WO2019097687A1 - 半導体装置および半導体装置の製造方法 - Google Patents
半導体装置および半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2019097687A1 WO2019097687A1 PCT/JP2017/041528 JP2017041528W WO2019097687A1 WO 2019097687 A1 WO2019097687 A1 WO 2019097687A1 JP 2017041528 W JP2017041528 W JP 2017041528W WO 2019097687 A1 WO2019097687 A1 WO 2019097687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact layer
- layer
- contact
- semiconductor device
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title description 12
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000005253 cladding Methods 0.000 claims description 55
- 238000007772 electroless plating Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000005699 Stark effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0155—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
- G02F1/0157—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
Definitions
- the present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
- Patent Document 1 discloses a semiconductor laser device including an active layer provided on a semiconductor substrate, a cladding layer provided on the active layer, and a ridge having a contact layer provided on the cladding layer. There is.
- the side surface of the cladding layer is covered with the insulating film.
- an electrode is connected to the contact layer.
- the insulating film has an end portion in the thickness direction of the ridge located between the upper surface and the lower surface of the contact layer. With such a configuration, the side surface of the cladding layer can be completely covered by the insulating film.
- an electrode can be connected to the entire top surface of the contact layer. Therefore, it is possible to provide a semiconductor laser device in which the reduction of the contact resistance and the thermal resistance and the high reliability are compatible.
- an optical semiconductor element there are, for example, a semiconductor light emitting element such as a semiconductor laser, a semiconductor light receiving element such as a photodiode, or a semiconductor light modulator combining light emission and light reception.
- a semiconductor light emitting element such as a semiconductor laser
- a semiconductor light receiving element such as a photodiode
- a semiconductor light modulator combining light emission and light reception.
- these optical semiconductor devices are used as light sources for optical communication or light sources for information devices. For this reason, speeding up of the optical communication of an optical semiconductor element may be calculated
- a contact layer having an inverted mesa shape is formed by wet etching.
- the production capacity of the epitaxial device for epitaxially growing the contact layer may be reduced to 1/2.
- stress concentration occurs at the root portion of the contact layer as the contact layer thickness increases. Therefore, there is a concern about the decrease in reliability.
- reduction of contact resistance may become difficult with speeding-up.
- the present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a semiconductor device and a method of manufacturing the semiconductor device in which the reduction of contact resistance and thermal resistance and high reliability are compatible.
- a semiconductor device comprises a substrate, an active layer provided on the substrate, a cladding layer provided on the active layer, and an upper surface provided on the cladding layer.
- a contact layer having a back surface opposite to the top surface, and a side surface connecting the top surface and the back surface, the contact layer being wider than the cladding layer, the top surface of the contact layer, and the contact layer And an electrode contacting the upper end and the lower end of the side surface.
- a process of forming an active layer on a substrate a process of forming a cladding layer on the active layer, an upper surface, and an upper surface on the cladding layer
- the electrode covers the upper surface of the contact layer and the upper end to the lower end of the side surface. Therefore, the contact area between the electrode and the contact layer can be expanded as compared with the case where the electrode is provided on the upper surface of the contact layer. Therefore, the contact resistance and the thermal resistance can be reduced. In addition, since the contact area between the electrode and the contact layer can be expanded without lengthening the portion of the ridge that protrudes from the upper surface, the destabilization of the structure of the semiconductor device can be prevented. Therefore, reduction in contact resistance and thermal resistance can be compatible with high reliability.
- the electrode is provided by electroless plating so as to be in contact with the upper surface, the side surface and the back surface of the contact layer. Therefore, the contact area between the electrode and the contact layer can be expanded as compared with the case where the electrode is provided on the upper surface of the contact layer. Therefore, the contact resistance and the thermal resistance can be reduced. In addition, since the contact area between the electrode and the contact layer can be expanded without lengthening the portion of the ridge that protrudes from the upper surface, the destabilization of the structure of the semiconductor device can be prevented. Therefore, reduction in contact resistance and thermal resistance can be compatible with high reliability.
