WO2019088139A1 - 二次電池用負極及び二次電池並びにそれらの製造方法 - Google Patents

二次電池用負極及び二次電池並びにそれらの製造方法 Download PDF

Info

Publication number
WO2019088139A1
WO2019088139A1 PCT/JP2018/040430 JP2018040430W WO2019088139A1 WO 2019088139 A1 WO2019088139 A1 WO 2019088139A1 JP 2018040430 W JP2018040430 W JP 2018040430W WO 2019088139 A1 WO2019088139 A1 WO 2019088139A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
silicon
lithium
Prior art date
Application number
PCT/JP2018/040430
Other languages
English (en)
French (fr)
Inventor
寛 西原
宮地 麻里子
佐藤 正春
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2019550435A priority Critical patent/JP7170330B2/ja
Priority to CN201880071521.2A priority patent/CN111433948B/zh
Priority to US16/761,150 priority patent/US11670756B2/en
Priority to EP18872228.4A priority patent/EP3706212A4/en
Priority to CN202311382026.2A priority patent/CN117352667A/zh
Publication of WO2019088139A1 publication Critical patent/WO2019088139A1/ja
Priority to JP2022170632A priority patent/JP7421044B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a secondary battery, a secondary battery, and a method of manufacturing the same. More specifically, according to the present invention, a negative electrode for a secondary battery and a secondary battery for which the energy density is large and the capacity is difficult to reduce even if charge and discharge are repeated due to a predoping step of introducing Li ions to the negative electrode by an electrochemical method while applying pressure The present invention relates to a secondary battery and a method of manufacturing the same.
  • lithium ion secondary batteries have a large energy density and are now widely used.
  • a Li-containing transition metal oxide is used as a positive electrode active material
  • a carbon material is used as a negative electrode active material.
  • Charging and discharging of the battery are performed by using an insertion reaction and an elimination reaction of Li ions to these positive and negative electrode active materials.
  • the energy density of the lithium ion secondary battery is approaching the theoretical limit, and development of a new secondary battery that realizes further high energy density is required.
  • Patent Document 1 proposes a non-aqueous secondary battery excellent in overcharge safety, high in capacity, and low in cost.
  • This technology is concerned with a positive electrode sheet containing a positive electrode active material, a negative electrode sheet containing a negative electrode material capable of absorbing and desorbing lithium, and a non-aqueous secondary battery having a non-aqueous electrolyte containing a lithium salt; Is a metal oxide containing manganese and substantially not containing lithium involved in charge and discharge in advance, and b) a negative electrode sheet mainly comprising a negative electrode material capable of absorbing and releasing lithium and at least a layer It is a multilayer structure comprising an auxiliary layer containing one layer of water-insoluble particles, and c) a metal foil mainly composed of lithium is attached to the negative electrode sheet in advance.
  • lithium necessary for charge and discharge is supplied by attaching in advance a metal foil mainly composed of lithium to an anode sheet containing an
  • the energy density of the secondary battery depends on the difference between the electronic charge (that is, capacity density) that can be accumulated per unit molecular weight of the active material and the redox potential of the positive and negative electrode active materials, and the capacity density is small for the molecular weight of the active material , The more electrons that react, the larger. Therefore, research is being conducted to realize higher energy density of the secondary battery.
  • negative electrode active materials development of Si and Si compounds in which a large number of electrons react is progressing compared to carbon materials, but such Si compounds have low charge / discharge efficiency at the beginning of the charge / discharge cycle and large irreversible capacity. Moreover, it is said that there is a problem that the volume change due to charge and discharge is large and it is easily deformed, and its practical use has not been advanced.
  • Patent Document 2 proposes a non-aqueous secondary battery having high capacity and good battery characteristics and a method of manufacturing the same.
  • a negative electrode mixture layer containing a negative electrode material composed of a core containing SiO x (where 0.5 ⁇ x ⁇ 1.5) and a carbon covering layer covering the surface of the core.
  • a buffer layer and a Li-containing layer formed by a vapor phase method are sequentially arranged, and Li of the Li-containing layer is absorbed by the negative electrode material by an electrochemical reaction, and atoms for Si are discharged at the end of discharge of the battery.
  • the ratio is 0.8 to 2.4 times that of Li contained in SiO x .
  • nonaqueous secondary battery when allowed to absorb pre-Li as a negative electrode material, since it is provided a buffer layer negative electrode mixture layer capable of suppressing the reaction of Li is incorporated into the anode material, SiO x and Li It is said that it is possible to prevent an abrupt and non-uniform reaction with it and to prevent bending of the negative electrode resulting from expansion of the negative electrode mixture layer.
  • a buffer layer negative electrode mixture layer capable of suppressing the reaction of Li is incorporated into the anode material, SiO x and Li It is said that it is possible to prevent an abrupt and non-uniform reaction with it and to prevent bending of the negative electrode resulting from expansion of the negative electrode mixture layer.
  • the negative electrode material by causing the negative electrode material to occlude the necessary amount of Li by electrochemical reaction, it is possible to prevent the formation of dendrite due to the presence of excess Li, and it is possible to prevent the deterioration of the battery characteristics due to this. It is assumed. As a result, it is possible to use a Li-
  • the irreversible capacity of the negative electrode can be replenished by pre-doping using a lithium-based metal foil or a Li-containing layer.
  • a vacuum-based device in the lithium pre-doping step to the negative electrode active material adsorption of moisture, nitrogen, etc. is suppressed, and uniformity of concentration, high quantitativeness, high diffusivity, A method has been proposed that enables lithium to be pre-doped at high speed.
  • This technology is a method of manufacturing a negative electrode used for an electricity storage device including a positive electrode, a negative electrode and an electrolyte, and among the graphites which are carbon materials, non-graphitizable carbon and graphitizable carbon on the surface of the current collector of the negative electrode.
  • Patent Document 4 proposes a method of manufacturing a lithium ion secondary battery capable of reducing the expansion of the cell caused by the negative electrode active material layer absorbing lithium ions.
  • This technology is a method of manufacturing a lithium ion secondary battery provided with a cell having a negative electrode having a negative electrode active material layer and a positive electrode, wherein the volume density of the negative electrode active material layer is adjusted, and then lithium pre-doping is performed.
  • It has a pre-doping step to be performed and a charging step of performing initial charging while pressurizing the cell, and in the pre-doping step, the cell is pressurized at a predetermined pressure.
  • pressure is applied in a state in which a perforated conductive plate as a pressing jig is provided in the secondary battery, and expansion of the electrode stack due to the pressure state is suppressed, and the thickness of the electrode is increased. Can be suppressed more effectively.
  • Patent Document 5 proposes a method of manufacturing a secondary battery capable of enhancing the performance of the all-solid secondary battery.
  • This technology is a method of manufacturing a secondary battery including an electrolyte layer containing a solid electrolyte and an electrode containing an electrode active material, and the electrode and the electrolyte layer or the electrode and a current collector are brought into contact, and then the electrode is produced.
  • the contact surface of the lithium source and the negative electrode is pressurized to obtain a consolidated current collector / positive electrode / electrolyte layer / negative electrode laminate. There is.
  • Japanese Patent Laid-Open No. 2000-182602 Japanese Patent Application Publication No. 2007-242590 JP, 2014-120555, A JP, 2016-110777, A JP, 2014-86222, A JP 2005-166469 A JP, 2014-199791, A
  • the passive layer is not formed, and it is expected that the cycle life tends to be short when the charge / discharge reaction is repeated. Therefore, in order to reduce irreversible capacity and obtain a secondary battery with a long charge and discharge cycle life, it is considered that the method of electrochemically predoping is excellent.
  • the method of immersing the conventional electrode in the electrolytic solution as it is since the reaction takes a long time, it is not suitable as an industrial manufacturing method.
  • Patent Documents 4 and 5 describe that pressurization is performed in the pre-doping step
  • the present invention described later does not include pressurization jigs in the secondary battery and externally applies pressure, or pressure Are different from Patent Documents 4 and 5 in that they are provided via a non-conductive liquid-permeable elastic body.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a negative electrode for a secondary battery and a secondary battery which have a large energy density and whose capacity is unlikely to decrease even if charge and discharge are repeated. It is. Further, it is to provide a method of manufacturing them.
  • the negative electrode for a secondary battery according to the present invention is a negative electrode for a secondary battery having a negative electrode active material layer containing at least a silicon-based active material and a binder, and a negative electrode current collector, The material is characterized in that it has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • a negative electrode active material layer having such a structural form, a negative electrode for a secondary battery can be provided which has a large energy density and whose capacity is unlikely to decrease even after repeated charge and discharge.
  • the size of the island-like lithium carbonate is 100 nm or less.
  • the silicon-based active material has a peak intensity of 6.7 ppm obtained by peak separation of chemical shifts measured by Li solid state NMR larger than a peak intensity of 16.3 ppm.
  • the silicon-based active material has a lithium pre-doping amount of 2.3 moles or less (relative to silicon).
  • the silicon-based active material contains a crystal of Li 15 Si 4 .
  • the silicon-based active material has a lithium pre-doping amount of 2.3 mol (to silicon) or less.
  • the secondary battery according to the present invention is a secondary battery having at least a positive electrode, a negative electrode and an electrolyte, and the negative electrode is the negative electrode for a secondary battery according to the present invention. . By doing this, it is possible to obtain a secondary battery which has a large energy density and whose capacity is unlikely to decrease even if charge and discharge are repeated.
  • the method for manufacturing a negative electrode for a secondary battery comprises the steps of forming a negative electrode active material layer containing a silicon-based active material and a binder, and bringing an electrolyte containing lithium into contact with the negative electrode active material layer. Applying a pressure and introducing lithium ions by an electrochemical method, and the silicon-based active material after the pre-doping step has an amorphous region containing lithium, and the amorphous region An island-like lithium carbonate is distributed in the inside.
  • the negative electrode active material layer is brought into contact with the lithium-containing electrolytic solution, pressure is applied, and the lithium ion is introduced into the negative electrode active material layer by the electrochemical method. While being easy to control, a passive layer is formed at the interface between the electrolyte solution and the Si-based active material, and a negative electrode for a secondary battery having a long charge-discharge cycle life can be manufactured. Furthermore, by performing pre-doping under pressure, it is possible to easily flow a large current and shorten the time required, and it is possible to uniformly pre-dope. As a result, it is possible to obtain a negative electrode for a secondary battery, which has a large energy density and whose capacity is unlikely to decrease even if charge and discharge are repeated.
  • the silicon-based active material after the pre-doping step has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • Such structural forms contribute to the improvement of the characteristics.
  • the pressure is applied continuously or intermittently.
  • pressure is applied continuously or intermittently, so that uniform pre-doping can be performed.
  • the pressure is preferably in the range of 0.01 MPa or more and 20 MPa or less.
  • the pressure is applied through the liquid permeable elastic body.
  • this liquid-permeable elastic body is nonconductive, it is configured such that the negative electrode active material layer and the electrode for electrolysis are not in direct contact with each other.
  • the silicon-based active material is preferably Si.
  • the binder is preferably selected from polyacrylic acid, polyimide, polyamide, and derivatives thereof.
  • the method for producing a secondary battery according to the present invention is a method for producing a secondary battery having at least a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode is produced by the production of a negative electrode for a secondary battery according to the present invention It is characterized in that it is manufactured by a method. According to the present invention, it is possible to obtain a secondary battery which has a large energy density and whose capacity is unlikely to decrease even if charge and discharge are repeated.
  • a negative electrode for a secondary battery a secondary battery, and a method of manufacturing the same, which have a large energy density and whose capacity is unlikely to decrease even after repeated charge and discharge.
  • the silicon-based active material has an amorphous region containing lithium, and the amorphous region is characterized by a structural form in which island-like lithium carbonate is distributed. Furthermore, such a structural form is manufactured by a method in which pre-doping is performed by applying an external voltage and the pressure at the pre-doping is applied through the liquid-permeable elastic body (in particular, non-conductive liquid-permeable elastic body). It is possible to provide a high-capacity secondary battery that is advantageous in terms of productivity as well as being able to commercialize a negative electrode for a secondary battery that includes a silicon-based active material that is characterized in that the capacity can be increased.
  • TEM image of the silicon type active material which comprises the negative electrode for secondary batteries which concerns on this invention. It is an enlarged view of the TEM image of the silicon type active material shown in FIG. It is the electron beam diffraction image of the part of FIG. 2A. It is an example of the X-ray-diffraction pattern of the silicon type active material which comprises the negative electrode for secondary batteries which concerns on this invention. It is an example of the Li-NMR spectrum of the silicon type active material which comprises the negative electrode for secondary batteries which concerns on this invention. It is an example of the TEM image of the silicon-type active material obtained by non-pressure electrolysis pre-doping. It is an enlarged view of the TEM image of the silicon type active material shown in FIG.
  • the negative electrode for a secondary battery according to the present invention is a secondary having a negative electrode active material layer containing at least a silicon-based active material, a carbon-based material and a binder, and a negative electrode current collector. It is a battery negative electrode. And, it is characterized in that the silicon-based active material has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • the silicon-based active material has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • the secondary battery according to the present invention is a method for producing a secondary battery having at least a positive electrode 11, a negative electrode 3 and an electrolyte 16, wherein the negative electrode 3 is a compound according to the second invention. It is characterized in that it is a negative electrode for a secondary battery.
  • the energy density of the secondary battery 10 is large, and the capacity is unlikely to be reduced even if charge and discharge are repeated.
  • the method of manufacturing the negative electrode 3 for a secondary battery according to the present invention comprises the steps of forming a negative electrode active material layer 3 'containing a silicon-based active material and a binder, and the negative electrode active material layer as shown in FIGS.
  • a lithium-containing electrolytic solution 5 is brought into contact with the 3 ', pressure is applied, and a pre-doping step of introducing lithium ions by an electrochemical method is included.
  • the silicon-based active material after the pre-doping step has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • This manufacturing method has a pre-doping step of bringing the negative electrode active material layer 3 'into contact with the electrolytic solution 5 containing lithium, applying pressure, and introducing lithium ions into the negative electrode active material layer 3' by the electrochemical method. While the control of the amount of current is easy, a passive state layer is formed at the interface between the electrolytic solution and the Si-based active material, and the negative electrode 3 for a secondary battery having a long charge and discharge cycle life can be manufactured. Furthermore, by performing pre-doping under pressure, it is possible to easily flow a large current and shorten the time required, and it is possible to uniformly pre-dope.
  • the negative electrode 3 for a secondary battery which has a large energy density and whose capacity is unlikely to decrease even if charge and discharge are repeated.
  • the silicon-based active material after the pre-doping step has an amorphous region containing lithium, and island-like lithium carbonate is contained in the amorphous region. It is distributed. Such a structural form contributes to the improvement of the characteristics.
  • the method of manufacturing the secondary battery 10 according to the present invention is a method of manufacturing the secondary battery shown in FIG. 9, and is a method of manufacturing the secondary battery having at least the positive electrode 11, the negative electrode 3 and the electrolyte 16.
  • the negative electrode 3 is manufactured by the method of manufacturing the negative electrode for a secondary battery according to the present invention. With this manufacturing method, it is possible to obtain a secondary battery 10 having a large energy density and whose capacity is unlikely to be reduced even if charge and discharge are repeated.
  • the secondary battery 10 is manufactured by such a manufacturing method.
  • the negative electrode for a secondary battery according to the present invention is a silicon-based active material constituting the negative electrode active material layer obtained by pressurized electrolytic pre-doping described in detail in the examples to be described later, and an amorphous region containing lithium have. It can be confirmed from the TEM images of FIGS. 1 and 2A, the electron beam diffraction of FIG. 2B, and the X-ray diffraction pattern of FIG. 3 that the silicon-based active material has an amorphous region. Specifically, in the TEM images shown in FIG. 1 and FIG. 2A, a contrast characteristic of amorphous was observed. Furthermore, in the electron beam diffraction of FIG.
  • the silicon-based active material obtained by non-pressured electrolytic pre-doping which will be described in detail in a comparative example to be described later, was similarly observed.
  • the TEM image, the electron beam diffraction, and the X-ray diffraction pattern were observed in the same manner as the silicon-based active material obtained by the above-described pressure electrolytic pre-doping.
  • the TEM image of the manufactured negative electrode for secondary battery was written on the negative electrode active material layer in a glove box, dispersed on a microgrid, and used as an observation sample for TEM observation.
  • the observation sample was introduced into a TEM without exposure to the atmosphere and observed.
  • the apparatus used was a field emission type transmission analysis electron microscope (Tecnai G2F20, manufactured by FEI Company).
  • the observation condition was an acceleration voltage of 200 kV, and a bright field image and an electron beam diffraction image were also observed.
  • the negative electrode for a secondary battery according to the present invention has lithium carbonate (Li 2 CO 3) in the amorphous region, as the silicon-based active material constituting the negative electrode active material layer is observed and identified in the TEM image of FIG. ) Are distributed like islands.
  • the lithium carbonate was crystalline, and those oriented to 110 planes, 020 planes and 110 planes were observed to be dispersed like islands.
  • lithium carbonate (Li 2 CO 3 ) is not observed in the amorphous region, as observed and identified in the TEM image of FIG. Lithium (Li 2 O) was only observed.
  • the island-like lithium carbonate distributed in the amorphous region is an island-like lithium carbonate which is not a continuous phase of lithium carbonate but forms a region having a closed boundary as observed in FIG. Therefore, compared to the particle surface coated with lithium carbonate, the ions can smoothly enter and exit the silicon-based active material, and the internal resistance is reduced, and the charge / discharge cycle life is improved by alleviation of overcharge and overdischarge, etc. Can be expected.
  • the shape of the island-like lithium carbonate is not particularly limited, and may be spherical, elongated, elliptical or amorphous.
  • the size is also not particularly limited, but from TEM observation, it was 100 nm or less. The definition of the size here is represented by the size of the longest major axis.
  • Patent Document 6 proposes a technique of forming a lithium carbonate film on a surface of a negative electrode active material layer by a sputtering method.
  • the lithium carbonate film formed by sputtering acts to reduce the contact area between the negative electrode active material layer and the non-aqueous electrolyte to suppress the reaction between the two.
  • Patent Document 6 is different in configuration effect from that proposed in the present invention.
