WO2023199657A1 - 負極バインダー組成物およびその製造方法、負極、及び二次電池 - Google Patents

負極バインダー組成物およびその製造方法、負極、及び二次電池 Download PDF

Info

Publication number
WO2023199657A1
WO2023199657A1 PCT/JP2023/008947 JP2023008947W WO2023199657A1 WO 2023199657 A1 WO2023199657 A1 WO 2023199657A1 JP 2023008947 W JP2023008947 W JP 2023008947W WO 2023199657 A1 WO2023199657 A1 WO 2023199657A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
weight
water
parts
binder composition
Prior art date
Application number
PCT/JP2023/008947
Other languages
English (en)
French (fr)
Inventor
巌 福地
正浩 梶川
優佑 松村
吉延 木村
賢一 川瀬
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023533710A priority Critical patent/JP7359337B1/ja
Publication of WO2023199657A1 publication Critical patent/WO2023199657A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode binder composition, a method for producing the same, and a negative electrode and secondary battery containing the negative electrode binder composition.
  • the binder in the negative electrode of a lithium ion secondary battery (hereinafter sometimes referred to as "LIB") is a water-soluble polymer carboxymethyl cellulose sodium salt (CMC) and an aqueous latex resin styrene-butadiene copolymer. Combined use of combination (SBR) is common.
  • the main functions of the binder are: 1) to uniformly disperse components such as active materials and conductive aids during the electrode manufacturing process; 2) to adjust the rheology of the electrode mixture slurry; and 3) during the slurry application and drying. Examples include a leveling function to flatten the mixture layer, and 4) a function to bind the mixture components and the current collector.
  • the functions related to battery performance include 5) a function to suppress electrode expansion due to volume changes of the active material that occur during charge/discharge cycles, and 6) a function to maintain binding between the active material and the current collector and improve electronic conductivity. and 7) a function of ensuring ionic conductivity by appropriately swelling with an electrolyte.
  • LIB is widely used as a power source that can charge laptops, mobile phones, etc., but in recent years, its use has rapidly expanded in power tools such as electric tools, and medium- and large-sized equipment such as automobiles and stationary power storage equipment. are doing. With the rapid expansion of the range of applications, the performance required of batteries over a wider temperature range varies, but the three main performance points of importance are capacity, output, and lifespan, and improvements in these areas are particularly important. desired.
  • new negative electrode active materials are being considered to replace the conventionally widely used carbon-based active materials (eg, graphite) in an effort to increase capacity.
  • new negative electrode active materials include tin alloys, silicon alloys, silicon oxides, and the like. These new negative electrode active materials have extremely large capacities, several times as large as carbon-based active materials, and it is possible to increase the negative electrode capacity even by adding a small amount.
  • the problem with these new negative electrode active materials is that they have a lower capacity retention rate during charge/discharge cycles than carbon-based active materials.
  • the new negative electrode active material has a larger volumetric expansion and contraction during charging and discharging than a carbon-based active material, which can lead to loss of the active material and a decrease in electronic conductivity due to destruction of the electrode structure.
  • the SEI film formed on the surface of the active material cannot follow the volume change and is destroyed, the surface of the active material not covered by the SEI film will be exposed, and the electrolyte will decompose due to a new SEI film formation reaction. It is also possible that the process progresses.
  • the SEI film is mainly composed of decomposed electrolyte and is formed on the surface of the active material during the first charge.
  • This SEI coating is thought to play a role in mediating the intercalation and deintercalation reactions of lithium ions, and at the same time suppresses further decomposition reactions of the electrolyte, contributing to improved battery performance. If the SEI film is too thin, the decomposition reaction of the electrolyte will not stop, and if it is too thick, the electrical resistance will increase, which will have a negative impact on the lifespan and efficiency of the battery.
  • Patent Document 1 proposes a method of suppressing the volume change of the negative electrode active material by using a high-strength aromatic polyimide as a binder. has been done. Further, Patent Document 2 below proposes a method of suppressing volume change of a negative electrode active material by using partially crosslinked polyacrylic acid as a binder. Furthermore, Patent Document 3 below proposes a method of suppressing volume change of a negative electrode active material by using a copolymer of acrylic acid and polyvinyl alcohol as a binder. However, with the binder of Patent Document 1, the initial charge/discharge efficiency was poor and the capacity of the active material could not be fully demonstrated. Furthermore, the binders of Patent Documents 2 and 3 did not necessarily have sufficient high-temperature and low-temperature cycle characteristics.
  • the conventional method of increasing capacity by increasing the weight of active material per unit area without changing the graphite-based negative electrode is used.
  • either or both of an increase in the thickness of the electrode layer (thick film) and an increase in the electrode density (high density) are essential.
  • the electrode becomes thicker the distance that electrons and ions move within the electrode increases, and therefore the resistance to their movement increases.
  • the density is increased, the voids between the active material particles are reduced, so the flow path of the electrolytic solution becomes narrower, and the resistance to ion movement increases.
  • An increase in resistance is a factor that causes a decrease in battery performance, leading to a decrease in capacity retention rate and load characteristics.
  • Patent Document 4 As an effort to solve the problems of increasing the thickness and density of the electrode, for example, in Patent Document 4 listed below, the negative electrode is made into two layers, using CMC/SBR for the lower layer, and an acrylate binder with high electrolyte swelling property for the upper layer. A method using .
  • the method of Patent Document 4 has the disadvantage that the electrode manufacturing process is doubled.
  • the electrolyte swelling degree of the upper layer is large, there is a concern that cycle characteristics may deteriorate at high temperatures.
  • Patent Document 5 proposes a method using a mixed resin of PVDF and a resin having an acidic functional group and a polyvinylidene fluoride skeleton as the main chain.
  • an organic solvent such as NMP is used as a solvent for slurrying. From the viewpoint of cost etc., it is preferable to use an aqueous solvent for slurry formation.
  • an object of the present invention is to provide a negative electrode binder composition that provides good battery performance even when using a new active material, thickening the electrode, and increasing the density, and a method for producing the same, including the negative electrode binder composition.
  • the purpose of the present invention is to provide a negative electrode and a secondary battery.
  • a negative electrode binder composition containing a water-soluble resin (X) containing a copolymer containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components, and a water-based latex resin (Y).
  • the copolymer has a weight average molecular weight of 700,000 or more when measured using an aqueous GPC measuring device, and the dry film of the copolymer is heated in a carbonate-based mixed solvent (EC (ethylene) at 45°C).
  • EC carbonate-based mixed solvent
  • a negative electrode binder composition having a swelling ratio of 0 to 10% by weight after being immersed in diethylene carbonate (diethylene carbonate)/DEC (diethylene carbonate) 50/50 (wt) for 72 hours.
  • the hydroxyl group-containing monomer (a) is 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2- The negative electrode binder composition according to [1], which is any one or more of the group consisting of hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, and 4-hydroxybutyl methacrylate.
  • the acid group-containing monomer (b) is any one of the group consisting of acrylic acid, methacrylic acid, maleic acid, monomethylmaleic acid, 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate, maleic acid, and itaconic acid.
  • the water-soluble resin (X) further contains any one or more of the group consisting of acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N-hydroxymethylacrylamide [1 ] to [4].
  • the total content of the resin components derived from the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) with respect to the total amount of the water-soluble resin (X) is 5 to 80% by weight [1] to [ 5], the negative electrode binder composition according to any one of items 5] [7]
  • the content of any one or more of the group consisting of acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N-hydroxymethylacrylamide is 0 to 80% by weight [ 1] to [6].
  • the content of structural units derived from styrene monomer is 40 to 60% by weight, and the content of structural units derived from butyl acrylate monomer is 20 to 40% by weight in the total amount of the styrene acrylate copolymer.
  • a negative electrode comprising the negative electrode binder composition according to any one of [1] to [10] as a component.
  • the negative electrode according to [11] wherein the total content of the component derived from the water-soluble resin (X) and the component derived from the water-based latex resin (Y) is 1.5% by weight or more and 5.5% by weight or less. .
  • a secondary battery comprising the negative electrode according to any one of [11] to [15].
  • the method includes a step of hardening an aqueous slurry consisting of at least an active material and the water-soluble resin (X), and then a step of lowering the solid content concentration and mixing the aqueous latex resin (Y) [1] The method for producing a negative electrode binder composition according to any one of [10].
  • the negative electrode binder composition of the present invention has good slurry stability even without a thickener such as cellulose, and when formed into a film, it also has good electrolyte swelling resistance at high temperatures. Therefore, the negative electrode containing the negative electrode binder composition of the present invention as a component has strong peel strength, and as a result, when battery evaluation is performed, it exhibits good charge/discharge characteristics even at a high number of cycles, and is suitable for recent LIB negative electrodes. The required performance can be achieved.
  • the negative electrode binder composition of the present invention comprises a water-soluble resin (X) containing a copolymer containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components, and a water-based latex resin (Y).
  • the weight average molecular weight of the copolymer measured using an aqueous GPC measuring device is 700,000 or more, preferably 750,000 to 1,500,000, more preferably 800,000 to 1, 200,000.
  • the weight average molecular weight is 700,000 or more, as described above in the effects of the invention, the slurry stability is good, and when this is used as a film, the electrolyte swelling resistance at high temperatures is also good.
  • a common polymer-based filler such as polyhydroxymethacrylate can be used as a column filler.
  • the column for example, SB-806 HQ, SB-806M HQ of the Shodex OHpak series manufactured by Showa Denko K.K. can be used.
  • a neutral salt solution such as a sodium nitrate aqueous solution, a sodium hydrogen hydrochloride aqueous solution, a sodium sulfate aqueous solution, a phosphate buffer, etc. can be used.
  • concentration of these eluents is preferably about 0.1 to 0.3 mol/L, for example.
  • GPC measurement device a Shimadzu/L20 system or the like can be used.
  • Polystyrene or pullulan can be used as a standard substance in GPC measurement.
