WO2019091144A1 - 封装结构及电子装置 - Google Patents

封装结构及电子装置 Download PDF

Info

Publication number
WO2019091144A1
WO2019091144A1 PCT/CN2018/097700 CN2018097700W WO2019091144A1 WO 2019091144 A1 WO2019091144 A1 WO 2019091144A1 CN 2018097700 W CN2018097700 W CN 2018097700W WO 2019091144 A1 WO2019091144 A1 WO 2019091144A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
slot
heat
package structure
dissipation cover
Prior art date
Application number
PCT/CN2018/097700
Other languages
English (en)
French (fr)
Inventor
符会利
蔺贤哲
戈云飞
张弛
郭健炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019091144A1 publication Critical patent/WO2019091144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to packaging technology, and more particularly to a package structure including a heat dissipation cover using an electronic device using the package structure.
  • the package is packaged.
  • the size is also gradually increasing.
  • the ensuing thermal problems of the package are also more severe than the stress problems of small-sized and low-power chip packages.
  • the gradual popularization of 2.5D/3D packages places higher demands on package size and package heat dissipation.
  • the general package form adopts a structure in which the back surface of the die is connected to the heat dissipation cover through the thermal conductive adhesive.
  • thermal conductivity of the substrate connected by the bumps on the front side of the die is low, most of the heat generated by the die during operation will pass through the heat dissipation cover. Diffusion, eventually taken away from the die with the help of an external heat sink.
  • the thermal paste plays two roles in the structure: establishing a heat transfer path between the die and the heat sink cover, and reducing the thermal resistance of contact between the die and the heat sink cover.
  • CTE thermal expansion coefficient
  • the delamination of the thermal conductive adhesive will interrupt the heat dissipation channel, and the heat cannot be diffused from the die, resulting in the die operating temperature exceeding the standard, the die electrical performance deteriorating, accelerating the aging of the die, and even causing die damage.
  • the higher stiffness of the heat sink cover limits the warpage of the package, but it also increases the risk of plate-level solder ball breakage. Therefore, taking necessary measures to reduce the delamination of the thermal conductive adhesive and enhancing the reliability of the board level has become a problem that has to be paid attention to.
  • the technical problem to be solved by the embodiments of the present invention is to provide a package structure, which can reduce the risk of delamination of the package thermal conductive adhesive and enhance the reliability of the board level.
  • an embodiment of the present invention provides a package structure including: a substrate, a die, and a heat dissipation cover, the die is mounted to a surface of the substrate, the heat dissipation cover is connected to the substrate, and the cover is
  • the heat dissipation cover includes a fixing portion, a heat conducting portion, and a connecting portion connected between the fixing portion and the heat conducting portion, wherein the fixing portion is fixedly connected to the substrate, and the heat conducting portion is positive a thermal conductive adhesive is disposed between the die and the heat conducting portion, and the connecting portion is provided with a slot, and the slot is formed by removing material to reduce the surface of the die from the surface of the substrate.
  • the rigidity of the heat dissipation cover is small.
  • the relative displacement between the die and the heat dissipation cover is caused due to the thermal expansion rate mismatch. Since the rigidity of the heat dissipation cover is reduced, the heat conduction portion of the heat dissipation cover can be generated together with the thermal conductive adhesive. The deformation, in this way, even in the case of heat, the thermal adhesive and the heat-dissipating cover can maintain a good fit relationship, and the thermal layering delamination does not occur.
  • the embodiment of the invention provides a package structure for reducing the risk of delamination of the package thermal conductive adhesive and enhancing the reliability of the board level (ie, the reliability of the solder ball connected to the package structure and the circuit board), and at the same time, the package structure can maintain good heat dissipation performance.
  • the structure of the heat dissipation cover is improved, that is, the groove surrounding the die is formed by mechanical processing on the heat dissipation cover of the package structure, and the slotted arrangement can reduce the heat dissipation cover Rigidity.
  • the fixing portion of the heat dissipating cover is connected to the substrate for limiting warpage deformation of the package structure.
  • the fixing portion may pass the adhesive Fixed connection to the substrate.
  • the heat dissipation cover is reduced in rigidity due to the slotting, and the heat dissipation cover can be synchronously deformed according to the warping deformation of the package structure, which helps to reduce the relative displacement between the heat conducting portion and the die of the heat dissipation cover, and can maintain heat dissipation.
  • the bonding relationship between the cover and the thermal conductive adhesive thereby reducing the peeling stress of the thermal conductive adhesive.
  • the slot surrounds the heat conducting portion, that is, the slot is disposed at a periphery of the heat conducting portion, so that the rigidity of the periphery of the heat conducting portion is comprehensively reduced, so that when the die heats up, the heat conducting portion generates a deformation amount. Thereby, the delamination or peeling of the thermal conductive adhesive is reduced, thereby ensuring the heat conduction effect.
  • the connecting portion includes an outer edge connected to the fixing portion and an inner edge connected to the heat conducting portion, and the distance between the slot and the inner edge is smaller than the slot and the The distance between the outer edges. That is to say, the position of the groove on the joint portion is closer to the heat transfer portion, so that the thermal expansion of the heat transfer portion can be better absorbed.
  • the connecting portion includes an outer edge connected to the fixing portion and an inner edge connected to the heat conducting portion, and the distance between the slot and the inner edge is greater than the slot and the The distance between the outer edges.
  • the slot is provided on the side close to the fixed portion, because the outer edge of the connecting portion surrounds the inner edge, so the outer edge is larger than the inner edge, and the slot is disposed at a position close to the outer edge. , can increase the area of the slot, which is more conducive to reducing the rigidity of the heat sink cover.
  • the slot is a one-piece continuous extending unclosed annular structure, and the connecting portion body is between the leading end and the end of the slot.
  • the slot has a two-stage structure, the slot includes a first sub-slot and a second sub-slot, and the first sub-slot and the second sub-slot respectively from the heat conducting portion The opposite sides enclose a partial area of the heat conducting portion.
  • the first sub-slot and the second sub-slot may be U-shaped or C-shaped.
  • the slot includes four strip-shaped sub-grooves, and the heat-conducting portion has a square shape, and the four-segment strip-shaped sub-slots are respectively disposed at outer periphery of the four sides of the heat conducting portion.
  • the slot includes four L-shaped sub-grooves, and the four L-slot sub-grooves respectively correspond to the periphery of the four corner positions of the heat conducting portion, and collectively surround the heat conducting portion.
  • the slotted plurality of sub-grooves are spaced apart from each other at a periphery of the heat conducting portion to form a breakpoint surrounding structure.
  • the plurality of sub-grooves forming the breakpoint type surrounding structure are arranged at equal intervals and surround the heat transfer portion.