  • Patent Document 7 also proposes a technique of providing an inorganic compound film such as lithium carbonate as a second film on the exposed surface of the negative electrode active material.
  • Patent Document 7 an inorganic compound film having high carrier ion conductivity and low electron conductivity is provided on the negative electrode active material via the first film acting to enhance adhesion, thereby reducing and decomposing the electrolyte.
  • the reaction can be suppressed stably even if charge and discharge are repeated. Therefore, the technology proposed in Patent Document 7 is different in its configuration effect from that proposed in the present invention.
  • the silicon-based active material constituting the negative electrode active material layer contains a crystal of Li 15 Si 4 as shown in the X-ray diffraction pattern of FIG. 3.
  • the crystal of Li 15 Si 4 can be confirmed by the diffraction peaks of 2 ⁇ of 20.8 °, 22.3 °, 24.0 °, 40.1 °, 44.1 °, 48.9 °, and the like.
  • the silicon-based active material obtained by non-pressure electrolytic pre-doping does not contain the crystal of Li 15 Si 4 as shown in the X-ray diffraction pattern of FIG. Only the Cu crystal phase is identified.
  • the peak intensity of 6.7 ppm obtained by peak separation is larger than the peak intensity of 16.3 ppm.
  • This meaning indicates that there are many Si bonded to a large number of Li even with the same amount of lithium. This is currently considered to be because Li to be pre-doped preferentially bonds to Si already bonded to Li when the production method of the present invention described later is carried out.
  • the peak intensity of 6.7 ppm obtained by peak separation is smaller than the peak intensity of 16.3 ppm, It was different from the result of This means that even if the amount of lithium is the same, the amount of Si bonded to a large number of Li is small.
  • the pre-doping amount of lithium is 2.3 mol (to silicon) or less. Therefore, the peak intensity of 6.7 ppm is larger than the peak intensity of 16.3 ppm despite the fact that the pre-doping amount of lithium is 2.3 mol (to silicon) or less. It is considered that pre-doping is acting to preferentially bond pre-doped Li to Si already bonded to Li.
  • the secondary battery 10 according to the present invention is characterized by having at least a positive electrode 11, a negative electrode 3 and an electrolyte 16 as shown in FIG. 9, and the negative electrode 3 is the negative electrode for secondary battery according to the present invention described above.
  • the form of the secondary battery is not particularly limited, but the example of FIG. 9 is a coin-type secondary battery.
  • the positive electrode 11, the negative electrode 3 and the electrolyte 16 are provided, and the positive electrode case 18, the negative electrode case 19, the gasket 17, the separator 12, the metal spring (elastic body) 15 and the electrolyte 16.
  • the positive electrode case 18 and the negative electrode case 19 are each formed in a disk-like thin plate shape.
  • the positive electrode case 18 is provided as an exterior member of the positive electrode 11 and plays a role as a positive electrode current collector.
  • a positive electrode 11 composed of a positive electrode active material that can be electrochemically oxidized and reduced and a conductive material is disposed.
  • a separator 12 made of a porous sheet or film such as a microporous film, a nonwoven fabric, or a woven fabric is laminated.
  • the negative electrode 3 for a secondary battery of the present invention is disposed on the separator.
  • a negative electrode current collector 14 made of metal is laminated. Further, a metal spring 15 is placed on the negative electrode current collector 14.
  • the battery shape is not particularly limited, and the present invention can be applied to cylindrical, square, sheet and the like.
  • the packaging method is not particularly limited, and a metal case, a mold resin, an aluminum laminate film or the like may be used.
  • the negative electrode case 19 is fixed to the positive electrode case 18 against the biasing force of the metal spring 15.
  • the positive electrode 11, the separator 12, the negative electrode 3, and the negative electrode current collector 14 are stacked and mounted in the internal space formed by the positive electrode case 18 and the negative electrode case 19 being fixed, and the electrolyte 16 is filled. There is.
  • the gap between the positive electrode case 18 and the negative electrode case 19 which form the internal space is sealed via the gasket 17.
  • the positive electrode 11 is not particularly limited, and a compound that is electrochemically reversibly redox reaction is used.
  • a compound that is electrochemically reversibly redox reaction is used.
  • organic compounds having a thioketone group such as rubeanic acid have a large capacity density, so that the capacity balance with a high capacity Si-based active material (Si or Si compound) can be easily balanced, and a battery of high energy density can be obtained. preferable.
  • the positive electrode 11 can be produced by a conventional method. That is, the positive electrode 11 is prepared by mixing a positive electrode active material such as Li metal oxide or an organic compound with a conductive material and a binder, adding a solvent to prepare a slurry, and using the slurry on a positive electrode current collector (positive electrode case 18) or It can manufacture by apply
  • a positive electrode active material such as Li metal oxide or an organic compound with a conductive material and a binder
  • the negative electrode 3 includes a step of forming a negative electrode active material layer 3 'containing a Si-based active material and a binder, and bringing the negative electrode active material layer 3' into contact with the electrolyte solution 5 containing Li to apply pressure and electrochemistry.
  • Manufacturing method hereinafter referred to as pressurized electrolytic pre-doping method
  • formation of negative electrode active material layer 3 ' mixes the active material which consists of Si or Si compound etc.
  • the conductive material is not particularly limited, and, for example, carbonaceous fine particles such as carbon black, ketjen black, acetylene black, vapor grown carbon fibers, carbon nanotubes such as carbon nanotubes, carbon nanohorns, and carbonaceous materials such as graphene A sheet etc. can be mentioned. These conductive materials can be used in combination of two or more as needed.
  • the solvent is also not particularly limited, and examples thereof include non-proton solvents such as N-methylpyrrolidone, dimethylsulfoxide, dimethylformamide, propylene carbonate, diethyl carbonate, dimethyl carbonate, ⁇ -butyrolactone, acetonitrile, tetrahydrofuran, nitrobenzene, acetone and the like, Methanol, ethanol, water etc. can be mentioned.
  • non-proton solvents such as N-methylpyrrolidone, dimethylsulfoxide, dimethylformamide, propylene carbonate, diethyl carbonate, dimethyl carbonate, ⁇ -butyrolactone, acetonitrile, tetrahydrofuran, nitrobenzene, acetone and the like, Methanol, ethanol, water etc.
  • the electrolyte 16 is interposed between the positive electrode 11 and the negative electrode 3 to transport charge carriers between the two electrodes.
  • the electrolyte 16 one having an ion conductivity of 10 ⁇ 5 S / cm or more at room temperature can be used, for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2) 2, LiC (CF 3 SO 3) 3, LiC (C 2 F 5 SO 2) 3 and the like.
  • the electrolytic solution 5 is used by dissolving such an electrolyte in an organic solvent.
  • the concentration of the electrolyte is not particularly limited, but can be arbitrarily selected in the range of 0.1 mol / L to 2.5 mol / L, but a general concentration such as 1 mol / L can be used. Good.
  • the ion conductivity can be measured by making the platinum electrode of a predetermined
  • organic solvent for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, dimethyl sulfone, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, propyl methyl sulfone, isopropyl methyl sulfone, propyl Ethyl sulfone, isopropyl ethyl sulfone, dipropyl sulfone, diisopropyl sulfone, sulfolane, pentamethylene sulfone, hexamethylene sulfone, 3-methylsulfolane, 2,4-dimethylsulfolane, N, N-dimethylformamide, dimethylacetamide, N-methyl- 2-pyrrolidone and the
  • a gel electrolyte obtained by adding a solvent to a polymer compound to form a gel an ionic liquid, symmetrical glycol diether such as glyme, chain sulfone or the like may be used.
  • polymer compound examples include vinylidene fluoride polymers such as polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, acrylonitrile Acrylonitrile-based polymers such as methyl methacrylate copolymer, polyethylene oxide, ethylene oxide-propylene oxide copolymer, polymers of these acrylates and methacrylates, etc. containing an electrolytic solution, etc. be able to.
  • vinylidene fluoride polymers such as polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, acrylonitrile Acrylonitrile-based polymers such as methyl methacrylate copolymer, polyethylene oxide
  • the method for manufacturing a negative electrode for a secondary battery comprises the steps of forming a negative electrode active material layer containing a silicon-based active material and a binder, contacting the negative electrode active material layer with an electrolyte containing lithium, In addition, it has a pre-doping step of introducing lithium ions by an electrochemical method. Then, the silicon-based active material after the pre-doping step has an amorphous region containing lithium, and island-like lithium carbonate is distributed in the amorphous region.
  • the step of forming the negative electrode active material layer is a step of forming a negative electrode active material layer 3 'containing a Si-based active material and a binder, and more specifically, using Si or a compound containing Si as an active material, a binder, a conductive material, etc. Forming an active material layer including
  • the Si-based active material mainly constitutes the negative electrode active material layer 3 ', and is not particularly limited as long as it electrochemically reversibly performs an oxidation-reduction reaction, but a Si or Si compound can be preferably mentioned. .
  • the Si compound mentioned here is used in the meaning including the alloy and compound of Si and other elements. For example, it may have, in part or all, any one type selected from a single substance of Si, an alloy of Si, and a compound of Si, or even one having two or more types in some or all of them. Good.
  • the Si compound include Mg 2 Si, ZnSi, SiO n (0.2 ⁇ n ⁇ 2), LiSiO and the like.
  • the shape of the Si-based active material is not particularly limited, and may be in the form of fine particles, fibers, or porous particles.
  • the size is also not particularly limited, but the diameter can be in the range of 0.01 to 10 ⁇ m for fine particle shape and porous particle shape, and the length can be in the range of 0.1 to 2000 ⁇ m for fiber shape. .
  • the binder is not particularly limited as long as it binds the electrode active material and the conductive material, and polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, styrene butadiene rubber, polyacrylic Examples include various resins such as acids and polyimide resins. Preferably, polyacrylic acid and derivatives thereof, polyimide, polyamide and derivatives thereof are preferable from the viewpoint that adhesion between active materials can be maintained even after releasing pressure applied in a pre-doping step described later.
  • Polyacrylic acid is an ester composed of acrylic acid and a salt thereof, and the degree of neutralization, molecular weight, and molecular weight distribution are arbitrarily selected in consideration of binding strength with the active material and flexibility.
  • Polyimides, polyamides and their derivatives are polymers having an imide bond or an amide bond, and polyamides are used after being subjected to an imidization treatment as required.
  • a conductive material and an additive are preferably contained in the negative electrode active material layer 3 'as necessary.
  • the conductive material include carbon materials such as carbonaceous fine particles such as carbon black, ketjen black and acetylene black, vapor grown carbon fibers, carbon nanotubes such as carbon nanotubes and carbon nanohorns, and carbonaceous sheets such as graphene. be able to.
  • carbonaceous fine particles such as carbon black, ketjen black and acetylene black
  • vapor grown carbon fibers carbon nanotubes such as carbon nanotubes and carbon nanohorns
  • carbonaceous sheets such as graphene. be able to.
  • the shape is not particularly limited, and the size is also not particularly limited, but fine particles within a range of 0.02 to 2 ⁇ m in diameter may be used.
  • the additive for example, a fluorine-based surfactant, a nonionic surfactant or the like can be optionally blended as required.
  • the formation of the negative electrode active material layer 3 ' is almost the same as a general method, and the above-mentioned Si-based active material, a binder, a conductive material and the like are mixed, a solvent is added and stirred and mixed to prepare a slurry.
  • the prepared slurry is applied on a metal foil (for example, copper foil) to be the current collector 14, and the temperature is raised to evaporate the solvent of the slurry, thereby manufacturing the negative electrode active material layer 3 'having a Si-based active material. be able to.
  • the current collector 14 as a long sheet or a long film metal foil, a long negative electrode active material layer 3 'can be manufactured.
  • the solvent is selected such that the active material and the conductive material are easily dispersed and mixed and hard to be separated, and examples thereof include water and N-methyl-2-pyrrolidone.
  • the negative electrode active material layer 3 ′ may be formed by a method that does not use a solvent, and for example, a method of pressure molding or a method of extrusion molding may be used.
  • the compounding ratio of the materials to be mixed is determined according to the characteristics of the Si-based active material to be produced.
  • the blending amount (total 100 mass%) of the Si-based active material is in the range of 20 mass% or more and 95 mass% or less, and preferably in the range of 70 mass% or more and 95 mass% or less.
  • the compounding amount of the binder is in the range of 1% by mass to 30% by mass, and preferably in the range of 5% by mass to 20% by mass.
  • the compounding amount of the conductive material is in the range of 3% by mass to 60% by mass, and preferably in the range of 3% by mass to 20% by mass.
  • blended as needed is in the range of 0.001 mass% or more and 10 mass% or less, for example.
  • the compounding amount of the solvent is selected in the range in which the active material and the conductive material are easily dispersed and mixed and hard to be separated, and the solid content concentration is adjusted in the range of 10% to 70%.
  • the compounding quantity at the time of preparation is each measured and mix
  • the pre-doping step is a step performed subsequently to the step of forming the negative electrode active material layer, bringing the negative electrode active material layer 3 'into contact with the electrolytic solution 5 containing Li, applying pressure, and applying Li ions by the electrochemical method. It is a process to introduce it.
  • pre-doping is that Li ion is introduce
  • the pre-doping amount of lithium is preferably about 2.3 moles or less with respect to silicon. By setting this range, the possibility of micro shorting due to lithium being deposited unevenly can be reduced.
  • the pre-doping apparatus 20 shown in FIG. 10 includes a working electrode 1 and a counter electrode 2.
  • the pre-doping apparatus 20 is an apparatus for introducing Li ions from the counter electrode 2 to the negative electrode active material layer 3 ′ on the working electrode 1 by an electrochemical method.
  • a power supply 21 for applying a constant current or a constant voltage is connected between the working electrode 1 and the counter electrode 2, and a voltmeter 22, an ammeter 23 and the like are connected as necessary.
  • the working electrode 1 is a metal electrode provided at least on the surface of a roll made of a cylinder or a cylinder, and the working electrode 1 includes the current collector 14 and the negative electrode active material layer 3. 'Is in electrical contact. “At least” means that the working electrode 1 may be provided on the surface of the roll with a predetermined thickness, or the entire roll may act as the working electrode 1. Furthermore, since the roll acts to transport the long current collector 14 and the negative electrode active material layer 3 'by its rotation, continuous production is possible and productivity can be enhanced.
  • the material and thickness of the working electrode 1 are not particularly limited and may be arbitrarily selected depending on the electrical conductivity and the like, and preferably include nickel and stainless steel. Further, the material and size of the roll (roll length, roll diameter, etc.) are not particularly limited, and may be arbitrarily selected depending on productivity, apparatus scale, electrical conductivity, etc.
  • the counter electrode 2 is an electrode for coming into contact with the working electrode 1 through the liquid-permeable elastic body 4 and for introducing Li ions into the negative electrode active material layer 3 '.
  • the counter electrode 2 may also be a roll made of a cylindrical or cylindrical body similar to the working electrode 1, and is a metal electrode provided at least on the surface thereof. “At least” means that the counter electrode 2 may be provided on the surface of the roll with a predetermined thickness, or the entire roll may act as the counter electrode 2.
  • the roll acts to transport the current collector 14 and the negative electrode active material layer 3 'together with the roll-shaped working electrode 1 by its rotation, so continuous production is possible and productivity can be enhanced.
  • the material and thickness of the counter electrode 2 are not particularly limited and may be arbitrarily selected depending on the electrical conductivity and the like, preferably copper, nickel, stainless steel and the like. Further, the material and size of the roll (roll length, roll diameter, etc.) are not particularly limited, and may be arbitrarily selected depending on productivity, apparatus scale, electrical conductivity, etc.
  • Li metal serving as a Li ion source may be attached to the surface of the counter electrode 2 or may be sheeted and moved at the same speed as the negative electrode active material layer 3 ′ and the liquid permeable elastic body 4.
  • metal Li or a Li-containing metal can be used, and as the Li-containing metal, for example, Li 3 Al and the like can be mentioned.
  • Liquid permeable elastic body 4 Liquid permeable elastic body 4 is provided on counter electrode 2 (in the case of a roll, the entire circumference thereof), and counter electrode 2 and working electrode 1 are in contact with each other through liquid permeable elastic body 4 to be opposed to each other. The pressure is applied between the electrode 2 and the working electrode 1, and the place where the electrolytic reaction proceeds through the electrolyte solution 5 is provided.
  • the liquid-pervious elastic body 4 is not particularly limited as long as it has a function of permeating and impregnating the electrolyte 5, but both liquid-permeability and impregnation can be realized, the electrolyte is resistant, and pressure transmission is realized.
  • the material has porosity and a material that can be used, and is a microporous film, nonwoven fabric or woven fabric having communicating holes from the front surface to the back surface of the liquid permeable elastic body 4 and polyethylene stable to the electrolyte solution 5 And polymer membranes such as polypropylene, cellulose, polyurethane and the like.
  • the thickness of the liquid-pervious elastic body 4 is not particularly limited, but if it is too thin, the possibility of a micro short circuit increases, and if too thick, the resistance between the working electrode 1 and the counter electrode 2 increases and the efficiency decreases. For example, it can be arbitrarily selected within the range of 10 .mu.m to 5 mm.
  • the distance between working electrode 1 and counter electrode 2 can be adjusted.
  • the working electrode 1 and the counter electrode 2 have a mechanism (referred to as a gap adjusting mechanism) capable of arbitrarily controlling the gap, and the gap adjusting mechanism functions via the liquid-permeable elastic body 4.
  • Pressure can be applied to the negative electrode active material layer 3 ′ on the electrode 1.
  • the electrolyte solution 5 contains metal ions to be pre-doped. It is preferable to contain Li ion from the point of the energy density of a secondary battery, and an output density as a metal ion which pre dopes.
  • the electrolytic solution 5 is interposed between the negative electrode active material layer 3 'which is to be electrochemically pre-doped and the counter electrode 2 to carry out charge carrier transport between the both electrodes. Interposition of the electrolytic solution 5 can be realized by the impregnation of the electrolytic solution 5 by the liquid permeable elastic body 4 described above.
  • the temperature of the electrolyte solution 5 is not specifically limited, either, For example, it is carried out in the general temperature range, for example, the range of 10 degreeC to 65 degreeC.
  • the electrolyte solution 5 one containing an electrolyte having an ion conductivity of 10 -5 S / cm or more at room temperature can be used.
  • an electrolyte for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 3 ) 3 , LiC (C 2 F 5 SO 2 ) 3 etc. can be mentioned.
  • the electrolytic solution 5 is used by dissolving such an electrolyte in an organic solvent.
  • the concentration of the electrolyte is not particularly limited, but can be arbitrarily selected in the range of 0.1 mol / L to 2.5 mol / L, but a general concentration such as 1 mol / L can be used. Good.
  • the ion conductivity can be measured by making the platinum electrode of a predetermined
  • organic solvent for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, dimethyl sulfone, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, propyl methyl sulfone, isopropyl methyl sulfone, propyl Ethyl sulfone, isopropyl ethyl sulfone, dipropyl sulfone, diisopropyl sulfone, sulfolane, pentamethylene sulfone, hexamethylene sulfone, 3-methylsulfolane, 2,4-dimethylsulfolane, N, N-dimethylformamide, dimethylacetamide, N-methyl- Examples thereof include 2-pyrrolidon
  • the pressure is applied at the time of pre-doping in which the negative electrode active material layer 3 'is brought into contact with the above-described electrolyte solution 5 containing Li, and Li ions are introduced by an electrochemical method.
  • the time required for processing can be shortened, and pre-doping can be uniformly performed.
  • the energy density is large, and the capacity does not easily decrease even if charge and discharge are repeated.
  • the negative electrode 3 for the next battery can be obtained.
  • the pressure is applied to the negative electrode active material layer 3 ′ through the liquid permeable elastic body 4.