  • STANDARD P-82 Pullulan manufactured by Showa Denko K.K. can be used as a standard substance.
  • the swelling ratio after the dry polymer film of the negative electrode binder composition is immersed in a carbonate mixed solvent at 45°C for 72 hours is 0 to 10% by weight, but the swelling ratio is preferably 0.1 to 10% by weight. 6% by weight, more preferably 0.1 to 4% by weight.
  • a high swelling rate means that the negative electrode binder composition tends to contain a solvent, and when used as a negative electrode, the mixture tends to peel off from a base material such as copper.
  • Examples of the hydroxyl group-containing monomer (a) in the above copolymer include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, and 2-hydroxyethyl methacrylate. , 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, and 4-hydroxybutyl methacrylate. Among these, hydroxyethyl acrylate (especially 2-hydroxyethyl acrylate) is preferred as the hydroxyl group-containing monomer (a).
  • the content of the hydroxyl group-containing monomer (a) based on the total amount of monomers constituting the copolymer is, for example, 20 to 80% by weight, preferably 30 to 70% by weight.
  • content of the hydroxyl group-containing monomer (a) is within the above range, both slurry stability and electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • Examples of the acid group-containing monomer (b) in the above copolymer include acrylic acid, methacrylic acid, maleic acid, monomethylmaleic acid, 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate, maleic acid, and itaconic acid.
  • the acid group in the acid group-containing monomer (b) is preferably carboxylic acid.
  • acrylic acid is particularly preferred as the acid group-containing monomer (b).
  • the content of the acid group-containing monomer (b) based on the total amount of monomers constituting the copolymer is, for example, 10 to 60% by weight, preferably 20 to 50% by weight. When the content of the acid group-containing monomer (b) is within the above range, both slurry stability and electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • the acid group-containing monomer (b) in the above copolymer is preferably neutralized with a basic composition or a light metal salt.
  • the content of the basic composition or those neutralized with light metal salts is, for example, 10 to 60% by weight, preferably 20 to 50% by weight. When these contents are within the above range, both slurry stability and electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • the total content of the resin components derived from the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) with respect to the total amount of the water-soluble resin (X) is preferably 5 to 80% by weight, more preferably 10 to 70% by weight. Weight%. When this total content is within the above range, both slurry stability and electrolyte swelling resistance at high temperatures when formed into a film tend to be good.
  • the copolymer constituting the water-soluble resin (X) may contain monomers other than the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) (hereinafter referred to as "other monomers (c)"). good.
  • Other monomers (c) include, for example, acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N-hydroxymethylacrylamide.
  • acrylamide is preferred, and the inclusion of acrylamide has the effect of increasing toughness when formed into a film.
  • its content is, for example, 5 to 40% by weight, preferably 5 to 20% by weight.
  • electrolyte swelling resistance at high temperatures tends to be good.
  • the content of any one or more of the group consisting of acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N-hydroxymethylacrylamide is 0 to 80% by weight, preferably 2 to 80% by weight. It is 60% by weight. When these contents are within the above range, electrolyte swelling resistance at high temperatures tends to be good.
  • the copolymer in the water-soluble resin (X) is a structural unit derived from each monomer of the above-mentioned hydroxyl group-containing monomer (a), acid group-containing monomer (b), and other monomers (c) added as necessary. has.
  • the copolymer is prepared by appropriately preparing a hydroxyl group-containing monomer (a), an acid group-containing monomer (b), and other monomers (c) to be added as necessary, as described below, and copolymerizing them by a known and commonly used method. can get.
  • the water-based latex resin (Y) preferably contains at least one of a styrene-butadiene copolymer (SBR), a styrene acrylate copolymer, and an acrylate copolymer.
  • SBR styrene-butadiene copolymer
  • styrene acrylate copolymers are more preferred.
  • these acrylates used in the styrene acrylate copolymer include methyl acrylate, methyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, acrylamide, acrylonitrile, glycidyl methacrylate, etc.
  • Acrylic acid, methacrylic acid, etc. may also be used as necessary. It can be used.
  • butyl acrylate is preferred.
  • the proportion of the water-based latex resin (Y) is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, based on the entire negative electrode binder composition.
  • the content of styrene contained in the styrene acrylate copolymer is preferably 45 to 65% by weight, more preferably 50 to 60% by weight.
  • the amount of butyl acrylate is preferably 20 to 40% by weight, more preferably 25 to 35% by weight. When the content of styrene and butyl acrylate is within the above range, adhesion tends to be good.
  • the negative electrode binder composition of the present invention may contain, as a binder (binder) component, other conventionally used components (referred to as "other binder components") in addition to the above to the extent that the effects of the present invention are not impaired. Also good.
  • binder components include ethylenically unsaturated carboxylic acid esters (e.g., methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, (meth)acrylonitrile, and hydroxyethyl (meth)acrylate), (Meth)acrylic copolymers consisting of ethylenically unsaturated carboxylic acids (e.g.
  • the negative electrode binder composition of the present invention may contain an organic solvent such as N-methyl-2-pyrrolidone (NMP) in order to dissolve the above-mentioned polymer compound.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode mixture slurry and negative electrode of the present invention contain the negative electrode binder composition and components necessary for forming the negative electrode, such as SiO negative electrode material, graphite, and acetylene black.
  • the negative electrode mixture slurry and negative electrode of the present invention any type of SiO negative electrode material or graphite can be used.
  • the proportion of the negative electrode binder composition (nonvolatile content) in the negative electrode mixture slurry and negative electrode of the present invention is, for example, 2 to 10% by weight, preferably 3 to 5% by weight.
  • the above-mentioned SiO negative electrode material is a material containing SiO (silicon monoxide) as a main component that exhibits the charge/discharge characteristics in the negative electrode of the present invention.
  • SiO silicon monoxide
  • it may also contain silicon particles, carbon, etc. that similarly exhibit charging and discharging characteristics.
  • silicon oxycarbide (SiOC) may be included as the SiO negative electrode material. These components may not be used alone, but may be a plurality of them.
  • the proportion of the SiO negative electrode material in the negative electrode mixture slurry and negative electrode of the present invention is, for example, 3 to 20% by weight, preferably 5 to 15% by weight.
  • the above-mentioned graphite may be natural graphite or artificial graphite synthesized artificially, and examples of graphite include carbon materials such as natural graphite, artificial graphite, hard carbon, and soft carbon.
  • Graphite is also a component that exhibits charging and discharging characteristics like SiO negative electrode material.
  • the proportion of graphite in the negative electrode mixture slurry and negative electrode of the present invention is, for example, 80 to 97% by weight, preferably 85 to 95% by weight.
  • the acetylene black acts as a conductive additive in the negative electrode of the present invention, and may be carbon black, Ketjen black, carbon nanotube (CNT), etc., which are components other than acetylene black.
  • the proportion of these components acting as conductive aids in the negative electrode mixture slurry and negative electrode of the present invention is, for example, 0.05 to 10% by weight, preferably 0.1 to 5% by weight.
  • the solvent used in the negative electrode mixture slurry of the present invention is not particularly limited as long as it can disperse the components necessary to form the negative electrode mixture slurry, but an aqueous solvent can be used, and ion-exchanged water is preferable.
  • the proportion of the solvent in the negative electrode mixture slurry is, for example, 30 to 70% by weight, preferably 40 to 60% by weight.
  • the method for producing a negative electrode binder composition of the present invention includes a step of solidifying an aqueous slurry consisting of at least an active material and a water-soluble resin (X), and then mixing the aqueous latex resin (Y) with the solid content concentration reduced. It is preferable to have a step.
  • a copolymer of the water-soluble resin (X), which is an essential component of the negative electrode binder composition is synthesized.
  • the copolymer is prepared by adding a solvent such as water to a reaction vessel and heating it to 50 to 80°C, and then adding a hydroxyl group-containing monomer (a), an acid group-containing monomer (b), and other monomers (c) as optional components. and a polymerization initiator such as ammonium persulfate to proceed with the polymerization reaction.
  • the polymerization reaction may be performed under an inert gas atmosphere such as nitrogen.
  • the polymerization reaction can be carried out at a temperature of 50 to 80°C for 1 to 10 hours. After the reaction is completed, it is cooled and the pH is adjusted.
  • an active material other binder components, water, an organic solvent, etc. are added to the obtained water-soluble resin (X) containing the copolymer, and an aqueous slurry made of these components is hardened.
  • the active material may be any of a tin alloy, a silicon alloy, a silicon oxide, and the like.
  • Other binder components include, for example, polymeric compounds such as ethylenically unsaturated carboxylic acids and ethylenically unsaturated carboxylic acid esters. N-methyl-2-pyrrolidone (NMP) is preferred as the organic solvent.
  • Hard kneading may be carried out by adding a predetermined amount all at once; first hard kneading is performed by adding about half of the predetermined amount of each component, and then second hard kneading is performed by adding the entire predetermined amount. It's okay. If appropriate, a step of defoaming the aqueous slurry may be added.
  • the amount of water-based latex resin (Y) to be blended with respect to 100 parts by weight of water-soluble resin (X) is, for example, 50 to 300 parts by weight, preferably 80 to 200 parts by weight.
  • the negative electrode mixture slurry is obtained by adding necessary components for forming the negative electrode, such as SiO negative electrode material, graphite, acetylene black, and a solvent, to the negative electrode binder composition, and dispersing the mixture in an aqueous solvent such as ion-exchanged water.
  • a dispersion device such as a stirrer, a ball mill, a super sand mill, a pressure kneader, etc. may be used.
  • the negative electrode mixture slurry may be prepared by kneading it in a kneading machine.
  • the negative electrode of the present invention contains the above negative electrode binder composition as a component.
  • the total content of the component derived from the water-soluble resin (X) and the component derived from the water-based latex resin (Y) is preferably 1.5% by weight or more and 5.5% by weight or less, more preferably The content is 2.0% by weight or more and 5.0% by weight or less.
