端子(ゲート端子Gt1と表記することがある。)とする。
 同じく、アイランド302に設けられた結合ダイオードD1は、pゲート層87、nカソード層88から構成される。そして、nカソード層88(領域314)上に設けられたnオーミック電極324をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極332をアノード端子とする。つまり、結合ダイオードD1は、pゲート層87をアノードとし、nカソード層88をカソードとする。ここでは、結合ダイオードD1のアノード端子であるpオーミック電極332は、ゲートGt1(ゲート端子Gt1)と同じである。
 アイランド303に設けられた電源線抵抗Rg1は、pゲート層87で構成される。つまり、電源線抵抗Rg1は、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極333とpオーミック電極334との間のpゲート層87を抵抗とする。
 アイランド304に設けられたスタートダイオードSDは、pゲート層87、nカソード層88から構成される。つまり、スタートダイオードSDは、nカソード層88(領域315)上に設けられたnオーミック電極325をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極335をアノード端子とする。つまり、スタートダイオードSDは、pゲート層87をアノードとし、nカソード層88をカソードとする。
 アイランド305に設けられた電流制限抵抗R1、アイランド306に設けられた電流制限抵抗R2は、アイランド303に設けられた電源線抵抗Rg1と同様に設けられ、それぞれが2個のpオーミック電極(符号なし)間のpゲート層87を抵抗とする。
 図6の(a)において、各素子間の接続関係を説明する。
 点灯信号線75は、幹部75aと複数の枝部75bとを備える。幹部75aは設定サイリスタS/レーザダイオードLDの列方向に延びるように設けられている。枝部75bは幹部75aから枝分かれして、アイランド301に設けられた設定サイリスタS1のカソード端子であるnオーミック電極321と接続されている。他の設定サイリスタSのカソード端子も同様に点灯信号線75に接続されている。そして、点灯信号線75は、φI端子に接続されている。
 第1転送信号線72は、アイランド302に設けられた転送サイリスタT1のカソード端子であるnオーミック電極323に接続されている。第1転送信号線72には、アイランド302と同様なアイランドに設けられた、他の奇数番号の転送サイリスタTのカソード端子が接続されている。第1転送信号線72は、アイランド305に設けられた電流制限抵抗R1を介してφ1端子に接続されている。
 一方、第2転送信号線73は、符号を付さないアイランドに設けられた偶数番号の転送サイリスタTのカソード端子であるnオーミック電極(符号なし)に接続されている。第2転送信号線73は、アイランド306に設けられた電流制限抵抗R2を介してφ2端子に接続されている。
 電源線71は、アイランド303に設けられた電源線抵抗Rg1の一方の端子であるpオーミック電極334に接続されている。他の電源線抵抗Rgの一方の端子も電源線71に接続されている。電源線71は、Vga端子に接続されている。
 そして、アイランド301に設けられた設定サイリスタS1のpオーミック電極331(ゲート端子Gs1)は、アイランド302に設けられた転送サイリスタT1のゲート端子Gt1であるpオーミック電極332に接続配線76で接続されている。
 そして、アイランド302に設けられた転送サイリスタT1のゲート端子Gt1であるpオーミック電極332は、アイランド303に設けられた電源線抵抗Rg1の他方の端子であるpオーミック電極333に接続配線77で接続されている。
 アイランド302に設けられた結合ダイオードD1のカソード端子であるnオーミック電極324は、隣接する転送サイリスタT2のゲート端子Gt2であるp型オーミック電極(符号なし)に接続配線79で接続されている。
 ここでは説明を省略するが、他のレーザダイオードLD、設定サイリスタS、転送サイリスタT、結合ダイオードD等についても同様である。
 アイランド302に設けられた転送サイリスタT1のゲート端子Gt1であるpオーミック電極332は、アイランド304に設けられたスタートダイオードSDのカソード端子であるnオーミック電極325に接続配線78で接続されている。スタートダイオードSDのアノード端子であるpオーミック電極335は、第2転送信号線73に接続されている。
 なお、上記の接続及び構成は、p型の基板80を用いた際のものであり、n型の基板を用いる場合は、極性が逆となる。また、i型の基板を用いる場合は、基板の駆動部101及び発光部102が設けられる側に、基準電位Vsubを供給する電源ライン200aと接続される端子が設けられる。そして、接続及び構成は、p型の基板を用いる場合、n型の基板を用いる場合のどちらかと同様になる。
(レーザダイオードLDと設定サイリスタSとの積層構造)
 図7は、第1の実施の形態に係る発光チップCにおいて、レーザダイオードLD1及び設定サイリスタS1が設けられたアイランド301、転送サイリスタTなどが設けられたアイランド302及び電源線抵抗Rg1が設けられたアイランド303の拡大断面図である。また、図7は、図6の(a)のVIB-VIB線での断面図であるが、図6の(b)とは逆の-x方向から見た断面図である。
 以下では、アイランド301におけるレーザダイオードLD1と設定サイリスタS1との積層構造について詳述する。
 アイランド301に示すようにレーザダイオードLD1は、クラッド層として働くpアノード層81、発光層82、クラッド層として働くnカソード層83で構成されている。よって、pアノード層81をpアノード(クラッド)層81、nカソード(クラッド)層83と表記し、図7において、pアノード(クラッド)層81をp(クラッド)、nカソード(クラッド)層83をn(クラッド)と表記する。
 pアノード(クラッド)層81は、電流狭窄層81bを含んで構成されている。すなわち、pアノード(クラッド)層81は、下側pアノード(クラッド)層81a、電流狭窄層81b、上側pアノード(クラッド)層81cで構成されている。
 発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構造である。なお、発光層82は、不純物を添加していないイントリンシック(i)層であってもよい。また、発光層82は、量子井戸構造以外であってもよく、例えば、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
 発光層82から出射する光がpアノード(クラッド)層81とnカソード(クラッド)層83との間に閉じ込められるとともに、発光層82の側面(端面)間でレーザ発振するように、pアノード(クラッド)層81、nカソード(クラッド)層83、発光層82が設定されている。この場合、光は、矢印で示すように、発光層82の側面(端面)を光出射面として、基板80に平行に出射する。
 トンネル接合層84は、n型の不純物(ドーパント)を高濃度に添加(ドープ)したn++層84aと、p型の不純物を高濃度に添加したp++層84bとで構成されている。
 設定サイリスタS1は、pアノード層85、nゲート層86、pゲート層87、nカソード層88から構成されている。図7では、pアノード層85をpアノード又はp、nゲート層86をnゲート又はn、pゲート層87をpゲート又はp、nカソード層88をnカソード又はnと表記する。
 一方、アイランド302に設けられた下部ダイオードUD1及び転送サイリスタT1は、レーザダイオードLD1及び設定サイリスタS1と同様の構成を有している。
<トンネル接合層84>
 ここで、トンネル接合層84を説明する。
 図8は、レーザダイオードLDと設定サイリスタSとの積層構造をさらに説明する図である。図8の(a)は、レーザダイオードLDと設定サイリスタSとの積層構造における模式的なエネルギーバンド図、図8の(b)は、トンネル接合層84の逆バイアス状態におけるエネルギーバンド図、図8の(c)は、トンネル接合層84の電流電圧特性を示す。
 図8の(a)のエネルギーバンド図に示すように、図7のnオーミック電極321と裏面電極91との間に、レーザダイオードLDと設定サイリスタSとが順バイアスになるように電圧を印加すると、トンネル接合層84のn++層84aとp++層84bとの間が逆バイアスになる。
 トンネル接合層84は、n型の不純物を高濃度に添加したn++層84aと、p型の不純物を高濃度に添加したp++層84bとの接合である。このため、空乏領域の幅が狭く、順バイアスされると、n++層84a側の伝導帯(コンダクションバンド)からp++層84b側の価電子帯(バレンスバンド)に電子がトンネルする。この際、負性抵抗特性が表れる。
 一方、図8の(b)に示すように、トンネル接合層84(トンネル接合)は、逆バイアス(-V)されると、p++層84b側の価電子帯(バレンスバンド)の電位Evが、n++層84a側の伝導帯(コンダクションバンド)の電位Ecより上になる。そして、p++層84bの価電子帯(バレンスバンド)から、n++層84a側の伝導帯(コンダクションバンド)に電子がトンネルする。そして、逆バイアス電圧(-V)が増加するほど、電子がトンネルしやすくなる。つまり、図8の(c)に示すように、トンネル接合層84(トンネル接合)は、逆バイアスにおいて、電流が流れやすい。
 以上説明したように、レーザダイオードLDと設定サイリスタSとは、トンネル接合層84を介して、電気的に直列接続されている。
 よって、図8の(a)に示すように、設定サイリスタSがターンオンすると、トンネル接合層84が逆バイアスであっても、レーザダイオードLDと設定サイリスタSとの間で電流が流れる。これにより、レーザダイオードLDが発光(点灯)する。
 後述するように、設定サイリスタSは、接続された転送サイリスタTがターンオンしてオン状態になると、オン状態への移行が可能な状態(移行可能な状態)になる。そして、点灯信号φIが後述するように「L」になると、設定サイリスタSがターンオンしてオン状態になるとともに、レーザダイオードLDを点灯させる(点灯を設定する)。
 なお、下部ダイオードUDと転送サイリスタTとの関係は、レーザダイオードLDと設定サイリスタSとの関係と同じである。しかし、下部ダイオードUDからの発光は用いない。よって、下部ダイオードUDからの発光が、漏れ光となることがある場合には、下部ダイオードUDの大きさを小さくしたり、配線を構成する材料などで遮光したりするとよい。
<サイリスタ>
 次に、サイリスタ(転送サイリスタT、設定サイリスタS)の基本的な動作を説明する。サイリスタは、前述したように、アノード端子(アノード)、カソード端子(カソード)、ゲート端子(ゲート)の3端子を有する半導体素子であって、例えば、GaAs、GaAlAs、AlAsなどによるp型の半導体層(pアノード層85、pゲート層87)、n型の半導体層(nゲート層86、nカソード層88)を基板80上に積層して構成されている。つまり、サイリスタは、pnpn構造を成している。ここでは、p型の半導体層とn型の半導体層とで構成されるpn接合の順方向電位(拡散電位)Vdを一例として1.5Vとして説明する。
 以下では、一例として、Vsub端子である裏面電極91(図5、図6参照)に供給される基準電位Vsubをハイレベルの電位(以下では「H」と表記する。)として0V、Vga端子に供給される電源電位Vgaをローレベルの電位(以下では「L」と表記する。)として-5Vとして説明する。また、第1転送信号φ1、第2転送信号φ2は、「H」(0V)と「L」(-5V)とを有する信号である。そして、点灯信号φIは、「H」(0V)と「L」(-5V)とを有する信号である。以下では、「H」(0V)及び「L」(-5V)と表記することがあり、「H」及び「L」と省略する場合がある。
 まず、サイリスタ単体の動作を説明する。ここでは、サイリスタのアノードは0Vであるとする。
 アノードとカソードとの間に電流が流れていないオフ状態のサイリスタは、しきい電圧以下の電位(絶対値で以上となる負の電位)がカソードに印加されるとオン状態に移行(ターンオン)する。ここで、サイリスタのしきい電圧は、ゲートの電位からpn接合の順方向電位Vd(1.5V)を引いた値である。
 オン状態になると、サイリスタのゲートは、アノード端子の電位に近い電位になる。ここでは、アノードは0Vであるので、ゲートは、0Vになるとする。また、オン状態のサイリスタのカソードは、アノードの電位からpn接合の順方向電位Vd(1.5V)を引いた電位に近い電位となる。ここでは、アノードは0Vであるので、オン状態のサイリスタのカソードは、-1.5Vに近い電位(絶対値が1.5Vより大きい負の電位)となる。なお、カソードの電位は、オン状態のサイリスタに電流を供給する電源との関係で設定される。
 オン状態のサイリスタは、カソードが、オン状態を維持するために必要な電位(上記の-1.5Vに近い電位)より高い電位(絶対値が小さい負の電位、0V又は正の電位)になると、オフ状態に移行(ターンオフ)する。
 一方、オン状態のサイリスタのカソードに、オン状態を維持するために必要な電位以下の電位(絶対値で以上となる負の電位)が継続的に印加され、オン状態を維持しうる電流(維持電流)が供給されると、サイリスタはオン状態を維持する。
 レーザダイオードLDと設定サイリスタSとは、積層されて直列接続されている。ここでは、直列接続されたレーザダイオードLD及び設定サイリスタSの動作を、図5及び図7に示した発光チップC1(C)のレーザダイオードLD1と設定サイリスタS1とで説明する。レーザダイオードLD1及び設定サイリスタS1の直列接続には、基準電位Vsub(「H」(0V))と点灯信号φI1(「H」(0V)又は「L」(-5V))の電位とが印加される。すると、点灯信号φI1の電位が、レーザダイオードLD1と設定サイリスタS1とに分圧される。ここでは、レーザダイオードLD1に印加される電圧を、仮に-1.7Vであるとして説明する。すると、設定サイリスタS1がオフ状態の場合、設定サイリスタS1に-3.3Vが印加される。
 上述したように、オフ状態にある設定サイリスタS1のしきい電圧が、-3.3V以下(絶対値で以上の負の電圧の)場合には、設定サイリスタS1がターンオンする。すると、直列接続されたレーザダイオードLD1と設定サイリスタS1とに電流が流れて、レーザダイオードLD1が点灯(発光)する。一方、設定サイリスタS1のしきい電圧が、-3.3Vより大きい(絶対値で未満の負の電圧の)場合には、設定サイリスタS1はターンオンせず、オフ状態を維持する。よって、レーザダイオードLD1も非点灯(非発光)を維持する。
 なお、設定サイリスタS1がターンオンすると、直列接続されたレーザダイオードLD1と設定サイリスタS1とに印加される電圧が絶対値において低下する。しかし、設定サイリスタS1に印加される電圧が、設定サイリスタS1のオン状態を維持する電圧であれば、設定サイリスタS1はオン状態を維持する。これによりレーザダイオードLD1も点灯(発光)を継続する。
 なお、他のレーザダイオードLDと設定サイリスタSとでも同様である。
 このようにすることで、レーザダイオードLDを駆動する設定サイリスタSとレーザダイオードLDとの制御を点灯信号φIで行えるため、点灯制御が容易になる。
 なお、上記に示した電圧は一例であって、設定サイリスタS、転送サイリスタTの特性、又は/及び、レーザダイオードLDの発光波長や光量によって変えることになる。その際は、「L」を調整すればよい。
 サイリスタ(設定サイリスタS、転送サイリスタT)は、GaAsなどの半導体で構成されるので、オン状態において、nゲート層86とpゲート層87との間で発光することがある。なお、サイリスタが出射する光の量は、カソードの面積及びカソードとアノードとの間に流す電流によって決まる。よって、サイリスタからの発光を利用しない場合には、例えば、カソードの面積を小さくしたり、電極(設定サイリスタS1におけるnオーミック電極321又は転送サイリスタT1におけるnオーミック電極323)や配線を構成する材料などによって遮光したりすることで、不要な光を抑制するようにしてもよい。
(発光装置65の動作)
 次に、発光装置65の動作について説明する。
 前述したように、発光装置65は発光チップC1~C40を備える(図3、4参照)。
 発光チップC1~C40は並列に駆動されるので、発光チップC1の動作を説明すれば足りる。
<タイミングチャート>
 図9は、発光装置65及び発光チップCの動作を説明するタイミングチャートである。
 図9では、発光チップC1のレーザダイオードLD1~LD5の5個のレーザダイオードLDの点灯(発光)又は非点灯(非発光)を制御(点灯制御と表記する。)する部分のタイミングチャートを示している。なお、図9では、発光チップC1のレーザダイオードLD1、LD2、LD3、LD5を点灯させ、レーザダイオードLD4を非点灯としている。
 図9において、時刻aから時刻kへとアルファベット順に時刻が経過するとする。レーザダイオードLD1は、期間T(1)において、レーザダイオードLD2は、期間T(2)において、レーザダイオードLD3は、期間T(3)において、レーザダイオードLD4は、期間T(4)において点灯又は非点灯の制御(点灯制御)がされる。以下、同様にして番号が5以上のレーザダイオードLDが点灯制御される。
 ここでは、期間T(1)、T(2)、T(3)、…は同じ長さの期間とし、それぞれを区別しないときは期間Tと呼ぶ。
 φ1端子(図5、図6参照)に送信される第1転送信号φ1及びφ2端子(図5、図6参照)に送信される第2転送信号φ2は、「H」(0V)と「L」(-5V)との2つの電位を有する信号である。そして、第1転送信号φ1及び第2転送信号φ2は、連続する2つの期間T(例えば、期間T(1)と期間T(2))を単位として波形が繰り返される。