- FIG. 1 is a cross-sectional view of a semiconductor device in accordance with a first embodiment.
- FIG. 7 is a cross-sectional view illustrating the method of manufacturing the semiconductor device according to the first embodiment. It is sectional drawing which shows the state which exposed the upper surface of the cladding layer. It is sectional drawing which shows the state in which the contact layer was formed.
- FIG. 7 is a cross-sectional view of the semiconductor device in accordance with the second embodiment. It is sectional drawing of the semiconductor device which concerns on a 1st comparative example. It is sectional drawing of the semiconductor device which concerns on a 2nd comparative example.
- a semiconductor device according to an embodiment of the present invention and a method of manufacturing the semiconductor device will be described with reference to the drawings.
- the same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted.
- FIG. 1 is a cross-sectional view of the semiconductor device 100 according to the first embodiment.
- the semiconductor device 100 is an optical semiconductor device.
- the semiconductor device 100 is, for example, a modulator unit of a semiconductor light modulator.
- the semiconductor device 100 includes a substrate 10.
- the substrate 10 is formed of, for example, n-InP.
- the active layer 12 is provided on the substrate 10.
- the active layer 12 is formed of, for example, i-InGaAsP.
- the active layer 12 absorbs the light emitted from the laser unit.
- the active layer 12 absorbs the light emitted from the laser unit by the Stark effect when a voltage is applied.
- the semiconductor device 100 is a modulator unit of a direct modulation method. The semiconductor device 100 adjusts the strength of the optical signal in the optical communication system.
- a cladding layer 14 is provided on the active layer 12.
- the cladding layer 14 is formed of, for example, p-InP.
- the cladding layer 14 is narrower than the substrate 10 and the active layer 12.
- the semiconductor device 100 has a ridge 15.
- the ridge 15 is composed of the cladding layer 14.
- the portion of the active layer 12 provided with the ridge 15 is the light emitting region of the semiconductor device 100.
- the ridge 15 defines a light emitting area.
- the ridges 15 are provided in the form of stripes along the optical axis direction which is the light propagation direction.
- the width of the ridge 15 is, for example, 2 ⁇ m.
- the side surfaces of the cladding layer 14 are covered with the insulating film 16.
- the insulating film 16 is formed of, for example, SiO 2 .
- the upper end of the insulating film 16 is provided at the same height as the upper surface 18 of the cladding layer 14.
- the insulating film 16 covers a portion of the top surface of the active layer 12 where the cladding layer 14 is not provided.
- a contact layer 20 is provided on the cladding layer 14.
- the contact layer 20 is formed of, for example, p-InGaAs.
- the contact layer 20 is a Zn-doped p-type layer.
- the contact layer 20 has an upper surface 24, a back surface 22 opposite to the upper surface 24, and a side surface 26 connecting the upper surface 24 and the back surface 22.
- the side surface 26 extends along the optical axis.
- the contact layer 20 is wider than the cladding layer 14.
- the contact layer 20 has an overhang 20 a protruding from the upper surface 18 of the cladding layer 14.
- the overhanging portion 20 a overhangs in the direction orthogonal to the optical axis. Further, the overhanging portion 20 a overhangs in a direction parallel to the upper surface of the substrate 10.
- the contact layer 20 has a rectangular cross section.
- the width of the back surface 22 of the contact layer 20 is wider than the width of the top surface 18 of the cladding layer 14.
- the back surface 22 of the contact layer 20 is flat and parallel to the top surface of the substrate 10.
- the thickness of the contact layer 20 is, for example, 1 ⁇ m.
- An electrode 28 is connected to the contact layer 20.
- the electrode 28 is formed of, for example, Ti and Au. In the electrode 28, Ti and Au are laminated.