  • the negative electrode of the present invention preferably contains a graphite-based material as the main active material, and further preferably has a volume density of 1.4 g/cm 3 or more. Further, it is preferable to include a mixed active material of at least two types of materials, a graphite-based material and a silicon-containing material. Further, in the negative electrode of the present invention, the thickness of the mixture layer is preferably 80 ⁇ m or more.
  • the negative electrode of the present invention is obtained by applying a negative electrode mixture slurry containing the negative electrode binder composition obtained above onto a current collector copper foil to form a negative electrode layer as a thin film.
  • a negative electrode may be obtained by forming a negative electrode mixture slurry, which is a negative electrode binder composition, into a sheet shape, pellet shape, or the like, and integrating this with a current collector.
  • the material and shape of the current collector are not particularly limited, and for example, a strip made of copper, nickel, titanium, stainless steel, etc. in the form of foil, perforated foil, mesh, etc. may be used. Porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method of coating on the current collector copper foil is not particularly limited, but examples include metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, and gravure coating method. Examples of known methods include methods such as printing method and screen printing method. After coating, it is preferable to perform a rolling treatment using a flat plate press, a calendar roll, etc., if necessary.
  • the negative electrode mixture slurry formed into a shape such as a sheet or pellet can be integrated with the current collector by a known method such as rolling, pressing, or a combination thereof.
  • the electrode density after integration is, for example, 1.0 to 1.8 g/cm 3 , preferably 1.1 to 1.7 g/cm 3 .
  • the negative electrode layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably subjected to heat treatment.
  • the heat treatment conditions are, for example, 80 to 150° C. for 5 to 20 hours. Through this heat treatment, the solvent is removed and the binder is hardened to increase the strength, and the adhesion between the particles and between the particles and the current collector can be improved.
  • these heat treatments are preferably performed in an inert atmosphere such as helium, argon, nitrogen, etc., or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the secondary battery of the present invention is comprised of the negative electrode of the present invention described above.
  • the positive electrode and the negative electrode of the present invention may be arranged facing each other with a separator interposed therebetween, and an electrolyte solution may be injected. can.
  • the positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • the current collector may be a band-shaped object made of metal or alloy such as aluminum, titanium, stainless steel, etc., in the form of foil, perforated foil, mesh, or the like.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions is used.
  • Good but not particularly limited.
  • lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), and composite oxides thereof (LiCoxNiyMnzO 2 , x+y+z 1), lithium manganese spinel (LiMn 2 O 4 ).
  • lithium vanadium compound V2O5 , V6O13 , VO2 , MnO2 , TiO2 , MoV2O8 , TiS2 , V2S5 , VS2 , MoS2 , MoS3 , Cr3O8 , Cr 2 O 5 , olivine-type LiMPO 4 (M: Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, porous carbon, etc. are used alone or in combination. be able to.
  • M Co, Ni, Mn, Fe
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, which is mainly composed of polyolefin such as polyethylene or polypropylene, can be used. Note that if the structure of the non-aqueous electrolyte secondary battery to be manufactured is such that the positive electrode and negative electrode do not come into direct contact with each other, there is no need to use a separator.
  • electrolyte examples include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, and sulfolane.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3
  • ethylene carbonate propylene carbonate
  • butylene carbonate butylene carbonate
  • vinylene carbonate fluoroethylene carbonate
  • cyclopentanone examples of the electrolyte
  • the structure of the secondary battery of the present invention is not particularly limited, but usually, a positive electrode, a negative electrode, and a separator provided as necessary are wound in a flat spiral shape to form a wound type electrode plate group, or It is common to have a structure in which the electrode plates are laminated in a flat plate shape to form a laminated electrode plate group, and these electrode plate groups are enclosed in an exterior body.
  • the secondary battery of the present invention is not particularly limited, but can be used as a paper type battery, button type battery, coin type battery, stacked type battery, cylindrical type battery, square type battery, etc.
  • the negative electrode active material of the present invention described above can also be applied to general electrochemical devices whose charging/discharging mechanism is insertion and extraction of lithium ions, such as hybrid capacitors and solid lithium secondary batteries.
  • Synthesis Example 1 Synthesis Example 4, and Synthesis Example 5 are methods for synthesizing water-soluble resin (X) including copolymerization of a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components. Furthermore, Synthesis Examples 6 to 15 are synthesis methods in which the water-soluble resin (X) further contains another monomer (c).
  • Synthesis Example 2 is a method for synthesizing a water-soluble resin (X) having a molecular weight of 700,000 or less as a water-soluble resin (X) used in a comparative example.
  • Synthesis Example 16 is a method for synthesizing a water-soluble resin (X) of the present invention from which the acid group-containing monomer (b) is removed.
  • Synthesis Example 17 is a method for synthesizing a water-soluble resin (X) of the present invention from which the hydroxyl group-containing monomer (a) is removed.
  • Synthesis Examples 18 to 20 are methods for synthesizing a water-based latex resin (Y) comprising a styrene acrylate copolymer
  • Synthesis Example 21 is a method for synthesizing a water-based latex resin (Y) comprising an acrylate copolymer.
  • Negative electrode mixture slurry Preparation Example 1 consists of a water-soluble resin (X) (Synthesis Example 1) containing a copolymerization containing the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) of the present invention as essential components, and a water-based latex ( Examples 2 to 4 in which SBR was used as SBR for Y) and negative electrode mixture slurry preparation examples 2 to 4 are water-soluble resins (X ) (Synthesis Example 1, Synthesis Example 4, Synthesis Example 5) and a styrene acrylate copolymer (Synthesis Example 18) as the aqueous latex (Y).
  • the water-soluble resin (X) of the present invention further contains other monomers (c) (Synthesis Examples 7 to 8, Synthesis Examples 11 to 15) and water-based latex (Y ) is an example in which a styrene acrylate copolymer (Synthesis Examples 18 to 20) is used.
  • the water-soluble resin (X) of the present invention further contains another monomer (c) (synthesis example 8), and the water-based latex (Y) contains an acrylate copolymer (synthesis example 21). This is an example used.
  • Negative electrode mixture slurry preparation examples 15 to 16 are those in which the water-soluble resin (X) of the present invention further contains other monomers (c), and the acid group-containing monomer (b) is neutralized with a light metal hydroxide.
  • Synthesis Example 9 Li salt
  • Synthesis Example 10 Na salt
  • Synthesis Example 18 a styrene acrylate copolymer as the aqueous latex (Y).
  • Negative electrode mixture slurry Preparation Examples 17 and 18 are those in which the water-soluble resin (X) of the present invention further contains other monomers (c) (Synthesis Example 8), and the water-based latex (Y) contains a styrene acrylate copolymer (Synthesis Example 8). 18) was used, and the amount of binder added was further increased or decreased.
  • negative electrode mixture slurry preparation examples 19 to 20 show that the water-soluble resin (X) of the present invention further contains another monomer (c) (synthesis example 8) and the water-based latex (Y) contains a styrene acrylate copolymer ( This is an example using Synthesis Example 18) and further using a mixture of a graphite-based material and a silicon-containing material as the active material.
  • Negative electrode mixture slurry preparation example 21 is an example using CMC and SBR.
  • negative electrode mixture slurry preparation example 22 is an example in which only the water-soluble resin (X) (synthesis example 1) containing a copolymerization containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components is used. It is.
  • Negative electrode mixture slurry production example 23 is an example in which a styrene acrylate copolymer (synthesis example 18) was used as CMC and the water-based latex resin (Y).
  • Negative electrode mixture slurry preparation example 24 is a water-soluble resin (X) (synthesis example 2) containing a copolymerization containing a hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) having a molecular weight of less than 700,000 as essential components, and a water-based This is an example in which a styrene acrylate copolymer (Synthesis Example 18) was used as the latex (Y).
  • Negative electrode mixture slurry preparation example 25 is a water-soluble resin (X) with a swelling ratio of 10% or more after immersing a dry polymer film in a carbonate-based mixed solvent for 72 hours at 45°C, a water-based latex (Y), and styrene acrylate. This is an example using a copolymer (Synthesis Example 18).
  • Negative electrode mixture slurry preparation example 26 is a water-based latex with a water-soluble resin (X) (synthesis example 6) including a copolymerization having an unneutralized hydroxyl group-containing monomer (a) and an acid group-containing monomer (b) as essential components.
  • Slurry Preparation Example 27 consists of a water-soluble resin (X) (Synthesis Example 16) obtained by removing the acid group-containing monomer (b) from the water-soluble resin (X) of the present invention, a water-based latex (Y), and a styrene acrylate copolymer ( This is an example using Synthesis Example 18).
  • Slurry Preparation Example 28 consists of a water-soluble resin (X) (synthesis example 17) obtained by removing the hydroxyl group-containing monomer (a) from the water-soluble resin (X) of the present invention, a water-based latex (Y), and a styrene acrylate copolymer (synthesis). This is an example using Example 18).
  • Slurry Preparation Example 29 is an example in which a styrene acrylate copolymer (Synthesis Example 18) was used in commercially available sodium polyacrylate and aqueous latex (Y).
  • negative electrode mixture slurry preparation examples 30 to 31 are examples in which CMC and SBR were used and the amount of binder added was increased or decreased.
  • negative electrode mixture slurry production examples 32 and 33 are examples in which CMC and SBR are used, and a mixture of a graphite-based material and a silicon-containing material is used as the active material.
  • water-soluble resins (X) used in comparative examples CMC (carboxymethylcellulose sodium salt, Sunrose MAC350 manufactured by Nippon Paper Industries) and PAA-Na (sodium polyacrylate, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., polymerization degree 22000-70000) were used. )It was used. Further, as the water-based latex resin (Y) used in the Examples and Comparative Examples, SBR (styrene-butadiene copolymer, Luxstar DS407H manufactured by DIC Corporation) was used.