 第1転送信号φ1は、期間T(1)の開始時刻bで「H」(0V)から「L」(-5V)に移行し、時刻fで「L」から「H」に移行する。そして、期間T(2)の終了時刻iにおいて、「H」から「L」に移行する。
 第2転送信号φ2は、期間T(1)の開始時刻bにおいて「H」(0V)であって、時刻eで「H」(0V)から「L」(-5V)に移行する。そして、期間T(2)の終了時刻iにおいて「L」から「H」に移行する。
 第1転送信号φ1と第2転送信号φ2とを比較すると、第2転送信号φ2は、第1転送信号φ1を時間軸上で期間T後ろにずらしたものに当たる。一方、第2転送信号φ2は、期間T(1)において、破線で示す波形及び期間T(2)での波形が、期間T(3)以降において繰り返す。第2転送信号φ2の期間T(1)の波形が期間T(3)以降と異なるのは、期間T(1)は発光装置65が動作を開始する期間であるためである。
 第1転送信号φ1と第2転送信号φ2との一組の転送信号は、後述するように、転送サイリスタTのオン状態を番号順に転送(伝播)させることにより、オン状態の転送サイリスタTと同じ番号のレーザダイオードLDを、点灯(発光)又は非点灯(非発光)の制御(点灯制御)の対象として指定する。
 次に、発光チップC1のφI端子に送信される点灯信号φI1について説明する。なお、他の発光チップC2~C40には、それぞれ点灯信号φI2~φI40が送信される。点灯信号φI1は、「H」(0V)と「L」(-5V)との2つの電位を有する信号である。
 ここでは、発光チップC1のレーザダイオードLD1に対する点灯制御の期間T(1)において、点灯信号φI1を説明する。点灯信号φI1は、期間T(1)の開始時刻bにおいて「H」(0V)であって、時刻cで「H」(0V)から「L」(-5V)に移行する。そして、時刻dで「L」から「H」に移行し、時刻eにおいて「H」を維持する。
 図4、図5を参照しつつ、図9に示したタイミングチャートにしたがって、発光装置65及び発光チップC1の動作を説明する。なお、以下では、レーザダイオードLD1、LD2を点灯制御する期間T(1)、T(2)について説明する。
(1)時刻a
<発光装置65>
 時刻aにおいて、発光装置65の信号発生回路110の基準電位供給部160は、基準電位Vsubを「H」(0V)に設定する。電源電位供給部170は、電源電位Vgaを「L」(-5V)に設定する。すると、発光装置65の回路基板62上の電源ライン200aは基準電位Vsubの「H」(0V)になり、発光チップC1~C40のそれぞれのVsub端子は「H」になる。同様に、電源ライン200bは電源電位Vgaの「L」(-5V)になり、発光チップC1~C40のそれぞれのVga端子は「L」になる(図4参照)。これにより、発光チップC1~C40のそれぞれの電源線71は「L」になる(図5参照)。
 そして、信号発生回路110の転送信号発生部120は第1転送信号φ1、第2転送信号φ2をそれぞれ「H」(0V)に設定する。すると、第1転送信号ライン201及び第2転送信号ライン202が「H」になる(図4参照)。これにより、発光チップC1~C40のそれぞれのφ1端子及びφ2端子が「H」になる。電流制限抵抗R1を介してφ1端子に接続されている第1転送信号線72の電位も「H」になり、電流制限抵抗R2を介してφ1端子に接続されている第2転送信号線73も「H」になる(図5参照)。
 さらに、信号発生回路110の点灯信号発生部140は、点灯信号φI1~φI40をそれぞれ「H」(0V)に設定する。すると、点灯信号ライン204-1~204-40が「H」になる(図4参照)。これにより、発光チップC1~C40のそれぞれのφI端子が、電流制限抵抗RIを介して「H」になり、φI端子に接続された点灯信号線75も「H」(0V)になる(図5参照)。
<発光チップC1>
 設定サイリスタSのアノード(pアノード層85)は、トンネル接合層84を介して、レーザダイオードLDのカソード(nカソード(クラッド)層83)に接続され、レーザダイオードLDのアノード(nアノード(クラッド)層81)は、「H」に設定されたVsub端子に接続されている。
 転送サイリスタTのアノード(pアノード層85)は、トンネル接合層84を介して、下部ダイオードUDのカソード(nカソード(クラッド)層83)に接続され、下部ダイオードUDのアノード(nアノード(クラッド)層81)は、「H」に設定されたVsub端子に接続されている。
 奇数番号の転送サイリスタT1、T3、T5、…のそれぞれのカソードは、第1転送信号線72に接続され、「H」(0V)に設定されている。偶数番号の転送サイリスタT2、T4、T6、…のそれぞれのカソードは、第2転送信号線73に接続され、「H」に設定されている。よって、転送サイリスタTは、アノード及びカソードがともに「H」となり、オフ状態にある。また、下部ダイオードUDも、アノード及びカソードがともに「H」となり、オフ状態にある。
 設定サイリスタSのカソード端子は、「H」(0V)の点灯信号線75に接続されている。よって、設定サイリスタSは、アノード及びカソードがともに「H」となり、オフ状態にある。また、レーザダイオードLDも、アノード及びカソードがともに「H」となり、オフ状態にある。
 ゲートGt1は、前述したように、スタートダイオードSDのカソードに接続されている。ゲートGt1は、電源線抵抗Rg1を介して、電源電位Vga(「L」(-5V))の電源線71に接続されている。そして、スタートダイオードSDのアノード端子は第2転送信号線73に接続され、電流制限抵抗R2を介して、「H」(0V)のφ2端子に接続されている。よって、スタートダイオードSDは順バイアスであり、スタートダイオードSDのカソード(ゲートGt1)は、スタートダイオードSDのアノードの電位(「H」(0V))からpn接合の順方向電位Vd(1.5V)を引いた値(-1.5V)になる。また、ゲートGt1が-1.5Vになると、結合ダイオードD1は、アノード(ゲートGt1)が-1.5Vで、カソードが電源線抵抗Rg2を介して電源線71(「L」(-5V))に接続されているので、順バイアスになる。よって、ゲートGt2の電位は、ゲートGt1の電位(-1.5V)からpn接合の順方向電位Vd(1.5V)を引いた-3Vになる。さらに、結合ダイオードD2は、アノード(ゲートGt1)が-3Vで、カソードが電源線抵抗Rg2を介して電源線71(「L」(-5V))に接続されているので、順バイアスになる。よって、ゲートGt3の電位は、ゲートGt2の電位(-3V)からpn接合の順方向電位Vd(1.5V)を引いた-4.5Vになる。しかし、4以上の番号のゲートGtには、スタートダイオードSDのアノードが「H」(0V)であることの影響は及ばず、これらのゲートGtの電位は、電源線71の電位である「L」(-5V)になっている。
 なお、ゲートGtはゲートGsであるので、ゲートGsの電位は、ゲートGtの電位と同じである。よって、転送サイリスタT、設定サイリスタSのしきい電圧は、ゲートGt(ゲートGs)の電位からpn接合の順方向電位Vd(1.5V)を引いた値となる。すなわち、転送サイリスタT1、設定サイリスタS1のしきい電圧は-3V、転送サイリスタT2、設定サイリスタS2のしきい電圧は-4.5V、転送サイリスタT3、設定サイリスタS3のしきい電圧は-6V、番号が4以上の転送サイリスタT、設定サイリスタSのしきい電圧は-6.5Vとなっている。
(2)時刻b
 図9に示す時刻bにおいて、第1転送信号φ1が、「H」(0V)から「L」(-5V)に移行する。これにより発光装置65は、動作を開始する。
 第1転送信号φ1が「H」から「L」に移行すると、φ1端子及び電流制限抵抗R1を介して、第1転送信号線72の電位が、「H」(0V)から「L」(-5V)に移行する。すると、転送サイリスタT1に印加されている電圧は-5Vであるので、しきい電圧が-3Vである転送サイリスタT1がターンオンする。このとき、下部ダイオードUD1に電流が流れてオフ状態からオン状態に移行する。転送サイリスタT1がターンオンすることで、第1転送信号線72の電位は、転送サイリスタT1のカソードの電位(下部ダイオードUD1に印加された電位である-1.7V)からpn接合の順方向電位Vd(1.5V)を引いた-3.2Vに近い電位(絶対値が3.2Vより大きい負の電位)になる。ここでは、第1転送信号線72の電位は、-3.2Vになるとする。
 なお、転送サイリスタT3はしきい電圧が-6Vであり、番号が5以上の奇数番号の転送サイリスタTは、しきい電圧が-6.5Vである。転送サイリスタT3及び番号が5以上の奇数番号の転送サイリスタTに印加される電圧は、-5Vになるので、転送サイリスタT3及び番号が5以上の奇数番号の転送サイリスタTはターンオンしない。
 一方、偶数番号の転送サイリスタTは、第2転送信号φ2が「H」(0V)であって、第2転送信号線73が「H」(0V)であるのでターンオンできない。
 転送サイリスタT1がターンオンすると、ゲートGt1(ゲートGs1)の電位は、転送サイリスタT1のアノードの電位である「H」(0V)から下部ダイオードUD1に印加された電位である-1.7Vになる。そして、ゲートGt2(ゲートGs2)の電位が-3.2V、ゲートGt3(ゲートGs3)の電位が-4.7V、番号が4以上のゲートGt(ゲートGs)の電位が「L」になる。
 これにより、設定サイリスタS1のしきい電圧が-3.2V、転送サイリスタT2及び設定サイリスタS2のしきい電圧が-4.7V、転送サイリスタT3及び設定サイリスタS3のしきい電圧が-6.2V、番号が4以上の転送サイリスタT及び設定サイリスタSのしきい電圧が-6.5Vになる。
 しかし、第1転送信号線72は、オン状態の転送サイリスタT1により-3.2Vになっている。つまり、オフ状態の転送サイリスタTに印加される電圧は、-3.2Vであるので、オフ状態の奇数番号の転送サイリスタTはターンオンしない。第2転送信号線73は、「H」(0V)であるので、偶数番号の転送サイリスタTはターンオンしない。点灯信号線75は「H」(0V)であるので、いずれのレーザダイオードLDも点灯しない。
 時刻bの直後(ここでは、時刻bにおける信号の電位の変化によってサイリスタなどの変化が生じた後、定常状態になったときをいう。)において、転送サイリスタT1、下部ダイオードUD1がオン状態にあって、他の転送サイリスタT、下部ダイオードUD、設定サイリスタS、レーザダイオードLDはオフ状態にある。
(3)時刻c
 時刻cにおいて、点灯信号φI1が「H」(0V)から「L」(-5V)に移行する。
 点灯信号φI1が「H」から「L」に移行すると、電流制限抵抗RI及びφI端子を介して、点灯信号線75が「H」(0V)から「L」(-5V)に移行する。すると、-5Vが設定サイリスタS1に印加され、しきい電圧が-1.5Vである設定サイリスタS1がターンオンして、レーザダイオードLD1が点灯(発光)する。これにより、点灯信号線75の電位が-3.2Vに近い電位になる。ここでは、点灯信号線75の電位は、-3.2Vになるとする。なお、設定サイリスタS2はしきい電圧が-4.7Vであるが、設定サイリスタS2に印加される電圧は、-3.2Vになるので、設定サイリスタS2はターンオンしない。
 時刻cの直後において、転送サイリスタT1、下部ダイオードUD1、設定サイリスタS1がオン状態にあって、レーザダイオードLD1が点灯(発光)している。
(4)時刻d
 時刻dにおいて、点灯信号φI1が「L」(-5V)から「H」(0V)に移行する。
 点灯信号φI1が「L」から「H」に移行すると、電流制限抵抗RI及びφI端子を介して、点灯信号線75の電位が-3.2Vから「H」に移行する。すると、設定サイリスタS1のカソード及びレーザダイオードLD1のアノードがともに「H」になるので設定サイリスタS1がターンオフするとともに、レーザダイオードLD1が消灯する(非点灯(非発光)になる)。レーザダイオードLD1の点灯(発光)期間は、点灯信号φI1が「H」から「L」に移行した時刻cから、点灯信号φI1が「L」から「H」に移行する時刻dまでの、点灯信号φI1が「L」である期間となる。
 時刻dの直後において、転送サイリスタT1がオン状態にある。
(5)時刻e
 時刻eにおいて、第2転送信号φ2が「H」(0V)から「L」(-5V)に移行する。ここで、レーザダイオードLD1を点灯制御する期間T(1)が終了し、レーザダイオードLD2を点灯制御する期間T(2)が開始する。
 第2転送信号φ2が「H」から「L」に移行すると、φ2端子を介して第2転送信号線73の電位が「H」から「L」に移行する。前述したように、転送サイリスタT2は、しきい電圧が-4.7Vになっているので、ターンオンする。このとき、下部ダイオードUD2にも電流が流れてオフ状態からオン状態に移行する。
 これにより、ゲート端子Gt2(ゲート端子Gs2)の電位が「H」(0V)から下部ダイオードUD2に印加された電位である-1.7V、ゲートGt3(ゲートGs3)の電位が-3.2V、ゲートGt4(ゲートGs4)の電位が-4.7Vになる。そして、番号が5以上のゲートGt(ゲートGs)の電位が-5Vになる。
 時刻eの直後において、転送サイリスタT1、T2、下部ダイオードUD1、UD2がオン状態にある。
(6)時刻f
 時刻fにおいて、第1転送信号φ1が「L」(-5V)から「H」(0V)に移行する。
 第1転送信号φ1が「L」から「H」に移行すると、φ1端子を介して第1転送信号線72の電位が「L」から「H」に移行する。すると、オン状態の転送サイリスタT1は、アノード及びカソードがともに「H」になって、ターンオフする。このとき、下部ダイオードUD1のアノード及びカソードもともに「H」になって、オン状態からオフ状態に移行する。
 すると、ゲートGt1(ゲートGs1)の電位は、電源線抵抗Rg1を介して、電源線71の電源電位Vga(「L」(-5V))に向かって変化する。これにより、結合ダイオードD1が電流の流れない方向に電位が加えられた状態(逆バイアス)になる。よって、ゲートGt2(ゲートGs2)が-1.7Vである影響は、ゲートGt1(ゲートGs1)には及ばなくなる。すなわち、逆バイアスの結合ダイオードDで接続されたゲートGtを有する転送サイリスタTは、しきい電圧が-6.5Vになって、第1転送信号φ1又は第2転送信号φ2が「L」(-5V)になっても、ターンオンしなくなる。
 時刻fの直後において、転送サイリスタT2、下部ダイオードUD2がオン状態にある。
(7)その他
 時刻gにおいて、点灯信号φI1が「H」(0V)から「L」(-5V)に移行すると、時刻cでのレーザダイオードLD1及び設定サイリスタS1と同様に、設定サイリスタS2がターンオンして、レーザダイオードLD2が点灯(発光)する。
 そして、時刻hにおいて、点灯信号φI1が「L」(-5V)から「H」(0V)に移行すると、時刻dでのレーザダイオードLD1及び設定サイリスタS1と同様に、設定サイリスタS2がターンオフして、レーザダイオードLD2が消灯する。
 さらに、時刻iにおいて、第1転送信号φ1が「H」(0V)から「L」(-5V)に移行すると、時刻bでの転送サイリスタT1又は時刻eでの転送サイリスタT2と同様に、しきい電圧が-3Vの転送サイリスタT3がターンオンする。時刻iで、レーザダイオードLD2を点灯制御する期間T(2)が終了し、レーザダイオードLD3を点灯制御する期間T(3)が開始する。
 以降は、これまで説明したことの繰り返しとなる。
 なお、レーザダイオードLDを点灯(発光)させないで、非点灯(非発光)のままとするときは、図9のレーザダイオードLD4を点灯制御する期間T(4)における時刻jから時刻kに示す点灯信号φI1のように、点灯信号φIを「H」(0V)のままとすればよい。このようにすることで、設定サイリスタS4のしきい電圧が-3.2Vであっても、設定サイリスタS4はターンオンせず、レーザダイオードLD4は消灯(非点灯)のままとなる。
 以上説明したように、転送サイリスタTのゲート端子Gtは結合ダイオードDによって相互に接続されている。よって、ゲートGtの電位が変化すると、電位が変化したゲートGtに、順バイアスの結合ダイオードDを介して接続されたゲートGtの電位が変化する。そして、電位が変化したゲートを有する転送サイリスタTのしきい電圧が変化する。転送サイリスタTは、しきい電圧が-1.5Vより高い(絶対値が小さい負の値)と、第1転送信号φ1又は第2転送信号φ2が「H」(0V)から「L」(-5V)に移行するタイミングにおいてターンオンする。
 そして、オン状態の転送サイリスタTのゲートGtにゲートGsが接続された設定サイリスタSは、しきい電圧が-1.5Vであるので、点灯信号φIが「H」(0V)から「L」(-5V)に移行するとターンオンし、設定サイリスタSに直列接続されたレーザダイオードLDが点灯(発光)する。
 すなわち、転送サイリスタTはオン状態になることで、点灯制御の対象であるレーザダイオードLDを指定する。そして、「L」(-5V)の点灯信号φIは、点灯制御の対象であるレーザダイオードLDに直列接続された設定サイリスタSをターンオンするとともに、レーザダイオードLDを点灯させる。
 なお、「H」(0V)の点灯信号φIは、設定サイリスタSをオフ状態に維持するとともに、レーザダイオードLDを非点灯に維持する。すなわち、点灯信号φIは、レーザダイオードLDの点灯/非点灯を設定する。
 このように、画像データに応じて点灯信号φIを設定して、各レーザダイオードLDの点灯又は非点灯を制御する。
(レーザダイオードLDと設定サイリスタSとの直列接続の順番)
 ここで、レーザダイオードLDと設定サイリスタSとを直列接続する順番について説明する。
 図5及び図6で説明したように、第1の実施の形態に係る発光チップCでは、基準電位Vsubが供給される側にレーザダイオードLDを設け、点灯信号φIが供給(印加)される側(点灯信号線75が接続される側)に設定サイリスタSを設けた。つまり、図6で説明したように、レーザダイオードLDを構成するp型の基板80上にpアノード(クラッド)層81、発光層82、nカソード(クラッド)層83が積層されている。そして、トンネル接合層84を介して、設定サイリスタSを構成するpアノード層85、nゲート層86、pゲート層87、nカソード層88が積層されている。図5に示したように、基板80の裏面電極91から基準電位Vsubが供給され、nカソード層88のnオーミック電極321に「H」(0V)又は「L」(-5V)になる点灯信号φI(発光チップC1では、点灯信号φI1)が印加される。