  • the magnitude of the pressure is not particularly limited because it varies depending on the material and degree of deformation of the liquid-permeable elastic body 4, the type of the negative electrode active material layer 3 ′, the electrolytic solution 5 and the like.
  • the size may be such that the negative electrode active material layer 3 'is not deformed or the size that does not affect the characteristics even if it is slightly deformed by the applied force.
  • the magnitude of the pressure may be, for example, in the range of 0.01 MPa or more and 20 MPa or less, and the effect is remarkable. Above all, the effect becomes remarkable at 0.01 MPa or more.
  • the pressure is measured, for example, as a pressure applied to a square such as 1 cm long and 1 cm wide, and the measurement can be performed using, for example, a load cell or a pressure sensitive paper.
  • Adjustment and control of pressure are performed by narrowing or widening the distance between the working electrode 1 and the counter electrode 2 or controlling by applying an external force to the electrode itself.
  • the pressure is preferably applied continuously or intermittently, and in particular, electrolysis is preferably applied continuously to the area to be pre-doped. It can be uniformly pre-doped by applying pressure continuously or intermittently and performing electrolysis.
  • the electrochemical reaction is carried out by immersing two electrodes in an electrolytic solution so that no mechanical force acts from the outside, but the present inventor has described Li ion to the negative electrode active material layer 3 '.
  • the electrolytic pre-doping is performed by applying a constant current or a constant voltage between the working electrode 1 and the counter electrode 2.
  • Li ions which the liquid-permeable elastic body 4 impregnates can be pre-doped into the negative electrode active material layer 3 '.
  • the electrolytic pre-doping can ionize the Li metal or the Li-containing metal bonded to the counter electrode 2 or the surface thereof.
  • the electrolytic pre-doping is preferably performed at a constant voltage, but is not particularly limited and may be a constant current. In the case of constant voltage electrolysis, it is preferable to apply a constant voltage of 0.05 V or less.
  • the pre-doping amount is controlled for a predetermined time via the counter electrode 2 and the liquid-permeable elastic body 4, but is reacted so as to include metal ions of at least the irreversible capacity of the negative electrode 3.
  • the amount of pre-doping of Li ions performed by electrolytic pre-doping is preferably 0.5 mol or more, more preferably 1 mol or more, per 1 mol of Si atom.
  • the upper limit of the pre-doping amount is not particularly limited, but can be, for example, 2.3 mol or less. By setting the pre-doping amount within this range, there is an effect that the capacity is unlikely to be reduced even if charge and discharge are repeated at high capacity.
  • a stabilization layer called a passive layer which is generated by the reaction of the electrolytic solution 5 and the additive.
  • This passive layer is preferable because it acts to extend the charge and discharge cycle life.
  • the passive layer is formed by electrochemically oxidizing or reducing the electrolytic solution or the additive at the early stage of charging, and the reaction rate is relatively small, and electrolysis under a short time of several seconds is performed. May not be formed. Therefore, it is preferable to perform electrolysis under conditions where the electrolytic predoping time is 1 minute or more to form a passive layer.
  • FIG. 11 is a schematic view showing another example of the pre-doping apparatus 20A which performs the pre-doping step.
  • this device 20A two rolls are arranged horizontally, and a sheet-like material provided with the negative electrode active material layer 3 'is run on the current collector 14 between them, and when it is sandwiched and pressed between the two rolls. It is an apparatus for dripping electrolyte solution from the upper side and performing pressure electrolysis pre-doping.
  • the configuration of the device 20A is the same as that of the pre-doping device 20 described with reference to FIG.
  • Such pre-doping apparatus is not limited to the form shown in FIG. 10 and FIG. 11, but in consideration of space, productivity, etc., the number, arrangement, size, etc. of rolls, electrolytic liquid supply means, etc. Modifications and applications are possible.
  • the metal (counter electrode 2) to be pre-doped is directly adhered to the sheet-like negative electrode active material layer 3 'via the liquid-permeable elastic body 4 directly, and pressure is applied to apply voltage.
  • a method etc. can be mentioned. Although this method is shown as a form in which pre-doping is carried out for each sheet, it may be carried out continuously for each sheet.
  • the reference numerals are the same as those used in FIG.
  • the method of manufacturing a negative electrode for secondary battery according to the present invention is a method of contacting metal with a working electrode as in the prior art, in terms of configuration, type of reaction, ease of control, etc. It is different.
  • the Si-based active material generally has a large volume change due to charge and discharge, is easily detached from the electrode and is likely to collapse the electrode, and the charge and discharge cycle life is short. Therefore, pre-doping by the conventional method is difficult.
  • the method of manufacturing a negative electrode for a secondary battery according to the present invention allows uniform pre-doping even to a Si-based active material, and provides advantages such as improvement in charge / discharge cycle stability.
  • the pre-doping current can be increased, and higher capacity and shorter pre-doping time can be expected.
  • continuous pre-doping is also possible, and it can be expected to improve productivity.
  • the method of manufacturing the secondary battery 10 according to the present invention is a method of manufacturing the above-described secondary battery 10, and is a method of manufacturing a secondary battery having at least the positive electrode 11, the negative electrode 3 and the electrolyte 16.
  • the negative electrode 3 is pre-doped, the irreversible capacity is small, and a passive layer is provided on the surface of the negative electrode active material, so that the energy density is high.
  • the characteristic is that it is difficult to reduce the capacity even when repeating.
  • the pre-doping in the electrochemical method is performed under pressure, it is also characterized in that it is smooth and has excellent adhesion to the electrode.
  • the steps conventionally applied in the method of manufacturing a lithium secondary battery can be appropriately included, other than the above-described forming step of the negative electrode active material layer and the pre-doping step.
  • the manufacturing method of a general lithium ion secondary battery it is comprised by the electrode formation process, the lamination process of an electrode and a separator, the injection / impregnation process of electrolyte solution, an electrode extraction process, an exterior process etc.
  • analysis of the type and content of the material constituting them may be carried out by analyzing the Si-based active material by atomic absorption spectrometry and analyzing it qualitatively and quantitatively
  • the binder can be qualitatively and quantitatively analyzed by combustion ion chromatography
  • the conductive material can be qualitatively and quantitatively analyzed by thermogravimetric differential thermal analysis.
  • Example 1 (Preparation of secondary battery) 7.0 g of Si powder, 1.5 g of acetylene black, and 15 g of a 10% aqueous solution of sodium polyacrylate having an average molecular weight of 450,000 were weighed respectively, purified water was added and mixed while uniformly mixing to form a mixture . Purified water was further added to this mixture to adjust the viscosity to prepare a negative electrode slurry for negative electrode active material layer coating. This slurry was coated on a 20 ⁇ m thick Cu foil with a knife roll coater to a coating thickness of 100 ⁇ m and a width of 130 mm, and dried at 80 ° C. Then, it apply
  • a negative electrode in which a gray negative electrode active material layer 3 ′ having Si as an active material was provided on the current collector 14 was obtained.
  • the negative electrode active material layer 3 'is provided on the current collector 14 may be referred to as a coated negative electrode.
  • the obtained coated negative electrode was cut into a length of 20 mm and a width of 50 mm, and a tab for electrode extraction was welded to the uncoated portion.
  • a 100 ⁇ m thick nonwoven fabric is laminated in a dry room with a dew point of ⁇ 45 ° C. or less, and 10 volume% fluoroethylene carbonate containing 1 M LiPF 5 , 27 volume% ethylene carbonate, and 63 volume% diethyl carbonate
  • the electrolyte solution 5 which consists of a solution was dripped, and also Li foil lamination
  • a stainless steel plate subjected to an insulation treatment was stacked on the outside of the electrode and the Li foil-laminated copper foil thus produced, to obtain a structure shown in FIG.
  • pressure was applied at a pressure F of 0.01 MPa from the stainless steel plates on both sides.
  • constant current electrolytic reaction was performed on the negative electrode at a current of 0.37 mA up to 0.01V.
  • FIG. 13 is a graph showing changes in voltage with respect to capacitance. From FIG. 13, it is clear that when pre-doping under pressure, the drop in voltage is small and the reaction proceeds to a large volume. This is considered to be due to the decrease in impedance by pressurization, which indicates that pre-doping with higher current is possible. After completion of the reaction, the black-colored negative electrode was taken out, washed with dimethyl carbonate and air-dried in a dry room to obtain a Li-predoped Si negative electrode.
  • N-methylpyrrolidone containing 9.4 g of nickel-cobalt-manganese lithium (Ni: Co: Mn 1: 1: 1, LiNMC), 0.4 g of acetylene black, and 0.3 g of polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • the positive electrode prepared as described above was punched out to a diameter of 13 mm, mounted on the positive electrode case of a coin-type battery, and a 20 ⁇ m thick separator made of a polypropylene porous film was laminated thereon. Furthermore, impregnated 10 vol% of fluoroethylene carbonate containing LiPF 5 of 1M by laminating a pre-doping the negative electrode punched out in a diameter of 14 mm, of 27% by volume of ethylene carbonate, an electrolyte consisting of 63 vol% of diethyl carbonate mixture solution. Next, as shown in FIG.
  • the manufactured coin-type secondary battery was charged to a voltage of 4.2 V with a constant current of 0.54 mA, and then discharged to 2.5 V with a constant current of 0.54 mA. As a result, it was confirmed that this cell was a secondary battery with a discharge capacity of 3.1 mAh. Thereafter, when charge and discharge were repeated in the range of 2.5 to 4.2 V, the capacity density became 95% or more of the initial value even after 100 cycles, and the secondary cycle of long cycle life with little capacity reduction even if charge and discharge were repeated. It was confirmed to be a battery.
  • Comparative Example 1 (Preparation of secondary battery) The coated negative electrode manufactured by the method of Example 1 was cut out similarly to Example 1, the non-woven fabric was laminated, the electrolytic solution was dropped, and the lithium laminated copper foil was further laminated. A stainless steel plate insulated in the same manner as in Example 1 was placed on the outside of the electrode and the lithium-bonded copper foil prepared in this manner. A constant current electrolytic reaction was performed on the negative electrode at a current of 0.37 mA up to 0.01 V in the same manner as in the example except that the pressure was not applied.
  • FIG. 13 indicates that the voltage drop is large when pre-doping is performed without applying pressure, and a large capacity can not be reacted. This indicates that when the pressure is not applied, the voltage drop is large because the impedance is large, and pre-doping can not be performed with a large current.
  • the black-colored negative electrode was taken out, washed with dimethyl carbonate and air-dried in a dry room to obtain a lithium-predoped Si negative electrode.
  • a closed coin-type two coin-shaped diode comprising LiNMC as a positive electrode active material and Si pre-doped with Li as a negative electrode active material, in the same manner as in Example 1, except that a pre-doped negative electrode is used without applying pressure.
  • the following battery was produced.
  • the manufactured coin-type secondary battery was charged to a voltage of 4.2 V with a constant current of 0.54 mA, and then discharged to 2.5 V with a constant current of 0.54 mA. As a result, it was confirmed that this cell was a secondary battery with a discharge capacity of 2.1 mAh. Thereafter, when charge and discharge were repeated in the range of 2.5 to 4.2 V, the capacity density after 100 cycles was 95% or less of the initial capacity, and it was confirmed that the secondary battery was large in cycle deterioration. .
  • Example 2 (Production of Coating Negative Electrode 2-1) Weigh 7.0 g of Si powder, 1.5 g of acetylene black, and 15 g of a 10% solution of polyvinylidene fluoride in N-methylpyrrolidone with an average molecular weight of 50,000, respectively, and add N-methylpyrrolidone to adjust the viscosity. A working negative ink was prepared. This ink was coated on a Cu foil with a coating thickness of 100 ⁇ m, a width of 130 mm and a thickness of 20 ⁇ m using a knife roll coater, and dried at 80 ° C.
  • a negative electrode active material layer having a thickness of 40 ⁇ m is formed on a Cu foil as a current collector by roll pressing, and a coated negative electrode 2-2 using Si as an active material and a polyacrylonitrile copolymer as a binder I got
  • the black-colored negative electrode was taken out, washed with dimethyl carbonate and air-dried in a dry room to obtain a Li-predoped Si negative electrode.
  • the five types of pre-doped electrodes produced as described above were punched out to a diameter of 13 mm, mounted on the positive electrode case of a coin-type battery, and a 20 ⁇ m thick separator made of a polypropylene porous film was laminated thereon. Furthermore, metal Li punched out to a diameter of 14 mm was laminated, and impregnated with an electrolyte composed of a mixed solution of 5 volume% hydrofluoroether containing 1 M LiPF 5 , 27 volume% ethylene carbonate, and 63 volume% diethyl carbonate. Next, the negative electrode current collector plate and the metal spring were placed, and the negative electrode side member covered with the gasket was put on the periphery, and the outside was sealed by a caulking machine. In this way, a sealed half-cell using pre-doped Si composed of five types of binders as an electrode was produced.
  • FIG. 16 is a graph showing the charge / discharge cycle dependency of the discharge capacity of each half cell. As apparent from FIG. 16, it was confirmed that all cells had no capacity loss until 50 cycles, and that the electrode pre-doped under pressure had a long cycle life. In particular, in the case of an electrode using polyacrylic acid and polyimide as a binder, no capacity reduction was observed until 200 cycles or more.
  • Example 3 (Preparation of secondary battery) 7.5 g of rubeanic acid, 1.5 g of vapor grown carbon fiber (VGCF), and 1.0 g of a polytetrafluoroethylene resin binder were measured respectively, and purified water was added and kneaded while being uniformly mixed. Ion-exchanged water was further added to this mixture to adjust the viscosity to prepare a slurry for coating a positive electrode.
  • the slurry is coated on a 100 ⁇ m thick, 130 mm wide and 20 ⁇ m thick Al foil with a knife roll coater, dried at 80 ° C., punched into a circular shape of 12 mm in diameter, and a positive electrode containing lubeonic acid and VGCF Made.
  • the positive electrode prepared as described above was placed on the positive electrode case of a coin-type battery, and a 20- ⁇ m-thick separator made of a polypropylene porous film was laminated. Furthermore, was impregnated with an electrolytic solution comprising sulfolane containing Example 1 by stacking pre-doping the Si negative electrode was produced in the same manner as 1M of LiN (C 2 F 5 SO 2 ) 2. Next, the negative electrode current collector plate and the metal spring were placed, and the negative electrode side member covered with the gasket was put on the periphery, and the outside was sealed by a caulking machine. In this manner, a sealed coin-type secondary battery was produced, which was made of Rubeonic acid as a positive electrode active material and Si pre-doped with Li as a negative electrode active material.
  • This coin-type secondary battery is charged at a constant current of 0.24 mA in a 45 ° C. thermostat bath, and after reaching 4.0 V, conditioning is performed by maintaining a constant voltage for 6 hours, and a coin-type secondary battery is completed.
  • the manufactured coin-type secondary battery was charged to a voltage of 4.0 V with a constant current of 0.24 mA, and then discharged to 1.5 V with a constant current of 0.24 mA. As a result, it was confirmed that this cell was a secondary battery with a discharge capacity of 4.1 mAh. Thereafter, when charge and discharge were repeated in the range of 1.5 to 4.0 V, the capacity density became 95% or more of the initial level even after 100 cycles, and the secondary cycle of long cycle life with little capacity reduction even if charge and discharge were repeated. It was confirmed to be a battery.
  • Example 4 (Preparation of secondary battery) 7.0 g of SiO powder, 1.5 g of acetylene black, and 15 g of a 10% aqueous solution of sodium polyacrylate having an average molecular weight of 450,000 were measured respectively, and purified water was added and mixed while uniformly mixing. Purified water was further added to this mixture to adjust the viscosity, and a negative electrode ink for coating was produced. This ink was applied and dried in the same manner as in Example 1, and pre-doped in the same manner as in Example 1 under a pressure of 0.1 MPa to produce a negative electrode containing SiO and acetylene black.
  • Example 2 Instead of the negative electrode containing Si and acetylene black in Example 1, a negative electrode containing SiO and acetylene black was used. A sealed coin-type secondary battery was produced in the same manner as in Example 1 except for this, using LiNMC as the positive electrode and SiO pre-doped with Li under pressure as the negative electrode.
  • the manufactured coin-type secondary battery was charged to a voltage of 4.0 V with a constant current of 0.24 mA, and then discharged to 1.5 V with a constant current of 0.24 mA. As a result, it was confirmed that this cell was a secondary battery with a discharge capacity of 4.1 mAh. Thereafter, when charge and discharge were repeated in the range of 1.5 to 4.0 V, the capacity density became 95% or more of the initial level even after 100 cycles, and the secondary cycle of long cycle life with little capacity reduction even if charge and discharge were repeated. It was confirmed to be a battery.
  • Example 5 About the negative electrode for secondary batteries of Example 1 obtained by pressurized electrolytic pre-doping and the negative electrode for secondary batteries of comparative example 1 obtained by non-pressured electrolytic pre-doping, as shown in FIG. 14 and FIG. And cycle characteristics were compared.
  • the charge and discharge characteristics shown in FIG. 14 apply the usual measurement method for evaluating the performance of the negative electrode for secondary battery, the capacity of the negative electrode active material relative to the weight of the positive electrode active material is taken as abscissa and the voltage fluctuation is taken as ordinate evaluated.
  • the curve during charging is about 4 V constant, while the negative electrode for a secondary battery obtained by pressurized electrolytic pre-doping has constant and stable charge / discharge characteristics regardless of the first to eighth discharge cycles. In particular, even in the range of 100 to 120 Ah / kg, it showed a voltage of about 2 V or more.
  • the negative electrode for a secondary battery obtained by non-pressured electrolytic pre-doping a sharp voltage drop occurred in one discharge. This result indicates that by performing the pressure electrolytic pre-doping, the irreversible capacity is reduced in the negative electrode for secondary battery, so that stable charge and discharge can be repeated from the first cycle.
  • Example 6 The structure of the negative electrode for secondary battery obtained by pressurized electrolytic pre-doping and the negative electrode for secondary battery obtained by non-pressured electrolytic pre-doping were observed and measured as shown in FIGS. .
  • the negative electrode for secondary batteries obtained in Example 1 and Comparative Example 1 was used as an observation sample.
  • the observation sample was washed with dichloromethane under an argon gas atmosphere, dried, and scraped off on a microgrid.
  • a field emission type transmission analysis electron microscope (Tecnai G2F20 manufactured by FEI Company)
  • a scraped sample was used to obtain a visual field image at an accelerating voltage of 200 kV, and then electron diffraction measurement was performed.
  • Example 7 it was confirmed whether Li 15 Si 4 appeared even after charge and discharge.
  • a negative electrode active material layer containing silicon as an active material was formed on a stainless steel foil, and a secondary battery was manufactured using a negative electrode for a secondary battery obtained by pressure electrolysis pre-doping. The charge and discharge of this secondary battery is repeated, and then the cell is disassembled under an argon gas atmosphere, and the negative electrode for the secondary battery after charge and discharge taken out is exposed to the atmosphere without X-ray diffractometer (manufactured by RIGAKU CO., LTD. The X-ray diffraction measurement was performed using SmartLab 9 kW). The charge and discharge test was conducted for 4 cycles in the range of 1.5 to 4.2 V at a constant current of 0.04 C and stopped in the charge state.
  • FIG. 17 is a charge / discharge curve obtained in this charge / discharge test, where a is a charge curve and b is a discharge curve.
  • the cell using the pressurized electrolytic pre-doped silicon negative electrode showed a small decrease in capacity up to the fourth cycle, and high energy (the energy density calculated from the capacity per unit area and the voltage was 300 Wh / kg).
  • FIG. 18 is an X-ray diffraction pattern of the silicon-based active material constituting the negative electrode for secondary battery after charge and discharge. As is clear from this result, it was found that the same Li 15 Si 4 as before charging and discharging appeared in the pressurized electrolytic pre-doped silicon negative electrode even after charging and discharging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極及び二次電池並びにそれらの製造方法を提供する。 【解決手段】シリコン系活物質とバインダーとを少なくとも含む負極活物質層と、負極集電体とを有する二次電池用負極であって、前記シリコン系活物質がリチウムを含む非晶質領域を有し、該非晶質領域中には島状の炭酸リチウムが分布している構造形態により上記課題を解決する。この二次電池用負極は、Si系活物質及びバインダーを含む負極活物質層を形成する工程と、当該負極活物質層にLiを含有する電解液を接触させ、圧力を加え、電気化学的方法でLiイオンを導入するプレドープ工程とを有する方法で製造される。