  • the slot extends through the inner surface and the outer surface of the heat dissipation cover, that is, the slot is in the form of a through hole, and the inner enclosure space of the heat dissipation cover communicates with the outer space through the slot.
  • a filling medium is disposed in the groove, and the filling medium is a material having rigidity less than rigidity of the heat dissipation cover.
  • the present embodiment maintains the sealing performance of the heat dissipation cover by filling the medium in the groove, and the filling medium has the ability to elastically deform.
  • the heat dissipation cover has an electromagnetic shielding function
  • the filling medium includes an electromagnetic shielding material.
  • an electromagnetic shielding material is disposed in the filling medium to prevent electromagnetic waves from leaking.
  • the size of the slot is designed to be within a preset range to ensure that electromagnetic waves cannot pass through, and there is no need to provide a filling medium having an electromagnetic shielding material.
  • the slot is disposed on an inner surface of the heat dissipation cover, and the slot does not penetrate the inner surface and the outer surface of the heat dissipation cover.
  • the groove is formed on the inner surface of the heat dissipation cover when the groove is formed, and the groove is in the shape of a blind hole, and the outer surface of the heat dissipation cover is still a complete surface.
  • the slot is disposed on an outer surface of the heat dissipation cover, and the slot does not penetrate the inner surface and the outer surface of the heat dissipation cover.
  • the groove is formed on the outer surface of the heat dissipation cover when the groove is formed, and the groove is formed in a blind hole shape.
  • the groove is filled with a heat conductive medium, and the heat transfer medium has elastic stretchability.
  • the shape of the groove may be trapezoidal or rectangular in a plane perpendicular to the plane of the heat dissipation cover and cutting the heat dissipation from the direction in which the heat conducting portion extends toward the fixing portion.
  • the slotted cross-sectional shape is a trapezoidal design, which is more conducive to the fabrication of the groove.
  • the heat dissipation cover includes a ring portion and a heat dissipation plate, one end surface of the ring portion is connected to the substrate, and the heat dissipation plate is connected to another end surface of the ring portion, the ring portion and The connecting portion of the heat dissipation plate and the ring portion is the fixing portion, and the groove is opposite to a region between the ring portion and the die.
  • the heat dissipation cover may also be a one-piece structure, which may be formed by stamping or forging.
  • the heat sink cover is made of metal or other material with thermal conductivity.
  • an embodiment of the present invention further provides an electronic device, including a circuit board and a package structure according to any one of the foregoing embodiments, wherein the package structure is fixed to a surface of the circuit board by a solder ball. Since the reduction of the rigidity of the heat dissipation cover reduces the overall rigidity of the package structure, when the package structure is mounted on the circuit board through the solder ball, a part of the stress acting on the solder ball is released by the deformation of the package structure, contributing to the board level reliability. Improvement.
  • FIG. 1 is a schematic view showing a package structure provided on a circuit board according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing a package structure provided on a circuit board according to a second embodiment of the present invention
  • FIG. 3 is a schematic view showing a package structure provided on a circuit board according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a first embodiment of a slotted distribution of a package structure according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a second embodiment of a slotted distribution of a package structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a third embodiment of a slotted distribution of a package structure according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a fourth implementation manner of a slotted distribution of a package structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a fifth embodiment of a slotted distribution of a package structure according to an embodiment of the present invention.
  • FIG. 9 is a schematic view showing a slot provided on an inner surface of a heat dissipation cover according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a slot provided on an outer surface of a heat dissipation cover according to an embodiment of the present invention
  • Figure 11 is a schematic view showing a slotted cross section of a slotted body according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the deformation of the heat dissipation cover and the bonding of the thermal conductive adhesive when the die in the package structure according to an embodiment of the present invention generates heat.
  • Embodiments of the present invention provide a package structure that is applied to an electronic device and is fixed on a circuit board in the circuit device.
  • the package structure can be applied to electronic components that generate higher heat.
  • the package structure shown in FIG. 1 includes a substrate 10, a die 20, and a heat dissipation cover 30, the die 20 is mounted to a surface of the substrate 10, and the heat dissipation cover 30 is attached to the substrate 10 and covered in a The periphery of the die 20 is described.
  • the substrate 10 may be a metal substrate, a ceramic substrate or a PCB board.
  • the upper surface of the substrate 10 is mounted with a die 20 and other electronic components.
  • the lower surface of the substrate 10 is used for electrical connection with the circuit board 100 on the electronic device through the solder balls 102.
  • the cross section of the heat dissipation cover 30 is generally designed to be arched or bridge-shaped, and is integrally buckled on the surface of the die 20.
  • the heat dissipation cover 30 includes a fixing portion 31 at an edge, a heat conducting portion 32 at a middle portion, and a connecting portion 33 connected between the fixing portion 31 and the heat conducting portion 32, the fixing portion 31 and the substrate 10 fixed connection, in one embodiment, the fixing portion 31 and the substrate 10 are fixedly connected by the adhesive 101, the heat conducting portion 32 faces the surface of the die 20 away from the substrate 10, and the die 20 is
  • the orthographic projection on the heat dissipation cover 30 overlaps with the heat transfer portion 32.
  • the range of the fixing portion 31 is defined as a fixed connection surface between the heat dissipation cover 30 and the substrate 10, and the area of the fixed connection surface is the area covered by the adhesive 101.
  • a portion of the heat dissipation cover 30 on which the front projection on the substrate 10 overlaps the adhesive 101 is referred to as a fixing portion.
  • the orthographic projection of the connecting portion 33 on the substrate 10 is between the contact area of the adhesive 101 and the substrate 10 and the orthographic projection of the die 20 on the substrate 10.
  • the connecting portion 33 includes a portion extending obliquely between the fixing portion 31 and the heat conducting portion 33 and a portion coplanar with the heat conducting portion 33.
  • the connecting portion 33 is a beam between the heat conducting portion 33 and the fixing portion 31.
  • a portion of the heat radiating cover 30 connected between the inner surface of the fixing portion 31 and the die 20 is referred to as a connecting portion. 33.
  • a thermal conductive adhesive 40 is disposed between the die 20 and the heat conducting portion 32.
  • the connecting portion 33 is provided with a slot 332 for reducing the rigidity of the heat dissipation cover 30.
  • the die 20 emits heat during operation. Since the thermal conductivity of the heat dissipation cover 30 is much higher than that of the substrate 10, the main heat dissipation channel for the heat generated by the die 20 enters the external environment through the heat dissipation cover 30, that is, the die 20 is in operation. The portion of the heat that is emitted is dissipated through the top of the die 20.