 図10は、比較のために示す自己走査型発光素子アレイ(SLED)に搭載可能な発光チップC′の回路構成を示す等価回路図である。ここでは、図5と対比するため、発光チップC′1(C′)とする。この発光チップC′では、基準電位Vsubが供給される側に、設定サイリスタSを設け、点灯信号φIが供給される側(点灯信号線75が接続される側)に、レーザダイオードLDを設けられている。また、基準電位Vsubが供給される側に、転送サイリスタTを設け、点灯信号φIが供給される側(点灯信号線75が接続される側)に、下部ダイオードUDを設けている。つまり、発光チップC′では、基準電位Vsubと点灯信号φIとの間における接続関係が、発光チップCと逆になっている。
 この発光チップC′は、図示しないが、図6に示した発光チップCにおいて、基板80上に、設定サイリスタS及び転送サイリスタTを構成するpアノード層85、nゲート層86、pゲート層87、nカソード層88が積層されている。そして、nカソード層88で構成された領域311、313、314の上に、トンネル接合層84を介して、レーザダイオードLD及び下部ダイオードUDを構成するpアノード(クラッド)層81、発光層82、nカソード(クラッド)層83が積層されている。
 なお、発光チップC′では、下部ダイオードUDは、転送サイリスタTの上側に設けられるが、発光チップCとの関係で下部ダイオードUDと表記する。
 この発光チップC′の動作を、図10を参照しつつ、図9のタイミングチャートで説明する。
 図9に示したタイミングチャートにおいて、時刻cの点灯信号φI1が「H」(0V)から「L」(-5V)に移行する前において、点灯信号φI1は、「H」(0V)である。すなわち、設定サイリスタS1とレーザダイオードLD1との直列接続の両端子間は、共に「H」(0V)である。つまり、設定サイリスタS1のアノードは、基板80の裏面電極91の基準電位Vsub(「H」(0V))であり、点灯信号線75に接続されたレーザダイオードLD1のカソードは、点灯信号φI1の「H」(0V)である。このため、設定サイリスタS1とレーザダイオードLD1との接続点U′は、「H」(0V)である。他の、設定サイリスタSとレーザダイオードLDとの直列接続も同じである。
 時刻cにおいて、点灯信号φI1が「H」(0V)から「L」(-5V)に移行すると、点灯信号線75が「H」(0V)から「L」(-5V)になる。この電圧は、レーザダイオードLDの順方向電位(拡散電位)(ここでは、1.5Vとする)より、絶対値において大きいので、すべてのレーザダイオードLDが順バイアスされることになって、点灯(発光)する。なお、この発光は、設定サイリスタSがオフ状態である場合には、接続点U′と点灯信号線75との間の電圧がレーザダイオードLDの順方向電位(拡散電位)(ここでは、1.5V)になると停止する。この場合、接続点U′の電位は、-3.5Vになる(チャージされる)。
 なお、時刻cにおいて、前述したように設定サイリスタS1がターンオンする場合には、レーザダイオードLD1が点灯(発光)を開始するとともに、他のレーザダイオードLDが一斉に短時間(瞬間的に)発光することになる。他のレーザダイオードLDが一斉に点灯(発光)する時間は、他の設定サイリスタSとレーザダイオードLDとの接続点(設定サイリスタS1とレーザダイオードLD1との接続点U′と同様の接続点)と点灯信号線75との間の電圧がレーザダイオードLDの順方向電位(拡散電位)になるまで継続する。
 そして、接続点U′の電位(-3.5V)は、点灯信号φI1が「L」(-5V)から「H」(0V)に移行しても維持される。これは、レーザダイオードLDは整流特性を有するため、点灯信号線75が「H」(0V)に移行すると、レーザダイオードLDは、アノードが-3.5V、カソードが「H」(0V)の逆接合となるためである。これにより、設定サイリスタSのカソードは、-3.5Vが維持される。
 ここで、転送サイリスタTがオフ状態からオン状態に移行して、ゲートGtが0Vに移行すると、設定サイリスタSのしきい電圧が-1.5Vになるため、点灯信号φI1が「H」(0V)であっても、設定サイリスタSがオフ状態からオン状態に移行してしまう。なお、しきい電圧が-3.5V以下である設定サイリスタSも同様である。このときは、設定サイリスタSに電流が流れるため、設定サイリスタSが発光してしまう。この状態になると、接続点U′の電位がよくやく「H」(0V)に戻る。
 上記した、他のレーザダイオードLDの一斉に短時間において発生する発光や点灯信号φIのレベル(「H」(0V)/「L」(-5V))に関係のなく発生する発光は、好ましくない動作であって、画像形成装置において形成しようとする画像の画質を劣化させてしまう。ここでは、発光チップC、プリントヘッド及び画像形成装置1における好ましくない動作を、動作不良(誤動作)と表記する。
 一方、図5に示した第1の実施の形態に係る発光チップCでは、設定サイリスタSのカソードに点灯信号線75が接続されている。この場合であっても、時刻cの前に、設定サイリスタS1とレーザダイオードLD1との接続点Uは、「H」(0V)である。点灯信号φI1が「H」(0V)から「L」(-5V)になって、点灯信号線75が「H」(0V)から「L」(-5V)になると、設定サイリスタSがオフ状態であれば、点灯信号線75の「L」(-5V)は、オフ状態の設定サイリスタSに印加され、レーザダイオードLDに印加されることはない。つまり、発光チップC′のように、他のレーザダイオードLDが一斉に短時間(瞬間的に)発光することはない。
 このように、第1の実施の形態に係る発光チップCでは、点灯信号線75が「H」(0V)から「L」(-5V)になると、点灯信号線75の「L」(-5V)が設定サイリスタSに印加されるため、設定サイリスタSは、直ちにオフ状態からオン状態への移行の動作を開始できる。つまり、発光チップCを高速に駆動しやすい。転送サイリスタTも同様である。
 これに対して、図10に示す発光チップC′では、時刻cにおいて点灯信号φIが「H」(0V)から「L」に移行した際、「L」の電位は、まずレーザダイオードLDに印加される。そして、設定サイリスタSとレーザダイオードLDとに分圧される。よって、設定サイリスタSがオフ状態からオン状態に移行するのに時間遅れ(ライムラグ)が生じる。このため、発光チップC′を高速に駆動しにくい。転送サイリスタTも同様である。
 また、後述する第4の実施の形態に係る発光チップCでは、これまで点灯信号φIの「L」を(-5V)として説明した電位は、設定サイリスタSをターンオンさせるのに必要な電圧とレーザダイオードLDを点灯(発光)させる電圧とで決まる。つまり、設定サイリスタSはターンオンした状態では、アノードとカソードとの間の電圧が低下する。特に、後述される電圧低減層89が図16の(a)で示されたようにnゲート86とpアノード85との間に導入された場合、ターンオンするのに必要なしきい電圧は、nカソード88とpゲート87との間の-1.5Vであるのに対し、オン状態の設定サイリスタSのアノードとカソードとの間の電圧は、0.8Vとなる。このとき、レーザダイオードLDに印加される電圧が1.7Vであるとすると、このときの点灯信号線75は、-2.5Vであればよい。
 つまり、オン状態の転送サイリスタTのゲートGtの電位が0Vになれば、設定サイリスタSのしきい電圧は、-1.5Vとなる。時刻cの前においては、転送サイリスタSのゲートGsの電位は0Vであるので、設定サイリスタSは、しきい電圧である-1.5V以下(絶対値で以上である負の電圧)が印加されればターンオンする。その直後、設定サイリスタSのアノードとカソードとの間の電圧は-0.8Vとなり、差分の-0.7VがレーザダイオードLDに印加され、点灯信号線75が-2.5VになったときレーザダイオードLDに印加される電圧は-1.7Vとなり電流が流れ始める。
 すなわち、点灯信号φIの「L」は、-2.5V以下(絶対値で以上の負の電圧)であれば、設定サイリスタSをターンオンさせるとともに、レーザダイオードLDの点灯(発光)が維持される。
 なお、転送サイリスタTも同様に第1転送信号φ1又は第2転送信号φ2が「L」になった際、先に転送サイリスタTがオンし、しきい電圧と、アノードとカソードとの間の電圧との差だけ、下部ダイオードUDに印加されるので、第1転送信号φ1又は第2転送信号φ2に最低必要な電圧は、アノードとカソードとの間の電圧と、下部ダイオードUDに電流を流す電圧との和である。
 これに対して、図10に示す発光チップC′では、点灯信号φI1は、レーザダイオードLDの順方向電圧(ここでは、1.7V)と設定サイリスタSをオン状態にするための電圧(-1.5V)との和でなければならない。なお、転送サイリスタTも同様に、第1転送信号φ1又は第2転送信号φ2に最低必要な電圧は、転送サイリスタTをオン状態にするためのしきい電圧と、下部ダイオードUDに電流を流す電圧との和である。このため、図10に示す発光チップC′では、高い電圧を発生する信号発生回路110が必要となってしまう。よって、消費電力が高くなるとともに、高速な駆動がしにくくなる。
 以上説明したことから、図5、図29に示した発光チップCのように、基準電位Vsubが供給される側にレーザダイオードLDを設け、点灯信号φIが供給される側(点灯信号線75が接続される側)に設定サイリスタSを設けることにより、点灯(発光)させるレーザダイオードLD以外のレーザダイオードLDが短時間発光するという動作不良(誤動作)が抑制されるとともに、レーザダイオードLDと設定サイリスタSとの直列接続に印加される点灯信号φIの電圧が低減でき、低消費電力化が図れる。
(下部ダイオードUDの転送サイリスタTの動作への影響)
 次に、下部ダイオードUDの転送サイリスタTの動作への影響を説明する。
 図5及び図6に示した第1の実施の形態に係る発光チップCでは、基準電位Vsubが供給される側に下部ダイオードUDを設け、第1転送信号φ1又は第2転送信号φ2が印加される側(第1転送信号線72又は第2転送信号線73が接続される側)に転送サイリスタTを設けた。
 一方、図10に示した比較のために示した発光チップC′では、基準電位Vsubが供給される側に転送サイリスタTを設け、第1転送信号φ1又は第2転送信号φ2が印加される側(第1転送信号線72又は第2転送信号線73が接続される側)に下部ダイオードUDを設けている。
 この発光チップC′の動作を図10を参照しつつ、図9のタイミングチャートで説明する。
 図9に示したタイミングチャートにおいて、時刻bで第1転送信号φ1が「H」(0V)から「L」(-5V)に移行し、第1転送信号線72が「H」(0V)から「L」(-5V)になると、前述のレーザダイオードLDと同様に、奇数番号の下部ダイオードUDが順バイアスとなって電流が流れる。そして、下部ダイオードUDと転送サイリスタTとの接続点(下部ダイオードUD1と転送サイリスタT1との接続点V′と同様な接続点)に電荷が蓄積される。
 次に、時刻eにおいて第2転送信号φ2が「L」(-5V)から「H」(0V)に移行し、第2転送信号線73が「L」(-5V)から「H」(0V)になると、転送サイリスタT2がターンオンする。すると、ゲートGt2が0Vに移行して、ゲートGt3が-1.5Vになる。これにより、転送サイリスタT3のしきい電圧が-3Vになる。このとき、転送サイリスタT3と下部ダイオードUD3との間の接続点(下部ダイオードUD1と転送サイリスタT1との接続点V′と同様な接続点)に電荷が蓄積し、-3V以下(絶対値で以上の負の電圧)になっていると、転送サイリスタT3がターンオンしてしまう。
 転送サイリスタT3がターンオンすると、転送サイリスタT2がターンオンしたと同様に、転送サイリスタT4がターンオンしてしまう。このようにして、すべての転送サイリスタTがオン状態になり、転送サイリスタTによるオン状態の転送(伝播)が行えないという動作不良が生じることになる。
 そして、時刻fで第1転送信号φ1が「L」(-5V)から「H」(0V)に移行し、第1転送信号線72が「L」(-5V)から「H」(0V)になると、奇数番号の下部ダイオードUDと転送サイリスタTとの接続点(下部ダイオードUD1と転送サイリスタT1との接続点V′と同様な接続点)に蓄積された電荷は、下部ダイオードUDが逆バイアスとなるため、放電されることなく維持される。
 一方、図5に示した第1の実施の形態に係る発光チップCでは、転送サイリスタTのカソードに第1転送信号線72又は第2転送信号線73が接続され、転送サイリスタTのアノードが基板80の裏面電極91を介して基準電圧Vsub(「H」(0V))に接続されている。
 時刻bで第1転送信号φ1が「H」(0V)から「L」(-5V)に移行し、第1転送信号線72が「H」(0V)から「L」(-5V)になると、転送サリスタT1がターンオンして、転送サイリスタT1及び下部ダイオードUD1に電流が流れる。このとき、他の奇数番号の下部ダイオードUDは、オフ状態の転送サイリスタTを介して、第1転送信号線72に接続されている。よって、下部ダイオードUDと転送サイリスタTとの接続点(下部ダイオードUD1と転送サイリスタT1との接続点V′と同様な接続点)に電荷が蓄積されることがない。
 次に、時刻eにおいて第2転送信号φ2が「L」(-5V)から「H」(0V)に移行し、第2転送信号線73が「L」(-5V)から「H」(0V)になると、転送サイリスタT2がターンオンする。すると、ゲートGt2が0Vに移行して、ゲートGt3が-1.5Vになる。これにより、転送サイリスタT3のしきい電圧が-3Vになる。しかし、下部ダイオードUD3と転送サイリスタT3との間の接続点(下部ダイオードUD1と転送サイリスタT1との接続点Vと同様な接続点)に電荷が蓄積していないため、転送サイリスタT3のアノードとカソードとの間の電圧が-3V以下(絶対値で以上の負の電圧)にならない。よって、転送サイリスタT3がターンオンすることがない。
 以上説明したことから、図5に示した発光チップCのように、基準電位Vsubが供給される側に、下部ダイオードUDを設け、第1転送信号φ1又は第2転送信号φ2が供給される側(第1転送信号線72又は第2転送信号線73が接続される側)に、転送サイリスタTを設けることにより、転送サイリスタTによるオン状態の転送(伝播)が行えないという動作不良の発生が抑制される。
(発光チップCの製造方法)
 第1の実施の形態に係る発光チップCの製造方法について説明する。
 図11、図12及び図13は、発光チップCの製造方法を説明する図である。図11の(a)は、積層半導体層形成工程、図11の(b)は、nオーミック電極形成工程、図11の(c)は、積層半導体層分離工程、図12の(d)は、電流阻止部形成工程、図12の(e)は、pゲート層出しエッチング工程、図12の(f)は、pオーミック電極形成工程、図13の(g)は、保護層90形成工程、図13の(h)は、配線及び裏面電極形成工程、図13の(i)は、光出射面形成工程である。
 ここでは、図7に示したアイランド301、302の断面図で説明する。これらのアイランドの断面図は、図6の(a)のVIB-VIB線での断面図であるが、図6の(b)とは逆の-x方向から見た断面図である。なお、アイランド303は、アイランド302と同様であるので省略する。また、不純物の導電型をp、nで表記する。
 以下順に説明する。
 図11の(a)に示す積層半導体層形成工程では、p型の基板80上に、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83、トンネル接合層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88を順にエピタキシャル成長させて、積層半導体層を形成する。なお、製造方法を説明する図では、pアノード(クラッド)層81をp、nカソード(クラッド)層83をnと表記する。ここで、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83は、発光素子を構成する他の積層半導体層の一例である。また、トンネル接合層84上に設けられた、pアノード層85、nゲート層86、pゲート層87、nカソード層88は、サイリスタ(設定サイリスタS、転送サイリスタT)を含む駆動部101を構成する積層半導体層の一例である。
 ここでは、基板80は、p型のGaAsを例として説明するが、n型のGaAs、不純物を添加していないイントリンシック(i)のGaAsでもよい。また、InP、GaN、InAs、その他III-V族、II-VI材料からなる半導体基板、サファイア、Si、Geなどでもよい。基板を変更した場合、基板上にモノリシックに積層される材料は、基板の格子定数に略整合(歪構造、歪緩和層、メタモルフィック成長を含む)する材料を用いる。一例として、InAs基板上には、InAs、InAsSb、GaInAsSbなどを使用し、InP基板上にはInP、InGaAsPなどを使用し、GaN基板上又はサファイア基板上には、GaN、AlGaN、InGaNを使用し、Si基板上にはSi、SiGe、GaPなどを使用すればよい。ただし、結晶成長後に他の支持基板に貼りつける場合は、支持基板に対して半導体材料が略格子整合している必要はない。
 pアノード(クラッド)層81は、下側pアノード(クラッド)層81a、電流狭窄層81b、上側pアノード(クラッド)層81cを順に積層して構成されている。
 pアノード(クラッド)層81の下側p(クラッド)層81a、上側p(クラッド)層81cは、例えば不純物濃度5×1017/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 電流狭窄層81bは、例えばAlAs又はAlの不純物濃度が高いp型のAlGaAsである。Alが酸化されてAlが形成されることにより、電気抵抗が高くなって、電流経路を狭窄するものであればよい。