- the electrode 28 contacts the top surface 24 of the contact layer 20. Furthermore, the electrode 28 contacts the upper end to the lower end of the side surface 26 of the contact layer 20.
- the electrode 28 is in contact with the entire surface of the upper surface 24 of the contact layer 20 and the entire surface of the side surface 26 of the contact layer 20.
- FIG. 2 is a cross-sectional view for explaining the method of manufacturing the semiconductor device 100 according to the first embodiment.
- the active layer 12 is formed on the substrate 10.
- the active layer 12 is grown on the top surface of the substrate 10 using the MOCVD (Metal Organic Chemical Vapor Deposition) method.
- the cladding layer 14 is formed on the active layer 12.
- the cladding layer 14 is grown on the upper surface of the active layer 12 using the MOCVD method.
- the ridge 15 is obtained by growing a cladding layer 14 and then removing a part of the cladding layer 14 using a dry etching method. Dry etching is performed using a mixed gas of SiCl 4 and Ar.
- the insulating film 16 is formed.
- the insulating film 16 is formed using plasma CVD (Chemical Vapor Deposition).
- the insulating film 16 is formed to cover the upper surface 18 and the side surfaces of the cladding layer 14 and the upper surface of the active layer 12.
- FIG. 3 is a cross-sectional view showing the upper surface 18 of the cladding layer 14 exposed.
- a resist is formed on the insulating film 16.
- an opening is formed in a portion of the resist provided on the cladding layer 14.
- dry etching is performed using the resist as a mask. Dry etching is performed using SF6 gas.
- the portion of the insulating film 16 provided on the upper surface 18 of the cladding layer 14 is selectively removed. From the above, the opening 16 a is formed in the insulating film 16.
- FIG. 4 is a cross-sectional view showing a state in which the contact layer 20 is formed.
- the contact layer 20 is selectively grown on the upper surface 18 of the cladding layer 14 exposed by the opening 16 a using the MOCVD method.
- the insulating film 16 is used as a mask.
- the growth time is adjusted so that the overhang 20a is formed.
- the overhanging portion 20a is formed by prolonging the growth time.
- ELO Epiaxial Lateral Overgrowth
- the contact layer 20 may be formed on the mask.
- the electrode 28 is formed.
- the electrode 28 is formed by a deposition lift-off method.
- the electrode 28 is formed to cover the upper surface 24 of the contact layer 20 and the upper end to the lower end of the side surface 26.
- the electrode 28 is heated and thermally reacted with the contact layer 20.
- the electrode 28 is heated to, for example, 400.degree. As a result, an ohmic junction is formed between the electrode 28 and the contact layer 20.
- the semiconductor device 100 is formed.
- the electrode 28 covers the upper surface 24 of the contact layer 20 and the upper end to the lower end of the side surface 26. Therefore, the contact area between the electrode 28 and the contact layer 20 can be expanded as compared with the case where the electrode 28 is provided only on the upper surface 24 of the contact layer 20. Therefore, the contact resistance which is the resistance between the contact layer 20 and the electrode 28 can be reduced. Therefore, the impedance of the semiconductor device 100 can be reduced. Also, the thermal resistance between the contact layer 20 and the electrode 28 can be reduced.
- the contact resistance is reduced while avoiding the unstable structure which impairs the reliability, and furthermore, the semiconductor device 100 can respond at high speed. Therefore, the speed of the optical communication system in which the semiconductor device 100 is mounted can be stably increased.
- the contact resistivity can be lowered by increasing the carrier concentration of the contact layer.
- the reduction of the contact resistivity is limited only by the increase of the carrier concentration. Therefore, it is conceivable to increase the contact area between the electrode and the contact layer to reduce the contact resistance. As a means for this purpose, the area of the top surface of the contact layer may be increased.
- FIG. 6 is a cross-sectional view of a semiconductor device 300 according to a first comparative example.
- a ridge type laser generally used in optical communication will be considered.