Description

二次電池用負極及び二次電池並びにそれらの製造方法
 本発明は、二次電池用負極及び二次電池並びにそれらの製造方法に関する。さらに詳しくは、本発明は、圧力を加えながら電気化学的方法でLiイオンを負極に導入するプレドープ工程により、エネルギー密度が大きく充放電を繰り返しても容量が低下しにくい二次電池用負極及び二次電池並びにそれらの製造方法に関する。
 携帯電話やポータブル電子機器等の市場の拡大とともに、これらに用いられる電池は、高エネルギー密度化や高出力化が要求されている。こうした要求に応えるため、Li等のアルカリ金属イオンを荷電担体として、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。特にリチウムイオン二次電池は、エネルギー密度が大きく、現在広く普及している。
 リチウムイオン二次電池では、正極活物質としてLi含有遷移金属酸化物が用いられ、負極活物質として炭素材料が用いられている。電池の充電と放電(以下「充放電」という。)は、これら正負極活物質に対するLiイオンの挿入反応及び脱離反応を利用して行われている。しかしながら、リチウムイオン二次電池のエネルギー密度は理論的な限界に近付いており、さらなる高エネルギー密度化を実現する新しい二次電池の開発が求められている。
 こうした要求に対し、例えば特許文献1には、過充電安全性に優れ、高容量であり、かつ低コストの非水二次電池が提案されている。この技術は、正極活物質を含有する正極シート、リチウムを吸蔵・放出可能な負極材料を含有する負極シートおよびリチウム塩を含む非水電解質を有する非水二次電池において、a)主たる正極活物質がマンガンを含み、かつ、充放電に関与するリチウムを予め実質的に含有しない金属酸化物であり、かつ、b)負極シートが、リチウムを吸蔵、放出可能な負極材料を主体とした層と少なくとも1層の水不溶性の粒子を含む補助層からなる多層構成であり、かつ、c)負極シートにリチウムを主体とした金属箔が予め貼付されたことを特徴とするものである。この非水二次電池では、リチウムを吸蔵、放出可能な負極材料を含有する負極シートにリチウムを主体とした金属箔を予め貼付することによって充放電に必要なリチウムを供給するというものである。
 二次電池のエネルギー密度は、活物質の単位分子量当たりに蓄積できる電子電荷(すなわち容量密度)と、正負極活物質の酸化還元電位との差に依存し、容量密度は活物質の分子量が小さく、反応する電子が多いものほど大きくなる。そのため、二次電池のさらなる高エネルギー密度化を実現するための研究が進められている。負極活物質については、炭素材料に比べて多数の電子が反応するSiやSi化合物の開発が進んでいるが、そうしたSi化合物は、充放電サイクル初期の充放電効率が低く、不可逆容量が大きい、また、充放電に伴う体積変化が大きく、変形しやすい、という問題があると言われており、実用化は進んでいなかった。
 こうした問題に対し、例えば特許文献2には、高容量で良好な電池特性を有する非水二次電池とその製造方法が提案されている。この技術は、SiO(ただし、0.5≦x≦1.5である)を含むコアとその表面を被覆する炭素の被覆層とで構成された負極材料を含有する負極合剤層上に、バッファ層と、気相法により形成されるLi含有層とを順に配置し、電気化学反応により、上記Li含有層のLiを上記負極材料に吸蔵させ、電池の放電終了状態において、Siに対する原子比で0.8~2.4倍のLiをSiOに含有させるというものである。この非水二次電池では、負極材料に予めLiを吸蔵させるに当たり、負極材料にLiが取り込まれる反応を抑制することのできるバッファ層を負極合剤層上に設けているので、SiOとLiとの急激かつ不均一な反応を防ぎ、負極合剤層の膨張に起因する負極の湾曲を防止することができるとされている。また、必要量のLiを電気化学反応により負極材料に吸蔵させることにより、過剰なLiの存在に起因するデンドライトの生成を防ぐことができ、これに起因する電池特性の低下を防止することができるとされている。その結果、Li含有遷移金属酸化物を正極材料として用いることが可能となり、高容量で良好な電池特性を有する非水二次電池を提供することができるとされている。
 特許文献1,2のように、リチウムを主体とした金属箔やLi含有層を用いたプレドープにより、負極の不可逆容量を補充することができる。例えば特許文献3では、負極活物質へのリチウムプレドープ工程に真空系装置を用いる場合であっても、水分や窒素等の吸着を抑制し、濃度の均一性、高定量性、高拡散性、高速にリチウムをプレドープすることを可能とする方法が提案されている。この技術は、正極、負極および電解質を含む蓄電デバイスに用いられる負極の作製方法であって、負極の集電体の表面に、炭素材であるグラファイト,難黒鉛性カーボン,易黒鉛性カーボンの中から選ばれた少なくとも1種もしくはそれらの混合物を含むリチウムイオンの吸蔵および放出が可能な炭素系活物質層を形成したのち、炭素系活物質層の表面に連続式真空蒸着プロセスでリチウムを付与するというものである。
 一方、二次電池のプレドープ工程では、活物質層が膨張するという問題があり、こうした問題に対し、加圧した状態でプレドープを行う技術が提案されている。例えば特許文献4には、負極活物質層がリチウムイオンを吸蔵することに伴うセルの膨張を低減し得るリチウムイオン二次電池の製造方法が提案されている。この技術は、負極活物質層を有する負極と、正極とを有するセルを備えたリチウムイオン二次電池の製造方法であって、前記負極活物質層の体積密度を調整した後、リチウムプレドープを行うプレドープ工程と、前記セルを加圧しながら初回充電を行う充電工程とを有し、そのプレドープ工程において、前記セルを所定の圧力で加圧するというものである。この技術では、加圧治具である有孔導電性板を二次電池内に備えた状態で加圧され、その加圧状態により電極積層体が膨張することを抑制し、電極の厚みの増加をより効果的に抑制できるとされている。
 また、特許文献5には、全固体二次電池の性能を高くすることができる二次電池の製造方法が提案されている。この技術は、固体電解質を含む電解質層と、電極活物質
を含む電極と、を備える二次電池の製造方法であって、電極と電解質層、又は電極と集電体を接触させた後、電極に伝導種をプレドープするというものであり、プレドープ時は、リチウム源と負極の接触面を加圧して、圧密化した集電体/正極/電解質層/負極の積層体を得る旨が記載されている。
特開2000-182602号公報 特開2007-242590号公報 特開2014-120555号公報 特開2016-110777号公報 特開2014-86222号公報 特開2005-166469号公報 特開2014-199791号公報
 上記特許文献1には、負極シートにリチウムを主体とした金属箔を予め貼付することによって充放電に必要なリチウムを供給できることが記載されているが、反応後に金属リチウムが残存する可能性があり、それによる短絡の可能性がある。また、特許文献2では、バッファ層上にLi含有層を順に配置するので、負極合剤層中に金属Liが残存したり、バッファ層の表面にも金属Liが残存したりする可能性がある。また、特許文献3では、炭素系活物質層の表面に連続式真空蒸着プロセスでリチウムを付与するが、均一にLiを蒸着することは難しく、製造プロセス上の安全性やコストの面で課題がある。このように、高エネルギー密度の二次電池、及びそれを製造するための安定で簡便な負極プレドープの方法は未だ見出されていないのが現状である。
 ところで、通常の電気化学反応では、作用極として負極活物質を担持した電極を用い、対向電極としてLi金属を用い、これらを一定の間隔を隔てて電解液に浸漬し、電圧を印加することにより、電気化学的方法で負極活物質にLiを吸蔵させるプレドープ方法が以前より知られている。このプレドープでは、負極活物質表面には、電解液に含まれる溶媒や添加剤の電気化学反応による不働態層が形成され、その後の安定した充放電反応に寄与すると言われている。一方、負極活物質に金属Liを接触してプレドープする方法では、不働態層は形成されず、充放電反応を繰り返すと容量が低下しやすいサイクル寿命の短いものになると予想される。そのため、不可逆容量を低減して充放電サイクル寿命の大きな二次電池を得るためには、電気化学的にプレドープする方法が優れていると考えられる。しかし、従来の電極をそのまま電解液に浸漬する方法では、反応に長時間を要するため、工業的な製造方法としては適さない。
 なお、特許文献4,5には、プレドープ工程で加圧する旨が記載されているが、後述する本発明は、二次電池内に加圧治具を含まずに外部から加圧することや、圧力が非導電性の透液性弾性体を介して与えられる等の点で、特許文献4,5とは相違する。
 本発明は、上記課題を解決するためになされたものであって、その目的は、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極及び二次電池を提供することにある。さらに、それらの製造方法を提供することにある。
 (1)本発明に係る二次電池用負極は、シリコン系活物質とバインダーとを少なくとも含む負極活物質層と、負極集電体とを有する二次電池用負極であって、前記シリコン系活物質がリチウムを含む非晶質領域を有し、該非晶質領域中には島状の炭酸リチウムが分布している、ことを特徴とする。こうした構造形態を有する負極活物質層により、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極とすることができる。
 本発明に係る二次電池用負極において、前記島状の炭酸リチウムの大きさが、100nm以下である。
 本発明に係る二次電池用負極において、前記シリコン系活物質は、Li固体NMRで測定したケミカルシフトをピーク分離して得られる6.7ppmのピーク強度が16.3ppmのピーク強度よりも大きい。この場合において、前記シリコン系活物質は、リチウムのプレドープ量が2.3モル(対シリコン)以下である。
 本発明に係る二次電池用負極において、前記シリコン系活物質が、Li15Siの結晶を含む。この場合において、前記シリコン系活物質が、リチウムのプレドープ量が2.3モル(対シリコン)以下である。
 (2)本発明に係る二次電池は、少なくとも、正極、負極及び電解質を有する二次電池であって、前記負極が、上記本発明に係る二次電池用負極である、ことを特徴とする。こうすることにより、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池とすることができる。
 (3)本発明に係る二次電池用負極の製造方法は、シリコン系活物質及びバインダーを含む負極活物質層を形成する工程と、当該負極活物質層にリチウムを含有する電解液を接触させ、圧力を加え、電気化学的方法でリチウムイオンを導入するプレドープ工程とを有し、前記プレドープ工程後の前記シリコン系活物質が、前記リチウムを含む非晶質領域を有し、該非晶質領域中には島状の炭酸リチウムが分布している、ことを特徴とする。
 この発明によれば、負極活物質層にリチウムを含有する電解液を接触させ、圧力を加え、電気化学的方法で当該負極活物質層にリチウムイオンを導入するプレドープ工程を有するので、電流量の制御が容易であるとともに、電解液とSi系活物質の界面に不働態層が形成されて充放電サイクル寿命の長い二次電池用負極を作製することができる。さらに、プレドープを加圧下で行うことにより、大きな電流を流しやすくなって要する時間を短縮することができるとともに、均一にプレドープすることができる。その結果、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極を得ることができる。このような効果を示した負極活物質層は、プレドープ工程後のシリコン系活物質が、リチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布しており、そうした構造形態が特性向上に寄与している。
 本発明に係る二次電池用負極の製造方法において、前記圧力を、連続的又は断続的に加える。この発明によれば、圧力を連続的又は断続的に加えるので、均一にプレドープすることができる。
 本発明に係る二次電池用負極の製造方法において、前記圧力が0.01MPa以上、20MPa以下の範囲内であることが好ましい。
 本発明に係る二次電池用負極の製造方法において、前記圧力が、透液性弾性体を介して加えられることが好ましい。この発明によれば、圧力が透液性弾性体を介して加えられるので、プレドープを行っても変形が少ない負極を得ることができる。この透液性弾性体は非導電性であるので、負極活物質層と電解用電極とが直接接触していないように構成されている。
 本発明に係る二次電池用負極の製造方法において、前記シリコン系活物質が、Siであることが好ましい。
 本発明に係る二次電池用負極の製造方法において、前記バインダーが、ポリアクリル酸、ポリイミド、ポリアミド、及びそれらの誘導体から選ばれることが好ましい。
 (4)本発明に係る二次電池の製造方法は、少なくとも、正極、負極及び電解質を有する二次電池の製造方法であって、前記負極を、上記本発明に係る二次電池用負極の製造方法で製造することを特徴とする。この発明によれば、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池を得ることができる。
 本発明によれば、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極及び二次電池並びにそれらの製造方法を提供することができる。
 本発明によれば、特に、シリコン系活物質がリチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布している構造形態に特徴がある。さらに、そうした構造形態が、外部から電圧を印加してプレドープを行い、プレドープ時の圧力が透液性弾性体(特に非導電性の透液性弾性体)を介して加える方法で製造されることに特徴があり、高容量化が可能なシリコン系活物質を含む二次電池用負極の実用化を可能とするとともに、生産性の点でも有利な高容量二次電池を提供することができる。
本発明に係る二次電池用負極を構成するシリコン系活物質のTEM像の一例である。 図1に示したシリコン系活物質のTEM像の拡大図である。 図2Aの部分の電子線回折像である。 本発明に係る二次電池用負極を構成するシリコン系活物質のX線回折パターンの一例である。 本発明に係る二次電池用負極を構成するシリコン系活物質のLi-NMRスペクトラムの一例である。 非加圧電解プレドープで得たシリコン系活物質のTEM像の一例である。 図5に示したシリコン系活物質のTEM像の拡大図である。 図6Aの部分の電子線回折像である。 非加圧電解プレドープで得たシリコン系活物質のX線回折パターンの一例である。 非加圧電解プレドープで得たシリコン系活物質のLi-NMRスペクトラムの一例である。 本発明に係る二次電池の一例を示す断面図である。 本発明に係る製造方法を構成するプレドープ工程の一例を示す概略模式図である。 本発明に係る製造方法を構成するプレドープ工程の他の一例を示す概略模式図である。 本発明に係る製造方法を構成するプレドープ工程のさらに他の一例を示す概略模式図である。 実施例1及び比較例1で作製した電極のプレドープ過程における電圧の変化を示すグラフである。 実施例1及び比較例1で作製した電極の充放電特性を比較したグラフである。 実施例1及び比較例1で作製した電極のサイクル特性を比較したグラフである。 実施例1及び比較例2で作製した電極の放電容量の充放電サイクル依存性を示すグラフである。 実施例7での充放電試験で得られた充放電曲線である。 実施例7での充放電後の二次電池用負極を構成するシリコン系活物質のX線回折パターンである。
 以下、本発明に係る二次電池用負極及び二次電池並びにそれらの製造方法について、図面を参照しつつ説明する。本発明は、その要旨を含めば以下の実施形態に限定されない。なお、以下においては、「シリコン」を「Si」と略すことがあり、「リチウム」を「Li」と略すことがある。
 [二次電池用負極及び二次電池並びにそれらの製造方法]
 本発明に係る二次電池用負極は、図1~図4に示すように、シリコン系活物質と炭素系材料とバインダーとを少なくとも含む負極活物質層と、負極集電体とを有する二次電池用負極である。そして、シリコン系活物質が、リチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布している、ことに特徴がある。また、本発明に係る二次電池は、図9に示すように、少なくとも、正極11、負極3及び電解質16を有する二次電池の製造方法であって、負極3が、上記本発明に係る二次電池用負極であることに特徴がある。この二次電池10は、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくいものとすることができる。
 本発明に係る二次電池用負極3の製造方法は、図10~図12に示すように、シリコン系活物質及びバインダーを含む負極活物質層3’を形成する工程と、その負極活物質層3’にリチウムを含有する電解液5を接触させ、圧力を加え、電気化学的方法でリチウムイオンを導入するプレドープ工程とを有する。そして、プレドープ工程後のシリコン系活物質が、リチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布している。この製造方法は、負極活物質層3’にリチウムを含有する電解液5を接触させ、圧力を加え、電気化学的方法で負極活物質層3’にリチウムイオンを導入するプレドープ工程を有するので、電流量の制御が容易であるとともに、電解液とSi系活物質の界面に不働態層が形成されて充放電サイクル寿命の長い二次電池用負極3を作製することができる。さらに、プレドープを加圧下で行うことにより、大きな電流を流しやすくなって要する時間を短縮することができるとともに、均一にプレドープすることができる。その結果、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極3を得ることができる。このような効果を示した負極活物質層3’は、プレドープ工程後のシリコン系活物質が、リチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布している。そうした構造形態が特性向上に寄与している。