 発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばGaAs、AlGaAs、InGaAs、GaAsP、AlGaInP、GaInAsP、GaInPなどであり、障壁層は、AlGaAs、GaAs、GaInP、GaInAsPなどである。なお、発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
 nカソード(クラッド)層83は、例えば不純物濃度5×1017/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 トンネル接合層84は、n型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとの接合で構成されている。n++層84a及びp++層84bは、例えば不純物濃度1×1020/cmと高濃度である。なお、通常の接合の不純物濃度は、1017/cm台~1018/cm台である。n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++GaInP/p++GaAs、n++GaInP/p++AlGaAs、n++GaAs/p++GaAs、n++AlGaAs/p++AlGaAs、n++InGaAs/p++InGaAs、n++GaInAsP/p++GaInAsP、n++GaAsSb/p++GaAsSbである。なお、組み合わせを相互に変更したものでもよい。
 pアノード層85は、例えば不純物濃度1×1018/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 nゲート層86は、例えば不純物濃度1×1017/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 pゲート層87は、例えば不純物濃度1×1017/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 nカソード層88は、例えば不純物濃度1×1018/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 これらの半導体層は、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)などによって積層され、積層半導体層が形成される。
 図11の(b)に示すnオーミック電極形成工程では、nカソード層83上に、nオーミック電極(nオーミック電極321、323、324など)が形成される。
 nオーミック電極は、例えばnカソード層88などn型の半導体層とオーミックコンタクトが取りやすいGeを含むAu(AuGe)などである。
 そして、nオーミック電極は、例えばリフトオフ法などにより形成される。
 図11の(c)に示す積層半導体層分離工程では、nカソード層88、pゲート層87、nゲート層86、pアノード層85、トンネル接合層84、nカソード層83、発光層82、pアノード層81を順にエッチングし、アイランド(図6の(a)に示したアイランド301、302など)に分離する。このエッチングは、硫酸系のエッチング液(重量比において硫酸:過酸化水素水:水=1:10:300)などを用いたウェットエッチングで行ってもよく、例えば塩化ホウ素などを用いた異方性ドライエッチング(RIE)で行ってもよい。この積層半導体層分離工程におけるエッチングは、メサエッチング又はポストエッチングと呼ばれることがある。
 次の図12の(d)に示す電流阻止部形成工程では、積層半導体層分離工程により、側面が露出した電流狭窄層81bを側面から酸化して、電流を阻止する電流阻止部βを形成する。酸化されないで残った部分が電流通過部αとなる。
 電流狭窄層81bの酸化は、例えば、300~400℃での水蒸気酸化により、AlAs、AlGaAsなどである電流狭窄層81bのAlを酸化させることで行う。このとき、露出した側面から酸化が進行し、アイランド301、302などのアイランドの周囲にAlの酸化物であるAlによる電流阻止部βが形成される。電流狭窄層81bの酸化されなかった部分が、電流通過部αとなる。なお、図12の(d)から図13の(i)では、電流阻止部βがアイランドの側面から距離が異なるように記載されているが、これは図示の便宜のためである。酸化はアイランド301、302などのアイランドの側面から同じ距離進行するので、形成される電流阻止部βのアイランドの側面からの距離は、同じになる。
 なお、電流阻止部βは、AlAsなどのAl組成比が大きい半導体層を用いる代わりに、GaAs、AlGaAsなどの半導体層に水素イオン(H)の打ち込むことで形成してもよい。(Hイオン打ち込み)。すなわち、電流狭窄層81bを用いず、下側pアノード(クラッド)層81aと上側pアノード(クラッド)層81cとを分割せずに一体化したpアノード(クラッド)層81を形成し、電流阻止部βとする部分にHを打ち込むことで、不純物が不活性化された電気抵抗が高い電流阻止部βを形成してもよい。
 図12の(e)に示すpゲート層出しエッチング工程では、nカソード層88をエッチングして、pゲート層87を露出させる。
 このエッチングは、硫酸系のエッチング液(重量比において硫酸:過酸化水素水:水=1:10:300)を用いたウェットエッチングで行ってもよく、例えば塩化ホウ素を用いた異方性ドライエッチングで行ってもよい。
 図12の(f)に示すpオーミック電極形成工程では、pゲート層87上に、pオーミック電極(pオーミック電極331、332など)が形成される。
 pオーミック電極は、例えばpゲート層87などp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などである。
 そして、pオーミック電極は、例えばリフトオフ法などにより形成される。
 図13の(g)に示す保護層90形成工程では、例えばSiO、SiON、SiNなどの絶縁性材料によりアイランド301、302などの表面を覆うように、保護層90が設けられる。
 そして、nオーミック電極321、323、324など及びpオーミック電極331、332などの上の保護層90にスルーホール(開口)が設けられる。
 図13の(h)に示す配線及び裏面電極形成工程では、保護層90に設けられたスルーホールを介して、nオーミック電極(nオーミック電極321、323、324など)及びpオーミック電極(pオーミック電極331、332など)を接続する配線(電源線71、第1転送信号線72、第2転送信号線73、点灯信号線75など)が形成される。
 配線は、Al、Auなどである。
 図13の(i)に示す光出射面形成工程では、レーザダイオードLDから光を出射させる光出射面を形成するため、レーザダイオードLDが形成されたアイランド301の部分で、基板80及び積層半導体層が劈開される。
 このとき、劈開は、レーザダイオードLDからの光の出射方向に電流阻止部βが含まれないように行われる。
 なお、前述したように、光出射面をエッチングで形成してもよい。また、光出射面形成工程を行わないで、発光層82の側面(端面)から光を出射させてもよい。
 以上説明したように、第1の実施の形態に係る発光チップCは、レーザダイオードLDと設定サイリスタSとを積層させている。これにより、発光チップCは、転送サイリスタTと設定サイリスタSとにより、レーザダイオードLDを順に点灯させる自己走査型となる。これにより、発光チップCに設けられる端子の数が少なくなり、発光チップC及び発光装置65が小型になる。
 レーザダイオードLD上に設定サイリスタSを設けず、設定サイリスタSをレーザサイリスタ(発光素子)として使用することがある。すなわち、レーザダイオードLD、下部ダイオードUDを構成する、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83を設けない。
 この場合、駆動特性と発光特性とを別々に(独立して)設定しえない。このため、駆動の高速化、光の高出力化、高効率化、低消費電力化、低コスト化などが図りづらい。
 これに対し、第1の実施の形態では、レーザダイオードLDにより発光を行わせ、転送サイリスタT及び設定サイリスタSにより転送を行わせて、発光と転送とを分離している。設定サイリスタSは発光することを要しない。よって、レーザダイオードLDを量子井戸構造として発光特性などを向上させるととともに、転送サイリスタT及び設定サイリスタSによる駆動特性などを向上させ得る。すなわち、発光部102のレーザダイオードLDと、駆動部101の転送サイリスタT及び設定サイリスタSとを別々に(独立して)設定しうる。これにより、駆動の高速化、光の高出力化、高効率化、低消費電力化、低コスト化などが図りやすい。
 また、第1の実施の形態では、レーザダイオードLDと設定サイリスタSとを、トンネル接合層84を介して積層している。この場合、レーザダイオードLDがトンネル接合層84において逆バイアスとなるが、トンネル接合層84は、逆バイアス状態であっても、電流が流れる特性を有する。
 なお、トンネル接合層84を設けないと、レーザダイオードLDと設定サイリスタSとの間の接合が逆バイアスになる。このため、レーザダイオードLDと設定サイリスタSとに電流を流すためには、逆バイアスの接合が降伏する電圧を印加することになる。すなわち、駆動電圧が高くなってしまう。
 すなわち、レーザダイオードLDと設定サイリスタSとをトンネル接合層84を介して積層することで、トンネル接合層84を介さない場合に比べて、点灯信号φIの電圧が低く抑えられる。
 さらに、トンネル接合層84は、前述したように不純物濃度が高い。例えば、トンネル接合層84の不純物濃度は、1019/cmと、他の層の不純物濃度1017~1018/cmに比べて高い。不純物として用いられるSiは、ベースとなる半導体材料の一例であるGaAsとは、格子定数、結合強度、最外殻電子数などが異なる。よって、トンネル接合層84上に、例えばGaAsなどの半導体層を成長させると欠陥が発生しやすい。欠陥は、不純物濃度が高くなればなるほど、発生確率が上昇する。そして、欠陥は、その上に形成される半導体層に伝播していく。
 また、トンネル接合層84のように、不純物濃度を他の層よりも高くするためには、低温成長せざるを得ない。すなわち、成長条件(温度、成長速度、比率)を変えねばならない。このため、トンネル接合層84上に設けられる半導体層は、最適な成長条件からずれてしまう。
 この結果、トンネル接合層84上に設けられる半導体層は、欠陥が多く含まれることになる。
 特に、レーザダイオードLDなどの発光素子の発光特性は、半導体層に含まれる欠陥の影響を受けやすい。一方、サイリスタ(設定サイリスタS、転送サイリスタT)は、ターンオンして、レーザダイオードLDや下部ダイオードに電流が供給できればよい。すなわち、サイリスタ(設定サイリスタS、転送サイリスタT)は、欠陥の影響を受けにくい。
 そこで、第1の実施の形態に係る発光チップCでは、基板80上に、レーザダイオードLD及び下部ダイオードUDを設け、その上に、トンネル接合層84を介して設定サイリスタS及び転送サイリスタTを設けるようにしている。これにより、レーザダイオードLD及び下部ダイオードUD、特に、レーザダイオードLDにおける欠陥の発生を抑制し、発光特性が欠陥の影響を受けにくいようにしている。また、設定サイリスタSや転送サイリスタTをエピタキシャル成長させてモノリシックに積層するようにしている。
<金属的導電性III-V族化合物層>
 上記の発光チップCにおいては、トンネル接合層84を介して、レーザダイオードLD、下部ダイオードUD上に設定サイリスタS、転送サイリスタTを積層した。
 トンネル接合層84の代わりに、金属的な導電性を有し、III-V族の化合物半導体層にエピタキシャル成長するIII-V族化合物層を用いてもよい。この場合、上記の説明における「トンネル接合層84」を「金属的導電性III-V族化合物層84」に置き換えればよい。
 図14は、金属的導電性III-V族化合物層を構成する材料を説明する図である。図14の(a)は、InNの組成比xに対するInNAsのバンドギャップ、図14の(b)は、InNの組成比xに対するInNSbのバンドギャップ、図14の(c)は、VI族元素及びIII-V族化合物の格子定数をバンドギャップに対して示す図である。
 図14の(a)は、組成比x(x=0~1)のInNと組成比(1-x)のInAsとの化合物であるInNAsに対するバンドギャップエネルギ(eV)を示す。
 図14の(b)は、組成比x(x=0~1)のInNと組成比(1-x)のInSbとの化合物であるInNSbに対するバンドギャップエネルギ(eV)を示す。
 金属的導電性III-V族化合物層の材料の一例として説明するInNAs及びInNSbは、図14の(a)、(b)に示すように、ある組成比xの範囲において、バンドギャップエネルギが負になることが知られている。バンドギャップエネルギが負になることは、バンドギャップを持たないことを意味する。よって、金属と同様な導電特性(伝導特性)を示すことになる。すなわち、金属的な導電特性(導電性)とは、金属と同様に電位に勾配があれば電流が流れることをいう。
 図14の(a)に示すように、InNAsは、例えばInNの組成比xが約0.1~約0.8の範囲において、バンドギャップエネルギが負になる。
 図14の(b)に示すように、InNSbは、例えばInNの組成比xが約0.2~約0.75の範囲において、バンドギャップエネルギが負になる。
 すなわち、InNAs及びInNSbは、上記の範囲において、金属的な導電特性(導電性)を示すことになる。
 なお、上記の範囲外のバンドギャップエネルギが小さい領域では、熱エネルギによって電子がエネルギを有するため、わずかなバンドギャップを遷移することが可能であり、バンドギャップエネルギが負の場合や金属と同様に電位に勾配がある場合には電流が流れやすい特性を有している。
 そして、InNAs及びInNSbに、Al、Ga、Ag、Pなどが含まれても、組成次第でバンドギャップエネルギを0近傍もしくは負に維持することができ、電位に勾配があれば電流が流れる。
 さらに、図14の(c)に示すように、GaAs、InPなどのIII-V族化合物(半導体)の格子定数は、5.6Å~5.9Åの範囲にある。そして、この格子定数は、Siの格子定数の約5.43Å、Geの格子定数の約5.66Åに近い。
 これに対して、同様にIII-V族化合物であるInNの格子定数は、閃亜鉛鉱構造において約5.0Å、InAsの格子定数は、約6.06Åである。よって、InNとInAsとの化合物であるInNAsの格子定数は、GaAsなどの5.6Å~5.9Åに近い値になりうる。
 また、III-V族化合物であるInSbの格子定数は、約6.48Åである。よって、InNの格子定数の約5.0Åであるので、InSbとInNとの化合物であるInNSbの格子定数を、GaAsなど5.6Å~5.9Åに近い値になりうる。
 すなわち、InNAs及びInNSbは、GaAsなどのIII-V族化合物(半導体)の層に対してモノリシックにエピタキシャル成長させうる。また、InNAs又はInNSbの層上に、GaAsなどのIII-V族化合物(半導体)の層をエピタキシャル成長によりモノリシックに積層させうる。
 よって、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を介して、レーザダイオードLDと設定サイリスタSとを直列接続されるように積層すれば、レーザダイオードLDのnカソード(クラッド)層83と設定サイリスタSのpアノード層85とが逆バイアスになることが抑制される。
 なお、InNAsやInNSbなどで構成される金属的導電性III-V族化合物層は、理論的にバンドギャップがマイナスにあるが、GaAs、InPなどに比べると成長が難しく、品質が劣る。特に、N組成を大きくすると、成長の難易度が格段に上がる。よって、金属的導電性III-V族化合物層上に、例えばGaAsなどの半導体層を成長させると欠陥が発生しやすい。
 前述したように、レーザダイオードLDなどの発光素子の発光特性は、半導体層に含まれる欠陥の影響を受けやすい。一方、サイリスタ(設定サイリスタS、転送サイリスタT)は、ターンオンして、レーザダイオードLDや下部ダイオードに電流が供給できればよい。すなわち、サイリスタ(設定サイリスタS、転送サイリスタT)は、欠陥の影響を受けにくい。
 そこで、トンネル接合層84と同様に、基板80上に、レーザダイオードLD、下部ダイオードUDを設け、その上に、金属的導電性III-V族化合物層を介して設定サイリスタS、転送サイリスタTを設けるようにすればよい。これにより、レーザダイオードLD、下部ダイオードUD、特に、レーザダイオードLDにおける欠陥の発生を抑制し、発光特性が欠陥の影響を受けにくいようになる。また、設定サイリスタSや転送サイリスタTをモノリシックに積層しうる。
<電圧低減層89>
 また、上記の発光チップCにおいては、トンネル接合層84を介して、レーザダイオードLD、下部ダイオードUD上に、設定サイリスタS、転送サイリスタTを積層した。よって、電源電位Vga、第1転送信号φ1、第2転送信号φ2及び点灯信号φIに用いる電圧が絶対値において大きくなった。前述したように、「L」(-5V)を用いていた。
 そこで、電源電位Vga、第1転送信号φ1、第2転送信号φ2、点灯信号φIに用いる電圧を絶対値において低減するために、サイリスタ(設定サイリスタS、転送サイリスタT)に印加される電圧を低減する電圧低減層89を用いてもよい。
 図15は、レーザダイオードLDと電圧低減層89を備えた設定サイリスタSとが積層されたアイランド301の拡大断面図である。図15は、図7に、電圧低減層89を追加したものである。よって、図7と同様な部分は同じ符号を付して説明を省略し、異なる部分を説明する。
 電圧低減層89は、設定サイリスタSのpアノード層85とnゲート層86との間に設けられている。なお、転送サイリスタTにおいても同様である。