- FIG. 7 is a cross-sectional view of a semiconductor device 400 according to a second comparative example.
- the reverse mesa-shaped contact layer 20 is formed by wet etching.
- the electrode 28 is provided only on the upper surface 24 of the contact layer 20.
- the width of the ridge 15 is 2 ⁇ m
- the thickness of the contact layer 20 is 1 ⁇ m.
- the semiconductor device 400 the width of the contact layer 20 in contact with the electrode 28 is 4 ⁇ m.
- overhang portions 20 a which are projected from the ridge 15 are provided on both sides of the contact layer 20.
- the length of the overhang 20a in a direction perpendicular to the optical axis and parallel to the upper surface of the substrate 10 is 1 ⁇ m.
- the contact area between the contact layer 20 and the electrode 28 is doubled as compared with the first comparative example in which the electrode is provided only on the upper surface 24 of the contact layer 20 and the overhang portion 20a is not provided. You can Therefore, the contact resistance can be halved compared to the case where the overhang portion 20a is not provided.
- the side surface 26 of the contact layer 20 also contacts the electrode 28. Therefore, when the width of the ridge 15 is 2 ⁇ m, the thickness of the contact layer 20 is 1 ⁇ m, and the width of the contact layer 20 is 4 ⁇ m, the contact width between the contact layer 20 and the electrode 28 is 6 ⁇ m. Therefore, the contact resistance can be reduced to 1/3 as compared with the first comparative example.
- the length of the overhang portion 20a needs to be 2 ⁇ m. At this time, the structure may be destabilized. Further, in the case where the overhanging portion 20a is formed by wet etching or the like, in order to lengthen the overhanging portion 20a, it may be necessary to form the contact layer 20 thick. For this reason, the production capacity of the epitaxial device may be reduced.
- the width of the ridge 15 is narrowed to 1 ⁇ m.
- the width of the contact layer 20 is 3 ⁇ m. Therefore, the contact width between the contact layer 20 and the electrode 28 is 5 ⁇ m. Therefore, compared to the first comparative example, it is possible to obtain a half effect of parasitic capacitance by making the width of the ridge 15 half while making the contact resistance 2/5. Also, even when compared to the second comparative example, the half effect of parasitic capacitance can be obtained while the contact resistance is 4/5. This effect can be obtained without lengthening the overhang 20a. Therefore, the performance and the reliability of the semiconductor device 100 can be simultaneously improved as compared with the first and second comparative examples.
- the contact layer 20 is formed by MOCVD or ELO. According to this manufacturing method, the contact layer 20 having a flat back surface 22 can be obtained. That is, a rectangular contact layer 20 is obtained in which the width of the back surface 22 is wider than the width of the upper surface 18 of the cladding layer 14.
- the overhang portion 20 a can be formed long without thickening the contact layer 20. Therefore, it is possible to prevent stress concentration on the root portion of the contact layer 20 due to the thickness of the contact layer 20 being thick. Therefore, the reliability of the semiconductor device 100 can be improved. Furthermore, since the contact layer 20 is formed thick, the decrease in the production capacity of the manufacturing apparatus can be prevented.
- the upper end of the insulating film 16 is provided at the same height as the upper surface 18 of the cladding layer 14. At this time, the entire side surface of the cladding layer 14 is covered with the insulating film 16. Therefore, the semiconductor layer can be protected from the diffusion of the material of the electrode 28 and the like. Therefore, the reliability of the semiconductor device 100 can be improved.
- the semiconductor device 100 is a modulator unit.
- the semiconductor device 100 may be a semiconductor laser or a photodiode.
- the ridge 15 is composed of the cladding layer 14.
- the ridge 15 may include the active layer 12.
- the contact layer 20 has a rectangular cross section. Not limited to this, the contact layer 20 may be wider than the cladding layer 14. As the cross-sectional shape of the contact layer 20, any polygon can be adopted. In addition, the upper surface 24, the back surface 22, and the side surface 26 of the contact layer 20 may include a curved surface.