  • the thermal conductive adhesive 40 When the die 20 is heated and the thermal conductive adhesive 40 is thermally deformed, since the rigidity of the heat dissipation cover 30 is reduced, the heat conductive portion 32 of the heat dissipation cover 30 can be deformed together with the thermal conductive adhesive 40, so that even in the case of heat, the thermal conductive adhesive 40 and the heat-dissipating cover 30 can still maintain a good fit relationship, and will not cause delamination of the thermal conductive adhesive 40.
  • the heat dissipation cover 30 can be a one-piece structure (as shown in Figures 1 and 2) or a two-piece structure (as shown in Figure 3).
  • the heat dissipating cover 30 in the embodiment shown in FIG. 1 is made of a metal material and is formed by press forming.
  • the fixing portion 31, the connecting portion 33 and the heat conducting portion 32 have the same thickness, and the heat conducting portion is the same.
  • Both the 32 and the fixing portion 31 are parallel to the substrate 10, and the connecting portion 33 includes a parallel segment (the portion located at the periphery of the heat conductive portion 32 and parallel to the substrate 10) connected to the heat conductive portion 32, and the connection is inclined between the parallel portion and the fixed portion 31.
  • the segment, the slot 332 may be disposed in the inclined section or in the parallel section.
  • the heat dissipating cover 30 in the embodiment shown in FIG. 2 is made of a metal material and is formed by forging.
  • the heat conducting portion 32 and the connecting portion 33 are coplanar, and the fixing portion 31 is formed at the connecting portion 33.
  • the outer edge, in a section perpendicular to the substrate 10, the fixing portion 31 is connected to the connecting portion 33 to form an L-shaped structure.
  • the heat dissipation cover 30 in the embodiment shown in FIG. 3 includes a ring portion 311 and a heat dissipation plate 301, one end surface of the ring portion 311 is connected to the substrate 10, and the heat dissipation plate 301 is connected to the ring portion 311.
  • One end face, that is, the ring portion 311 is sleeve-shaped and supported between the heat dissipation plate 301 and the substrate 10.
  • the ring portion 311 and the connecting portion 312 of the heat dissipation plate 301 connected to the ring portion 311 together constitute the fixing portion 31.
  • the heat conducting portion 32, the connecting portion 33 and the connecting portion 312 together constitute a heat dissipation plate 301.
  • the slot 332 faces the area between the ring portion 311 and the die 20.
  • One end surface of the ring portion 311 is connected to the substrate 10 by an adhesive 101, and the other end surface of the ring portion 311 is connected to the connecting portion 312 of the heat dissipation plate 301 connected to the ring portion 311 by an adhesive 313.
  • Embodiments of the present invention provide a package structure that reduces the risk of delamination of the package thermal conductive adhesive 40 and enhances the reliability of the board level (ie, the reliability of the solder ball 102 connected to the circuit board 100), while maintaining good heat dissipation performance of the package structure.
  • the die 20 is connected to the substrate 10 through a plurality of connecting members 21, and the connecting member 21 may be an array of solder balls, and the insulating film 22 is filled between the die 20 and the substrate 10.
  • the insulating rubber 22 serves to ensure the connection strength of the connecting member 21 and to strengthen the connection between the substrate 10 and the die 20.
  • the thermal expansion coefficient of the die 20 is less than the thermal expansion rate of the substrate 10.
  • the arrangement of the insulating paste 22 enhances the thermal expansion ratio mismatch transmission between the die 20 and the substrate 10, resulting in warpage of the package structure.
  • the warpage deformation of the package structure may cause relative displacement between the heat dissipation cover 30 and the die 20, so that the thermal conductive adhesive 40 and the bare bond are
  • the connection interface of the sheet 20 and the connection interface between the thermal conductive adhesive 40 and the heat dissipation cover 30 generate tensile stress, causing delamination of the thermal conductive adhesive 40 at the two interfaces.
  • the slot 332 surrounding the die 20 can be made by mechanical processing.
  • the provision of the slot 332 can reduce the rigidity of the heat dissipation cover 30.
  • the fixing portion 31 of the heat dissipation cover 30 is connected to the substrate 10 for limiting warpage deformation of the package structure.
  • the fixing portion 31 may be fixedly coupled to the substrate 10 by an adhesive.
  • the heat dissipation cover 30 can be synchronously deformed according to the warpage deformation of the package structure (as shown in FIG. 12, the heat conduction portion 32 and the connection portion 33 of the heat dissipation cover 30 are deformed.
  • the heat conducting portion 32 and the thermal conductive adhesive 40 remain in contact with each other, which helps to reduce the relative displacement between the heat conducting portion 32 of the heat dissipation cover 30 and the die 20, thereby reducing the peeling stress of the thermal conductive adhesive 40.
  • the rigidity of the heat dissipation cover 30 reduces the overall rigidity of the package structure, when the package structure is mounted on the circuit board 100 through the solder ball 102, a part of the stress acting on the solder ball 102 is released to the release shape by the package structure. Helps improve board reliability.
  • the slot 332 surrounds the heat conducting portion 32, that is, the slot 332 is disposed at the periphery of the heat conducting portion 32, so that the rigidity of the periphery of the heat conducting portion 32 is comprehensively reduced, so that when the die 20 is heated, The heat transfer portion 32 is deformed, thereby reducing the delamination or peeling of the thermal conductive adhesive 40, thereby ensuring the heat conduction effect.
  • the connecting portion 33 includes an outer edge 336 connected to the fixing portion 31 and an inner edge 335 connected to the heat conducting portion 32.
  • the distance between the slot 332 and the inner edge 335 is less than the distance between the slot 332 and the outer edge 336. That is, the groove 332 is positioned closer to the heat transfer portion 32 on the joint portion 33, so that the thermal expansion of the heat transfer portion 32 can be better absorbed.
  • the distance between the slot 332 and the inner edge 335 is greater than the distance between the slot 332 and the outer edge 336 (ie, the embodiment shown in FIG. 4).
  • the slot 332 is disposed on a side close to the fixed portion 31. Since the outer edge 336 of the connecting portion 33 surrounds the inner edge 335, the outer edge 336 is larger than the inner edge 335 and will be slotted 332. Provided at a position close to the outer edge 336, the area of the slot 332 can be increased, which is advantageous for reducing the rigidity of the heat dissipation cover 30.
  • the specific shape and distribution of the slits 332 on the connecting portion 32 are represented by a distribution pattern as shown in FIGS. 4 to 8. However, in the same embodiment, the slots 332 of different shapes and distributions may be included. As long as the rigidity of the heat dissipation cover 30 can be reduced, the technical problem to be solved by the embodiment of the present invention can be achieved.
  • the slot 332 is a one-piece continuous extending unclosed annular structure, and the connecting portion 33 is 337 between the leading end and the end of the slot 332. .