 電圧低減層89は、pアノード層85の一部として、pアノード層85と同様の不純物濃度のp型であってもよく、nゲート層86の一部として、nゲート層86と同様の不純物濃度のn型であってもよい。また、電圧低減層89はi層であってもよい。
 設定サイリスタSや転送サイリスタTにおける電圧低減層89の役割を、一般化してサイリスタとして説明する。
 図16は、サイリスタの構造とサイリスタの特性を説明する図である。図16の(a)は、電圧低減層89を備えるサイリスタSの断面図、図16の(b)は、電圧低減層89を備えないサイリスタSの断面図、図16の(c)は、サイリスタ特性である。図16の(a)、(b)は、例えば、レーザダイオードLDに積層されていない設定サイリスタSの断面に相当する。よって、裏面電極91は、pアノード層85の裏面に設けられているとする。
 図16の(a)に示すように、サイリスタSは、pアノード層85とnゲート層86との間に、電圧低減層89を備える。なお、電圧低減層89は、pアノード層85と同様な不純物濃度のp型であれば、pアノード層85の一部として働き、nゲート層86と同様な不純物濃度のn型であれば、nゲート層86の一部として働く。電圧低減層89はi層であってもよい。
 図16の(b)に示すサイリスタSは、電圧低減層89を備えない。
 サイリスタにおける立ち上がり電圧Vr(図16の(c)参照)は、サイリスタを構成する半導体層におけるもっとも小さいバンドギャップのエネルギ(バンドギャップエネルギ)によって決まる。なお、サイリスタにおける立ち上がり電圧Vrとは、サイリスタのオン状態における電流を、電圧軸に外挿した際の電圧である。
 図16の(c)に示すように、サイリスタSでは、pアノード層85、nゲート層86、pゲート層87、nカソード層88に比べ、バンドギャップエネルギが小さい層である電圧低減層89を設けている。よって、サイリスタSの立ち上がり電圧Vr(A)は、電圧低減層89を備えないサイリスタSの立ち上がり電圧Vr(B)に比べて低い。さらに、電圧低減層89は、一例として、発光層82のバンドギャップよりも小さいバンドギャップを有する層である。
 サイリスタ(設定サイリスタS、転送サイリスタT)は発光素子として利用されるものではなく、あくまでレーザダイオードLDなどの発光素子を駆動する駆動部101の一部として機能する。よって、実際に発光する発光素子の発光波長とは無関係にバンドギャップが決められる。そこで、発光層82のバンドギャップよりも小さいバンドギャップを有する電圧低減層89を設けることで、サイリスタの立ち上がり電圧Vrを低減している。
 これにより、サイリスタ及び発光素子がオンした状態で、サイリスタ及び発光素子に印加する電圧が低減される。
 図17は、半導体層を構成する材料のバンドギャップエネルギを説明する図である。
 GaAsの格子定数は、約5.65Åである。AlAsの格子定数は、約5.66Åである。よって、この格子定数に近い材料は、GaAs基板に対してエピタキシャル成長しうる。例えば、GaAsとAlAsとの化合物であるAlGaAsやGeは、GaAs基板に対してエピタキシャル成長しうる。
 また、InPの格子定数は、約5.87Åである。この格子定数に近い材料は、InP基板に対してエピタキシャル成長しうる。
 また、GaNの格子定数は、成長面によって異なるが、a面が3.19Å、c面が5.17Åである。この格子定数に近い材料はGaN基板に対してエピタキシャル成長しうる。
 そして、GaAs、InP及びGaNに対して、サイリスタの立ち上がり電圧が小さくなるバンドギャップエネルギは、図17に網点で示す範囲の材料である。つまり、網点で示す範囲の材料を、サイリスタを構成する層として用いると、サイリスタの立ち上がり電圧Vrが、網点で示す領域の材料のバンドギャップエネルギになる。
 例えば、GaAsのバンドギャップエネルギは、約1.43eVである。よって、電圧低減層89を用いないと、サイリスタの立ち上がり電圧Vrは、約1.43Vとなる。しかし、網点で示す範囲の材料を、サイリスタを構成する層とするか、又は、含むことで、サイリスタの立ち上がり電圧Vrは、0V超且つ1.43V未満としうる(0V<Vr<1.43V)。
 これにより、サイリスタがオン状態にある時の、電力消費が低減される。
 網点で示す範囲の材料としては、GaAsに対してバンドギャップエネルギが約0.67eVのGeがある。また、InPに対してバンドギャップエネルギが約0.36eVのInAsがある。また、GaAs基板又はInP基板に対して、GaAsとInPとの化合物、InNとInSbとの化合物、InNとInAsとの化合物などにおいて、バンドギャップエネルギが、小さい材料を用いうる。特に、GaInNAsをベースとした混合化合物が適している。これらに、Al、Ga、As、P、Sbなどが含まれてもよい。また、GaNに対してはGaNPが電圧低減層89となりうる。他にも、(1)メタモリフィック成長などによるInN層、InGaN層、(2)InN、InGaN、InNAs、InNSbからなる量子ドット、(3)GaNの格子定数(a面)の2倍に相当するInAsSb層などを電圧低減層89として導入しうる。これらに、Al、Ga、N、As、P、Sbなどが含まれてよい。
 ここでは、サイリスタの立ち上がり電圧Vrで説明したが、サイリスタがオン状態を維持する最小の電圧である保持電圧Vhやオン状態のサイリスタに印加される電圧も同様である(図16の(c)参照)。
 一方、サイリスタのスイッチング電圧Vs(図16の(c)参照)は、逆バイアスになった半導体層の空乏層で決まる。よって、電圧低減層89は、サイリスタのスイッチング電圧Vsに及ぼす影響が小さい。
 すなわち、電圧低減層89は、サイリスタのスイッチング電圧Vsを維持しつつ、立ち上がり電圧Vrを低下させる。これにより、オン状態のサイリスタに印加される電圧が低減され、消費電力が低減される。サイリスタのスイッチング電圧Vsはpアノード層85、nゲート層86、pゲート層87、nカソード層88の材料や不純物濃度等を調整することで任意の値に設定される。ただし、電圧低減層89の挿入位置によってスイッチング電圧Vsは変化する。
 また、図15では、電圧低減層89を一つ設けた例を示しているが、複数設けてもよい。例えば、pアノード層85とnゲート層86との間、及び、pゲート層87とnカソード層88との間にそれぞれ電圧低減層89を設けた場合や、nゲート層86内に一つ、pゲート層87内にもう一つ設けてもよい。その他にも、pアノード層85、nゲート層86、pゲート層87、nカソード層88の内から2、3層を選択し、それぞれの層内に設けてもよい。これらの電圧低減層の導電型は、電圧低減層を設けたアノード層、カソード層、ゲート層と合わせてもよいし、i型であってもよい。
 電圧低減層89として用いられる材料は、GaAs、InPなどに比べると成長が難しく、品質が劣る。よって、電圧低減層89内部に欠陥が発生しやすく、その上に成長する例えばGaAsなどの半導体内に欠陥が伸びていく。
 前述したように、レーザダイオードLDなどの発光素子の発光特性は、半導体層に含まれる欠陥の影響を受けやすい。一方、サイリスタ(設定サイリスタS、転送サイリスタT)は、ターンオンして、レーザダイオードLDや下部ダイオードUDに電流が供給できればよい。よって、電圧低減層89を含むサイリスタを発光層として用いるのではなく、電圧低減のために用いるのであれば、サイリスタを構成する半導体層に欠陥が含まれてもよい。
 そこで、トンネル接合層84や金属的導電性III-V族化合物層と同様に、基板80上に、レーザダイオードLD、下部ダイオードUDを設け、その上に、電圧低減層89を含む設定サイリスタS、転送サイリスタTを設けるようにすればよい。これにより、レーザダイオードLD、下部ダイオードUD、特に、レーザダイオードLDにおける欠陥の発生を抑制し、発光特性が欠陥の影響を受けにくいようになる。また、設定サイリスタSや転送サイリスタTをモノリシックに積層しうる。
 以下では、第1の実施の形態に係る発光チップCの変形例を説明する。以下に示す変形例では、発光チップCのアイランド301におけるレーザダイオードLDと設定サイリスタSとが積層された部分で説明する。アイランド302、303の層構成は、アイランド301の層構成と同じとなるので省略する。そして、これまで説明したアイランド301と同様の部分の説明を省略し、異なる部分を説明する。他の変形例及び他の実施の形態においても同様である。
(第1の実施の形態に係る発光チップCの変形例1-1)
 図18は、変形例1-1を説明するレーザダイオードLDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例1-1では、電流狭窄層(変形例1-1では電流狭窄層85b)は、pアノード(クラッド)層81の代わりにpアノード層85に設けられている。すなわち、pアノード層85が下側pアノード層85a、電流狭窄層85b、上側pアノード層85cで構成されている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
 なお、変形例1-1は、図11、図12及び図13に示した第1の実施の形態に係る発光チップCの製造方法を変更することで製造される。すなわち、pアノード層85を下側pアノード層85a、電流狭窄層85b、上側pアノード層85cとして、電流狭窄層85bを側面から酸化すればよい。この構造の場合、レーザダイオードLDまでエッチングする必要がないことから、段差が小さくなってプロセスが容易になったり、放熱性が向上したりして、レーザ特性が改善するなどの利点がある。
 変形例1-1の発光チップCにおいても、レーザダイオードLDの中央部における電流通過部αに電流の流れを制限するので、非発光再結合に消費される電力が抑制されて、低消費電力化及び光取り出し効率が向上する。
 なお、電流狭窄層は、レーザダイオードLDのnカソード(クラッド)層83や設定サイリスタSのnカソード層88に設けてもよい。
(第1の実施の形態に係る発光チップCの変形例1-2)
 図19は、変形例1-2を説明するレーザダイオードLDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例1-2では、電流狭窄層81bの代りに、電流通過部αに対応する部分にトンネル接合層84が設けられている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
 前述したように、トンネル接合層84は、逆バイアス状態において電流が流れやすい。しかし、トンネル接合でないnカソード(クラッド)層83とpアノード層85との接合は、降伏を生じない逆バイアスの状態において電流が流れにくい。
 よって、電流通過部αに対応する部分にトンネル接合層84を設けると、レーザダイオードLDに流れる電流が中央部に制限される。
 なお、変形例1-2の発光チップCは、図11、図12及び図13に示した第1の実施の形態に係る発光チップCの製造方法を変更することで製造される。すなわち、図10(a)において、基板80上に、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83、トンネル接合層84を順に積層する。その後、電流阻止部βとなる部分のトンネル接合層84を除去し、電流通過部αとなる部分のトンネル接合層84を残す。その後、残したトンネル接合層84上及び周囲にpアノード層85を積層する。そして、nゲート層86、pゲート層87、nカソード層88を順に積層する。なお、pアノード層85の代わりに、残したトンネル接合層84の周囲をnカソード(クラッド)層83で埋めてもよい。
 変形例1-2の発光チップCにおけるトンネル接合層84を電流狭窄に用いる方法は、水蒸気酸化が適用しづらい半導体材料を用いる場合に適用されてもよい。
(第1の実施の形態に係る発光チップCの変形例1-3)
 図20は、変形例1-3を説明するレーザダイオードLDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例1-3では、nカソード(クラッド)層83を分布ブラッグ反射層(DBR:Distributed Bragg Reflector)(以下では、DBR層と表記する。)としている。DBR層は、屈折率差を設けた半導体層を複数積層して構成される。そして、DBR層は、レーザダイオードLDの出射する光を反射するように構成されている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
 トンネル接合層84に発光波長よりバンドギャップが小さい半導体材料を使用すると、トンネル接合層84に達した光が、バンド端吸収されて損失になる。このため、変形例1-3では、発光層82とトンネル接合層84との間にDBR層を設け、DBR層で発生する定在波の節に当たる位置にトンネル接合層84を設けている。このようにすることで、トンネル接合層84に用いる半導体材料によるバンド端吸収が大幅に抑制される。
 DBR層は、例えばAl0.9Ga0.1Asの高Al組成の低屈折率層と、例えばAl0.2Ga0.8Asの低Al組成の高屈折率層との組み合わせで構成されている。低屈折率層及び高屈折率層のそれぞれの膜厚(光路長)は、例えば中心波長の0.25(1/4)に設定されている。なお、低屈折率層と高屈折率層とのAlの組成比は、0~1の範囲で変更してもよい。
 よって、変形例1-3の発光チップCは、図11、図12及び図13に示した第1の実施の形態に係る発光チップCの製造方法において、nカソード(クラッド)層83をDBR層に変更することで製造される。
 なお、変形例1-1~1-3の発光チップCにおいて、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を用いてもよく、設定サイリスタS、転送サイリスタTに、電圧低減層89を加えてもよい。
[第2の実施の形態]
 第1の実施の形態に係る発光チップCでは、発光素子をレーザダイオードLDとした。第2の実施の形態に係る発光チップCでは、発光素子を発光ダイオードLEDとしている。
 発光チップCにおける発光ダイオードLED(下部ダイオードUDを含む)と設定サイリスタS(転送サイリスタTを含む)との積層された構成を除く他の構成は、第1の実施の形態と同様であって、レーザダイオードLDを発光ダイオードLEDに置き換えればよい。よって、同様な部分の説明を省略し、異なる部分を説明する。
 図21は、第2の実施の形態に係る発光チップCにおける発光ダイオードLEDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 第2の実施の形態に係る発光チップCでは、p型の基板80上に、発光ダイオードLEDを構成するpアノード層81、発光層82、nカソード層83が積層され、トンネル接合層84を介して、設定サイリスタSを構成するpアノード層85、nゲート層86、pゲート層87、nカソード層88が積層されている。これらの層は、モノリシックに積層されている。
 そして、pアノード層81は、下側pアノード層81a、電流狭窄層81b、上側pアノード層81cで構成されている。
 下側pアノード層81a、上側pアノード層81cは、例えば不純物濃度1×1018/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 nカソード層83は、例えば不純物濃度1×1018/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
 なお、他は、第1の実施の形態と同様である。
 発光ダイオードLEDは、矢印で示すように、光を基板80と直交する方向に出射する。よって、基板80と直交する方向に出射された光を利用する場合に用い得る。なお、nオーミック電極321は、中央部が開口になっている。
 この場合、光は、トンネル接合層84を通過して出射する。トンネル接合層84は、高濃度に不純物を含むため、光を吸収するおそれがある。この場合であっても、光量が小さくてもよい用途には用いうる。例えば、光量が放射エネルギでnW又はμWなどでもよい用途に使用しうる。他の変形例及び他の実施の形態でも同様である。
 なお、第1の実施の形態において説明したように、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を用いてもよい。また、設定サイリスタS、転送サイリスタTに、電圧低減層89を加えてもよい。トンネル接合層84と同様に、金属的導電性III-V族化合物層及び電圧低減層89も、発光ダイオードLEDが出射する光を吸収するおそれがある。
 トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89での光の吸収を回避する方法として、nオーミック電極321の中央開口部の一部又は全部において、設定サイリスタSのnカソード層88、pゲート層87、nゲート層86、pアノード層85、トンネル接合層84の厚さ方向における一部又は全部をエッチングによって取り除いてもよい。トンネル接合層84の代わりに金属的導電性III-V族化合物層を用いる場合は、金属的導電性III-V族化合物層の厚さ方向に一部もしくは全部をエッチングによって取り除けばよい。さらに、電圧低減層89を用いる場合にも、同様に取り除けばよい。
 また、第1の実施の形態における変形例1-1と同様に、設定サイリスタSのpアノード層85に、電流狭窄層を設けてもよい。また、発光ダイオードLEDのnカソード層83、設定サイリスタSのnカソード層88に、電流狭窄層を設けてもよい。
 さらに、第1の実施の形態における変形例1-2と同様に、水蒸気酸化による電流狭窄層の代わりに、トンネル接合層84を電流狭窄層として用いてもよい。
 なお、第1の実施の形態における図11の(a)の積層半導体層形成工程の後に、nカソード層88側を、別の基板(以下では、転写用の基板であって転写基板100と表記する。)に貼り付けた後、基板80を除いて(剥離して)、図11の(b)以降の工程を行うことで、発光チップCを製造してもよい。ここで、基板80は成長用の基板(成長基板)である。転写基板100には、積層半導体層が反転して積層されることになる。