- the electrode 28 is in contact with the entire surface of the upper surface 24 of the contact layer 20 and the entire surface of the side surface 26 of the contact layer 20. Not limited to this, the electrode 28 may be in contact with the upper surface 24 of the contact layer 20 and from the upper end to the lower end of the side surface 26, and a part of the contact layer 20 may be exposed from the electrode 28.
- FIG. 5 is a cross-sectional view of the semiconductor device 200 according to the second embodiment.
- the semiconductor device 200 is different from that of the first embodiment in the structure of the electrode 228.
- the other structure is the same as that of the first embodiment.
- the electrode 228 is formed of, for example, Cr and Au. In the electrode 28, Cr and Au are laminated.
- the electrode 228 is in contact with the back surface 22 of the contact layer 20.
- the electrode 228 is in contact with the entire surface of the portion of the back surface 22 of the contact layer 20 exposed from the insulating film 16 and the cladding layer 14.
- an electrode 228 is formed. Of the electrodes 228, Cr is formed by electroless plating. The electrode 228 is formed to be in contact with the top surface 24, the side surface 26 and the back surface 22 of the contact layer 20.
- the lower portion of the overhang portion 20a also contacts the electrode 228. Therefore, the contact area can be made larger than that of the first embodiment.
- the width of the ridge 15 is 2 ⁇ m
- the thickness of the contact layer 20 is 1 ⁇ m
- the width of the contact layer 20 is 4 ⁇ m
- the thickness of the portion of the insulating film 16 covering the side surface of the cladding layer 14 is 0.5 ⁇ m.
- the length of the overhang in the direction perpendicular to the optical axis and parallel to the upper surface of the substrate 10 is 1 ⁇ m.
- the length of the overhang portion 20 a is the length of the portion of the contact layer 20 that protrudes with respect to the cladding layer 14.
- the contact width between the contact layer 20 and the electrode 228 is 7 ⁇ m. Therefore, the contact resistance can be reduced to 2/7 as compared with the case where the electrode is provided only on the upper surface of the contact layer and the overhang portion is not provided.
- the back surface 22 of the contact layer 20 can be reliably covered with the electrode 228 as compared to vapor deposition lift-off or sputtering.
- the electrode 228 is in contact with the entire surface of the portion of the back surface 22 of the contact layer 20 exposed from the insulating film 16 and the cladding layer 14.