  • the slot 332 has a two-stage structure, and the slot 332 includes a first sub-slot 3321 and a second sub-slot 3322, and the first sub-slot 3321 and the second sub-slot.
  • Each of the grooves 3322 has a semi-circular shape, and the first sub-slots 3321 and the second sub-slots 3322 respectively surround a partial region of the heat transfer portion 32 from opposite sides of the heat transfer portion 32.
  • the first sub-slot 3321 and the second sub-slot 3322 are abutted at the main body 337 of the connecting portion 33.
  • the first sub-slot 3321 and the second sub-slot 3322 may have a U shape or a C shape.
  • the slot 332 includes four strip-shaped sub-slots 3323, the heat-transfer portion 32 has a square shape, and the four-segment strip-shaped sub-slots 3323 are respectively disposed corresponding to the heat conduction. The periphery of the four sides of the portion 32.
  • the slot includes four L-shaped sub-grooves 3324, and the four-segment L-slots 3324 are respectively disposed at the outer periphery of the four corner positions of the heat conducting portion 32, and jointly surround the slot.
  • the heat transfer portion 32 is described.
  • the slot 332 has a plurality of sub-grooves 3325 spaced apart from each other at the periphery of the heat conducting portion 32 to form a breakpoint surrounding structure.
  • the plurality of sub-grooves 3325 forming the breakpoint type surrounding structure are arranged at equal intervals and surround the heat transfer portion 32.
  • the specific shape and distribution of the slits 332 are not limited to the above-described several embodiments, and the above embodiments may be used in combination.
  • the slot 332 extends through the inner surface and the outer surface of the heat dissipation cover 30, that is, the slot 332 is in the form of a through hole, and the inside of the heat dissipation cover 30 is through the slot 332.
  • the enclosed space is connected to the external space.
  • Air, thermal conductive glue 40 or other connection structure located inside the heat dissipation cover 30 generates moisture when heated, and moisture can be discharged to the outside of the heat dissipation cover 30 through the slot 332. In this way, the life of the die 20 can be improved. Therefore, the design of the slot 332 through the heat dissipation cover 30 is advantageous for improving the service life of the closed structure.
  • a filling medium is disposed in the slot 332, and the filling medium is a material having rigidity less than the rigidity of the heat dissipation cover 30.
  • the present embodiment maintains the sealing performance of the heat dissipation cover 30 by filling the groove in the groove 332, and the filling medium has an elastic deformation ability.
  • the heat dissipation cover 30 has an electromagnetic shielding function
  • the filling medium includes an electromagnetic shielding material.
  • an electromagnetic shielding material is disposed in the filling medium to prevent electromagnetic waves from leaking.
  • the size of the slot 332 is designed to be within a preset range to ensure that electromagnetic waves cannot pass through, and there is no need to provide a filling medium having an electromagnetic shielding material.
  • the slot 332 is disposed on an inner surface of the heat dissipation cover 30 , and the slot 332 does not penetrate the inner surface and the outer surface of the heat dissipation cover 30 , that is, the slot 332 .
  • the opening faces the substrate 10.