 また、本発明に係る二次電池10の製造方法は、図9に示す二次電池の製造方法であり、少なくとも、正極11、負極3及び電解質16を有する二次電池の製造方法であって、負極3を、上記本発明に係る二次電池用負極の製造方法で製造する。この製造方法により、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池10を得ることができる。二次電池10はこうした製造方法によって製造される。
 以下、各構成要素について説明する。
 [二次電池用負極]
 <シリコン系活物質の非晶質領域>
 本発明に係る二次電池用負極は、負極活物質層を構成するシリコン系活物質が、後述する実施例で詳しく説明する加圧電解プレドープで得たものであり、リチウムを含む非晶質領域を有している。シリコン系活物質が非晶質領域を有することは、図1及び図2AのTEM像と図2Bの電子線回折と図3のX線回折パターンとから確認することができる。具体的には、図1及び図2Aに示すTEM像には、非晶質に特徴的なコントラストが観察された。さらに、図2Bの電子線回折では、非晶質に特徴的なハローリングが観察された。さらに、図3のX線回折パターンでは、2θ=20°付近で非晶質形態を示すプロードが現れていた。これらのことから、加圧電解プレドープで得たシリコン系活物質は、リチウムを含む非晶質領域を有していることが確認された。
 一方、後述する比較例で詳しく説明する非加圧電解プレドープで得たシリコン系活物質についても同様に観察した。上記した加圧電解プレドープで得たシリコン系活物質と同様、TEM像、電子線回折、X線回折パターンについて観察した。その結果、図5~図8に示すように、このシリコン系活物質は、図6Bの電子線回折では結晶性パターンが観察され、図7のX線回折パターンの2θ=20°付近にはブロード形態が現れていなかった。これらのことから、非加圧電解プレドープで得たシリコン系活物質は、リチウムを含む非晶質領域はあまり存在していなかった。
 なお、TEM像は、製造された二次電池用負極について、グローブボックス内で負極活物質層を書き落とし、マイクログリッド上に分散し、TEM観察用の観察試料とした。その観察試料を大気非曝露でTEMに導入し、観察を行った。用いた装置は、電界放射型透過分析電子顕微鏡(FEI Company社製、TecnaiG2F20)であり、観察条件は加速電圧200kVとし、明視野像、電子線回折像も併せて観察した。観察結果は、上記したように、加圧電解プレドープして得たシリコン系活物質と、非加圧電解プレドープして得たシリコン系活物質とも、厳密には結晶領域、非結晶領域及びグラファイト的領域が混在しているが、加圧電解プレドープして得たシリコン系活物質は、非加圧電解プレドープして得たシリコン系活物質に比べ、より多くの非晶質領域が有意に存在していることが観測結果より明らかとなった。
 <島状の炭酸リチウム>
 本発明に係る二次電池用負極は、負極活物質層を構成するシリコン系活物質が、図1のTEM像で観察・同定されるように、非晶質領域に炭酸リチウム(LiCO)が島状に分布している。その炭酸リチウムは、結晶性であり、110面、020面、110面に配向したものが島状に分散して観察された。一方、非加圧電解プレドープで得たシリコン系活物質は、図5のTEM像で観察・同定されるように、非晶質領域中に炭酸リチウム(LiCO)は観察されず、酸化リチウム(LiO)が観察されたに過ぎなかった。
 非晶質領域中に分布する島状の炭酸リチウムとは、炭酸リチウムが連続相ではなく、図1で観察されるように閉じた境界を持つ領域を形成する島状の炭酸リチウムである。そのため、粒子表面が炭酸リチウムで被覆されたものに比べて、シリコン系活物質へのイオンの出入りがスムーズになり、内部抵抗の低下、過充電や過放電の緩和による充放電サイクル寿命の改善等が期待できる。
 島状の炭酸リチウムの形状は特に限定されず、球状でも、長形でも、楕円形でも、不定形でもよい。その大きさも特に限定されないが、TEM観察からは、100nm以下であった。ここでの大きさの定義は、最も長い長径のサイズで表している。
 なお、先行技術文献の欄にも挙げたように、炭酸リチウムについては、幾つかの先行技術文献にも記載されているが、本発明の態様とはいずれも相違していた。例えば、特許文献6には、負極活物質層の表面に炭酸リチウム被膜をスパッタリング法で成膜する技術が提案されている。この技術は、スパッタリング法で成膜した炭酸リチウム被膜が、負極活物質層と非水電解質との接触領域を小さくして両者の反応を抑制するように作用するというものである。その結果として、充電により膨張した体積が放電後に元の体積に戻らなくなるのを抑制し、負極活物質層中に空孔ができるのを抑制し、負極活物質層の構造変化の可逆性が失われるのを抑制して、導電性の低下や負極活物質層を構成する活物質の脱落を抑制し、充放電容量を大きくすることができるとともに、充放電サイクル特性を向上させることができる、というものである。したがって、この特許文献6で提案する技術は、本発明で提案するものとはその構成効果が相違する。また、特許文献7にも、炭酸リチウム等の無機化合物膜を第2の膜として負極活物質の露出面に設ける技術が提案されている。この技術は、キャリアイオン伝導性が高く、電子伝導性が低い無機化合物膜を、密着性を高めるように作用する第1の膜を介して負極活物質上に設けることにより、電解液の還元分解反応の抑制を充放電を繰り返しても安定に行うことができるとしたものである。したがって、この特許文献7で提案する技術も、本発明で提案するものとはその構成効果が相違する。
 <結晶性LiSi化合物>
 本発明に係る二次電池用負極は、負極活物質層を構成するシリコン系活物質が、図3のX線回折パターンに示すように、Li15Siの結晶を含んでいる。Li15Siの結晶は、2θが20.8°、22.3°、24.0°、40.1°、44.1°48.9°等の回折ピークで確認することができる。一方、非加圧電解プレドープで得たシリコン系活物質は、図7のX線回折パターンに示すように、Li15Siの結晶を含んでおらず、Si結晶相や、集電体材質のCu結晶相だけが確認される。
 <リチウム結合数> 本発明に係る二次電池用負極は、負極活物質層を構成するシリコン系活物質が、図4に示すように、Li固体NMRで測定したケミカルシフトをピーク分離すると、6.7ppmにピーク強度を持つ曲線cと、16.3ppmにピーク強度を持つ曲線bと、0ppmにピーク強度を持つ曲線aとに分けられる。Li固体NMRでは、LiSiについて、6.7ppmのピークは2.3<x<3.8を示し、16.3ppmのピークは1.7<x<2.3を示し、0ppmのピークはx<1を示す。このLi固体NMR測定の結果は、Bruker AVANCEIII600を用いて、Li MAS-NMRスペクトル測定で得たものである。 
本発明では、ピーク分離して得られた6.7ppmのピーク強度が、16.3ppmのピーク強度よりも大きい。この意味は、同じリチウム量であっても多数のLiと結合したSiが多いことを示している。これは後で述べる本発明の製造方法を実施した場合、プレドープするLiはすでにLiと結合したSiに優先的に結合するためと現時点では考えられる。一方、非加圧電解プレドープで得たシリコン系活物質では、図8に示すように、ピーク分離して得られた6.7ppmのピーク強度は、16.3ppmのピーク強度よりも小さく、図4の結果とは異なっていた。この意味は、同じリチウム量であっても多数のLiと結合したSiが少ないことを示している。
 なお、本発明でのシリコン系活物質は、リチウムのプレドープ量が2.3モル(対シリコン)以下である。したがって、リチウムのプレドープ量が2.3モル(対シリコン)以下であるにもかかわらず、6.7ppmのピーク強度が、16.3ppmのピーク強度よりも大きくなっていることは、この加圧電解プレドープ法により、プレドープするLiがすでにLiと結合したSiに優先的に結合するように作用しているものと考えられる。
 [二次電池]
 本発明に係る二次電池10は、図9に示すように、少なくとも正極11、負極3及び電解質16を有し、負極3が、上記した本発明に係る二次電池用負極であることに特徴がある。二次電池の形態は特に限定されないが、図9の例はコイン型の二次電池である。この例の場合は、正極11、負極3及び電解質16を有するとともに、正極ケース18、負極ケース19、ガスケット17、セパレータ12、金属製バネ(弾性体)15、電解質16で構成されている。コイン型の二次電池では、正極ケース18及び負極ケース19は、いずれも円盤状の薄板形状に形成されている。
 (構造要素)
 正極ケース18は、正極11の外装部材として設けられており、正極集電体としての役割がある。正極ケース18の底部中央には、図9に示すように、電気化学的に酸化還元しうる正極活物質と導電材とから構成された正極11が配設されている。正極11上には、微多孔膜、不織布、織布等の多孔性のシート又はフィルムからなるセパレータ12が積層されている。さらに、セパレータ上には、上記本発明の二次電池用負極3が配設されている。この負極3上には、金属からなる負極集電体14が積層されている。さらに、負極集電体14上には、金属製のばね15が載置されている。ここではコイン型の二次電池について説明するが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフイルム等を使用してもよい。
 負極ケース19は、金属製のばね15の付勢力に抗して正極ケース18に固着されている。正極ケース18と負極ケース19とが固着されて形成された内部空間には、正極11、セパレータ12、負極3及び負極集電体14が積層されて載置されるとともに、電解質16が充填されている。内部空間を形成する正極ケース18と負極ケース19との間隙は、ガスケット17を介して封止されている。
 (正極と負極)
 正極11は、特に限定されず、電気化学的に可逆に酸化還元反応する化合物が使用される。そうした化合物としては、例えば、リチウムマンガン複合酸化物、コバルト酸リチウム、ニッケル酸リチウム、リチウムマンガンスピネル、一般式:LiNiCoMn(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される複合金属酸化物、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)等のLi金属酸化物、ポリピロールやポリアニリン等の導電性高分子、チオケトン基を有する化合物等の有機化合物等を挙げることができる。特に、ルベアン酸等のチオケトン基を有する有機化合物は、容量密度が大きいため、高容量のSi系活物質(Si又はSi化合物)との容量バランスが取りやすく、高エネルギー密度の電池となる点から好ましい。
 正極11は、従来の方法で作製することができる。すなわち、正極11は、Li金属酸化物や有機化合物等の正極活物質を導電材及びバインダーと共に混合し、溶剤を加えてスラリーを作製し、そのスラリーを正極集電体(正極ケース18)上や集電体となる電極箔上に従来公知の方法で塗工し、乾燥することにより作製することができる。
 負極3は、上記本発明に係る二次電池用負極が用いられる。この負極3は、Si系活物質及びバインダーを含む負極活物質層3’を形成する工程と、その負極活物質層3’にLiを含有する電解液5を接触させ、圧力を加え、電気化学的方法でLiイオンを導入するプレドープ工程とを有する方法(加圧電解プレドープ法という。)で製造される。なお、負極活物質層3’の形成は、従来の方法と同様、例えば、Si又はSi化合物等からなる活物質を導電材(黒煙等)及びパインダーと共に混合し、溶剤を加えてスラリーを作製し、そのスラリーを負極集電体(負極ケース19)上や集電体となる電極箔上に従来公知の方法で塗工し、乾燥する工程を適用することができる。
 導電材は特に限定されるものではなく、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素質繊維、グラフェン等の炭素質シート等を挙げることができる。これら導電材は、必要に応じて2種類以上組み合わせて使用することができる。
 溶剤も特に限定されるものではなく、例えば、N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非プロトン溶媒や、メタノール、エタノール、水等を挙げることができる。
 (電解質)
 電解質16は、正極11と負極3との間に介在して両電極間の荷電担体輸送を行う。電解質16としては、室温で10-5S/cm以上のイオン伝導度を有するものを使用することができ、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を挙げることができる。電解液5は、こうした電解質を有機溶剤に溶解させて用いられる。電解質の濃度は特に限定されないが、0.1モル/L~2.5モル/Lの範囲内で任意に選択することができるが、1モル/L等の一般的な濃度を使用してもよい。なお、イオン伝導度は、所定の面積の白金電極を対向させ、交流インピーダンスを測定することによって測定することができる。
 有機溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ一ブチロラクトン、テトラヒドロフラン、ジオキソラン、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、プロピルメチルスルホン、イソプロピルメチルスルホン、プロピルエチルスルホン、イソプロピルエチルスルホン、ジプロピルスルホン、ジイソプロピルスルホン、スルホラン、ペンタメチレンスルホン、ヘキサメチレンスルホン、3-メチルスルホラン、2,4-ジメチルスルホラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等を挙げることができる。
 電解質16には、高分子化合物に溶媒を含ませてゲル状にしたゲル電解質やイオン性液体、グライム等の対称グリコールジエーテル、鎖状スルホン等を使用してもよい。その高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリルーメチルメタクリレート共重合体等のアクリルニトリル系重合体、さらにはポリエチレンオキシド、エチレンオキシドープロピレンオキシド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等に電解液を含有させたもの等を挙げることができる。
 [二次電池用負極の製造方法]
 本発明に係る二次電池用負極の製造方法は、シリコン系活物質及びバインダーを含む負極活物質層を形成する工程と、その負極活物質層にリチウムを含有する電解液を接触させ、圧力を加え、電気化学的方法でリチウムイオンを導入するプレドープ工程とを有している。そして、プレドープ工程後のシリコン系活物質が、リチウムを含む非晶質領域を有し、その非晶質領域中には島状の炭酸リチウムが分布していることを特徴とする。
 <負極活物質層の形成工程>
 負極活物質層の形成工程は、Si系活物質及びバインダーを含む負極活物質層3’を形成する工程であり、詳しくは、Si又はSiを含有する化合物を活物質とし、バインダー、導電材等を含む活物質層を形成する工程である。
 (Si系活物質)
 Si系活物質は、負極活物質層3’を主に構成するものであり、電気化学的に可逆に酸化還元反応するものであれば特に限定されないが、Si又はSi化合物を好ましく挙げることができる。ここでいうSi化合物は、Siと他の元素との合金や化合物を包含する意味で用いている。例えば、Siの単体、Siの合金及びSiの化合物から選ばれるいずれか1種類を一部又は全部に有するものであってもよいし、2種類以上を一部又は全部に有するものであってもよい。Si化合物としは、例えば、MgSi、ZnSi、SiO(0.2<n≦2)、LiSiO等を挙げることができる。
 Si系活物質の形状は特に限定されず、微粒子形状、繊維形状、多孔質粒子形状であってもよい。その大きさも特に限定されないが、微粒子形状と多孔質粒子形状では直径を0.01~10μmの範囲内とすることができ、繊維形状では長さ0.1~2000μmの範囲内とすることができる。
 (バインダー)
 バインダーは、電極活物質や導電材を結着させるものであれば特に限定されず、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキシド、カルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸、ポリイミド樹脂等の各種樹脂を挙げることができる。好ましくは、後述するプレドープ工程で加わる圧力を開放した後にも、活物質同士の密着が維持できるという観点から、ポリアクリル酸及びその誘導体、ポリイミド、ポリアミド及びそれらの誘導体が好ましい。
 ポリアクリル酸は、アクリル酸及びその塩からなるエステルであり、中和度、分子量、分子量分布は、活物質との結着力や柔軟性を考慮して任意に選択される。ポリイミド、ポリアミド及びそれらの誘導体は、イミド結合やアミド結合を持つ高分子であり、ポリアミドは必要に応じてイミド化処理を行って利用される。