- the electrode 228 is not limited to this, and may be in contact with a part of the back surface 22 of the contact layer 20 exposed from the insulating film 16 and the cladding layer 14.
- the technical features described in each embodiment may be combined as appropriate.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
本願の発明に係る半導体装置の製造方法では、無電界メッキにより、コンタクト層の上面、側面および裏面と接触するように電極が設けられる。このため、電極がコンタクト層の上面に設けられる場合と比較して、電極とコンタクト層との接触面積を拡大できる。従って、コンタクト抵抗及び熱抵抗を低減できる。また、リッジの上面から張り出した部分を長くしなくても電極とコンタクト層との接触面積を拡大できるため、半導体装置の構造の不安定化を防止できる。従って、コンタクト抵抗及び熱抵抗の低減と高信頼度とを両立できる。
図1は、実施の形態1に係る半導体装置100の断面図である。半導体装置100は、光半導体素子である。半導体装置100は、例えば半導体光変調器の変調器部である。半導体装置100は基板10を備える。基板10は、例えばn-InPから形成される。
図5は、実施の形態2に係る半導体装置200の断面図である。半導体装置200は、電極228の構造が実施の形態1と異なる。その他の構造は実施の形態1と同様である。電極228は例えばCrおよびAuから形成されている。電極28ではCrとAuとが積層している。
Claims (8)
- 基板と、
前記基板の上に設けられた活性層と、
前記活性層の上に設けられたクラッド層と、
前記クラッド層の上に設けられ、上面と、前記上面と反対側の面である裏面と、前記上面と前記裏面とを繋ぐ側面と、を有し、前記クラッド層より幅が広いコンタクト層と、
前記コンタクト層の前記上面と、前記コンタクト層の前記側面の上端から下端までと、接触する電極と、
を備えることを特徴とする半導体装置。 - 前記電極は、前記コンタクト層の前記上面の全面と、前記コンタクト層の前記側面の全面と接触することを特徴とする請求項1に記載の半導体装置。
- 前記クラッド層の側面を覆う絶縁膜をさらに備え、
前記絶縁膜の上端は、前記クラッド層の上面と同じ高さに設けられることを特徴とする請求項1または2に記載の半導体装置。 - 前記コンタクト層の前記裏面の幅は、前記クラッド層の上面の幅よりも広いことを特徴とする請求項1から3の何れか1項に記載の半導体装置。
- 前記電極は、前記コンタクト層の前記裏面と接触することを特徴とする請求項1から4の何れか1項に記載の半導体装置。
- 前記電極は、前記コンタクト層の前記裏面のうち前記絶縁膜と前記クラッド層から露出する部分の全面と接触することを特徴とする請求項3に記載の半導体装置。
- 前記コンタクト層の前記裏面は、前記基板の上面と平行であることを特徴とする請求項1から6の何れか1項に記載の半導体装置。
- 基板の上に活性層を形成する工程と、
前記活性層の上にクラッド層を形成する工程と、
前記クラッド層の上に、上面と、前記上面と反対側の面である裏面と、前記上面と前記裏面とを繋ぐ側面と、を有し、前記クラッド層より幅が広いコンタクト層を形成する工程と、
前記コンタクト層の前記上面、前記側面および前記裏面と接触するように、無電界メッキにより電極を形成する工程と、
を備えることを特徴とする半導体装置の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207013041A KR102292782B1 (ko) | 2017-11-17 | 2017-11-17 | 반도체 장치 및 반도체 장치의 제조 방법 |
JP2018521675A JP6406477B1 (ja) | 2017-11-17 | 2017-11-17 | 半導体装置および半導体装置の製造方法 |
US16/629,694 US11448905B2 (en) | 2017-11-17 | 2017-11-17 | Semiconductor device and method for manufacturing semiconductor device |
PCT/JP2017/041528 WO2019097687A1 (ja) | 2017-11-17 | 2017-11-17 | 半導体装置および半導体装置の製造方法 |
CN201780096754.3A CN111357158B (zh) | 2017-11-17 | 2017-11-17 | 半导体装置及半导体装置的制造方法 |
TW106145513A TWI659584B (zh) | 2017-11-17 | 2017-12-25 | 半導體裝置及半導體裝置之製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/041528 WO2019097687A1 (ja) | 2017-11-17 | 2017-11-17 | 半導体装置および半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019097687A1 true WO2019097687A1 (ja) | 2019-05-23 |
Family
ID=63855145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041528 WO2019097687A1 (ja) | 2017-11-17 | 2017-11-17 | 半導体装置および半導体装置の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11448905B2 (ja) |
JP (1) | JP6406477B1 (ja) |
KR (1) | KR102292782B1 (ja) |
CN (1) | CN111357158B (ja) |
TW (1) | TWI659584B (ja) |