  • the groove 332 is formed on the inner surface of the heat dissipation cover 30, the groove 332 is in the shape of a blind hole, and the outer surface of the heat dissipation cover 30 is still a complete surface.
  • the slot 332 is disposed on an outer surface of the heat dissipation cover 30 , and the slot 332 does not penetrate the inner surface and the outer surface of the heat dissipation cover 30 , that is, the slot 332 .
  • the opening faces away from the substrate 10.
  • the groove 332 is formed on the outer surface of the heat dissipation cover 30, and the groove 332 has a blind hole shape.
  • the slot 332 is filled with a heat conductive medium, and the heat conductive medium has elastic stretchability.
  • the slit 332 may have a trapezoidal shape or a rectangular shape in a cross section perpendicular to the plane of the heat dissipation cover 30 and cutting heat from the direction in which the heat conducting portion 32 extends toward the fixing portion 31.
  • the slotted 332 has a trapezoidal cross-sectional shape, which is more advantageous for the fabrication of the slot 332.
  • the heat dissipation cover 30 is made of metal or other material having thermal conductivity.

Abstract

本发明实施例公开了一种封装结构,包括:基板、裸片、散热盖,所述裸片安装至所述基板的表面,所述散热盖连接至所述基板且遮罩在所述裸片的外围,所述散热盖包括固定部和导热部,所述固定部与所述基板固定连接,所述导热部正对所述裸片背离所述基板的表面,所述裸片和所述导热部之间设有导热胶,所述导热部和固定部之间设有开槽,以减小所述散热盖的刚性。本发明实施例子还公开一种电子装置。本发明能够减少导热胶分层风险,增强封装结构的可靠性。

Description

封装结构及电子装置
本申请要求于2017年11月13日提交中国专利局、申请号为201711118940.0,发明名称为“封装结构及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及封装技术,特别涉及一种包含散热盖的封装结构用使用该封装结构的电子装置。
背景技术
随着芯片集成通道速率的提升,系统应用要求集成度进一步提高,芯片高速信号通道数量大幅增加,导致芯片功耗持续攀升;为保证链路驱动能力、信号隔离度及系统互连的实现,封装尺寸也逐步加大。然而,随之而来的封装热问题与应力问题相比小尺寸低功耗芯片封装也更为严峻;此外,2.5D/3D封装的逐步普及也对封装尺寸与封装散热提出更高的要求。目前普遍的封装形式采用裸片背面通过导热胶与散热盖相连的结构,由于裸片正面通过凸点相连的基板的导热率较低,裸片在工作时产生的绝大多数热量会经散热盖扩散,最终在外置散热器的帮助下被带离裸片。导热胶在结构中起到两个作用:建立裸片与散热盖之间的传热通道,减小裸片与散热盖的接触热阻。然而,由于各封装材料之间存在热膨胀率(CTE)失配,裸片工作中的热应力会导致封装产生翘曲变形,导致裸片与散热盖之间出现相对位移,继而造成导热胶分层。导热胶分层会使散热通道中断,热量无法从裸片扩散出去,导致裸片工作温度超标,裸片电性能恶化,加速裸片老化,甚至引起裸片损坏。其次,散热盖较高的刚度虽然限制了封装的翘曲变形,但同时也加大了板级焊球断裂的风险。因此采取必要的措施减小导热胶分层,增强板级可靠度成为一个不得不关注的问题。
发明内容
本发明实施例所要解决的技术问题在于,提供一种封装结构,能够降低封装导热胶分层风险,增强板级可靠性。
第一方面,本发明实施例提供一种封装结构,包括:基板、裸片、散热盖,所述裸片安装至所述基板的表面,所述散热盖连接至所述基板且遮罩在所述裸片的外围,所述散热盖包括固定部、导热部和连接在所述固定部和所述导热部之间的连接部,所述固定部与所述基板固定连接,所述导热部正对所述裸片背离所述基板的表面,导热胶设于所述裸片和所述导热部之间,所述连接部设有开槽,通过去除材料的方式形成所述开槽,以减小所述散热盖的刚性,当裸片发热,由于热膨胀率失配导致裸片与散热盖之间产生相对位移,由于散热盖的刚性减小了,散热盖的导热部可以与导热胶一同产生变形,这样,即使在受热的情况下,导热胶和散热盖之间依然能保持良好的贴合关系,不会产生导热胶分层现象。
本发明实施例提供一种降低封装导热胶分层风险,增强板级可靠性(即封装结构与电路板连接的焊球可靠性)的封装结构,同时能够保持封装结构良好散热性能。采用本发明 实施提供的封装结构,通过对散热盖的结构进行改进,即,在封装结构的散热盖上通过机械加工的手段做出包围裸片的开槽,开槽的设置能够减小散热盖的刚性。当封装材料之间存在的热膨胀率(CTE)失配导致翘曲变形时,散热盖的固定部与基板相连接,用于限制封装结构翘曲变形,具体而言,固定部可以通过粘合胶与基板固定连接。由于开槽导致的散热盖刚度下降,进而,使得散热盖可以随封装结构的翘曲变形产生同步的形变,有助于减小散热盖的导热部与裸片之间的相对位移,能够保持散热盖和导热胶之间的贴合关系,从而降低导热胶的剥离应力。此外,由于,散热盖刚性的降低减小了封装结构整体刚性,封装结构通过焊球安装至电路板上时,使得一部分作用在焊球上的应力通过封装结构的形变释放,有助于板级可靠性的提高。
一种实施方式中,所述开槽包围所述导热部,即开槽设置在导热部的外围,使得导热部外围的刚性得到全面的降低,以使裸片发热时,导热部产生变形量,从而降低导热胶的分层或剥离,从而能够保证导热效果。
一种实施方式中,所述连接部包括与所述固定部连接的外缘和与所述导热部连接的内缘,所述开槽与所述内缘的距离小于所述开槽与所述外缘之间的距离。也就是说,开槽在连接部上的位置更靠近导热部,这样可以更好地吸收导热部的热膨胀。
一种实施方式中,所述连接部包括与所述固定部连接的外缘和与所述导热部连接的内缘,所述开槽与所述内缘的距离大于所述开槽与所述外缘之间的距离。本实施方式中,将开槽设置在靠近固定部的一侧,因为连接部的外缘是包围内缘的,因此,外缘比内缘的尺寸大,将开槽设置在靠近外缘的位置处,可以增大开槽的面积,这样更利于减少散热盖的刚性。
一种实施方式中,所述开槽呈一段式连续延伸的未封闭的环状结构,所述开槽的首端和末端之间为所述连接部主体。
一种实施方式中,所述开槽呈两段式结构,所述开槽包括第一子槽和第二子槽,所述第一子槽和所述第二子槽分别从所述导热部相对的两侧包围所述导热部的部分区域。第一子槽和第二子槽可以呈U形或C形。
一种实施方式中,所述开槽包括四段条形子槽,所述导热部呈方形,所述四段条形子槽分别对应设置在所述导热部的四条边的外围。
一种实施方式中,所述开槽包括四段L形子槽,四段L槽子槽分别对应设置于导热部的四个角落位置的外围,且共同包围所述导热部。
一种实施方式中,所述开槽多段子槽,所述多段子槽彼此间隔分布在所述导热部的外围,形成断点式包围结构。具体而言,形成断点式包围结构的多段子槽等距离间隔排布且包围导热部。
一种实施方式中,所述开槽贯穿所述散热盖的内表面和外表面,即开槽为通孔的形式,通过开槽,散热盖的内部包围空间和外部空间相通。封装结构的裸片工作过程中,产生热熊,位于散热盖内部的空气、导热胶或其它连接结构遇热会产生水气,水气可以通过开槽排出至散热盖外部,这样,可以提升裸片的寿命。因此,开槽贯穿所述散热盖的设计有利于提升封闭结构使用寿命。