  • Positive electrode production examples 1 to 3 show methods for producing the positive electrodes used in the batteries of Examples and Comparative Examples.
  • Examples 1 to 24 show a method for producing a negative electrode of the present invention
  • Examples 25 to 48 show a method for producing a battery of the present invention.
  • Comparative Examples 1 to 17 show methods for producing negative electrodes of Comparative Examples
  • Comparative Examples 18 to 34 show methods for producing batteries of Comparative Examples.
  • aqueous GPC measurement For the aqueous GPC measurement, a Shimadzu/L20 system was used as the HPLC device, and Shodex OHpak SB-806MHQ (8.0 mm I.D. x 300 mm L. x 2 columns) was used as the column. A 0.2 mol/L sodium nitrate aqueous solution was used as the eluent, and the sample was dissolved to a concentration of 0.5%, and the sample was filtered through a ⁇ 0.45 filter before measurement. 50 ⁇ L of the sample was added and the weight average molecular weight was determined using an RI detector while flowing at a flow rate of 0.70 mL/min. As a standard substance, a calibration curve was created using STANDARD P-82 (Pullulan) manufactured by Showa Denko.
  • the copolymer thus obtained had a nonvolatile content of 14.8% by weight, a pH of 6.8, a viscosity of 3080 mPa ⁇ s, and a weight average molecular weight of 850,000 as measured by aqueous GPC.
  • the obtained copolymer had a nonvolatile content of 15.0% by weight, a pH of 7.1, a viscosity of 3100 mPa ⁇ s, and a weight average molecular weight of 730,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 4.2%.
  • the obtained copolymer had a nonvolatile content of 15.0% by weight, a pH of 7.0, a viscosity of 13,200 mPa ⁇ s, and a weight average molecular weight of 780,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 5.3%.
  • the obtained copolymer had a nonvolatile content of 15.0% by weight, a pH of 7.0, a viscosity of 17,100 mPa ⁇ s, and a weight average molecular weight of 830,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 4.6%.
  • [Synthesis example 12] 10.0 parts by weight of acrylic acid, 10.0 parts by weight of hydroxyethyl acrylate, 80.0 parts by weight of acrylamide, 0.438 parts by weight of ammonium persulfate (1500 ppm based on the total number of moles of monomers), 5 mol/L aqueous sodium hydroxide solution
  • a polymerization reaction was carried out in the same manner as in Synthesis Example 7 except that 25% ammonia water was used instead of .
  • the obtained copolymer had a nonvolatile content of 14.9% by weight, a pH of 7.0, a viscosity of 15,200 mPa ⁇ s, and a weight average molecular weight of 860,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 6.2%.
  • the obtained copolymer had a nonvolatile content of 15.1% by weight, a pH of 7.0, a viscosity of 14,500 mPa ⁇ s, and a weight average molecular weight of 830,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 5.8%.
  • the obtained copolymer had a nonvolatile content of 15.1% by weight, a pH of 7.0, a viscosity of 13000 mPa ⁇ s, and a weight average molecular weight of 840,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 5.3%.
  • the obtained copolymer had a nonvolatile content of 15.0% by weight, a pH of 7.0, a viscosity of 4300 mPa ⁇ s, and a weight average molecular weight of 750,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 17.5%.
  • the obtained copolymer had a nonvolatile content of 15.0% by weight, a pH of 7.0, a viscosity of 8900 mPa ⁇ s, and a weight average molecule of 820,000 as measured by aqueous GPC. Further, the degree of swelling with respect to the carbonate mixed solvent was 5.1%.
  • the obtained water-based latex resin had a nonvolatile content of 39.6%, a viscosity of 28 mPa ⁇ s, and a pH of 6.9.
  • Synthesis example 20 A polymerization reaction was carried out in the same manner as in Synthesis Example 14 except that 222.5 parts by weight of styrene and 220 parts by weight of n-butyl acrylate were used. The mixture was cooled to 40° C. or lower, and the pH was adjusted to 6-7 with aqueous ammonia, and the nonvolatile content was adjusted to 39-41% with ion-exchanged water. The obtained polymer emulsion had a nonvolatile content of 40.0%, a viscosity of 27 mPa ⁇ s, and a pH of 7.0.
  • the monomer composition (wt%), the base used for neutralization, the pH, the weight average molecular weight of the polymer, the non-volatile content, and the viscosity in "Synthesis examples of water-based latex resin (Y)" of Synthesis Examples 18 to 21 above are summarized. , shown in Table 2 below.
  • Example of preparation of negative electrode mixture slurry [Slurry preparation example 1] Weighed out 96.0 parts by weight of artificial graphite (initial charge capacity 390 mAh/g, initial discharge capacity 350 mAh/g) and 1.0 parts by weight of acetylene black, and used a rotation/revolution mixer (ARE-310 manufactured by Thinky). Stirring was carried out for 30 seconds under the conditions of 1000 rpm of rotation and 2000 rpm of revolution.
  • a negative electrode mixture slurry was prepared in the same manner as Slurry Preparation Example 1 except that parts by weight were used.
  • [Slurry preparation example 17] Weigh out 95.0 parts by weight of artificial graphite (initial charge capacity 390 mAh/g, initial discharge capacity 350 mAh/g) and 1.0 parts by weight of acetylene black, and use a rotation/revolution mixer (ARE-310 manufactured by Thinky). Stirring was carried out for 30 seconds under the conditions of 1000 rpm of rotation and 2000 rpm of revolution.
  • aqueous solution adjusted to .0%, 39.5 parts by weight (1.58 parts by weight in terms of solid content) and 12.5 parts by weight of distilled water were added and mixed until the whole became paste-like.
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky
  • aqueous solution adjusted to .0%, 19.5 parts by weight (0.78 parts by weight in terms of solid content) and 32.5 parts by weight of distilled water were added and mixed until the whole became paste-like.
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky
  • SiO negative electrode material initial charge capacity 2062mAh/g, initial discharge capacity 1631mAh/g
  • artificial graphite initial charge capacity 390mAh/g, initial discharge capacity 350mAh/g
  • acetylene black 1 0 parts by weight was weighed out and stirred for 30 seconds using an autorotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of autorotation of 1000 rpm and revolution of 2000 rpm.
  • ARE-310 autorotation/revolution mixer
  • To the aqueous solution adjusted to .0% 27.0 parts by weight (1.08 parts by weight in terms of solid content) and 21.0 parts by weight of distilled water were added and mixed until the whole became paste-like.
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water. Add 27.0 parts by weight (0.54 parts by weight in terms of non-volatile content) to the CMC aqueous solution previously prepared to a non-volatile content concentration of 2%, mix until the whole is homogeneous, and then use a rotating/revolution mixer.
  • ARE-310 manufactured by Thinky
  • the mixture was stirred for 2 minutes using an ARE-310 (manufactured by Thinky) under conditions of 1000 rpm of rotation and 2000 rpm of revolution, and then cooled to room temperature with ice water.
  • SBR styrene-butadiene copolymer
  • a negative electrode mixture slurry was prepared in the same manner as Slurry Preparation Example 1 except that parts by weight were used.
  • Y water-based latex resin
  • a negative electrode mixture slurry was prepared in the same manner as Slurry Preparation Example 1 except that parts by weight were used.
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water. After adding 10.5 parts by weight of distilled water and mixing until the whole was homogeneous, the mixture was stirred for 2 minutes with an autorotation/revolution mixer (ARE-310 manufactured by Thinky) under the conditions of 1000 rpm of rotation and 2000 rpm of revolution. Cooled to room temperature with ice water.
  • ARE-310 manufactured by Thinky autorotation/revolution mixer
  • SBR styrene-butadiene copolymer
  • the mixture was stirred for 2 minutes using a rotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of 1000 rpm of rotation and 2000 rpm of revolution, and since heat was generated by stirring, the mixture was cooled to room temperature with ice water. After stirring again for 2 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution, the mixture was cooled to room temperature with ice water. Add 10.5 parts by weight of distilled water (0.42 parts by weight in terms of non-volatile content), mix until the whole is homogeneous, and then mix with a rotation/revolution mixer (ARE-310 manufactured by Thinky) at 1000 rpm.
  • a rotation/revolution mixer ARE-310 manufactured by Thinky
  • the mixture was stirred for 2 minutes at a revolution speed of 2000 rpm, and cooled to room temperature with ice water.
  • SBR styrene-butadiene copolymer
  • ARE-310 rotary/revolution mixer
  • SiO negative electrode material (initial charge capacity 2062mAh/g, initial discharge capacity 1631mAh/g) 3.7 parts by weight, artificial graphite (initial charge capacity 390mAh/g, initial discharge capacity 350mAh/g) 92.3 parts by weight, acetylene black 1 0 parts by weight was weighed out and stirred for 30 seconds using an autorotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of autorotation of 1000 rpm and revolution of 2000 rpm.
  • Carboxymethyl cellulose Na salt (CMC, Sunrose MAC350HC manufactured by Nippon Paper Industries) was dissolved in distilled water and the nonvolatile content concentration was adjusted to 2.0%.
  • the mixture layer density was measured again and found to be 1.65 g/cm 3 (mixture layer thickness: 80.0 ⁇ m).
  • the initial charge capacity per unit area of this electrode is 4.97 mAh/cm2.
  • the negative electrode of Example 1 area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer thickness 80.0 ⁇ m, initial charge capacity per unit area 4.97 mAh/cm 2 ) was obtained. It was done.
  • the negative electrode produced above was left in a constant temperature and humidity chamber at a temperature of 25° C. and a relative humidity of 50% for 6 hours, and then cut into a strip having a width of 25 mm and a length of 100 mm. Then, using double-sided tape (No5015, manufactured by Nitto Denko Corporation), the active material surface was attached to a stainless steel plate as the adhering surface to prepare a sample for a peel strength test. Approximately 10 mm of the end of the copper foil was peeled off, and a polyimide tape was attached thereto to serve as an attachment part to a peel tester.