 (その他)
 負極活物質層3’には、上記Si系活物質及びバインダーのほか、導電材や添加剤が必要に応じて含まれていることが好ましい。導電材としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素質繊維、グラフェン等の炭素質シート等の炭素材料を好ましく挙げることができる。導電材としてアセチレンブラックを用いた場合、その形状は特に限定されず、その大きさも特に限定されないが、直径0.02~2μmの範囲内の微粒子等を用いることができる。また、添加剤としては、例えば、フッ素系界面活性剤や非イオン系界面活性剤等を必要に応じて任意に配合することができる。
 (負極活物質層の形成)
 負極活物質層3’の形成は、一般的な方法とほぼ同様であり、上記したSi系活物質、バインダー、導電材等を混合し、溶剤を加えて撹拌・混合してスラリーを作製する。作製したスラリーを集電体14となる金属箔(例えば銅箔)上に塗布し、昇温してスラリーの溶剤を蒸発させることにより、Si系活物質を有する負極活物質層3’を製造することができる。集電体14を長尺シート又は長尺フィルムの金属箔とすることにより、長尺の負極活物質層3’を製造することができる。
 溶剤は、活物質や導電材が分散・混合しやすく、分離しにくいものが選択されることが好ましく、水やN-メチル-2-ピロリドン等を挙げることができる。なお、溶剤を使わない方法でも負極活物質層3’を形成してもよく、例えば、加圧成形する方法や押出成形する方法等であってもよい。
 混合する材料の配合比は、作製しようとするSi系活物質の特性に応じて決定される。例えば、Si系活物質の配合量(合計100質量%)は、20質量%以上、95質量%以下の範囲内であり、70質量%以上、95質量%以下の範囲内であることが好ましい。バインダーの配合量は、1質量%以上、30質量%以下の範囲内であり、5質量%以上、20質量%以下の範囲内であることが好ましい。導電材の配合量は、3質量%以上、60質量%以下の範囲内であり、3質量%以上、20質量%以下の範囲内であることが好ましい。必要に応じて配合される添加剤の配合量は、例えば0.001質量%以上、10質量%以下の範囲内であることが好ましい。溶剤の配合量は、活物質や導電材が分散・混合しやすく、分離しにくい範囲で選択され、固形分濃度が10%以上、70%以下の範囲内で調整される。なお、Si系活物質の割合が大きくなるほど高容量になり、導電材の割合が大きいほど高出力となる。なお、作製時の配合量は、それぞれ秤量して配合されるが、最終的に揮発除去される溶剤を除いて、二次電池用負極3にほぼそのままの含有量で含まれている。
 <プレドープ工程>
 プレドープ工程は、負極活物質層の形成工程に引き続いて行われる工程であり、負極活物質層3’にLiを含有する電解液5を接触させ、圧力を加え、電気化学的方法でLiイオンを導入するための工程である。なお、「プレドープ」は、二次電池用負極3の製造の際に、負極活物質層3’に前もってLiイオンを導入することであり、本発明では、負極活物質層3’に、電解液5を含浸する透液性弾性体4を介して電気化学的方法により行う際に、圧力下で行うことに特徴がある。リチウムのプレドープ量は、シリコンに対して2.3モル以下を目処に行うことが好ましい。この範囲とすることにより、リチウムが偏って析出することによるマイクロショートの可能性を低減することができる。
 図10~図12は、プレドープ工程を行うためのプレドープ装置20,20A,30の例である。図10に示すプレドープ装置20は、作用電極1と対向電極2とを備えている。このプレドープ装置20は、電気化学的方法により、作用電極1上の負極活物質層3’に、対向電極2からLiイオンを導入するための装置である。作用電極1と対向電極2との間には、定電流又は定電圧を印加するための電源21が接続され、必要に応じて電圧計22,電流計23等が接続されている。
 (作用電極)
 図10に例示したプレドープ装置20では、作用電極1は、円柱又は円筒体からなるロールの表面に少なくとも設けられた金属電極であり、その作用電極1に、集電体14及び負極活物質層3’が電気的に接触している。「少なくとも」とは、作用電極1がロールの表面に所定の厚さで設けられていてもよいし、ロール全体が作用電極1として作用してもよいことを意味している。さらに、ロールは、その回転によって、長尺の集電体14及び負極活物質層3’を搬送するように作用するので、連続製造を可能とし、生産性を高めることができる。なお、作用電極1の材質や厚さは特に限定されず、電気伝導性等によって任意に選択されるが、好ましくはニッケル及びステンレス鋼等を挙げることができる。また、ロールの材質や大きさ(ロール長、ロール径等)も特に限定されず、生産性、装置規模、電気伝導性等によって任意に選択される。
 (対向電極)
 対向電極2は、透液性弾性体4を介して作用電極1と接触し、負極活物質層3’にLiイオンを導入するための電極である。対向電極2も作用電極1と同様の円柱又は円筒体からなるロールとしてもよく、その表面に少なくとも設けられた金属電極である。「少なくとも」とは、対向電極2がロールの表面に所定の厚さで設けられていてもよいし、ロール全体が対向電極2として作用してもよいことを意味している。ロールは、その回転によって、ロール状の作用電極1とともに集電体14及び負極活物質層3’を搬送するように作用するので、連続製造を可能とし、生産性を高めることができる。対向電極2の材質や厚さは特に限定されず、電気伝導性等によって任意に選択されるが、好ましくは銅、ニッケル、ステンレス鋼等を挙げることができる。また、ロールの材質や大きさ(ロール長、ロール径等)も特に限定されず、生産性、装置規模、電気伝導性等によって任意に選択される。
 対向電極2の表面に、Liイオン源となるLi金属を貼り付けてもよいし、シート状にして負極活物質層3’と透液性弾性体4と同じ速度で移動させてもよい。Li金属を設ける場合、金属Li又はLi含有金属を用いることができ、Li含有金属としては、例えば、LiAl等を挙げることができる。
 (透液性弾性体)
 透液性弾性体4は、対向電極2上(ロールの場合はその全周)に設けられており、この透液性弾性体4を介して対向電極2と作用電極1とが接触し、対向電極2と作用電極1との間に圧力を加えるとともに、電解液5を介して電解反応を進行させる場となる。透液性弾性体4は、電解液5を透液し含浸する機能を有するものであれば特に限定されないが、透液と含浸の両方を実現でき、電解液に耐性があり、圧力伝達を実現できる材質と多孔性を有するものであることが好ましく、透液性弾性体4の表面から裏面に連通孔を有する微多孔膜、不織布又は織布であって、電解液5に対して安定なポリエチレンやポリプロピレン、セルロース、ポリウレタン等の高分子膜等を挙げることができる。透液性弾性体4の厚さも特に限定されないが、あまり薄いと微小短絡の可能性が高くなり、逆に厚すぎると作用電極1と対向電極2との間の抵抗が高くなって効率が低下するため、例えば10μm~5mmの範囲内で任意に選択することができる。
 透液性弾性体4の厚さを任意に選択することにより、作用電極1と対向電極2との間隔を調整することができる。なお、作用電極1と対向電極2とは、その間隔を任意に制御できる機構(間隔調整機構という。)を有しており、その間隔調整機構により、透液性弾性体4を介して、作用電極1上の負極活物質層3’に圧力を加えることができる。このように、短絡しないように非導電性の透液性弾性体を用い、そうした透液性弾性体を介して、外部から電圧を印加するとともに加圧した加圧電解プレドープを行っていることに特徴がある。
 (電解液)
 電解液5は、プレドープを行う金属イオンを含有する。プレドープを行う金属イオンとしては、二次電池のエネルギー密度や出力密度の点から、Liイオンを含有することが好ましい。電解液5は、電気化学的にプレドープを行おうとする負極活物質層3’と対向電極2との間に介在して両電極間の荷電担体輸送を行う。電解液5の介在は、上記した透液性弾性体4による電解液5の含浸によって実現できる。なお、電解液5の温度も特に限定されず、一般的な温度範囲、例えば10℃から65℃の範囲で行われる。
 電解液5としては、室温で10-5S/cm以上のイオン伝導度を有する電解質を含有するものを使用することができる。電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を挙げることができる。電解液5は、こうした電解質を有機溶剤に溶解させて用いられる。電解質の濃度は特に限定されないが、0.1モル/L~2.5モル/Lの範囲内で任意に選択することができるが、1モル/L等の一般的な濃度を使用してもよい。なお、イオン伝導度は、所定の面積の白金電極を対向させ、交流インピーダンスを測定することによって測定することができる。
 有機溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ一ブチロラクトン、テトラヒドロフラン、ジオキソラン、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、プロピルメチルスルホン、イソプロピルメチルスルホン、プロピルエチルスルホン、イソプロピルエチルスルホン、ジプロピルスルホン、ジイソプロピルスルホン、スルホラン、ペンタメチレンスルホン、ヘキサメチレンスルホン、3-メチルスルホラン、2,4-ジメチルスルホラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等や、これらの混合溶媒を挙げることができる。電解液5には、フルオロエチレンカーボネートやビニレンカーボネート、ハイドロフルオロエーテル、ビフェニル等の電解液添加剤を加えてもよい。
 (圧力)
 圧力は、上記負極活物質層3’にLiを含有する上記電解液5を接触させ、電気化学的方法でLiイオンを導入するプレドープの際に加えられる。本発明では、プレドープを加圧下で行うことにより、処理に要する時間を短縮するとともに、均一にプレドープすることができ、その結果、エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい二次電池用負極3を得ることができる。
 圧力は、透液性弾性体4を介して負極活物質層3’に加える。圧力の大きさは、透液性弾性体4の材質や変形の程度、負極活物質層3’の種類、電解液5等によっても異なるので特に限定されないが、透液性弾性体4を介して加わる力により、負極活物質層3’が変形しない程度の大きさ又は少し変形しても特性に影響しない程度の大きさであればよい。圧力の大きさとしては、例えば、0.01MPa以上、20MPa以下の範囲内であればよく、その効果が顕著となる。なかでも、0.01MPa以上で効果が顕著となる。0.01MPa以上の圧力を加えた場合は、プレドープによる負極3の膨張が抑えられたため、その効果(エネルギー密度が大きく、充放電を繰り返しても容量が低下しにくい)が顕著になる。0.01MPa未満では、圧力が小さすぎて、十分なプレドープが行われないことがある。20MPaを超える圧力を加えた場合は、その大きな圧力によって負極3の密度が高くなり、透液性弾性体4に電解液5が含浸する空隙が減少してプレドープの進行が低下することがある。なお、圧力は、例えば縦1cmで横1cm等の四角形にかかる圧力として測定され、測定は、例えば、ロードセルや感圧紙等で測定することができる。
 圧力の調整や制御は、作用電極1と対向電極2との間隔を狭くしたり広くしたりして制御したり、電極自体に外部から力を加たりして行う。また、圧力は、連続的又は断続的に加えることが好ましく、特にプレドープする対象エリアに連続的に加えながら電解することが好ましい。圧力を連続的又は断続的に加えて電解することにより、均一にプレドープすることができる。なお、一般に、電気化学反応は電解液に2枚の電極を浸漬し、外部から力学的な力が作用しないようにして行われるが、本発明者は、負極活物質層3’へのLiイオンの導入(プレドープ)を加圧下で行うことを検討した結果、プレドープ後の負極3の変形が抑制され、大きな電流でも均一なプレドープを進行させることができることを見出した点に特徴がある。すなわち、圧力を加えることにより、電極間距離が短くなり、内部抵抗が小さくなって電気化学的方法でのプレドープで大きな電流を流しやすくなる。その結果、電流の集中が起こりにくくなって、大きな電流でも均一なプレドープを進行させることができることを見いだした。
 (電解プレドープ)
 電解プレドープは、作用電極1と対向電極2との間に定電流又は定電圧を印加して行われる。この電解プレドープにより、透液性弾性体4が含浸するLiイオンを負極活物質層3’にプレドープさせることができる。また、電解プレドープは、対向電極2又はその表面に貼り合わせたLi金属又はLi含有金属をイオン化することができる。
 電解プレドープは、好ましくは定電圧で行われるが、特に限定されず定電流であってもよい。定電圧電解の場合は、0.05V以下の定電圧を印加することが好ましい。プレドープ量は、対向電極2と透液性弾性体4とを介して、所定の時間で制御するが、少なくとも負極3の不可逆容量以上の金属イオンを含むように反応させる。
 電解プレドープによって行うLiイオンのプレドープ量としては、Si原子1モルに対して0.5モル以上導入することが好ましく、1モル以上導入することがより好ましい。なお、プレドープ量の上限は特に限定されないが、例えば2.3モル以下とすることができる。この範囲内のプレドープ量とすることにより、高容量で充放電を繰り返しても容量が低下しにくいという効果がある。
 電解プレドープによって、得られた負極3の表面に、電解液5や添加剤が反応して生成する不働態層と呼ばれる安定化層を形成することができる。この不働態層は、充放電サイクル寿命を長くするように作用するので好ましい。不働態層は、充電の初期に電解液や添加剤が電気化学的に酸化、あるいは還元されて生成するものであり、その反応速度は比較的小さく、数秒程度の短時間の条件下での電解では形成されないこともある。したがって、電解プレドープ時間が1分以上の条件下での電解を行って、不働態層を形成することが好ましい。
 (他の実施形態)
 他の実施形態として、図10に示すプレドープ装置20において、さらに複数のロールを用いて電解液5中でプレドープを行う長さ範囲を拡大して生産性を向上させる方法を挙げることができる。
 図11は、プレドープ工程を行うプレドープ装置20Aの他の一例を示す概略模式図である。この装置20Aは、2つのロールを水平に並べ、その間に、集電体14に負極活物質層3’を設けたシート状物を走行させ、2つのロールに挟まれて加圧される際に上方から電解液を滴下して加圧電解プレドープするための装置である。この装置20Aの構成については、図10で説明したプレドープ装置20と同様であるのでその詳細は省略する。なお、こうしたプレドープ装置は、図10及び図11に示す形態に限定されず、スペース、生産性等を考慮し、ロールの数、配置、大きさ等や、電解液の供給手段、その他、種々の変形や応用が可能である。
 また、図12に示すように、シート状の負極活物質層3’に直接、透液性弾性体4を介してプレドープする金属(対向電極2)を密着させ、圧力を加えて電圧を印加する方法等を挙げることができる。この方法は、枚葉毎にプレドープする形態として表しているが、枚葉毎に連続して行う方法であってもよい。なお、図12において、各符号は図10で使用したものと同様であるのでその説明は省略する。
 以上説明したように、本発明に係る二次電池用負極の製造方法は、従来のように金属を作用電極に接触させるプレドープ方法とは、構成、反応の形式、制御しやすさ等の点で異なる。また、Si系活物質は、一般に充放電に伴う体積変化が大きく、電極からの脱離や電極の崩壊が起こりやすく、充放電サイクル寿命が短く、そのため、従来の方法によるプレドープは難しかった。しかし、本発明に係る二次電池用負極の製造方法により、Si系活物質に対しても均一にプレドープすることができ、充放電サイクル安定性が向上する等の利点が得られる。さらに、プレドープ電流を大きくすることができており、高容量化及びプレドープ時間の短縮化を期待できる。また、連続的なプレドープも可能であり、生産性を高めることも期待できる。
 [二次電池の製造方法]
 本発明に係る二次電池10の製造方法は、既述した二次電池10を製造する方法であり、少なくとも、正極11、負極3及び電解質16を有する二次電池の製造方法である。この方法で製造した二次電池10は、負極3がプレドープされているので、不可逆容量が小さく、また、負極活物質表面に不働態層を有しているため、エネルギー密度が高く、充放電サイクルを繰り返しても容量が低下しにくいという特徴を有している。また、電気化学的方法でのプレドープが圧力を加えて行われているので、平滑で電極への密着性にも優れているという特徴も有している。
 上記した負極活物質層の形成工程とプレドープ工程以外は、リチウム二次電池の製造方法で従来から適用されている工程を適宜含めることができる。なお、一般的なリチウムイオン二次電池の製造方法では、電極形成工程、電極とセパレータの積層工程、電解液の注液・含浸工程、電極引き出し工程、外装工程等で構成されている。
 作製された後の二次電池用負極及び二次電池について、それらを構成する材料の種類や含有量の分析は、Si系活物質は原子吸光分析法で分析して定性及び定量分析することができ、バインダーは燃焼イオンクロマトグラフ法で定性及び定量分析することができ、導電材は熱重量示差熱分析で定性及び定量分析することができる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 以下に、実施例と比較例を挙げて本発明をさらに具体例に説明する。