一种实施方式中,所述开槽内设有填充介质,所述填充介质为刚性小于所述散热盖的 刚性的材质。本实施方式通过在开槽内填充介质来保持散热盖的密封性能,填充介质具有弹性形变的能力。
一种实施方式中,所述散热盖为具有电磁屏蔽功能,所述填充介质包括电磁屏蔽材料。当开槽尺寸较大时,将填充介质内设置电磁屏蔽材料防止电磁波泄露。其它实施方式中,开槽的尺寸设计在预设范围内,可以保证电磁波无法穿过,则无需要设置具有电磁屏蔽材料的填充介质。
一种实施方式中,所述开槽设于所述散热盖的内表面,所述开槽未贯穿所述散热盖的内表面和外表面。本实施方式中,制作开槽时是在散热盖的内表面制作,开槽呈盲孔状,散热盖的外表面仍为完整的表面。
一种实施方式中,所述开槽设于所述散热盖的外表面,所述开槽未贯穿所述散热盖的内表面和外表面。本实施方式中,制作开槽时是在散热盖的外表面制作,开槽呈盲孔状。
一种实施方式中,所述开槽内填充导热介质,所述导热介质具有弹性伸缩性能。
在垂直于散热盖的平面上,且从导热部向固定部延伸的方向切割散热的横截面上,开槽的形状可以为梯形或矩形。开槽横截面形状为梯形的设计,更有利于凹槽的制作。
一种实施方式中,所述散热盖包括环部和散热板,所述环部的一个端面连接至所述基板,所述散热板连接至所述环部的另一个端面,所述环部及所述散热板与所述环部连接部分为所述固定部,所述开槽正对所述环部和所述裸片之间的区域。其它实施方式中,散热盖也可以为一体式结构,可以通过冲压成型或锻造成型的方式制成。
散热盖为金属材质或其它具导热性能的材质
第二方面,本发明实施例还提供一种电子装置,包括电路板及如前述任意一种实施方式所述的封装结构,所述封装结构通过焊球固定于所述电路板的表面。由于,散热盖刚性的降低减小了封装结构整体刚性,封装结构通过焊球安装至电路板上时,使得一部分作用在焊球上的应力通过封装结构的形变释放,有助于板级可靠性的提高。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明第一种实施方式提供的封装结构安装在电路板上的示意图;
图2是本发明第二种实施方式提供的封装结构安装在电路板上的示意图;
图3是本发明第三种实施方式提供的封装结构安装在电路板上的示意图;
图4是本发明实施例提供的封装结构之开槽分布的第一种实施方式的示意图;
图5是本发明实施例提供的封装结构之开槽分布的第二种实施方式的示意图;
图6是本发明实施例提供的封装结构之开槽分布的第三种实施方式的示意图;
图7是本发明实施例提供的封装结构之开槽分布的第四种实施方式的示意图;
图8是本发明实施例提供的封装结构之开槽分布的第五种实施方式的示意图;
图9是本发明一种实施方式提供的开槽设置在散热盖内表面的示意图;
图10是本发明一种实施方式提供的开槽设置在散热盖外表面的示意图;
图11是本发明一种实施方式提供的开槽的横截面为梯形的示意图;
图12是本发明一种实施方式提供的封装结构中的裸片发热时,散热盖产生变形与导热胶保持贴合的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本发明实施例提供一种封装结构,应用于电子装置中,固定于电路装置中的电路板上。一种实施方式中,封装结构可以应用于发热量较高的电子元件。
图1所示的封装结构包括基板10、裸片20、以及散热盖30,所述裸片20安装至所述基板10的表面,所述散热盖30连接至所述基板10且遮罩在所述裸片20的外围。基板10可以为金属基板、陶瓷基板或PCB板,基板10的上表面安装裸片20及其它电子元件,基板10的下表面用于与电子装置上的电路板100通过焊球102电连接。
所述散热盖30的横截面通常被设计为拱形或者桥形,其整体成盖状扣在所述裸片20的表面。所述散热盖30包括处于边缘的固定部31、处于中部的导热部32,和连接在所述固定部31和所述导热部32之间的连接部33,所述固定部31与所述基板10固定连接,一种实施方式中,固定部31与基板10之间通过粘接胶101固定连接,所述导热部32正对所述裸片20背离所述基板10的表面,裸片20在散热盖30上的正投影与导热部32重合,固定部31的范围被限定为:散热盖30与基板10之间形成固定连接面,固定连接面的区域为粘接胶101所涵盖的区域,在基板10上的正投影与粘接胶101重合的散热盖30的部分称为固定部。连接部33在基板10上的正投影位于粘接胶101与基板10的接触区域和裸片20在基板10上的正投影之间。如图1所示,连接部33包括连接在固定部31和导热部33之间的一段斜面延伸的部分和一段与导热部33共面的部分。如图2所示,连接部33为导热部33和固定部31之间的横梁,图2中,连接在固定部31的内表面与裸片20之间的散热盖30的部分称为连接部33。
所述裸片20和所述导热部32之间设有导热胶40,所述连接部33设有开槽332,开槽332的设置用于减小所述散热盖30的刚性。裸片20在工作时会散发热量,由于散热盖30的导热率远高于基板10,因此裸片20发热的主要散热通道为通过散热盖30进入外界环境中,即,裸片20工作过程中发出的热量较多的部分通过裸片20的顶部散热。当裸片20发热,导热胶40受热变形时,由于散热盖30的刚性减小了,散热盖30的导热部32可以与导热胶40一同产生变形,这样,即使在受热的情况下,导热胶40和散热盖30之间依然能保持良好的贴合关系,不会产生导热胶40分层现象。
散热盖30可以为一体式结构(如图1和图2所示)或两件式结构(如图3所示)。
图1所示的实施例中的散热盖30为金属材质,且是通过冲压成型的方式制作而成的,此实施方式中,固定部31、连接部33和导热部32的厚度相同,导热部32和固定部31均平行于基板10,连接部33包括与导热部32连接的平行段(位于导热部32的外围且平行于基板10的部分)和连接在平行段和固定部31之间倾斜段,开槽332可以设置在倾斜段,也可以设置在平行段。
图2所示的实施例中的散热盖30为金属材质,且是通过锻造的方式制成的,此实施方式中,导热部32和连接部33共面,固定部31形成在连接部33的外边缘,在垂直于基板 10的截面上,固定部31与连接部33连接形成L状结构。
图3所示的实施例中的散热盖30包括环部311和散热板301,所述环部311的一个端面连接至所述基板10,所述散热板301连接至所述环部311的另一个端面,即,环部311呈套筒状,且支撑在散热板301和基板10之间。所述环部311及所述散热板301之连接于环部311的连接部分312共同构成所述固定部31,导热部32、连接部33及连接部分312共同构成散热板301。所述开槽332正对所述环部311和所述裸片20之间的区域。环部311的一个端面通过粘接胶101连接至基板10,环部311的另一个端面通过粘接胶313连接至散热板301之连接于环部311的连接部分312。
本发明实施例提供一种降低封装导热胶40分层风险,增强板级可靠性(即封装结构与电路板100连接的焊球102可靠性)的封装结构,同时能够保持封装结构良好散热性能。
具体而言,如图1至图3所示,裸片20通过多个连接件21与基板10相连,连接件21可以为阵列分布的焊球,裸片20和基板10之间填充绝缘胶22,绝缘胶22用于保证连接件21的连接强度,加强基板10和裸片20之间的连接的稳固性。裸片20的热膨胀率小于基板10的热膨胀率,绝缘胶22的设置加强了裸片20与基板10之间的热膨胀率失配传递,导致封装结构产生翘曲变形。本发明实施例通过在散热盖30的导热部32与裸片20之间建立导热路径,封装结构的翘曲变形会导致散热盖30和裸片20之间的相对位移,使得导热胶40与裸片20的连接界面及导热胶40与散热盖30之间的连接界面处产生拉应力,造成导热胶40在这两个界面处的脱层。
采用本发明实施提供的封装结构,通过对散热盖30的结构进行改进,即,在封装结构的散热盖30上设置开槽332,可以通过机械加工的手段做出环绕裸片20的开槽332,开槽332的设置能够减小散热盖30的刚性。请参阅图12,当封装材料之间存在的热膨胀率(CTE)失配导致翘曲变形时,散热盖30的固定部31与基板10相连接,用于限制封装结构翘曲变形。具体而言,固定部31可以通过粘合胶与基板10固定连接。由于开槽332导致的散热盖30刚度下降,使得散热盖30可以随封装结构的翘曲变形产生同步的形变(如图12所示,散热盖30的导热部32和连接部33虽然产生了变形,但导热部32和导热胶40仍然保持接触状态),有助于减小散热盖30的导热部32与裸片20之间的相对位移,从而降低导热胶40的剥离应力。此外,由于散热盖30刚性的降低减小了封装结构整体刚性,封装结构通过焊球102安装至电路板100上时,使得一部分作用在焊球102上的应力通过封装结构的形变得到释放,有助于板级可靠性的提高。