  • a peel strength test sample was attached to a peel tester (Autograph AG-X Plus, manufactured by Shimadzu Corporation), and a 180 degree peel test was performed. The peel strength was 34.5 N/m. Then, the state of peeling (destruction) of the negative electrode coating was observed. Further, the negative electrode coating film was wound around a core having a diameter of 5 mm, and visually observed whether or not cracks occurred in the coating film. No cracks were generated at this time.
  • Example 2 The negative electrode of Example 2 (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , a mixture layer thickness of 80.0 ⁇ m, and a unit area initial charge capacity of 4.97 mAh/cm 2 ).
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 31.5 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 3 The negative electrode of Example 3 (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , a mixture layer thickness of 80.0 ⁇ m, and a unit area initial charge capacity of 4.97 mAh/cm 2 ).
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 27.8 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 4 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 28.9 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 5 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 28.9 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 6 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 30.7 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 7 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 28.4 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 8 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 29.1 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 9 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 30.5 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 10 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 28.6 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 11 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 28.6 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 12 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 30.1 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 13 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 32 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 14 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 29.8 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 15 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 29.5 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 16 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 34.6 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 17 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.89 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 56.0 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 18 The negative electrode (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer A battery having a thickness of 80.0 ⁇ m and a unit area initial charge capacity of 4.97 mAh/cm 2 was produced.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 16.2 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 19 Using the negative electrode mixture slurry shown in Slurry Preparation Example 6 above, the pressure of the roll press was adjusted appropriately so that the value of the electrode density after vacuum drying was 1.40 g/cm 3 (the thickness of the mixture layer was 94.3 ⁇ m).
  • the negative electrode area density 13.2 gm/cm 2 , mixture layer density 1.40 g/cm 3 , mixture layer thickness 94.3 ⁇ m, initial charge capacity per unit area 4. 97mAh/cm 2 ).
  • the peel strength at this time was 29.0 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 20 Using the negative electrode mixture slurry shown in Slurry Preparation Example 6 above, the pressure of the roll press was adjusted appropriately so that the value of the electrode density after vacuum drying was 1.75 g/cm 3 (75.4 ⁇ m in thickness of the mixture layer).
  • the negative electrode area density 13.2 gm/cm 2 , mixture layer density 1.75 g/cm 3 , mixture layer thickness 75.4 ⁇ m, initial charge capacity per unit area 4. 97mAh/cm 2 ).
  • the peel strength at this time was 35.2 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 21 Everything is the same as in Example 1 except that the negative electrode mixture slurry shown in Slurry Preparation Example 6 was used and the gap of the bar coater was adjusted so that the negative electrode mixture coating amount (area density) was 18.2 mg/ cm2 .
  • a negative electrode (area density: 18.2 gm/cm 2 , mixture layer density: 1.65 g/cm 3 , mixture layer thickness: 110.0 ⁇ m, unit area initial charge capacity: 6.81 mAh/cm 2 ) was prepared.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 110.3 ⁇ m).
  • the peel strength at this time was 30.1 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 22 Everything is the same as in Example 1 except that the negative electrode mixture slurry shown in Slurry Preparation Example 6 was used and the gap of the bar coater was adjusted so that the negative electrode mixture coating amount (area density) was 20.7 mg/ cm2 .
  • a negative electrode (area density: 20.7 gm/cm 2 , mixture layer density: 1.65 g/cm 3 , mixture layer thickness: 125.5 ⁇ m, unit area initial charge capacity: 7.75 mAh/cm 2 ) was prepared.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 125.5 ⁇ m).
  • the peel strength at this time was 25.5 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 23 Using the negative electrode mixture slurry shown in Slurry Preparation Example 19 above, the gap of the bar coater was adjusted so that the negative electrode mixture coating amount (area density) was 11.3 mg/ cm2 , and the value of the electrode density after vacuum drying.
  • a negative electrode (with an areal density of 11.3 gm/ cm2 ) was prepared in the same manner as in Example 1, except that the pressure of the roll press was appropriately adjusted so that the , a mixture layer density of 1.65 g/cm 3 , a mixture layer thickness of 68.5 ⁇ m, and an initial charge capacity per unit area of 4.94 mAh/cm 2 ).
  • the peel strength at this time was 32.0 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Example 24 Using the negative electrode mixture slurry shown in Slurry Preparation Example 20 above, the gap of the bar coater was adjusted so that the coating amount (area density) of the negative electrode mixture was 10.7 mg/ cm2 , and the value of the electrode density after vacuum drying.
  • a negative electrode (with an areal density of 10.7 gm/cm) was prepared in the same manner as in Example 1 , except that the pressure of the roll press was appropriately adjusted so that the 2 , a mixture layer density of 1.65 g/cm 3 , a mixture layer thickness of 64.8 ⁇ m, and a unit area initial charge capacity of 4.98 mAh/cm 2 ).
  • the peel strength at this time was 34.0 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Negative electrode composite shown in Slurry Preparation Example 27 (area density 13.2 gm/cm 2 , mixture layer density 1.65 g/cm 3 , mixture layer thickness 80.0 ⁇ m, unit area initial charging capacity 4.97 mAh/cm 2 )
  • a negative electrode was produced in the same manner as in Example 1 except that the agent slurry was used.
  • the pressure of the roll press was appropriately adjusted so that the density of the mixture layer after vacuum drying was 1.65 g/cm 3 (the thickness of the mixture layer was 80.0 ⁇ m).
  • the peel strength at this time was 15.2 N/m. Further, when it was wound around a core having a diameter of 5 mm, no cracks were generated.
  • Preparation of positive electrode "Preparation of positive electrode mixture slurry"
  • a positive electrode mixture slurry was formed by dispersing it in -2-pyrrolidone. Note that the nonvolatile content in the positive electrode mixture slurry was 50 parts by weight based on the total mass of the slurry.
  • the mixture was stirred for 1 minute using an autorotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of an autorotation speed of 1000 rpm and a revolution speed of 2000 rpm. Since heat was generated by stirring, the mixture was allowed to cool to room temperature. This operation of stirring with the rotation/revolution mixer and cooling was repeated three more times. Next, 10.0 parts by weight of NMP was added and mixed until the whole was homogeneous. Next, the mixture was stirred for 1 minute using an autorotation/revolution mixer (ARE-310 manufactured by Thinky) under conditions of an autorotation speed of 1000 rpm and a revolution speed of 2000 rpm. Since heat was generated by stirring, the mixture was allowed to cool to room temperature.
  • an autorotation/revolution mixer ARE-310 manufactured by Thinky
  • [Positive electrode production example 1] "Production of positive electrode with areal density of 25.0 mg/ cm2 " First, the gap of the bar coater was adjusted so that the coating amount (area density) of the mixture after drying was 25.0 mg/cm 2 , and the positive electrode mixture slurry prepared above was applied to the current collector aluminum by this bar coater. It was coated on a current collector foil (thickness: 15 ⁇ m, width: 180 mm). Next, the positive electrode mixture slurry was dried for 15 minutes in a blow dryer set at 80°C. Then, the dried positive electrode mixture was pressed using a roll press machine so that the mixture density was 3.40 g/cm 3 .
  • a positive electrode with an areal density of 25.0 mg/cm 2 areal density 25.0 gm/cm 2 , mixture layer density 3.40 g/cm 3 , The agent layer thickness was 73.5 ⁇ m, and the initial charge capacity per unit area was 4.49 mAh/cm 2 ).
  • Example 25 The negative electrode shown in Example 1 was cut into a 24 mm x 24 mm square with a tab, and the positive electrode shown in Positive Electrode Preparation Example 1 was cut into a 22 mm x 22 mm square with a tab using a Thomson blade. A nickel tab lead for the negative electrode and an aluminum tab lead for the positive electrode were welded to the tab portion of the cut electrode. Next, the separator (microporous polyethylene film with a thickness of 20 microns) was cut into a rectangle of 28 mm x 38 mm using a Thomson blade.
  • the secondary battery produced above was sandwiched between two Gore Hyper sheets and two acrylic plates on top of the sheet, and fixed with two double clips so that a constant pressure was evenly applied to the electrode parts. This was attached to a charging/discharging device, and after being left at 25° C. for 3 hours, it was charged and discharged once at a charging/discharging rate of 0.1 C. The initial charge/discharge efficiency at this time was 84.6%.
  • Electrode expansion measurement After the initial charging and discharging, the battery was held at 45°C and charged once at 0.5C, and then the secondary battery was disassembled in a dry room and the fully charged negative electrode was taken out. After washing with dimethyl carbonate and air drying, the electrode thickness was measured with a micrometer, and the thickness of the mixture layer was obtained by reducing the thickness of the current collector. The electrode expansion coefficient was calculated with the thickness of the electrode mixture layer before charging as 100, and was found to be 17.5%.
  • Example 26 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 2 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 85.0%, an electrode expansion rate of 16.3%, a discharge capacity retention rate of 93.2% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.6%.
  • Example 27 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 3 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.9%, an electrode expansion rate of 16.6%, and a discharge capacity retention rate of 93.3% after 100 cycles at 45°C and 0.5C, at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.5%.
  • Example 28 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 4 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.8%, the electrode expansion rate was 16.5%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.7%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.8%.
  • Example 29 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 5 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 85.0%
  • the electrode expansion rate was 17.0%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.5%
  • -10°C0 The discharge capacity retention rate after 50 cycles at .5C was 84.6%.
  • Example 30 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 6 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 85.0%
  • the electrode expansion rate was 16.8%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 92.1%
  • the rate was 92.1% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.0%.
  • Example 31 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 7 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.4%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.8%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 85.2%.
  • Example 32 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 8 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.8%, an electrode expansion rate of 16.7%, a discharge capacity retention rate of 91.5% after 100 cycles at 45°C and 0.5°C, and a -10°C 0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.9%.