 図22は、転写基板100に形成した発光チップCにおける発光ダイオードLEDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 図21に示した積層半導体層が引っ繰り返されて、転写基板100に対して、逆に積層されることになる。よって、転写基板100の裏面に裏面電極91を設ける場合には、転写基板100はn型となる。すなわち、カソードコモンとなり、回路の極性が逆になる。
 このように構成することで、発光ダイオードLEDから出射する光は、トンネル接合層84により吸収されることが抑制される。金属的導電性III-V族化合物層や電圧低減層89を用いた場合においても、発光ダイオードLEDから出射する光が、金属的導電性III-V族化合物層や電圧低減層89により吸収されることが抑制される。
 なお、この構造においても、電流狭窄層を設ける位置を変更してもよく、電流狭窄層としてトンネル接合層84や金属的導電性III-V族化合物層を用いてもよく、電圧低減層89を設けてもよい。
 また、転写基板100への貼り付け構造は、他の実施の形態にも適用できる。
 以下では、第2の実施の形態に係る発光チップCの変形例を説明する。
(第2の実施の形態に係る発光チップCの変形例2-1)
 図23は、変形例2-1を説明する発光ダイオードLEDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例2-1では、発光層82を2つのDBR層で挟んでいる。すなわち、pアノード層81及びnカソード層83がDBR層として構成されている。pアノード層81は、電流狭窄層81bを含んでいる。すなわち、pアノード層81は、下側pアノード層81a、電流狭窄層81b、上側pアノード層81cの順で積層され、下側pアノード層81a、上側pアノード層81cがDBR層として構成されている。
 なお、下側pアノード層81a、上側pアノード層81c、nカソード層83を、下側pアノード(DBR)層81a、上側pアノード(DBR)層81c、nカソード(DBR)層83と表記することがある。
 DBR層の構成は、第1の実施の形態における変形例1-3と同様である。なお、pアノード(DBR)層81における電流狭窄層81bの膜厚(光路長)は、採用する構造によって決定される。取り出し効率やプロセス再現性を重要視する場合は、DBR層を構成する低屈折率層及び高屈折率層の膜厚(光路長)の整数倍に設定されるのがよく、例えば中心波長の0.75(3/4)に設定されている。なお、奇数倍の場合は、電流狭窄層81bは、高屈折率層と高屈折率層とで挟まれるとよい。また、偶数倍の場合は、電流狭窄層81bは、高屈折率層と低屈折率層とで挟まれるとよい。すなわち、電流狭窄層81bは、DBR層による屈折率の周期の乱れを抑制するように設けられるとよい。逆に、酸化された部分の影響(屈折率や歪)を低減したい場合は、電流狭窄層81bの膜厚は、数十nmが好ましく、DBR層内に立つ定在波の節の部分に挿入されるのが好ましい。
 pアノード(DBR)層81及びnカソード(DBR)層83は、発光ダイオードLEDの発光層82が出射する光を反射するように構成されている。すなわち、pアノード(DBR)層81とnカソード(DBR)層83とは、共振器(キャビティ)を構成し、発光層82が出射する光が共振により強められて出力される。すなわち、変形例2-1では、共振型の発光ダイオードLED上に設定サイリスタSが積層されている。
 また、電流狭窄層81bを設けているので、非発光再結合に消費される電力が抑制されて、低消費電力化及び光取り出し効率が向上する。
 変形例2-1の発光チップCは、第1の実施の形態において図11、図12及び図13に示した製造方法を一部変更することで製造される。すなわち、図11の(a)の積層半導体層形成工程において、pアノード層81の下側pアノード層81a、上側pアノード層81c、及び、nカソード層83をDBR層として形成すればよい。
 電流狭窄層を設ける位置を変更してもよく、電流狭窄層としてトンネル接合層84や金属的導電性III-V族化合物層を用いてもよく、電圧低減層89を設けてもよい。
 なお、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下する場合には、転写基板100を用いて、積層半導体層を引っ繰り返して逆に積層した状態で製造してもよい。また、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89での光の吸収を回避する方法として、nオーミック電極321の中央開口部の一部又は全部において、設定サイリスタSのnカソード層88、pゲート層87、nゲート層86、pアノード層85、トンネル接合層84の厚さ方向における一部又は全部をエッチングによって取り除いてもよい。トンネル接合層84の代わりに金属的導電性III-V族化合物層を用いる場合は、金属的導電性III-V族化合物層の厚さ方向に一部もしくは全部をエッチングによって取り除けばよい。さらに、電圧低減層89を用いる場合にも、同様に取り除けばよい。
 このように構成することで、発光ダイオードLEDから出射する光は、トンネル接合層84に吸収されることが抑制される。金属的導電性III-V族化合物層や電圧低減層89を用いた場合においても、発光ダイオードLEDから出射する光が、金属的導電性III-V族化合物層や電圧低減層89に吸収されることが抑制される。
(第2の実施の形態に係る発光チップCの変形例2-2)
 図24は、変形例2-2を説明する発光ダイオードLEDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例2-2では、図23に示した発光チップCのnカソード(DBR)層81をDBR層としないnカソード層83とし、その代りnカソード層88をDBR層としている。よって、nカソード層88をnカソード(DBR)層88と表記する。他の構成は、第1の実施の形態に係る発光チップCと同様である。
 変形例2-2では、nカソード(DBR)層83とpアノード(DBR)層85とは、共振器(キャビティ)を構成し、発光層82が出射する光が共振により強められて出力される。
 変形例2-2の発光チップCは、第1の実施の形態において図11、図12及び図13に示した製造方法を一部変更することで製造される。すなわち、図11の(a)の積層半導体層形成工程において、pアノード(DBR)層85及びnアノード(DBR)層83をDBR層として形成すればよい。
 また、電流狭窄層を設ける位置を変更してもよく、電流狭窄層としてトンネル接合層84や金属的導電性III-V族化合物層を用いてもよく、電圧低減層89を設けてもよい。
 なお、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下することがある。この場合であっても、光量が小さくてもよい用途には用いうる。
(第2の実施の形態に係る発光チップCの変形例2-3)
 図25は、変形例2-3を説明する発光ダイオードLEDと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例2-3では、図23に示した発光チップCのnカソード(DBR)層83をDBR層としないnカソード層83としている。他の構成は、第1の実施の形態に係る発光チップCと同じである。
 変形例2-3の発光チップCでは、発光層82の下(基板80)側にpアノード(DBR)層81を設けている。この場合、nカソード層88と空気との界面で、反射率30%が得られるので、発光層82が出射する光が共振により強められて出力される。
 また、発光層82から出射した光の内、基板80側に向う光が反射されて、出射口側に向かう。よって、pアノード層81がDBR層でない場合に比べ、光利用効率が向上する。
 変形例2-3の発光チップCは、第1の実施の形態において図11、図12及び図13に示した製造方法を一部変更することで製造される。すなわち、図11の(a)の積層半導体層形成工程において、pアノード層81の下側pアノード層81a及び上側pアノード層81cをDBR層として形成すればよい。
 電流狭窄層を設ける位置を変更してもよく、電流狭窄層としてトンネル接合層84や金属的導電性III-V族化合物層を用いてもよく、電圧低減層89を設けてもよい。
 なお、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下することがある。よって、光量が小さくてもよい用途に使用すればよい。
 また、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下する場合には、nカソード(DBR)層83をDBR層とし、pアノード層81をDBR層とせず、転写基板100を用いて、積層半導体層を引っ繰り返して逆に積層した状態で製造してもよい。
[第3の実施の形態]
 第1の実施の形態に係る発光チップCでは、発光素子をレーザダイオードLDとし、第2の実施の形態に係る発光チップCでは、発光素子を発光ダイオードLEDとした。第3の実施の形態に係る発光チップCでは、発光素子として垂直共振器面発光レーザVCSEL(Vertical Cavity Surface Emitting Laser)としている。
 発光チップCにおける垂直共振器面発光レーザVCSEL(下部ダイオードUDを含む)と設定サイリスタS(転送サイリスタTを含む)との積層された構成を除く他の構成は、第1の実施の形態と同様であって、レーザダイオードLDを垂直共振器面発光レーザVCSELに置き換えればよい。よって、同様な部分の説明を省略し、異なる部分を説明する。
 図26は、第3の実施の形態に係る発光チップCの垂直共振器面発光レーザVCSELと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 垂直共振器面発光レーザVCSELと設定サイリスタSとが積層されている。
 基本的な構成は、図22に示した第2の実施の形態に係る発光チップCと同様であるので説明を省略する。
 垂直共振器面発光レーザVCSELは、2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層83)とで挟まれた発光層82において、光を共振させてレーザ発振させている。2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層83)との反射率が例えば99%以上になるとレーザ発振する。
 なお、第1の実施の形態において説明したように、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を用いてもよい。また、設定サイリスタS、転送サイリスタTに、電圧低減層89を加えてもよい。トンネル接合層84と同様に、金属的導電性III-V族化合物層及び電圧低減層89も、発光ダイオードLEDが出射する光を吸収するおそれがある。
 また、第1の実施の形態における変形例1-1と同様に、設定サイリスタSのpアノード層85に、電流狭窄層を設けてもよい。また、発光ダイオードLEDのnカソード層83、設定サイリスタSのnカソード層88に、電流狭窄層を設けてもよい。
 垂直共振器面発光レーザVCSELからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下することがある。よって、光量が小さくてもよい用途に使用すればよい。
 また、垂直共振器面発光レーザVCSELからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下する場合には、転写基板100を用いて、積層半導体層を引っ繰り返して製造してもよい。
 トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89での光の吸収を回避する方法として、nオーミック電極321の中央開口部の一部又は全部において、設定サイリスタSのnカソード層88、pゲート層87、nゲート層86、pアノード層85、トンネル接合層84の厚さ方向における一部又は全部をエッチングによって取り除いてもよい。トンネル接合層84の代わりに金属的導電性III-V族化合物層を用いる場合は、金属的導電性III-V族化合物層の厚さ方向に一部もしくは全部をエッチングによって取り除けばよい。さらに、電圧低減層89を用いる場合にも、同様に取り除けばよい。
 以下では、第3の実施の形態に係る発光チップCの変形例を説明する。以下に示す変形例では、発光チップCのアイランド301における垂直共振器面発光レーザVCSELと設定サイリスタSとが積層された部分で説明するが、下部ダイオードUDと転送サイリスタTとが積層された部分も同様である。他の構成は、これまで説明した発光チップCと同様であるので、異なる部分を説明し、同様な部分の説明を省略する。
(第3の実施の形態に係る発光チップCの変形例3-1)
 図27は、変形例3-1を説明する垂直共振器面発光レーザVCSELと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例3-1の基本的な構成は、図23に示した第2の実施の形態に係る発光チップCの変形例2-2と同様であるので説明を省略する。
 垂直共振器面発光レーザVCSELは、2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層88)とで挟まれた発光層82において、光を共振させてレーザ発振させている。
 電流狭窄層を設ける位置を変更してもよい。また、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を用いてもよい。そして、電流狭窄層としてトンネル接合層84や金属的導電性III-V族化合物層を用いてもよい。さらに、サイリスタ(設定サイリスタS、転送サイリスタT)に電圧低減層89を設けてもよい。
 なお、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下することがある。この場合であっても、光量が小さくてもよい用途には用いうる。
(第3の実施の形態に係る発光チップCの変形例3-2)
 図28は、変形例3-2を説明する垂直共振器面発光レーザVCSELと設定サイリスタSとが積層されたアイランド301の拡大断面図である。
 変形例3-2の基本的な構成は、図19に示した第1の実施の形態に係る発光チップCの変形例1-2と同様であって、pアノード層81とpアノード層85をDBR層としている。他の構成は、変形例1-2と同様であるので説明を省略する。
 垂直共振器面発光レーザVCSELは、発光層82とnカソード層83とを挟む2つのDBR層(pアノード(DBR)層81とpアノード(DBR)層85)において、光を共振させてレーザ発振させている。
 また、変形例3-2は、電流狭窄層81bを用いないため、水蒸気酸化が適用しづらいInP、GaN、サファイアなどの基板上の半導体材料に適用しやすい。
 なお、トンネル接合層84を電流狭窄に使用しているので、非発光再結合に消費される電力が抑制され、低消費電力化及び光取り出し効率が向上する。
 また、トンネル接合層84の代わりに、金属的導電性III-V族化合物層を用いてもよい。さらに、サイリスタ(設定サイリスタS、転送サイリスタT)に電圧低減層89を設けてもよい。
 なお、発光ダイオードLEDからの光が、トンネル接合層84、金属的導電性III-V族化合物層、電圧低減層89などにより吸収されて、出射する光量が低下することがある。この場合であっても、光量が小さくてもよい用途には用いうる。
[第4の実施の形態]
 第1の実施の形態から第3の実施の形態では、転送サイリスタTは、下部ダイオードUDの上に構成されていて、下部ダイオードUDと転送サイリスタTとは直列接続されていた。このため、転送サイリスタTに供給される第1転送信号φ1、第2転送信号φ2の「L」の電位は、直列接続された下部ダイオードUDと転送サイリスタTとに印加された。このため、例えば、「L」(-5V)であった。
 第4の実施の形態では、転送サイリスタTが下部ダイオードUDと直列接続されないように構成されている。よって、転送サイリスタTに供給される第1転送信号φ1、第2転送信号φ2の「L」の電位が低くなり、転送サイリスタTのアノードとカソードに印加する電位でよい。例えば、「L」(-3.3V)でよい。
 なお、発光チップCの構造を除いて、第1の実施の形態と同様である。よって、同様の部分の説明を省略して、異なる部分を説明する。
 図29は、第4の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップCの回路構成を説明する等価回路図である。
 発光チップC1(C)は、レーザダイオードLD1~LD128で構成される発光部102(図4の(a)参照)を備える。また、発光チップC1(C)は、設定サイリスタS1~S128、転送サイリスタT1~T128、結合ダイオードD1~D127、電源線抵抗Rg1~Rg128、スタートダイオードSD、電流制限抵抗R1、R2により構成される駆動部101を備える。
 すなわち、第4の実施の形態に係る発光チップCは、図5に示した第1の実施の形態に係る発光チップCが備える下部ダイオードUD1~UD128を備えない。
 図30は、第4の実施の形態に係る発光チップCのアイランド301、302、303の断面図である。
 第4の実施の形態に係る発光チップCの平面レイアウトは、図6の(a)に示した第1の実施の形態に係る発光チップCの平面レイアウトと同じである。よって、説明を省略する。
 図30に示す第4の実施の形態に係る発光チップCのアイランド301、302の断面図は、図6の(a)のVIB-VIB線での断面である。ただし、図6の(b)とは、逆の-x方向から見た断面図である。
 図30に示すように、第4の実施の形態に係る発光チップCでは、アイランド302において、転送サイリスタTのpアノード層85とp型の基板80とがp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などで構成された接続配線51で接続されている。