一种实施方式中,所述开槽332包围所述导热部32,即开槽332设置在导热部32的外围,使得导热部32外围的刚性得到全面的降低,以使裸片20发热时,导热部32产生变形,从而降低导热胶40的分层或剥离,从而能够保证导热效果。
请参阅图4至图8,所示为散热盖30俯视图,其中散热盖30中间的方形区域为导热部32,最外围用阴影线表示的区域为固定部31,固定部31和导热部32之间的连接区域为连接部33。所述连接部33包括与所述固定部31连接的外缘336和与所述导热部32连接的内缘335。
一种实施方式中,所述开槽332与所述内缘335的距离小于所述开槽332与所述外缘336之间的距离。也就是说,开槽332在连接部33上的位置更靠近导热部32,这样可以更 好地吸收导热部32的热膨胀。
一种实施方式中,所述开槽332与所述内缘335的距离大于所述开槽332与所述外缘336之间的距离(即图4所示的实施例)。本实施方式中,将开槽332设置在靠近固定部31的一侧,因为连接部33的外缘336是包围内缘335的,因此,外缘336比内缘335的尺寸大,将开槽332设置在靠近外缘336的位置处,可以增大开槽332的面积,这样更利于减少散热盖30的刚性。
开槽332在连接部32上设置的具体的形状及分布,以如图4至图8所示的几中分布方式为代表做阐述。然而,同一个实施例中,可以包括不同形状及分布的开槽332,只要能降低散热盖30的刚度,就能实现本发明实施例要解决的技术问题。
一种实施方式中,如图4所示,所述开槽332呈一段式连续延伸的未封闭的环状结构,所述开槽332的首端和末端之间为所述连接部33主体337。
一种实施方式中,如图5所示,所述开槽332呈两段式结构,所述开槽332包括第一子槽3321和第二子槽3322,第一子槽3321和第二子槽3322均呈半包围状,第一子槽3321和第二子槽3322分别从所述导热部32相对的两侧包围所述导热部32的部分区域。第一子槽3321和第二子槽3322对接处为连接部33的主体337。第一子槽3321和第二子槽3322可以呈U形或C形。
一种实施方式中,如图6所示,所述开槽332包括四段条形子槽3323,所述导热部32呈方形,所述四段条形子槽3323分别对应设置在所述导热部32的四条边的外围。
一种实施方式中,如图7所示,所述开槽包括四段L形子槽3324,四段L槽子槽3324分别对应设置于导热部32的四个角落位置的外围,且共同包围所述导热部32。
一种实施方式中,如图8所示,所述开槽332多段子槽3325,所述多段子槽3325彼此间隔分布在所述导热部32的外围,形成断点式包围结构。具体而言,形成断点式包围结构的多段子槽3325等距离间隔排布且包围导热部32。
开槽332的具体的形状及分布不限于上述几种实施方式,也可以将上述实施方式结合使用。
图1至图3所示的实施方式中,所述开槽332贯穿所述散热盖30的内表面和外表面,即开槽332为通孔的形式,通过开槽332,散热盖30的内部包围空间和外部空间相通。封装结构的裸片20工作过程中,产生热熊能,位于散热盖30内部的空气、导热胶40或其它连接结构遇热会产生水气,水气可以通过开槽332排出至散热盖30外部,这样,可以提升裸片20的寿命。因此,开槽332贯穿所述散热盖30的设计有利于提升封闭结构使用寿命。
一种实施方式中,所述开槽332内设有填充介质,所述填充介质为刚性小于所述散热盖30的刚性的材质。本实施方式通过在开槽332内填充介质来保持散热盖30的密封性能,填充介质具有弹性形变的能力。
一种实施方式中,所述散热盖30为具有电磁屏蔽功能,所述填充介质包括电磁屏蔽材料。当开槽332尺寸较大时,将填充介质内设置电磁屏蔽材料防止电磁波泄露。其它实施方式中,开槽332的尺寸设计在预设范围内,可以保证电磁波无法穿过,则无需要设置具有电磁屏蔽材料的填充介质。
请参阅图9,一种实施方式中,所述开槽332设于所述散热盖30的内表面,所述开槽 332未贯穿所述散热盖30的内表面和外表面,即开槽332的开口朝向基板10。本实施方式中,制作开槽332时是在散热盖30的内表面制作,开槽332呈盲孔状,散热盖30的外表面仍为完整的表面。
请参阅图10,一种实施方式中,所述开槽332设于所述散热盖30的外表面,所述开槽332未贯穿所述散热盖30的内表面和外表面,即开槽332的开口背离基板10。本实施方式中,制作开槽332时是在散热盖30的外表面制作,开槽332呈盲孔状。
一种实施方式中,所述开槽332内填充导热介质,所述导热介质具有弹性伸缩性能。
在垂直于散热盖30的平面上,且从导热部32向固定部31延伸的方向切割散热的横截面上,开槽332的形状可以为梯形或矩形。请参阅图11,开槽332横截面形状为梯形的设计,更有利于开槽332的制作。
散热盖30为金属材质或其它具导热性能的材质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种封装结构,其特征在于,包括:基板、裸片、散热盖,所述裸片安装至所述基板的表面,所述散热盖连接至所述基板且遮罩在所述裸片的外围,所述散热盖包括固定部和导热部,所述固定部与所述基板固定连接,所述导热部正对所述裸片背离所述基板的表面,所述裸片和所述导热部之间设有导热胶,所述导热部和固定部之间设有开槽。
  2. 如权利要求1所述的封装结构,其特征在于,所述开槽包围所述导热部。
  3. 如权利要求2所述的封装结构,其特征在于,所述散热盖包括连接在所述固定部和所述导热部之间的连接部,所述连接部包括与所述固定部连接的外缘和与所述导热部连接的内缘,所述开槽与所述内缘的距离小于所述开槽与所述外缘之间的距离。
  4. 如权利要求2所述的封装结构,其特征在于,所述散热盖包括连接在所述固定部和所述导热部之间的连接部,所述连接部包括与所述固定部连接的外缘和与所述导热部连接的内缘,所述开槽与所述内缘的距离大于所述开槽与所述外缘之间的距离。
  5. 如权利要求1所述的封装结构,其特征在于,所述散热盖包括连接在所述固定部和所述导热部之间的连接部,所述开槽呈一段式连续延伸的未封闭的环状结构,所述开槽的首端和末端之间为所述连接部主体。
  6. 如权利要求1所述的封装结构,其特征在于,所述开槽呈两段式结构,所述开槽包括第一子槽和第二子槽,所述第一子槽和所述第二子槽分别从所述导热部相对的两侧包围所述导热部的部分区域。
  7. 如权利要求1所述的封装结构,其特征在于,所述开槽包括四段条形子槽,所述导热部呈方形,所述四段条形子槽分别对应设置在所述导热部的四条边的外围。
  8. 如权利要求1所述的封装结构,其特征在于,所述开槽包括四段L形子槽,所述四段L形子槽分别设置在所述导热部的四个角落位置的外围,且共同包围所述导热部。
  9. 如权利要求1所述的封装结构,其特征在于,所述开槽多段子槽,所述多段子槽彼此间隔分布在所述导热部的外围,形成断点式包围结构。
  10. 如权利要求1所述的封装结构,其特征在于,所述开槽贯穿所述散热盖的内表面和外表面。
  11. 如权利要求10所述的封装结构,其特征在于,所述开槽内设有填充介质,所述填 充介质为刚性小于所述散热盖的刚性的材质。
  12. 如权利要求11所述的封装结构,其特征在于,所述散热盖具有电磁屏蔽功能,所述填充介质包括电磁屏蔽材料。
  13. 如权利要求1所述的封装结构,其特征在于,所述开槽设于所述散热盖的内表面,所述开槽未贯穿所述散热盖的内表面和外表面。
  14. 如权利要求1所述的封装结构,其特征在于,所述开槽设于所述散热盖的外表面,所述开槽未贯穿所述散热盖的内表面和外表面。
  15. 如权利要求1所述的封装结构,其特征在于,所述开槽内填充导热介质,所述导热介质具有弹性伸缩性能。
  16. 如权利要求1-15任意一项所述的封装结构,其特征在于,所述散热盖包括环部和散热板,所述环部的一个端面连接至所述基板,所述散热板连接至所述环部的另一个端面,所述环部及所述散热板与所述环部连接部分为所述固定部,所述开槽正对所述环部和所述裸片之间的区域。
  17. 一种电子装置,其特征在于,包括电路板及如权利要求1-16任意一项所述的封装结构,所述封装结构通过焊球固定于所述电路板的表面。