  • Example 33 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 9 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.8%, the electrode expansion rate was 16.4%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.7%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 85.0%.
  • Example 34 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 10 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.3%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.5%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 83.9%.
  • Example 35 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 11 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.8%, the electrode expansion rate was 16.5%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.7%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.5%.
  • Example 36 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 12 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.9%, an electrode expansion rate of 16.6%, and a discharge capacity retention rate of 91.8% after 100 cycles at 45°C and 0.5C, -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.2%.
  • Example 37 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 13 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.3%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.4%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.7%.
  • Example 38 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 14 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.4%, and the discharge capacity retention rate after 50 cycles at 45°C and 0.5C was 91.8%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.5%.
  • Example 39 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 15 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 86.2%, the electrode expansion rate was 16.7%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 92.1%, and the rate was 92.1% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.4%.
  • Example 40 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 16 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 85.1%
  • the electrode expansion rate was 16.5%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 92.2%
  • the rate was 92.2% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.5%.
  • Example 41 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 17 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.9%, and the discharge capacity retention rate after 50 cycles at 45°C and 0.5C was 91.0%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 84.4%.
  • Example 42 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 18 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.2%, an electrode expansion rate of 18.2%, a discharge capacity retention rate of 92.4% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 85.7%.
  • Example 43 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 19 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.9%, the electrode expansion rate was 16.8%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 93.1%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 86.3%.
  • Example 44 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 20 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.8%, an electrode expansion rate of 17.2%, a discharge capacity retention rate of 90.1% after 100 cycles at 45°C and 0.5C, and a -10°C 0
  • the discharge capacity retention rate after 50 cycles at .5C was 83.5%.
  • Example 45 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 21 and the positive electrode shown in Positive Electrode Preparation Example 2 were used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.0%, the electrode expansion rate was 19.6%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.3%, and the rate was 88.3% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 81.9%.
  • Example 46 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 22 and the positive electrode shown in Positive Electrode Preparation Example 5 were used.
  • the initial charge/discharge capacity of the obtained secondary battery was 83.9%, the electrode expansion rate was 20.1%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 84.2%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 78.1%.
  • Example 47 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 23 and the positive electrode shown in Positive Electrode Preparation Example 3 were used.
  • the initial charge/discharge capacity of the obtained secondary battery was 83.2%, the electrode expansion rate was 25.5%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.5%, and the rate was 88.5% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 82.0%.
  • Example 48 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Example 24 and the positive electrode shown in Positive Electrode Preparation Example 4 were used.
  • the initial charge/discharge capacity of the obtained secondary battery was 82.9%, the electrode expansion rate was 30.0%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 86.5%, and the rate was 86.5% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 80.2%.
  • Example 18 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 1 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.5%
  • the electrode expansion rate was 20.0%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 91.0%
  • -10°C0 The discharge capacity retention rate after 50 cycles at .5C was 64.8%.
  • Example 19 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 2 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.2%, the electrode expansion rate was 15.3%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.0%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 62.5%.
  • Example 20 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 3 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.3%, the electrode expansion rate was 19.0%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.4%, and the rate was 88.4% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 63.0%.
  • Example 21 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 4 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.8%, the electrode expansion rate was 18.0%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 89.0%, and -10°C0
  • the discharge capacity retention rate after 50 cycles at .5C was 63.4%.
  • Example 22 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 5 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.3%, an electrode expansion rate of 22.0%, a discharge capacity retention rate of 85.4% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 63.8%.
  • Example 23 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 6 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.9%, an electrode expansion rate of 17.2%, a discharge capacity retention rate of 90.2% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 64.6%.
  • Example 24 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 7 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.7%, an electrode expansion rate of 25.1%, and a discharge capacity retention rate of 87.0% after 100 cycles at 45°C and 0.5°C, at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 63.3%.
  • Example 25 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 8 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.6%
  • the electrode expansion rate was 18.1%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.0%
  • -10°C0 The discharge capacity retention rate after 50 cycles at .5C was 62.9%.
  • Example 26 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 9 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.3%, an electrode expansion rate of 20.1%, a discharge capacity retention rate of 86.5% after 100 cycles at 45°C and 0.5C, and a -10°C 0
  • the discharge capacity retention rate after 50 cycles at .5C was 64.4%.
  • Example 27 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 10 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.6%, an electrode expansion rate of 19.8%, a discharge capacity retention rate of 89.6% after 100 cycles at 45°C and 0.5C, and a -10°C 0
  • the discharge capacity retention rate after 50 cycles at .5C was 64.4%.
  • Example 28 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 11 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.3%
  • the electrode expansion rate was 22.0%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 88.3%
  • the rate was 88.3% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 63.8%.
  • Example 29 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 12 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 84.8%, an electrode expansion rate of 19.3%, a discharge capacity retention rate of 92.3% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 69.7%.
  • Example 30 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 13 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.8%, the electrode expansion rate was 21.5%, and the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 89.2%, and the rate was 89.2% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 67.4%.
  • Example 31 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 14 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.1%
  • the electrode expansion rate was 23.5%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 86.1%
  • the rate was 86.1% at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 65.1%.
  • Example 32 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 15 was used.
  • the initial charge/discharge capacity of the obtained secondary battery was 84.0%
  • the electrode expansion rate was 24.3%
  • the discharge capacity retention rate after 100 cycles at 45°C and 0.5C was 82.3%
  • -10°C0 The discharge capacity retention rate after 50 cycles at .5C was 62.2%.
  • Example 33 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 16 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 86.0%, an electrode expansion rate of 30.2%, a discharge capacity retention rate of 82.3% after 100 cycles at 45°C and 0.5C, and a -10°C of 0.
  • the discharge capacity retention rate after 50 cycles at .5C was 65.0%.
  • Example 34 All operations were carried out simultaneously with Example 25, except that the negative electrode shown in Comparative Example 17 was used.
  • the obtained secondary battery had an initial charge/discharge capacity of 82.8%, an electrode expansion rate of 35.4%, and a discharge capacity retention rate of 83.9% after 100 cycles at 45°C and 0.5°C, at -10°C.
  • the discharge capacity retention rate after 50 cycles at .5C was 63.4%.
  • Example 25 when a water-soluble resin (X) containing copolymerization containing the hydroxyl group-containing monomer (a) and acid group-containing monomer (b) of the present invention as essential components and SBR were used as the binder, Comparative Example 1
  • the peel strength, the capacity retention rate after 100 cycles at 45°C, and the capacity retention rate after 100 cycles at 0°C are better than when using CMC and SBR shown in .
  • a water-soluble resin (X) and a latex resin (Y ) the peel strength, the capacity retention rate after 100 cycles at 45°C, and the capacity retention rate after 100 cycles at 0°C are better than in Comparative Example 1.
  • the peel strength and The capacity retention rate after 100 cycles at 45°C and the capacity retention rate after 100 cycles at 0°C are improved.
  • the water-soluble resin (X) contains a copolymerized binder containing the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) of the present invention as essential components, or that the water-soluble resin (X) is Furthermore, it is shown that good electrode and battery characteristics can be obtained by using a resin containing another monomer (c) and a latex resin (Y).
  • Example 43, Example 44, Comparative Example 16, Comparative Example 25, and Comparative Example 26 even when the electrode density of the negative electrode was changed in the range of 1.40 to 1.75 g/cm3, , Peel strength of Example 30 (electrode density 1.50 g/cm3), Example 43 (electrode density 1.40 g/cm3), and Example 44 (electrode density 1.75 g/cm3), after 100 cycles at 45°C
  • the capacity retention rate and the capacity retention rate after 100 cycles at 0°C are Comparative Example 16 (electrode density 1.50 g/cm3), Comparative Example 25 (electrode density 1.40 g/cm3), and Comparative Example 26 (electrode density 1 .75g/cm3).
  • water-soluble resin (X) comprising a copolymerization comprising the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) of the present invention as essential components is a resin further comprising another monomer (c), This shows that good electrode and battery characteristics can be obtained by using water-based latex (Y).
  • Example 45 negative electrode mixture layer thickness 110 ⁇ m
  • Example 45 negative electrode mixture layer thickness 110 ⁇ m
  • the water-soluble resin (X) comprising a copolymer containing the hydroxyl group-containing monomer (a) and the acid group-containing monomer (b) of the present invention as essential components can be further
  • good electrode and battery characteristics can be obtained by using a resin containing monomer (c) and a water-based latex (Y).