 これにより、転送サイリスタTのpアノード層85は、基板80の裏面電極91に供給される基準電位Vsub(「H」(0V))に設定される。
 そして、転送サイリスタTの下にある下部ダイオードUDは、pアノード層81、発光層82、nカソード層83の側面が接続配線51により短絡(ショート)されている。これにより、下部ダイオードUDは、存在するが動作しないようになっている。なお、アイランド302の側面の全面が、保護層90で覆われていてもよい。そして、接続配線51は、下部ダイオードUDが動作しないようにすればよく、他の部分に設けられてもよい。
 なお、接続配線51は、アイランド302の下部ダイオードUD1のnカソード(クラッド)層83に接続されてもよい。
 図31は、第4の実施の形態に係る発光チップCの動作を説明するタイミングチャートである。
 図9に示した第1の実施の形態に係る発光チップCの動作を説明するタイミングチャートにおいて、第1転送信号φ1及び第2転送信号φ2の「L」が「L′」になっている。前述のように、第1転送信号φ1及び第2転送信号φ2は、転送サイリスタTのアノードとカソードとの間に印加される。よって、第1の実施の形態に係る発光チップCの第1転送信号φ1及び第2転送信号φ2より、絶対値が小さい電圧でよい。すなわち、下部ダイオードUDに印加される電圧(ここでは、1.7Vとした。)が不要になる。この例では、「L′」(-3.3V)となる。なお、発光チップCの動作は、第1転送信号φ1及び第2転送信号φ2の「L」(-5V)を「L′」(-3.3V)とするとともに、下部ダイオードUDの動作を無視すればよい。
 動作させるための第1転送信号φ1及び第2転送信号φ2が低電圧化され、低消費電力化される。
 第1の実施の形態から第3の実施の形態に係る発光チップCに第4の実施の形態に係る発光チップCの構成を適用してもよい。
[第5の実施の形態]
 第1の実施の形態から第4の実施の形態では、設定サイリスタSが発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSEL)に積層されて、直列接続されていた。
 第5の実施の形態に係る発光チップCは、発光素子と設定サイリスタSとが積層されないで、接続配線で直列接続されている。
 以下では、発光素子をレーザダイオードLDとして説明する。
 図32は、第5の実施の形態に係る発光チップCにおいて、レーザダイオードLD1が設けられたアイランド301a、設定サイリスタS1が設けられたアイランド301b及び転送サイリスタT1などが設けられたアイランド302の拡大断面図である。なお、アイランド303は、図7に示したアイランド303と同じであるので記載を省略する。
 図32に示すように、第5の実施の形態に係る発光チップCは、図30に示した第4の実施の形態に係る発光チップCにおいて、アイランド301がアイランド301aとアイランド301bとに分けられている。つまり、アイランド301aには、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83が積層されて、レーザダイオードLD1が構成されている。アイランド301bは、図7のアイランド301と同様の層構成を有している。つまり、アイランド301bには、pアノード(クラッド)層81、発光層82、nカソード(クラッド)層83、トンネル接合層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88が積層されている。しかし、アイランド301bのpアノード(クラッド)層81、発光層82、nカソード(クラッド)層83は、レーザダイオードLDとして機能せず、アイランド302の下部ダイオードUD1と同様の下部ダイオードUD′1となっている。なお、アイランド302は、図30のアイランド302の接続配線51と同様に、転送サイリスタTのpアノード層85とp型の基板80とがp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などで構成された接続配線52で接続されている。なお、接続配線52は、図30の場合の接続配線51と異なる部分に設けられている。
 そして、アイランド301aのレーザダイオードLD1のカソードであるnカソード(クラッド)層83とアイランド301bの設定サイリスタS1のpアノード層85とが接続配線74により接続されている。つまり、レーザダイオードLD1と設定サイリスタS1とは、直列接続されている。そして、レーザダイオードLD1のアノード(クラッド)層81が基板80を介して基準電位Vsub(「H」(0V))に接続され、設定サイリスタS1のnカソード層88が点灯信号線75に接続されている。
 なお、接続配線74は、アイランド301bの下部ダイオードUD′1のnカソード(クラッド)層83に接続されてもよい。
 また、第5の実施の形態は、各アイランドのトンネル接合層84を有さなくても動作するので、結晶品質を劣化させること無く、寿命が長くなる、歩留まりが改善するなどの利点を有する。
 以上説明したように、第5の実施の形態に係る発光チップCは、第4の実施の形態に係る発光チップCと同様に図29の等価回路図で示す回路構成を有している。よって、図31に示したタイミングチャートにしたがって動作する。
 つまり、レーザダイオードLDと設定サイリスタSとは、積層されることで直列接続されてもよく、接続配線で直列接続されてもよい。
 なお、発光素子は、レーザダイオードLDの代わりに、前述した変形例や他の実施の形態で説明した発光ダイオードLEDや垂直共振器面発光レーザVCSELであってもよい。
[第6の実施の形態]
 第1の実施の形態から第5の実施の形態に係る発光チップCは、転送サイリスタTのオン状態を順に転送(伝播)させて駆動された。
 第6の実施の形態に係る発光チップCは、転送サイリスタTを備えない。他の構成は、第1の実施の形態と同様であるので、以下では発光チップCを説明する。
 図33は、第6の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップCの回路構成を説明する等価回路図である。図5に示した第1の実施の形態に係る発光チップCと同様に、信号発生回路110との関係において発光チップC1を例に、発光チップCを説明する。そこで、図33において、発光チップCを発光チップC1(C)と表記する。他の発光チップC2~C40の構成は、発光チップC1と同じである。
 図5に示した第1の実施の形態に係る発光チップCと比較すると、第6の実施の形態に係る発光チップCは、下部ダイオードUDがレーザダイオードLDを置き換え、転送サイリスタTが設定サイリスタSに置き換えられている。つまり、設定サイリスタSに転送サイリスタTの機能を持たせている。
 この場合、第1転送信号φ1、第2転送信号φ2により転送サイリスタTとして機能する設定サイリスタSがオン状態になると、レーザダイオードLDが点灯(発光)する。なお、設定サイリスタSに供給される第1転送信号φ1、第2転送信号φ2に点灯信号φIを重畳させることで、レーザダイオードLDの発光量を制御してもよい。
 このようにすることで、発光チップCに用いる素子数が少なくなり、発光チップCのサイズが小さくなる。
 この発光チップCは、図6の(a)に示した第1の実施の形態に係る発光チップCの平面レイアウト図において、アイランド301を備えない。よって、この発光チップCでも、レーザダイオードLDと設定サイリスタSとがトンネル接合層84を介して直列接続されている。そして、レーザダイオードLDのアノード(クラッド)層81が基板80を介して基準電位Vsub(「H」(0V))に接続され、設定サイリスタSのnカソード層88が第1転送信号線72又は第2転送信号線73に接続されている。つまり、基準電位Vsub側にレーザダイオードLDが設けられ、第1転送信号φ1又は第2転送信号φ2が供給される側(第1転送信号線72又は第2転送信号線73が接続される側)に設定サイリスタSが設けられている。
 もし、基準電位Vsub側に設定サイリスタSが設けられ、信号が供給される側にレーザダイオードLDが設けられると、第1の実施の形態において説明した下部ダイオードUDの転送サイリスタTの動作への影響と同様に、設定サイリスタSによるオン状態の転送(伝播)が行えないという動作不良(誤動作)が生じることになる。
 すなわち、基準電位Vsubが供給される側にレーザダイオードLDを設け、第1転送信号φ1又は第2転送信号φ2が供給される側(第1転送信号線72又は第2転送信号線73が接続される側)に、設定サイリスタSを設けることにより、設定サイリスタSによるオン状態の転送(伝播)が行えないという動作不良(誤動作)の発生が抑制される。
 なお、発光素子は、レーザダイオードLDの代わりに、前述した変形例や他の実施の形態で説明した発光ダイオードLEDや垂直共振器面発光レーザVCSELであってもよい。
 第1の実施の形態から第6の実施の形態に係る発光チップCでは、発光素子として、レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSELを説明したが、例えば、レーザトランジスタなど、他の発光素子を用いてもよい。また、トランジスタも、ベースにオン、オフ信号を入力する、又は、コレクタ、エミッタにベースを短絡させることで、ダイオードと同じく整流特性を有する発光素子に含まれる。
 第1の実施の形態から第6の実施の形態における自己走査型発光素子アレイ(SLED)は、発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSEL)を備える発光部102と、設定サイリスタS、下部ダイオードUD、転送サイリスタTなどを備える駆動部101とで構成されていたが、駆動部101において、設定サイリスタSと転送サイリスタTとの間などに制御用のサイリスタなどを備えてもよい。さらに、ダイオード、抵抗などの他の部材を含んでもよい。
 また、転送サイリスタTの間を結合ダイオードDで接続したが、抵抗など電位の変化を伝達できる部材で接続してもよい。
 第1の実施の形態から第6の実施の形態に係る発光チップCにおいて、発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSEL)、設定サイリスタS、下部ダイオードUD(第5の実施の形態における下部ダイオードUD′を含む。)、転送サイリスタTの導電型を逆にするとともに、回路の極性を変更してもよい。すなわち、アノードコモンをカソードコモンとし、カソードコモンをアノードコモンにしてもよい。
 なお、発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSEL)のターンオン時の発光遅延や緩和振動を抑制するため、予め発光素子に閾値電流以上の微小な電流を注入して僅かに発光状態又は発振状態としておいてもよい。すなわち、設定サイリスタSがターンオンする前から発光素子を僅かに発光させておき、設定サイリスタSがターンオンした時に、発光素子の発光量を増加させて、予め定められた光量にするように構成してもよい。このような構成としては、例えば、発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSEL)のアノード層に電極を形成し、この電極に電圧源又は電流源を接続しておき、設定サイリスタSがターンオンする前から、この電圧源または電流源から発光素子に微弱な電流を注入するようにすればよい。
 また、各実施の形態における、転送サイリスタTおよび設定サイリスタSの構造としては、各実施の形態における転送サイリスタTおよび設定サイリスタSの機能を有する構造であればpnpnの4層構造以外であってもよい。例えば、サイリスタ特性を有するpinin構造、pipin構造、npip構造、またはpnin構造などであってもよい。この場合、pinin構造のpとnに挟まれた、i層、n層、i層、pnin構造のpとnとに挟まれた、n層、i層のいずれかがゲート層となり、ゲート層上に設けられたnオーミック電極をゲートGt(ゲートGs)の端子とすればよい。もしくは、npip構造のnとpに挟まれた、i層、p層、i層、npip構造のnとpとに挟まれた、p層、i層のいずれかがゲート層となり、ゲート層上に設けられたpオーミック電極332をゲートGt(ゲートGs)の端子とすればよい。
 さらに、各実施の形態における、サイリスタを構成する複数の半導体層と発光素子を構成する複数の半導体層とが、トンネル接合を構成する半導体層を介して積層されている半導体構造は、自己走査型発光素子アレイ(SLED)以外の用途にも使用できる。例えば、1個の発光素子(レーザダイオードLD、発光ダイオードLED、垂直共振器面発光レーザVCSELなど)とそれに積層された設定サイリスタSとで構成され、外部からの電気信号や光信号などの入力によって点灯する単体の発光部品として使用できる。この場合、発光素子が発光部102、設定サイリスタSが駆動部101を構成する。
 以上においては、主にp型のGaAsを基板80の例として説明した。他の基板を用いた場合における各半導体層(図10(a)の積層半導体層形成工程で形成する積層半導体層)の例を説明する。
 まず、GaN基板を用いた場合における積層半導体層の一例は以下の通りである。
 pアノード層81は、例えば、例えば不純物濃度1×1018/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 GaN基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、トンネル接合層を電流狭窄に用いた構成(図19、図28)や金属的導電性III-V族化合物層を電流狭窄に用いた構成が望ましい構造である。又は、イオン注入を電流狭窄方法として使用することも有効である。
 発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばGaN、InGaN、AlGaNなどであり、障壁層は、AlGaN、GaNなどである。なお、発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
 nカソード層83は、例えば不純物濃度1×1018/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 トンネル接合層84は、n型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとの接合(図10(b)参照。)で構成されている。n++層84a及びp++層84bは、例えば不純物濃度1×1020/cmと高濃度である。なお、通常の接合の不純物濃度は、1017/cm台~1018/cm台である。n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++GaN/p++GaN、n++GaInN/p++GaInN、n++AlGaN/p++AlGaNである。なお、組み合わせを相互に変更したものでもよい。
 pアノード層85は、例えば不純物濃度1×1018/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 nゲート層86は、例えば不純物濃度1×1017/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 pゲート層87は、例えば不純物濃度1×1017/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 nカソード層88は、例えば不純物濃度1×1018/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
 次に、InP基板を用いた場合における積層半導体層の一例は以下の通りである。
 pアノード層81は、例えば不純物濃度1×1018/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 InP基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、トンネル接合層を電流狭窄に用いた構成(図19、図28)や金属的導電性III-V族化合物層を電流狭窄に用いた構成が望ましい構造である。又は、イオン注入を電流狭窄方法として使用することも有効である。
 発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばInAs、InGaAsP、AlGaInAs、GaInAsPSbなどであり、障壁層は、InP、InAsP、InGaAsP、AlGaInAsPなどである。なお発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
 nカソード層83は、例えば不純物濃度1×1018/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 トンネル接合層84は、n型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとの接合(図10(b)参照。)で構成されている。n++層84a及びp++層84bは、例えば不純物濃度1×1020/cmと高濃度である。なお、通常の接合の不純物濃度は、1017/cm台~1018/cm台である。n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++InP/p++InP、n++InAsP/p++InAsP、n++InGaAsP/p++InGaAsP、n++InGaAsPSb/p++InGaAsPSbである。なお、組み合わせを相互に変更したものでもよい。