WO (1) | WO2019097687A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11202275A (ja) * | 1998-01-07 | 1999-07-30 | Oki Electric Ind Co Ltd | リッジ導波路型半導体光機能素子およびその製造方法 |
JP2000040858A (ja) * | 1998-05-18 | 2000-02-08 | Fujitsu Ltd | 光半導体装置、その製造方法、および半導体ウェハ |
JP2001284734A (ja) * | 2000-03-29 | 2001-10-12 | Fuji Photo Film Co Ltd | 半導体素子の段差部被覆方法およびそれを用いた半導体素子 |
JP2003046195A (ja) * | 2001-07-27 | 2003-02-14 | Sanyo Electric Co Ltd | 窒化物系半導体発光素子およびその製造方法 |
JP2003046193A (ja) * | 2001-08-01 | 2003-02-14 | Matsushita Electric Ind Co Ltd | 半導体レーザおよびその製造方法 |
JP2006203054A (ja) * | 2005-01-21 | 2006-08-03 | Sharp Corp | 半導体レーザ素子の製造方法及びその半導体レーザ素子 |
JP2006278661A (ja) * | 2005-03-29 | 2006-10-12 | Opnext Japan Inc | 光半導体素子及びその製造方法並びに光半導体装置 |
JP2007214570A (ja) * | 2006-02-09 | 2007-08-23 | Samsung Electronics Co Ltd | リッジ導波型半導体レーザダイオード |
US20080019408A1 (en) * | 2006-07-18 | 2008-01-24 | Binoptics Corporation | AIGaInN-based lasers with dovetailed ridge |
JP2009016389A (ja) * | 2007-06-29 | 2009-01-22 | Panasonic Corp | 半導体レーザ素子およびその製造方法 |
JP2010062400A (ja) * | 2008-09-05 | 2010-03-18 | Nippon Telegr & Teleph Corp <Ntt> | 光半導体素子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072818A (en) | 1996-03-28 | 2000-06-06 | Fuji Photo Film Co., Ltd. | Semiconductor light emission device |
JPH09266352A (ja) | 1996-03-28 | 1997-10-07 | Fuji Photo Film Co Ltd | 半導体発光素子 |
JP3682336B2 (ja) | 1996-04-10 | 2005-08-10 | 三菱電機株式会社 | 半導体レーザ装置の製造方法 |
JP4120748B2 (ja) | 2000-08-25 | 2008-07-16 | 日本電気株式会社 | ゲート電極の製造方法及びゲート電極構造 |
JP2003273464A (ja) | 2002-03-19 | 2003-09-26 | Mitsubishi Electric Corp | リッジ導波路型半導体レーザ装置 |
JP4480948B2 (ja) | 2002-07-15 | 2010-06-16 | 日本オプネクスト株式会社 | 半導体レーザ素子及びその製造方法 |
WO2005062433A1 (ja) * | 2003-12-22 | 2005-07-07 | Matsushita Electric Industrial Co., Ltd. | 半導体レーザ装置およびレーザ投射装置 |
JP4272239B2 (ja) | 2007-03-29 | 2009-06-03 | 三菱電機株式会社 | 半導体光素子の製造方法 |
JP2010238715A (ja) * | 2009-03-30 | 2010-10-21 | Mitsubishi Electric Corp | 半導体発光素子の製造方法および半導体発光素子 |
-
2017
- 2017-11-17 WO PCT/JP2017/041528 patent/WO2019097687A1/ja active Application Filing
- 2017-11-17 CN CN201780096754.3A patent/CN111357158B/zh active Active
- 2017-11-17 JP JP2018521675A patent/JP6406477B1/ja active Active
- 2017-11-17 US US16/629,694 patent/US11448905B2/en active Active
- 2017-11-17 KR KR1020207013041A patent/KR102292782B1/ko active IP Right Grant
- 2017-12-25 TW TW106145513A patent/TWI659584B/zh active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11202275A (ja) * | 1998-01-07 | 1999-07-30 | Oki Electric Ind Co Ltd | リッジ導波路型半導体光機能素子およびその製造方法 |
JP2000040858A (ja) * | 1998-05-18 | 2000-02-08 | Fujitsu Ltd | 光半導体装置、その製造方法、および半導体ウェハ |
JP2001284734A (ja) * | 2000-03-29 | 2001-10-12 | Fuji Photo Film Co Ltd | 半導体素子の段差部被覆方法およびそれを用いた半導体素子 |