  • Example 47 As shown in Example 47 and Comparative Example 48, or Comparative Example 29 and Comparative Example 30, even when using a mixed active material of SiO negative electrode material and graphite, Example 47 (SiO negative electrode material 3.7 parts by weight), and the peel strength, capacity retention rate after 100 cycles at 45°C, and capacity retention rate after 100 cycles at 0°C of Example 48 (5.3 parts by weight of SiO negative electrode material) were the same mixed active materials. This was better than Comparative Example 29 (3.7 parts by weight of SiO negative electrode material) and Comparative Example 30 (5.3 parts by weight of SiO negative electrode material) using .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

新規活物質の使用や、電極の厚膜化、高密度化時においても良好な電池性能が得られる負極バインダー組成物およびその製造方法、当該負極バインダー組成物を含む負極及び二次電池を提供することである。 本発明の負極バインダー組成物は、水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む水溶性樹脂(X)と、水系ラテックス樹脂(Y)と、を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記共重合体の乾燥フィルムを45℃のカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に72時間浸漬させた後の膨潤率が0~10重量%である。

Description

負極バインダー組成物およびその製造方法、負極、及び二次電池
 本発明は、負極バインダー組成物およびその製造方法、負極バインダー組成物を含む負極及び二次電池に関する。
 リチウムイオン二次電池(以下、「LIB」と称する場合がある)の負極におけるバインダー(結合剤)としては、水溶性高分子のカルボキシメチルセルロースナトリウム塩(CMC)と水性ラテックス樹脂のスチレン‐ブタジエン共重合体(SBR)の併用が一般的である。バインダーの主な機能としては、電極作製プロセス時に、1)活物質や導電助剤等の成分を均一に分散させる機能、2)電極合剤スラリーのレオロジーを調整する機能、3)スラリー塗布乾燥時に合剤層を平坦化させるレベリング機能、4)合剤成分及び集電体を結着させる機能などが挙げられる。更に電池性能に関与する機能として、5)充放電サイクルで発生する活物質の体積変化による電極膨張抑制を抑制する機能、6)活物質及び集電体間の結着を維持し、電子伝導性を確保する機能、7)電解液を含んで適度に膨潤することにより、イオン伝導性を確保する機能等が挙げられる。LIBは、ノートパソコンや携帯電話などの充電可能な電源として広く普及しているが、近年、電動工具等のパワーツールや、自動車及び定置型蓄電設備等の中大型機器での利用が急速に拡大している。適用範囲の急速な拡大に伴い、より広い温度範囲で電池に要求される性能も様々ではあるが、容量、出力及び寿命の3点が主に重要視される性能であり、これらの改善が特に望まれている。
 このような状況の中、電池高性能化の要求を満たすために、様々な取り組みがなされている。例えば負極材においては、高容量化の取り組みとして、従来から広く用いられている炭素系活物質(例えば黒鉛)に代わる新規負極活物質が検討されている。新規負極活物質としては、錫合金、シリコン合金、シリコン酸化物等が挙げられる。これらの新規負極活物質は、炭素系活物質よりも容量が数倍程度と非常に大きく、少量添加するだけでも負極容量を高めることが可能である。しかしながら、これらの新規負極活物質は、充放電サイクルにおける容量維持率が炭素系活物質よりも劣っていることが問題となっている。その理由として新規負極活物質は、炭素系活物質に比べて充放電に伴う体積膨張収縮が大きいため、電極構造の破壊による活物質の欠落や電子伝導性の低下が起こることが挙げられる。また、活物質表面に形成されているSEI被膜が体積変化に追従できずに破壊されると、SEI被膜に覆われていない活物資表面が露出し、新たなSEI被膜形成反応による電解液の分解が進行することも挙げられる。SEI被膜は主に、電解液の分解物から成る被膜であり、初回充電時に活物質表面に形成される。このSEI被膜はリチウムイオンの挿入脱離反応を仲介する役割を果たすと同時に、さらなる電解液の分解反応を抑制するなど、電池の性能向上に寄与していると考えられている。SEI被膜が薄すぎると電解液の分解反応が止まらず、逆に厚くなりすぎると電気抵抗が高くなり、電池の寿命や効率に悪影響を及ぼす結果となる。
 上記新規負極活物質の体積変化による問題点を解決する取り組みとしては、例えば下記特許文献1では、高強度な芳香族ポリイミドをバインダーに用いることで、負極活物質の体積変化を抑制する手法が提案されている。また、下記特許文献2では、一部架橋したポリアクリル酸をバインダーに用いることで、負極活物質の体積変化を抑制する手法が提案されている。更に下記特許文献3では、アクリル酸とポリビニルアルコールの共重合体をバインダーに用いることで、負極活物質の体積変化を抑制する手法が提案されている。しかしながら、特許文献1のバインダーでは、初回充放電効率が悪く活物質の容量を十分に発揮することが出来なかった。また、特許文献2及び3のバインダーでは高温及び低温のサイクル特性が必ずしも十分ではなかった。
 一方で充放電サイクルにおける容量維持率を重視し、且つ高容量化したい場合には、黒鉛系負極は変えずに、単位面積当たりの活物質重量を増やすことで高容量化する従来からの手法が用いられる。この場合は、電極層の厚み増加(厚膜化)と電極密度の増加(高密度化)の何れか一方、若しくは両方が必須となる。電極が厚膜化すると電極内部の電子及びイオンの移動距離が増加するため、これらの移動抵抗が増加する。また、高密度化すると活物質粒子間の空隙が減少するため、電解液の流路が狭くなり、イオンの移動抵抗が増加することになる。抵抗の増加は電池性能の低下を招く要因であり、容量維持率や負荷特性の低下を招く事になる。
 上記電極の厚膜化、高密度化の問題点を解決する取り組みとして、例えば下記特許文献4では、負極を2層化し、下層にCMC/SBRを用い、上層に電解液膨潤性の高いアクリレートバインダーを用いる手法が提案されている。しかしながら、特許文献4の手法では電極作製工程が2倍になる欠点がある。また、上層の電解液膨潤度が大きいため、高温でのサイクル特性の低下が懸念される。特許文献5では、酸性官能基と主鎖としてポリフッ化ビニリデン骨格とを有する樹脂とPVDFの混合樹脂を用いる手法が提案されている。しかしながら、結合剤としてPVDFに代表されるフッ素系樹脂を使用する場合には、スラリー化のための溶媒としてNMPなどの有機溶剤を使用するが、近年の環境への配慮や作業者の安全性および価格などの観点から、スラリー化のための溶媒を水性にすることが好ましい。
特開2019-204786号公報 特開2018-029069号公報 特開2021-136121号公報 特開2018-120706号公報 特開2020-113442号公報
 上記のように従来のLIB負極におけるバインダーでは、新規活物質の体積膨張や電極の厚膜化、高密度化によって生じる電池性能の低下を抑制する能力が不足していた。よって、本発明の課題は、新規活物質の使用や、電極の厚膜化、高密度化時においても良好な電池性能が得られる負極バインダー組成物およびその製造方法、当該負極バインダー組成物を含む負極及び二次電池を提供することである。
 これらの課題を解決するため本発明者らが鋭意検討した結果、従来にない高い分子量の水酸基と酸基を含む樹脂と水系ラテックス樹脂を負極に用いる事で、電極の膨れが抑制されピール強度が強く、更に高温及び低温でも良好なサイクル特性が発現することを見出し、本発明に至った。
 すなわち本発明は、以下に関する。
[1]水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む水溶性樹脂(X)と、水系ラテックス樹脂(Y)と、を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記共重合体の乾燥フィルムを45℃のカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に72時間浸漬させた後の膨潤率が0~10重量%である負極バインダー組成物。
[2] 前記水酸基含有モノマー(a)が、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、及び4-ヒドロキシブチルメタクリレートからなる群のうちいずれか1種以上である[1]に記載の負極バインダー組成物。
[3] 前記酸基含有モノマー(b)が、塩基性組成物若しくは軽金属塩で中和されたものである[1]又は[2]に記載の負極バインダー組成物。
[4] 前記酸基含有モノマー(b)が、アクリル酸、メタクリル酸、マレイン酸、モノメチルマレイン酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、マレイン酸、及びイタコン酸からなる群のうちいずれか1種以上である[1]~[3]のいずれか1つに記載の負極バインダー組成物。
[5] 前記水溶性樹脂(X)が、更にアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうちいずれか1種以上を含む[1]~[4]のいずれか1つに記載の負極バインダー組成物。
[6] 前記水溶性樹脂(X)全量に対する、前記水酸基含有モノマー(a)と前記酸基含有モノマー(b)由来の樹脂成分の合計含有量が5~80重量%である[1]~[5]のいずれか1つに記載の負極バインダー組成物。
[7] 前記のアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうちいずれか1種以上の含有量が0~80重量%である[1]~[6]のいずれか1つに記載の負極バインダー組成物。
[8] 前記水系ラテックス樹脂(Y)が、SBR、スチレンアクリレート共重合体、及びアクリレート共重合体のうちいずれか1種以上である[1]~[7]のいずれか1つに記載の負極バインダー組成物。
[9] 前記スチレンアクリレート共重合体が、ブチルアクリレートである[8]に記載の負極バインダー組成物。
[10] 前記スチレンアクリレート共重合体全量における、スチレン単量体由来の構成単位の含有量が40~60重量%、且つブチルアクリレート単量体由来の構成単位の含有量が20~40重量%である[9]に記載の負極バインダー組成物。
[11] [1]~[10]のいずれか1つに記載の負極バインダー組成物を成分として含む負極。
[12] 水溶性樹脂(X)由来の成分と、水系ラテックス樹脂(Y)由来の成分の合計含有量が、1.5重量%以上5.5重量%以下である[11]に記載の負極。
[13] 黒鉛質主体の材料を主活物質として含み、更に負極の体積密度が1.4g/cm以上である[11]又は[12]に記載の負極。
[14] 合剤層の厚みが80μm以上である[11]~[13]のいずれか1つに記載の負極。
[15] 黒鉛質主体の材料とシリコンを含有する材料の少なくとも2種以上の混合活物質を含む[11]~[14]のいずれか1つに記載の負極。
[16] [11]~[15]のいずれか1つに記載の負極から構成される二次電池。
[17] 少なくとも活物質と前記水溶性樹脂(X)から成る水系スラリーを固練りする工程と、その後に固形分濃度を下げて前記水系ラテックス樹脂(Y)を混合する工程を有する[1]~[10]のいずれか1つに記載の負極バインダー組成物の製造方法。