 [実施例1]
 (二次電池の作製)
 Si粉末7.0g、アセチレンブラック1.5g、平均分子量450,000のポリアクリル酸ナトリウム10%水溶液15gをそれぞれ秤りとり、精製水を加えて均一に混合しながら混錬して混合体とした。この混合体に精製水をさらに加えて粘度を調整し、負極活物質層塗工用の負極スラリーを作製した。このスラリーをナイフロールコーターで塗工厚さ100μm、幅130mmとし、厚さ20μmのCu箔上に塗工し、80℃で乾燥した。その後、ロールプレスすることにより、集電体であるCu箔上に30μmの厚さで塗工した。こうした負極活物質層の形成工程により、集電体14上に、Siを活物質とする灰色の負極活物質層3’が設けられた負極を得た。なお、本願では、集電体14上に負極活物質層3’が設けられたものを、塗工負極と呼ぶことがある。
 得られた塗工負極を縦20mm、横50mmに切り出し、未塗工部に電極引き出し用のタブを溶接した。次いで、露点-45℃以下のドライルーム内で、厚さ100μmの不織布を積層し、1MのLiPFを含む10体積%のフルオロエチレンカーボネート、27体積%のエチレンカーボネート、63体積%のジエチルカーボネート混合溶液からなる電解液5を滴下して、さらに縦25mm、横55mmに切り出したLi箔張り合わせ銅箔(Li箔の厚さ100μm)を積層した。このように作製した電極とLi箔張り合わせ銅箔の外側に絶縁処理したステンレス板を重ね、図12に示す構造形態にした。その構造形態において、両面のステンレス板から0.01MPaの圧力Fで加圧した。加圧下で、負極に対して電流0.37mAで0.01Vまで定電流電解反応を行った。
 図13は、容量に対する電圧の変化を示すグラフである。図13より、加圧下でプレドープを行うと、電圧の低下が小さく、大容量まで反応が進むことが明らかとなった。これは、加圧することでインピーダンスが低下したためと考えられ、より大電流でのプレドープが可能であることを示している。反応終了後、黒色に変色した負極を取り出し、ジメチルカーボネートで洗浄してドライルーム内で風乾させ、LiでプレドープしたSiからなる負極を得た。
 次に、ニッケル・コバルト・マンガン酸リチウム(Ni:Co:Mn=1:1:1、LiNMC)9.4g、アセチレンブラック0.4g、ポリフッ化ビニリデン(PVDF)0.3gを含むN-メチルピロリドン(NMP)溶液をそれぞれ秤りとり、NMPを加えて混錬して混合体とした。この混合体にNMPをさらに加えて粘度を調整し、塗工用の正極インクを作製した。この正極インクをナイフロールコーターで塗工厚さ150μm、幅130mmで厚さ20μmのAl箔上に塗工し、120℃で乾燥した。その後、ロールプレスすることにより、集電体であるアルミニウム箔上に厚さ60μmの正極活物質層を形成して、LiNMCを正極活物質とする正極を得た。
 上記のように作製した正極を直径13mmに打ち抜き、コイン型電池の正極ケース上に載置し、その上にポリプロピレン多孔質フィルムからなる厚さ20μmのセパレータを積層した。さらに、直径14mmに打ち抜いたプレドープ負極を積層して1MのLiPFを含む10体積%のフルオロエチレンカーボネート、27体積%のエチレンカーボネート、63体積%のジエチルカーボネート混合溶液からなる電解液を含浸した。次いで、図9に示すように、負極(3,14)と金属製のばね15とを載置すると共に、周縁をガスケット17で覆われた負極側部材を重ね、かしめ機によって外装封止した。このようにして、正極活物質としてLiNMC、負極活物質としてLiをプレドープしたSiからなる密閉型のコイン型二次電池10を作製した。
 (二次電池の動作確認)
 作製したコイン型の二次電池を、0.54mAの定電流で電圧が4.2Vになるまで充電し、その後、0.54mAの定電流で2.5Vまで放電を行った。その結果、このセルは、放電容量3.1mAhの二次電池であることが確認された。その後、2.5~4.2Vの範囲で充放電を繰り返したところ、容量密度は100サイクル後においても初期の95%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが確認された。
 [比較例1]
 (二次電池の作製)
 実施例1の方法で作製した塗工負極を、実施例1と同様に切り出し、不織布を積層し、電解液を滴下して、さらにリチウム張り合わせ銅箔を積層した。このように作製した電極とリチウム張り合わせ銅箔の外側に、実施例1と同様の方法で絶縁処理したステンレス板を重ねた。加圧しない以外は実施例と同様にして、負極に対して電流0.37mAで0.01Vまで定電流電解反応を行った。
 この時の容量に対する電圧の変化を図13に示す。図13より、加圧しないでプレドープを行うと電圧の低下が大きく、大容量まで反応できないことを示している。これは、加圧しない場合にはインピーダンスが大きいために電圧降下が大きく、大電流でプレドープすることができないことを示している。反応終了後、黒色に変色した負極を取り出し、ジメチルカーボネートで洗浄してドライルーム内で風乾させ、リチウムでプレドープしたSiからなる負極を得た。
 上記のように、圧力を加えずにプレドープした負極を用いる以外は、実施例1と同様の方法で、正極活物質としてLiNMC、負極活物質としてLiをプレドープしたSiからなる密閉型のコイン型二次電池を作製した。
 (二次電池の動作確認)
 作製したコイン型の二次電池を、0.54mAの定電流で電圧が4.2Vになるまで充電し、その後、0.54mAの定電流で2.5Vまで放電を行った。その結果、このセルは、放電容量2.1mAhの二次電池であることが確認された。その後、2.5~4.2Vの範囲で充放電を繰り返したところ、容量密度は100サイクル後の容量密度は初期の95%以下となり、サイクル劣化が大きい二次電池であることが確認された。
 [実施例2]
 (塗工負極2-1の作製)
 Si粉末7.0g、アセチレンブラック1.5g、平均分子量50,000のポリフッ化ビニリデンのN-メチルピロリドン10%溶液15gをそれぞれ秤り取り、さらにN-メチルピロリドンを加えて粘度を調整し、塗工用の負極インクを作製した。このインクをナイフロールコーターで塗工厚さ100μm、幅130mmで厚さ20μmのCu箔上に塗工し、80℃で乾燥した。その後、ロールプレスすることにより、集電体であるCu箔上に厚さ40μmの負極活物質層を形成して、Siを活物質、ポリフッ化ビニリデンをバインダーとする塗工負極2-1を得た。
 (塗工負極2-2の作製)
 Si粉末7.0g、アセチレンブラック1.5g、平均分子量2,300,000のポリアクリロニトリル共重合体50%水溶液5gをそれぞれ秤り取り、さらに精製水を加えて粘度を調整し、塗工用の負極インクを作製した。このインクをナイフロールコーターで塗工厚さ100μm、幅130mmで厚さ20μmのCu箔上に塗工し、80℃で乾燥した。その後、ロールプレスすることにより、集電体であるCu箔上に厚さ40μmの負極活物質層を形成して、Siを活物質、ポリアクリロニトリル共重合体をバインダーとする塗工負極2-2を得た。
 (塗工負極2-3の作製)
 Si粉末7.0g、アセチレンブラック1.5g、カルボキシメチルセルロース2%水溶液20g、スチレンブタジエンゴム系エマルション5gをそれぞれ秤り取り、さらに精製水を加えて粘度を調整し、塗工用の負極スラリーを作製した。このスラリーをナイフロールコーターで塗工厚さ100μm、幅130mmで厚さ20μmのCu箔上に塗工し、80℃で乾燥した。その後、ロールプレスすることにより、集電体であるCu箔上に厚さ30μmの負極活物質層を形成して、Siを負極活物質、スチレンブタジエンゴム系エマルションとカルボキシメチルセルロースをバインダーとする塗工負極2-3を得た。
 (塗工負極2-4の作製)
 Si粉末7.0g、アセチレンブラック1.5g、ポリイミドバインダー8gをそれぞれ秤り取り、N-メチルピロリドンを加えて粘度を調整し、塗工用の負極インクを作製した。このインクをナイフロールコーターで塗工厚さ100μm、幅130mmで厚さ20μmのCu箔上に塗工し、80℃で乾燥した。その後、ロールプレスし、真空下、300℃で熱処理することにより、集電体であるCu箔上に厚さ40μmの負極活物質層を形成して、Siを負極活物質、ポリイミドをバインダーとする塗工負極2-4を得た。
 (半電池の作製)
 以上の方法で作製した4種類の塗工負極2-1、2-2、2-3、2-4と、実施例1で作製したポリアクリル酸をバインダーとする5種類の塗工電極とをそれぞれ縦20mm、横50mmに切り出した。これらを、実施例1と同様の方法でタブを溶接し、不織布を積層し、電解液を滴下して、さらにLi箔張り合わせ銅箔を積層した。このように作製した電極とLi箔張り合わせ銅箔の外側に絶縁処理したステンレス板を重ね、0.02MPaで加圧しながら、負極に対して電流0.37mAで0.01Vまで定電流電解反応を行った。
 反応終了後、黒色に変色した負極を取り出し、ジメチルカーボネートで洗浄してドライルーム内で風乾させ、LiでプレドープしたSiからなる負極を得た。
 上記のように作製した5種類のプレドープ電極を直径13mmに打ち抜き、コイン型電池の正極ケース上に載置し、その上にポリプロピレン多孔質フィルムからなる厚さ20μmのセパレータを積層した。さらに、直径14mmに打ち抜いた金属Liを積層して1MのLiPFを含む5体積%のハイドロフルオロエーテル、27体積%のエチレンカーボネート、63体積%のジエチルカーボネート混合溶液からなる電解液を含浸した。次いで、負極集電板と金属製のばねを載置すると共に、周縁をガスケットで覆われた負極側部材を重ね、かしめ機によって外装封止した。このようにして、5種類のバインダーからなるプレドープSiを電極とする密閉型の半電池を作製した。
 (二次電池の動作確認)
 作製した5種類の半電池を、電極に含まれるSiに対して1000mAh/kgまで放電し、その後、0.54mAの定電流で2.0Vまで充電する充放電サイクルを繰り返した。図16は、それぞれの半電池の放電容量の充放電サイクル依存性を示すグラフである。図16から明らかなように、すべてのセルで、50サイクルまで容量低下がなく、加圧下でプレドープした電極は長サイクル寿命であることが確認された。特に、ポリアクリル酸、及びポリイミドをバインダーとする電極は200サイクル以上まで容量低下が見られなかった。
 [実施例3]
 (二次電池の作製)
 ルベアン酸7.5g、気相成長炭素繊維(VGCF)1.5g、ポリテトラフルオロエチレン樹脂バインダー1.0gをそれぞれ測り取り、精製水を加えて均一に混合しながら混練した。この混合体にイオン交換水をさらに加えて粘度を調整し、正極塗工用スラリーを作製した。このスラリーをナイフロールコーターで塗工厚さ100μm、幅130mmで厚さ20μmのAl箔上に塗工し、80℃で乾燥した後、直径12mmの円形に打ち抜いてルベアン酸とVGCFを含む正極を作製した。
 上記のように作製した正極をコイン型電池の正極ケース上に載置し、ポリプロピレン多孔質フィルムからなる、厚さ20μmのセパレータを積層した。さらに、実施例1と同様の方法で作製したプレドープしたSi負極を積層して1MのLiN(CSOを含むスルホランからなる電解液を含浸した。次いで、負極集電板と金属製のばねを載置すると共に、周縁をガスケットで覆われた負極側部材を重ね、かしめ機によって外装封止した。このようにして、正極活物質としてルベアン酸、負極活物質としてLiをプレドープしたSiからなる密閉型のコイン型二次電池を作製した。
 このコイン型二次電池を45℃恒温槽中、0.24mAで定電流充電を行い、4.0Vに到達後は定電圧を6時間維持してコンディショニングを行い、コイン型二次電池を完成させた。
 (二次電池の動作確認)
 作製したコイン型の二次電池を、0.24mAの定電流で電圧が4.0Vになるまで充電し、その後、0.24mAの定電流で1.5Vまで放電を行った。その結果、このセルは、放電容量4.1mAhの二次電池であることが確認された。その後、1.5~4.0Vの範囲で充放電を繰り返したところ、容量密度は100サイクル後においても初期の95%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが確認された。
 [実施例4]
 (二次電池の作製)
 SiO粉末7.0g、アセチレンブラック1.5g、平均分子量450,000のポリアクリル酸ナトリウム10%水溶液15gをそれぞれ測り取り、精製水を加えて均一に混合しながら混錬した。この混合体に精製水をさらに加えて粘度を調整し、塗工用の負極インクを作製した。このインクを実施例1と同様の方法で塗工乾燥し、実施例1と同様の方法で0.1MPaの加圧下でプレドープしてSiOとアセチレンブラックを含む負極を作製した。
 実施例1のSiとアセチレンブラックを含む負極に代えて、SiOとアセチレンブラックを含む負極を使った。それ以外は、実施例1と同様の方法で、正極としてLiNMC、負極として加圧下でLiをプレドープしたSiOからなる密閉型のコイン型二次電池を作製した。
 (二次電池の動作確認)
 作製したコイン型の二次電池を、0.24mAの定電流で電圧が4.0Vになるまで充電し、その後、0.24mAの定電流で1.5Vまで放電を行った。その結果、このセルは、放電容量4.1mAhの二次電池であることが確認された。その後、1.5~4.0Vの範囲で充放電を繰り返したところ、容量密度は100サイクル後においても初期の95%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが確認された。
 [実施例5]
 加圧電解プレドープで得た実施例1の二次電池用負極と、非加圧電解プレドープで得た比較例1の二次電池用負極について、図14及び図15に示すように、充放電特性とサイクル特性について比較した。
 図14に示す充放電特性は、二次電池用負極の性能評価を行う通常の測定方法を適用し、正極活物質の重さに対する負極活物質の容量を横軸とし、電圧変動を縦軸として評価した。充電時の曲線は、約4V一定であるのに対し、加圧電解プレドープで得た二次電池用負極は、放電サイクルが1回目~8回目のいずれの場合も、一定で安定した充放電特性を示しており、特に100~120Ah/kgの範囲でも約2V以上の電圧を示していた。一方、非加圧電解プレドープで得た二次電池用負極は、放電1回で急激な電圧低下が生じた。この結果は、加圧電解プレドープを行うことにより、二次電池用負極に不可逆容量が減少するため、1サイクル目から安定した充放電を繰り返すことができることを示している。
 図15に示すサイクル特性も、二次電池用負極の性能評価を行う通常の測定方法を適用し、サイクル数を横軸とし、正極活物質の重さに対する負極活物質の容量を縦軸として評価した。加圧電解プレドープで得た二次電池用負極は、100サイクルに至っても一定容量を維持していた。一方、非加圧電解プレドープで得た二次電池用負極は、急激な容量低下が生じ、20サイクル未満でゼロになった。
 [実施例6]
 加圧電解プレドープで得た二次電池用負極と、非加圧電解プレドープで得た二次電池用負極について、既述した図1~図8に示したように、構造形態を観察・測定した。観察試料は、実施例1と比較例1で得た二次電池用負極を用いた。測定は、先ず、観察試料をアルゴンガス雰囲気下で、ジクロロメタンで洗浄し、乾燥した後、マイクログリッド上にかき落とした。かき落とした試料を、電界放射型透過分析電子顕微鏡(FEI Company社製、TecnaiG2F20)を用いて、加速電圧200kVで明視視野像を取得し、さらに電子線回折測定を行った。また、同様にかき落とした試料を、Bruker AVANCEIII600を用いてLi MAS-NMRスペクトルの測定を行った。さらに、X線回折装置(株式会社リガク製、SmartLab 9kW)を用いて、X線回折測定を行った。これらの結果は、実施例1の加圧電解プレドープで得た二次電池用負極については、図1~図4に示して既に説明したので、ここでは説明を省略する。また、実施例1の加圧電解プレドープで得た二次電池用負極についても、図5~図8に示し、既に説明したので、ここでは説明を省略する。
 [実施例7]
 この実施例では、充放電後もLi15Siが現れているか否かを確認した。ステンレス箔上にシリコンを活物質とする負極活物質層を形成し、加圧電解プレドープして得た二次電池用負極を使って二次電池を作製した。この二次電池について充放電を繰り返した後、アルゴンガス雰囲気下でセルを解体し、取り出した充放電後の二次電池用負極を大気非暴露下で、X線回折装置(株式会社リガク製、SmartLab 9kW)を用いてX線回折測定を行った。充放電試験は、定電流0.04Cで1.5~4.2Vの範囲で4サイクルまで行い、充電状態で停止した。
 図17は、この充放電試験で得られた充放電曲線であり、符号aは充電曲線、符号bは放電曲線である。加圧電解プレドープしたシリコン負極を使用したセルは、4サイクル目まで容量の低下が少なく、高エネルギー(単位面積当たりの容量と電圧から計算したエネルギー密度は300Wh/kg)であった。図18は、充放電後の二次電池用負極を構成するシリコン系活物質のX線回折パターンである。この結果から明らかなように、加圧電解プレドープしたシリコン負極では、充放電後も、充放電前と同様のLi15Siが現れていることがわかった。
 1 作用電極
 2 対向電極
 3’ 負極活物質層
 3 負極
 4 透液性弾性体
 5 電解液
 6 支持体
 10 二次電池
 11 正極
 12 セパレータ
 14 集電体(負極集電体)
 15 弾性体(金属製ばね)
 16 電解質
 17 ガスケット
 18 正極ケース
 19 負極ケース
 20 プレドープ装置
 21 電源
 22 電圧計
 23 電流計
 30 プレドープ装置
 F 加圧