JP2003046195A (ja) * | 2001-07-27 | 2003-02-14 | Sanyo Electric Co Ltd | 窒化物系半導体発光素子およびその製造方法 |
JP2003046193A (ja) * | 2001-08-01 | 2003-02-14 | Matsushita Electric Ind Co Ltd | 半導体レーザおよびその製造方法 |
JP2006203054A (ja) * | 2005-01-21 | 2006-08-03 | Sharp Corp | 半導体レーザ素子の製造方法及びその半導体レーザ素子 |
JP2006278661A (ja) * | 2005-03-29 | 2006-10-12 | Opnext Japan Inc | 光半導体素子及びその製造方法並びに光半導体装置 |
JP2007214570A (ja) * | 2006-02-09 | 2007-08-23 | Samsung Electronics Co Ltd | リッジ導波型半導体レーザダイオード |
US20080019408A1 (en) * | 2006-07-18 | 2008-01-24 | Binoptics Corporation | AIGaInN-based lasers with dovetailed ridge |
JP2009016389A (ja) * | 2007-06-29 | 2009-01-22 | Panasonic Corp | 半導体レーザ素子およびその製造方法 |
JP2010062400A (ja) * | 2008-09-05 | 2010-03-18 | Nippon Telegr & Teleph Corp <Ntt> | 光半導体素子 |
Also Published As
Publication number | Publication date |
---|---|
KR102292782B1 (ko) | 2021-08-23 |
US20200333638A1 (en) | 2020-10-22 |
JPWO2019097687A1 (ja) | 2019-11-14 |
CN111357158A (zh) | 2020-06-30 |
KR20200058551A (ko) | 2020-05-27 |
CN111357158B (zh) | 2022-08-30 |
JP6406477B1 (ja) | 2018-10-17 |
TW201924167A (zh) | 2019-06-16 |
TWI659584B (zh) | 2019-05-11 |
US11448905B2 (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106972345B (zh) | 形成半导体光学器件的方法及半导体光学器件 | |
JP5451332B2 (ja) | 光半導体装置 | |
JPH04337689A (ja) | オプトエレクトロニクス半導体装置及びその製造方法 | |
US6678302B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2009141188A (ja) | 集積型半導体光素子 | |
US6931041B2 (en) | Integrated semiconductor laser device and method of manufacture thereof | |
WO2019097687A1 (ja) | 半導体装置および半導体装置の製造方法 | |
JPH05327112A (ja) | 半導体レーザの製造方法 | |
JP3654429B2 (ja) | 光半導体装置の製造方法 | |
US20190181616A1 (en) | Optical device and method for manufacturing optical device | |
JP2016082050A (ja) | 光半導体装置 | |
KR20000053604A (ko) | 반도체광학장치 제조방법 | |
JPH07111361A (ja) | 埋込型半導体レーザ素子及びその製造方法 | |
US20240162686A1 (en) | Semiconductor laser | |
JP2001332796A (ja) | 半導体レーザ装置の製造用トレー及びそれを用いた半導体レーザ装置の製造方法 | |
JP2000138417A (ja) | マルチビームレーザダイオード | |
US6570189B1 (en) | Semiconductor device and method of manufacturing the same | |
JPS61176181A (ja) | 半導体発光装置 | |
JP2005294297A (ja) | 半導体素子の製造方法 | |
JP2708949B2 (ja) | 半導体レーザ装置の製造方法 | |
JP2001053385A (ja) | 半導体レーザ素子 | |
JPS59155979A (ja) | 半導体レ−ザの製造方法 | |
JPH1140897A (ja) | 半導体レーザ素子及びその製造方法 | |
JP2547459B2 (ja) | 半導体レーザ素子及びその製造方法 | |
JPH09116230A (ja) | 半導体発光装置とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018521675 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932094 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207013041 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17932094 Country of ref document: EP Kind code of ref document: A1 |