 pアノード層85は、例えば不純物濃度1×1018/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 nゲート層86は、例えば不純物濃度1×1017/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 pゲート層87は、例えば不純物濃度1×1017/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 nカソード層88は、例えば不純物濃度1×1018/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
 これらの半導体層は、例えば有機金属気相成長法(MOCVD)、分子線エピタキシー法(MBE)などによって積層され、積層半導体層が形成される。
 また、以上説明した実施の形態を、有機材料からなるp型・n型・i型層に適用することも可能である。
 さらに、それぞれの実施の形態を、他の実施の形態と組み合わせて用いてもよい。
 上記の各実施の形態では、発光装置65を画像形成装置1に適用する場合について説明したが、物体の二次元形状や三次元形状の認識、または距離計測等を行う場合の光源として使用してもよい。すなわち、発光装置65を、被照射物に対して光を二次元状に照射する光照射装置に適用してもよい。一例として、発光装置65における複数の発光素子の並び方向と交差する方向に発光装置65を複数並べることで、光を二次元状に照射する光照射装置を構成してもよい。また、別の構成として、発光装置65から列状に出射された光を、この列と交差する方向に走査する走査部を設けてもよい。すなわち、点灯制御信号に基づいて主走査方向に順次出射される光を、この列と交差する副走査方向に走査することで二次元状に光を照射する光照射装置を構成してもよい。なお、走査部の一例として、ポリゴンミラーやMEMSミラー等がある。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年11月22日出願の日本特許出願である特願2017-225144に基づくものであり、それらの内容はここに参照として取り込まれる。
1…画像形成装置、10…画像形成プロセス部、11…画像形成ユニット、12…感光体ドラム、14…プリントヘッド、30…画像出力制御部、40…画像処理部、51、52、74、76、77、78、79…接続配線、62…回路基板、63…光源部、64…ロッドレンズアレイ、65…発光装置、71…電源線、72…第1転送信号線、73…第2転送信号線、75…点灯信号線、80…基板、81…pアノード層、pアノード(クラッド)層、pアノード(DBR)層、81b、85b…電流狭窄層、82…発光層、83…nカソード層、nカソード(クラッド)層、nカソード(DBR)層、84…トンネル接合層、84a…n++層、84b…p++層、85…pアノード層、86…nゲート層、87…pゲート層、88…nカソード層、89…電圧低減層、90…保護層、91…裏面電極、100…転写基板、101…駆動部、102…発光部、110…信号発生回路、120…転送信号発生部、140…点灯信号発生部、160…基準電位供給部、170…電源電位供給部、301~306…アイランド、φ1…第1転送信号、φ2…第2転送信号、φI(φI1~φI40)…点灯信号、α…電流通過部(領域)、β…電流阻止部(領域)、C(C1~C40)…発光チップ、D(D1~D127)…結合ダイオード、LED(LED1~LED128)…発光ダイオード、LD(LD1~LD128)…レーザダイオード、SD…スタートダイオード、T(T1~T128)…転送サイリスタ、VCSEL(VCSEL1~VCSEL128)…垂直共振器面発光レーザ、Vga…電源電位、Vsub…基準電位

Claims (12)

  1.  基板と、
     前記基板上に設けられ、一方の端子が予め定められた基準電位に接続された整流特性を有する複数の発光素子と、
     前記発光素子の他方の端子とそれぞれが直列接続され、オン状態となることで接続された当該発光素子を発光、又は、当該発光素子の発光量を増加させる複数のサイリスタとを備える発光部品。
  2.  複数の前記サイリスタは、順にオン状態が転送されることで、複数の前記発光素子を順にオン状態とする請求項1に記載の発光部品。
  3.  複数の前記サイリスタのそれぞれに接続され、順に転送されるオン状態となることで、接続されたサイリスタをオン状態に移行可能な状態にさせる複数の転送サイリスタを備えることを特徴とする請求項1に記載の発光部品。
  4.  前記発光素子と前記サイリスタとの直列接続に印加される電圧により、当該サイリスタをオン状態に移行させることで、当該発光素子を発光、又は、発光量を増加させることを特徴とする請求項1乃至3のいずれか1項に記載の発光部品。
  5.  前記発光素子と前記サイリスタとは、トンネル接合層又は金属的な導電性を有するIII-V族化合物層を介して直列接続されていることを特徴とする請求項1に記載の発光部品。
  6.  前記サイリスタは、複数の半導体層が積層された積層半導体層で構成され、当該積層半導体層は、当該サイリスタの立ち上がり電圧を低減する電圧低減層を備えることを特徴とする請求項1に記載の発光部品。
  7.  前記発光素子は、複数の半導体層が積層された他の積層半導体層で構成され、前記電圧低減層は、当該他の積層半導体層を構成するいずれの半導体層よりもバンドギャップエネルギが小さいことを特徴とする請求項6に記載の発光部品。
  8.  前記電圧低減層は、前記発光素子の発光層を構成する半導体層よりバンドギャップエネルギが小さいことを特徴とする請求項6に記載の発光部品。
  9.  前記発光素子は、電流経路が狭窄されていることを特徴とする請求項1乃至3のいずれか1項に記載の発光部品。
  10.  請求項1に記載の発光部品を含む発光部と、
     前記発光部から出射される光を結像させる光学部と
    を備えるプリントヘッド。
  11.  像保持体と、
     前記像保持体を帯電する帯電部と、
     請求項1に記載の発光部品を含み、光学部を介して前記像保持体を露光する露光部と、
     前記露光部により露光され前記像保持体に形成された静電潜像を現像する現像部と、
     前記像保持体に現像された画像を被転写体に転写する転写部と
    を備える画像形成装置。
  12.  請求項1に記載の発光部品を有し、
     前記発光部品から出射される光を二次元状に被照射物に照射する光照射装置。
PCT/JP2018/027772 2017-11-22 2018-07-24 発光部品、プリントヘッド、画像形成装置及び光照射装置 WO2019102648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880059520.6A CN111095701B (zh) 2017-11-22 2018-07-24 发光部件、打印头、图像形成装置以及光照射装置
US16/746,577 US10809642B2 (en) 2017-11-22 2020-01-17 Light emitting component, print head, image forming apparatus, and light irradiating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-225144 2017-11-22
JP2017225144A JP7073685B2 (ja) 2017-11-22 2017-11-22 発光部品、プリントヘッド及び画像形成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/746,577 Continuation US10809642B2 (en) 2017-11-22 2020-01-17 Light emitting component, print head, image forming apparatus, and light irradiating device

Publications (1)

Publication Number Publication Date
WO2019102648A1 true WO2019102648A1 (ja) 2019-05-31

Family

ID=66631927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027772 WO2019102648A1 (ja) 2017-11-22 2018-07-24 発光部品、プリントヘッド、画像形成装置及び光照射装置

Country Status (4)

Country Link
US (1) US10809642B2 (ja)
JP (1) JP7073685B2 (ja)
CN (1) CN111095701B (ja)
WO (1) WO2019102648A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336270B (zh) * 2020-09-30 2023-11-24 苏州华太电子技术股份有限公司 硅基半导体激光器及其制作方法
US20230054324A1 (en) * 2021-08-23 2023-02-23 Palo Alto Research Center Incorporated System for electronically controlling and driving independently addressable semiconductor lasers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246903A (ja) * 2007-03-30 2008-10-16 Fuji Xerox Co Ltd 画像形成装置、露光装置、光学装置および光学装置の製造方法
US20130240832A1 (en) * 2010-04-09 2013-09-19 Stc.Unm Integration of led driver circuit with led
JP2017183436A (ja) * 2016-03-29 2017-10-05 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814841A (en) 1988-03-18 1998-09-29 Nippon Sheet Glass Co., Ltd. Self-scanning light-emitting array
DE68929071T2 (de) 1988-03-18 2000-02-03 Nippon Sheet Glass Co Ltd Selbstabtastende Anordnung von lichtemittierenden Bauelementen
JP2577034B2 (ja) 1988-03-18 1997-01-29 日本板硝子株式会社 自己走査形発光素子アレイおよびその駆動方法
JP3332731B2 (ja) * 1996-07-04 2002-10-07 キヤノン株式会社 発光素子アレー検査装置
JP4649701B2 (ja) * 2000-04-24 2011-03-16 富士ゼロックス株式会社 自己走査型発光装置
JP4164997B2 (ja) * 2000-09-05 2008-10-15 富士ゼロックス株式会社 自己走査型発光素子アレイの駆動方法および駆動回路
JP4165436B2 (ja) * 2004-04-14 2008-10-15 富士ゼロックス株式会社 自己走査型発光素子アレイの駆動方法、光書き込みヘッド
CN2701634Y (zh) * 2004-05-20 2005-05-25 张芙生 高速激光打标机
JP2006213036A (ja) * 2005-02-07 2006-08-17 Fuji Photo Film Co Ltd プリンタ
JP4428351B2 (ja) * 2006-03-07 2010-03-10 セイコーエプソン株式会社 発光装置、電子機器、及び駆動方法
JP2009286048A (ja) 2008-05-30 2009-12-10 Fuji Xerox Co Ltd 光源ヘッド、及び画像形成装置
JP5636655B2 (ja) * 2009-09-16 2014-12-10 富士ゼロックス株式会社 発光チップ、プリントヘッドおよび画像形成装置
JP2012020498A (ja) * 2010-07-15 2012-02-02 Fuji Xerox Co Ltd 発光装置、プリントヘッドおよび画像形成装置
JP5724520B2 (ja) * 2011-03-28 2015-05-27 富士ゼロックス株式会社 発光チップ、プリントヘッドおよび画像形成装置
JP5821279B2 (ja) * 2011-05-24 2015-11-24 日亜化学工業株式会社 発光ダイオード駆動装置
JP2016181544A (ja) * 2015-03-23 2016-10-13 ファナック株式会社 定電流制御電源およびレーザ発振器
JP6728604B2 (ja) * 2015-09-11 2020-07-22 富士ゼロックス株式会社 発光部品、プリントヘッドおよび画像形成装置
JP6728831B2 (ja) * 2016-03-22 2020-07-22 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置
JP2017174906A (ja) * 2016-03-22 2017-09-28 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置
CN107069427B (zh) * 2017-01-24 2020-02-28 中国科学院半导体研究所 宽光谱晶闸管激光器的制备方法
JP7021529B2 (ja) * 2017-12-20 2022-02-17 富士フイルムビジネスイノベーション株式会社 発光部品、プリントヘッド及び画像形成装置
JP7087690B2 (ja) * 2018-06-04 2022-06-21 富士フイルムビジネスイノベーション株式会社 発光装置、光計測装置及び画像形成装置
JP7293589B2 (ja) * 2018-08-29 2023-06-20 富士フイルムビジネスイノベーション株式会社 発光装置、光計測装置、画像形成装置及び発光デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246903A (ja) * 2007-03-30 2008-10-16 Fuji Xerox Co Ltd 画像形成装置、露光装置、光学装置および光学装置の製造方法
US20130240832A1 (en) * 2010-04-09 2013-09-19 Stc.Unm Integration of led driver circuit with led
JP2017183436A (ja) * 2016-03-29 2017-10-05 富士ゼロックス株式会社 発光部品、プリントヘッド及び画像形成装置

Also Published As

Publication number Publication date
JP2019096743A (ja) 2019-06-20
US10809642B2 (en) 2020-10-20
US20200225602A1 (en) 2020-07-16
JP7073685B2 (ja) 2022-05-24
CN111095701B (zh) 2021-10-26
CN111095701A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN108428707B (zh) 发光部件、发光装置和图像形成装置
CN108780827B (zh) 发光部件、打印头、图像形成设备和半导体层层叠基板
JP6210120B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP2017174906A (ja) 発光部品、プリントヘッド及び画像形成装置
JP6369613B1 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6332535B2 (ja) 積層構造体、発光部品、プリントヘッド及び画像形成装置
CN113451348A (zh) 发光零件
JP7021485B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP7039905B2 (ja) 発光部品の製造方法
JP6222388B1 (ja) 発光部品、プリントヘッド及び画像形成装置
US10809642B2 (en) Light emitting component, print head, image forming apparatus, and light irradiating device
JP7021529B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6728831B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6332543B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6501019B2 (ja) 発光部品及び半導体積層基板
JP7059584B2 (ja) 発光部品、プリントヘッド、画像形成装置及び発光部品の製造方法
JP7021484B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP7059547B2 (ja) 積層構造体、発光部品、プリントヘッド及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880504

Country of ref document: EP

Kind code of ref document: A1