Claims (14)

  1.  シリコン系活物質とバインダーとを少なくとも含む負極活物質層と、負極集電体とを有する二次電池用負極であって、前記シリコン系活物質がリチウムを含む非晶質領域を有し、該非晶質領域中には島状の炭酸リチウムが分布している、ことを特徴とする二次電池用負極。
  2.  前記島状の炭酸リチウムの大きさが、100nm以下である、請求項1記載の二次電池用負極。
  3.  前記シリコン系活物質は、Li固体NMRで測定したケミカルシフトをピーク分離して得られる6.7ppmのピーク強度が16.3ppmのピーク強度よりも大きい、請求項1又は2記載の二次電池用負極。
  4.  前記シリコン系活物質は、リチウムのプレドープ量が2.3モル(対シリコン)以下である、請求項3記載の二次電池用負極。
  5.  前記シリコン系活物質が、Li15Siの結晶を含む、請求項1又は2に記載の二次電池用負極。
  6.  前記シリコン系活物質が、リチウムのプレドープ量が2.3モル(対シリコン)以下である、請求項5記載の二次電池用負極。
  7.  少なくとも、正極、負極及び電解質を有する二次電池であって、前記負極が、請求項1~6のいずれか1項に記載の二次電池用負極である、ことを特徴とする二次電池。
  8.  シリコン系活物質及びバインダーを含む負極活物質層を形成する工程と、当該負極活物質層にリチウムを含有する電解液を接触させ、圧力を加え、電気化学的方法でリチウムイオンを導入するプレドープ工程とを有し、前記プレドープ工程後の前記シリコン系活物質が、前記リチウムを含む非晶質領域を有し、該非晶質領域中には島状の炭酸リチウムが分布している、ことを特徴とする二次電池用負極の製造方法。
  9.  前記圧力を、連続的又は断続的に加える、請求項8に記載の二次電池用負極の製造方法。
  10.  前記圧力が、0.01MPa以上、20MPa以下の範囲内である、請求項8又は9に記載の二次電池用負極の製造方法。
  11.  前記圧力が、透液性弾性体を介して加えられる、請求項8~10のいずれか1項に記載の二次電池用負極の製造方法。
  12.  前記シリコン系活物質が、Siである、請求項8~11のいずれか1項に記載の二次電池用負極の製造方法。
  13.  前記バインダーが、ポリアクリル酸、ポリイミド、ポリアミド、及びそれらの誘導体から選ばれる、請求項8~12のいずれか1項に記載の二次電池用負極の製造方法。
  14.  少なくとも、正極、負極及び電解質を有する二次電池の製造方法であって、前記負極を、請求項8~13のいずれか1項に記載の二次電池用負極の製造方法で製造する、ことを特徴とする二次電池の製造方法。
     
PCT/JP2018/040430 2017-11-02 2018-10-31 二次電池用負極及び二次電池並びにそれらの製造方法 WO2019088139A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019550435A JP7170330B2 (ja) 2017-11-02 2018-10-31 二次電池用負極及び二次電池
CN201880071521.2A CN111433948B (zh) 2017-11-02 2018-10-31 二次电池用负极和二次电池以及它们的制造方法
US16/761,150 US11670756B2 (en) 2017-11-02 2018-10-31 Negative electrode for secondary battery, secondary battery, and manufacturing methods thereof
EP18872228.4A EP3706212A4 (en) 2017-11-02 2018-10-31 SECONDARY BATTERY NEGATIVE ELECTRODE, SECONDARY BATTERY AND METHOD OF MANUFACTURING THEREOF
CN202311382026.2A CN117352667A (zh) 2017-11-02 2018-10-31 二次电池用负极和二次电池以及它们的制造方法
JP2022170632A JP7421044B2 (ja) 2017-11-02 2022-10-25 二次電池用負極の製造方法及び二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017213147 2017-11-02
JP2017-213147 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088139A1 true WO2019088139A1 (ja) 2019-05-09

Family

ID=66331894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040430 WO2019088139A1 (ja) 2017-11-02 2018-10-31 二次電池用負極及び二次電池並びにそれらの製造方法

Country Status (5)

Country Link
US (1) US11670756B2 (ja)
EP (1) EP3706212A4 (ja)
JP (2) JP7170330B2 (ja)
CN (2) CN111433948B (ja)
WO (1) WO2019088139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678278A (zh) * 2019-05-10 2021-11-19 株式会社Lg新能源 制备负极的方法
JP2022534691A (ja) * 2019-05-21 2022-08-03 ワッカー ケミー アクチエンゲゼルシャフト リチウムイオン電池
JP2022552894A (ja) * 2020-08-28 2022-12-20 エルジー エナジー ソリューション リミテッド 負極の前リチウム化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916218B2 (en) * 2019-11-08 2024-02-27 Enevate Corporation Method and system for use of nitrogen as a stabilization gas of polyacrylonitrile (PAN)
CN112694613B (zh) * 2020-12-25 2022-03-15 武汉工程大学 一种聚酰亚胺类材料及其制备方法与在碱金属离子电池中的应用
CN113363490B (zh) * 2021-06-09 2022-06-21 南京大学 基于含Li2O正极和无活性物质负极的锂二次电池及制备方法
WO2023082247A1 (zh) * 2021-11-15 2023-05-19 宁德新能源科技有限公司 电极及其制备方法、电化学装置和电子装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541249A (ja) * 1991-08-01 1993-02-19 Toyo Takasago Kandenchi Kk リチウム二次電池及びそれに使用する負極構造体へのリチウムイオンの注入方法
JPH09293499A (ja) * 1996-04-25 1997-11-11 Seiko Instr Kk 非水電解質二次電池及びその製造方法
JP2000182602A (ja) 1998-12-14 2000-06-30 Fuji Photo Film Co Ltd 非水二次電池
JP2005166469A (ja) 2003-12-03 2005-06-23 Sanyo Electric Co Ltd リチウム二次電池およびその製造方法
JP2007242590A (ja) 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法
JP2014086222A (ja) 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd 二次電池の製造方法
JP2014120555A (ja) 2012-12-14 2014-06-30 Elna Co Ltd 蓄電デバイス用負極の作製方法
JP2014199791A (ja) 2012-06-01 2014-10-23 株式会社半導体エネルギー研究所 蓄電装置用負極及び蓄電装置
JP2015156355A (ja) * 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP2016110777A (ja) 2014-12-04 2016-06-20 積水化学工業株式会社 リチウムイオン二次電池の製造方法
JP2017011068A (ja) * 2015-06-19 2017-01-12 日本電気株式会社 蓄電デバイス用電極の製造方法および前記電極の製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100517854C (zh) * 2004-11-02 2009-07-22 三洋电机株式会社 锂二次电池及其制造方法
JP2007258084A (ja) 2006-03-24 2007-10-04 Sanyo Electric Co Ltd リチウム二次電池
JP6181590B2 (ja) * 2014-04-02 2017-08-16 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP6616984B2 (ja) 2015-09-04 2019-12-04 イビデン株式会社 Sei膜被覆負極活物質粉末の製造方法
JP6719262B2 (ja) 2016-04-18 2020-07-08 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541249A (ja) * 1991-08-01 1993-02-19 Toyo Takasago Kandenchi Kk リチウム二次電池及びそれに使用する負極構造体へのリチウムイオンの注入方法
JPH09293499A (ja) * 1996-04-25 1997-11-11 Seiko Instr Kk 非水電解質二次電池及びその製造方法
JP2000182602A (ja) 1998-12-14 2000-06-30 Fuji Photo Film Co Ltd 非水二次電池
JP2005166469A (ja) 2003-12-03 2005-06-23 Sanyo Electric Co Ltd リチウム二次電池およびその製造方法
JP2007242590A (ja) 2006-02-13 2007-09-20 Hitachi Maxell Ltd 非水二次電池
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法
JP2014199791A (ja) 2012-06-01 2014-10-23 株式会社半導体エネルギー研究所 蓄電装置用負極及び蓄電装置
JP2014086222A (ja) 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd 二次電池の製造方法
JP2014120555A (ja) 2012-12-14 2014-06-30 Elna Co Ltd 蓄電デバイス用負極の作製方法
JP2015156355A (ja) * 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP2016110777A (ja) 2014-12-04 2016-06-20 積水化学工業株式会社 リチウムイオン二次電池の製造方法
JP2017011068A (ja) * 2015-06-19 2017-01-12 日本電気株式会社 蓄電デバイス用電極の製造方法および前記電極の製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678278A (zh) * 2019-05-10 2021-11-19 株式会社Lg新能源 制备负极的方法
US12009502B2 (en) 2019-05-10 2024-06-11 Lg Energy Solution, Ltd. Method of producing negative electrode
JP2022534691A (ja) * 2019-05-21 2022-08-03 ワッカー ケミー アクチエンゲゼルシャフト リチウムイオン電池
JP7308295B2 (ja) 2019-05-21 2023-07-13 ワッカー ケミー アクチエンゲゼルシャフト リチウムイオン電池
JP2022552894A (ja) * 2020-08-28 2022-12-20 エルジー エナジー ソリューション リミテッド 負極の前リチウム化方法
JP7386987B2 (ja) 2020-08-28 2023-11-27 エルジー エナジー ソリューション リミテッド 負極の前リチウム化方法

Also Published As

Publication number Publication date
US11670756B2 (en) 2023-06-06
CN111433948B (zh) 2023-09-12
JPWO2019088139A1 (ja) 2020-12-24
CN111433948A (zh) 2020-07-17
US20200259165A1 (en) 2020-08-13
JP7170330B2 (ja) 2022-11-14
CN117352667A (zh) 2024-01-05
JP7421044B2 (ja) 2024-01-24
EP3706212A1 (en) 2020-09-09
JP2022191483A (ja) 2022-12-27
EP3706212A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP7421044B2 (ja) 二次電池用負極の製造方法及び二次電池の製造方法
KR101444189B1 (ko) 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지
JP5927788B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US9147876B2 (en) Method for lithium predoping, method for producing electrodes, and electric energy storage device using these methods
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
KR20130094366A (ko) 음극 활물질 및 이를 포함하는 리튬 전지
JP2018110076A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2014192136A (ja) 非水電解質二次電池用正極の製造方法及び非水電解質二次電池
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
JP2012074189A (ja) プリドープ型電極の製造方法及び蓄電デバイス
CN112714971B (zh) 锂二次电池用负极活性材料以及包含其的负极和锂二次电池
JP2001176557A (ja) 非水電解液二次電池
CN114982007B (zh) 制造负极的方法
JP6567289B2 (ja) リチウムイオン二次電池
US20220013766A1 (en) Secondary battery
WO2014128844A1 (ja) リチウムイオン二次電池
WO2008146995A1 (en) Anode material for secondary battery and secondary battery using the same
JP7311059B2 (ja) 負極バインダー組成物、負極、及び二次電池
JP7359337B1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
WO2024009988A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
EP4207362A2 (en) Negative electrode for secondary battery and secondary battery including the same
US20240055580A1 (en) Positive electrode including sulfur-carbon composite and lithium-ion secondary battery including the same
WO2023199657A1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
CN117878252A (zh) 正极极片、制备正极极片的方法、二次电池和用电装置
JP2016219409A (ja) 二次電池用負極活物質、二次電池用負極活物質の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872228

Country of ref document: EP

Effective date: 20200602