PCT/CN2018/097700 2017-11-13 2018-07-28 封装结构及电子装置 WO2019091144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711118940.0A CN109786336A (zh) 2017-11-13 2017-11-13 封装结构及电子装置
CN201711118940.0 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019091144A1 true WO2019091144A1 (zh) 2019-05-16

Family

ID=66437601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097700 WO2019091144A1 (zh) 2017-11-13 2018-07-28 封装结构及电子装置

Country Status (2)

Country Link
CN (1) CN109786336A (zh)
WO (1) WO2019091144A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4207271A4 (en) * 2020-08-25 2024-03-27 Vivo Mobile Communication Co Ltd CHIP ENCAPSULATION MODULE AND ELECTRONIC DEVICE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725181B (zh) * 2020-03-27 2024-02-27 矽磐微电子(重庆)有限公司 芯片封装结构
CN116250066A (zh) * 2020-10-12 2023-06-09 华为技术有限公司 芯片封装结构、电子设备及芯片封装结构的制备方法
CN116153882A (zh) * 2020-11-10 2023-05-23 华为技术有限公司 一种散热组件、电子设备及芯片封装结构
CN112885794B (zh) * 2021-01-15 2023-04-07 浪潮电子信息产业股份有限公司 一种pcb、pop封装散热结构及其制造方法
WO2022160245A1 (zh) * 2021-01-29 2022-08-04 华为技术有限公司 集成电路封装件及其制备方法和终端
CN112938888B (zh) * 2021-02-01 2023-06-16 南京理工大学 具有应力调节的mems传感器芯片封装结构与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215919A (zh) * 1997-10-24 1999-05-05 日本电气株式会社 半导体装置
US6294831B1 (en) * 1998-11-05 2001-09-25 International Business Machines Corporation Electronic package with bonded structure and method of making
CN1799141A (zh) * 2003-05-30 2006-07-05 霍尼韦尔国际公司 集成的散热器盖
US7301227B1 (en) * 2005-08-19 2007-11-27 Sun Microsystems, Inc. Package lid or heat spreader for microprocessor packages

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227663A (en) * 1989-12-19 1993-07-13 Lsi Logic Corporation Integral dam and heat sink for semiconductor device assembly
US20160351462A1 (en) * 2015-05-25 2016-12-01 Inotera Memories, Inc. Fan-out wafer level package and fabrication method thereof
CN205179498U (zh) * 2015-11-19 2016-04-20 上海斐讯数据通信技术有限公司 一种散热结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215919A (zh) * 1997-10-24 1999-05-05 日本电气株式会社 半导体装置
US6294831B1 (en) * 1998-11-05 2001-09-25 International Business Machines Corporation Electronic package with bonded structure and method of making
CN1799141A (zh) * 2003-05-30 2006-07-05 霍尼韦尔国际公司 集成的散热器盖
US7301227B1 (en) * 2005-08-19 2007-11-27 Sun Microsystems, Inc. Package lid or heat spreader for microprocessor packages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4207271A4 (en) * 2020-08-25 2024-03-27 Vivo Mobile Communication Co Ltd CHIP ENCAPSULATION MODULE AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
CN109786336A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019091144A1 (zh) 封装结构及电子装置
US8213180B2 (en) Electromagnetic interference shield with integrated heat sink
US20060249852A1 (en) Flip-chip semiconductor device
KR200448519Y1 (ko) 돌출형 ⅰc 패키지용 방열판
CN109637983B (zh) 芯片封装
TWI521653B (zh) Semiconductor device
CN109616452B (zh) 一种散热组件、相应的散热装置以及相应的电路板
JP2007305761A (ja) 半導体装置
CN109196637B (zh) 半导体装置
JP2008235576A (ja) 電子部品の放熱構造及び半導体装置
TWI392065B (zh) 電子元件封裝模組
JP5640616B2 (ja) 電子部品の放熱構造
JP2853666B2 (ja) マルチチップモジュール
JP2611671B2 (ja) 半導体装置
JP2014013878A (ja) 電子装置
CN110459525B (zh) 一种具有逆变器的电力系统及其制造方法
TWI660471B (zh) 晶片封裝
JP2004079949A (ja) メモリモジュール内発熱半導体素子の放熱装置
TWI536515B (zh) 具有散熱結構之半導體封裝元件及其封裝方法
JP2010135459A (ja) 半導体パッケージおよび放熱器
JP7257977B2 (ja) 半導体装置および半導体モジュール
JPH04316357A (ja) 樹脂封止型半導体装置
JP3378174B2 (ja) 高発熱素子の放熱構造
CN218071925U (zh) 一种组合型散热屏蔽结构及电子组件
US11538730B2 (en) Chip scale package structure of heat-dissipating type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876541

Country of ref document: EP

Kind code of ref document: A1