 本発明の負極バインダー組成物は、セルロース等の増粘剤なしでもスラリー安定性が良好で、これを被膜としたときの高温での耐電解質膨潤性も良好である。よって、本発明の負極バインダー組成物を成分として含む負極は、ピール強度が強いため、その結果、電池評価を実施した場合に高サイクル回数でも良好な充放電特性を発現し、近年のLIB負極に求められる性能を達成できる。
<負極バインダー組成物>
 本発明の負極バインダー組成物は、水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む水溶性樹脂(X)と、水系ラテックス樹脂(Y)と、を含む負極バインダー組成物であって、水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記共重合体の乾燥フィルムを45℃のカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に72時間浸漬させた後の膨潤率が0~10重量%である
 上記共重合体における水系GPC測定装置を用いて測定したときの重量平均分子量は、700,000以上であるが、好ましくは750,000~1,500,000、より好ましくは800,000~1,200,000である。重量平均分子量が700,000以上であると、上記発明の効果で述べたとおり、スラリー安定性が良好で、これを被膜としたときの高温での耐電解質膨潤性も良好となる。
 上記水系GPC測定装置では、カラムの充填剤として一般的なポリヒドロキシメタクリレートなどポリマー系充填剤を用いることができる。カラムとしては、例えば昭和電工株式会社製Shodex OHpakシリーズのSB-806 HQ,SB-806M HQなどを使用することができる。また溶離液としては、硝酸ナトリウム水溶液、塩酸水素ナトリウム水溶液、硫酸ナトリウム水溶液、リン酸塩緩衝液などの中性塩溶液を用いることができる。これらの溶離液の濃度としては、例えば0.1~0.3mol/L程度が好ましい。GPC測定装置としては、Shimadzu/L20システムなどを使用することができる。GPC測定における標準物質としては、ポリスチレン若しくはプルランを使用することができる。具体的には標準物質として昭和電工株式会社製STANDARD P-82(Pullulan)などを使用することができる。
 上記のとおり、負極バインダー組成物の乾燥ポリマーフィルムをカーボネート系混合溶剤に45℃で72時間浸漬させた後の膨潤率が0~10重量%であるが、膨潤率は、好ましくは0.1~6重量%、より好ましくは0.1~4重量%である。膨潤率は低い方が好ましく、膨潤率が上記範囲であると、負極としたときのピール強度が強いため、その結果、電池評価を実施した場合に高サイクル回数でも良好な充放電特性を発現することができる。
 上記膨潤率は、負極バインダー組成物を、例えば常温72時間、150℃で30分間乾燥して膜厚150μの乾燥ポリマーフィルム(乾燥被膜)を作製し、この乾燥ポリマーフィルムをカーボネート系混合溶剤(例えば、EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt.r))に60℃、72時間浸漬させ、浸漬後のフィルムの重量を測定し、浸漬前後での重量の変化率として求めることができる。膨潤率が高いということは、負極バインダー組成物が溶剤を含みやすく、負極としたときに銅などの基材と合剤が剥離(ピール)しやすいことを意味する。
[水溶性樹脂(X)]
 上記共重合体における水酸基含有モノマー(a)としては、例えば2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレートが挙げられる。なかでも水酸基含有モノマー(a)としては、ヒドロキシエチルアクリレート(特に2-ヒドロキシエチルアクリレート)が好ましい。共重合体を構成するモノマー全量に対する水酸基含有モノマー(a)の含有量は、例えば20~80重量%、好ましくは30~70重量%である。水酸基含有モノマー(a)の含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 上記共重合体における酸基含有モノマー(b)としては、例えばアクリル酸、メタクリル酸、マレイン酸、モノメチルマレイン酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、マレイン酸、イタコン酸が挙げられる。酸基含有モノマー(b)における酸基としては、カルボン酸が好ましい。なかでも酸基含有モノマー(b)としては、アクリル酸が特に好ましい。共重合体を構成するモノマー全量に対する酸基含有モノマー(b)の含有量は、例えば10~60重量%、好ましくは20~50重量%である。酸基含有モノマー(b)の含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 また、上記共重合体における酸基含有モノマー(b)は、塩基性組成物若しくは軽金属塩で中和されたものであることが好ましい。塩基性組成物若しくは軽金属塩で中和されたものの含有量は、例えば10~60重量%、好ましくは20~50重量%である。これらの含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 水溶性樹脂(X)全量に対する、水酸基含有モノマー(a)と酸基含有モノマー(b)由来の樹脂成分の合計含有量は、5~80重量%であることが好ましく、より好ましくは10~70重量%である。この合計含有量が上記範囲であると、スラリー安定性および被膜としたときの高温での耐電解質膨潤性がともに良好となる傾向がある。
 水溶性樹脂(X)を構成する共重合体は、水酸基含有モノマー(a)及び酸基含有モノマー(b)以外のモノマー(以下、「その他のモノマー(c)」と称する)を含んでいてもよい。その他のモノマー(c)としては、例えばアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N-ヒドロキシメチルアクリルアミドが挙げられる。その他のモノマー(c)としては、なかでもアクリルアミドが好ましく、アクリルアミドを含むことで被膜としたときの強靭性が増すという効果がある。その他のモノマー(c)を含む場合のその含有量は、例えば5~40重量%、好ましくは5~20重量%である。その他のモノマー(c)の含有量が上記範囲であると、高温での耐電解質膨潤性が良好となる傾向がある。
 前記のアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうちいずれか1種以上の含有量は、0~80重量%、好ましくは2~60重量%である。これらの含有量が上記範囲であると、高温での耐電解質膨潤性が良好となる傾向がある。
 水溶性樹脂(X)における共重合体は、上述の水酸基含有モノマー(a)及び酸基含有モノマー(b)、必要に応じて添加するその他のモノマー(c)の各モノマーに由来する構成ユニット単位を有する。共重合体は、後述のように水酸基含有モノマー(a)及び酸基含有モノマー(b)、必要に応じて添加するその他のモノマー(c)を適宜仕込み、公知慣用の方法で共重合させることで得られる。
[水系ラテックス樹脂(Y)]
 次に、水系ラテックス樹脂(Y)としては、スチレン‐ブタジエン共重合体(SBR)、スチレンアクリレート共重合体、及びアクリレート共重合体のうちいずれか1種以上を含むことが好ましい。水系ラテックス樹脂(Y)としては、なかでもスチレンアクリレート共重合体がより好ましい。スチレンアクリレート共重合体に用いられるこれらアクリレートとしては、例えばメチルアクリレート、メチルメタクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、アクリルアミド、アクリロニトリル、グリシジルメタクリレート等が挙げられ、アクリル酸やメタクリル酸等も必要に応じて用いることが出来る。スチレンアクリレート共重合体に用いられるアクリレートとしては、なかでもブチルアクリレートが好ましい。
 水系ラテックス樹脂(Y)の割合は、負極バインダー組成物全体に対して20~80重量%が好ましく、30~70重量%がより好ましい。スチレンアクリレート共重合体に含まれるスチレンの含有量は45~65重量%より好ましくは50~60重量%である。また、ブチルアクリレートの量は20~40重量%が好ましく、より好ましくは25~35重量%である。スチレンとブチルアクリレートの含有量が上記範囲であると密着性が良好となる傾向がある。
[その他バインダー成分]
 本発明の負極バインダー組成物は、バインダー(結合剤)成分として、上記以外に従来から使用されている成分(「その他バインダー成分」と称する)を、本発明の効果を損なわない範囲で含んでいても良い。その他バインダー成分としては、エチレン性不飽和カルボン酸エステル(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、およびヒドロキシエチル(メタ)アクリレート等)、およびエチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)からなる(メタ)アクリル共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース(CMC)などの高分子化合物が挙げられる。本発明の負極バインダー組成物は、上記の高分子化合物を溶解させるためにN-メチル-2-ピロリドン(NMP)などの有機溶剤を含んでいてもよい。
 本発明の負極合剤スラリー及び負極は、上記負極バインダー組成物と、例えばSiO負極材、黒鉛、アセチレンブラックなど、負極を構成する上で必要な成分を含む。本発明の負極合剤スラリー及び負極では、SiO負極材や黒鉛の種類などは問わず何れでも使用することができる。本発明の負極合剤スラリー及び負極における負極バインダー組成物の割合(不揮発分)は、例えば2~10重量%、好ましくは3~5重量%である。
 上記SiO負極材は、本発明の負極における充放電特性を発現する主成分としてSiO(一酸化ケイ素)を含む材料である。SiO負極材以外にも同様に充放電特性を発現するシリコン粒子、炭素などを含んでいてもよい。また、SiO負極材としてシリコンオキシカーバイド(SiOC)を含んでいてもよい。これらの成分は、単独ではなく、複数有していてもよい。本発明の負極合剤スラリー及び負極におけるSiO負極材の割合は、例えば3~20重量%、好ましくは5~15重量%である。
 上記黒鉛としては、天然黒鉛であっても人工的に合成された人造黒鉛であってもよく、黒鉛としては、天然黒鉛、人工黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料が挙げられる。黒鉛もSiO負極材などと同様に充放電特性を発現する成分である。本発明の負極合剤スラリー及び負極における黒鉛の割合は、例えば80~97重量%、好ましくは85~95重量%である。
 上記アセチレンブラックは、本発明の負極において導電助剤として作用し、アセチレンブラック以外成分のカーボンブラック、ケッチェンブラック、カーボンナノチューブ(CNT)などであってもよい。本発明の負極合剤スラリー及び負極におけるこれらの導電助剤として作用する成分の割合は、例えば0.05~10重量%、好ましくは0.1~5重量%である。
 本発明の負極合剤スラリーに用いられる溶媒としては、負極合剤スラリーを構成する上で必要な成分を分散できれば特に制限ないが、水系の溶媒を使用でき、イオン交換水が好ましい。負極合剤スラリーにおける溶媒の割合は、例えば30~70重量%、好ましくは40~60重量%である。
[負極バインダー組成物の製造方法]
 本発明の負極バインダー組成物を製造する方法の一例を以下説明する。本発明の負極バインダー組成物の製造方法は、少なくとも活物質と水溶性樹脂(X)から成る水系スラリーを固練りする工程と、その後に固形分濃度を下げて水系ラテックス樹脂(Y)を混合する工程を有することが好ましい。
 まず、負極バインダー組成物の必須成分である水溶性樹脂(X)における共重合体を合成する。共重合体は、反応容器中に水などの溶剤を仕込み50~80℃まで加熱した後、水酸基含有モノマー(a)及び酸基含有モノマー(b)、任意の成分であるその他のモノマー(c)と、過硫酸アンモニウムなどの重合開始剤の混合物を添加し、重合反応を進行することにより得られる。重合反応は、窒素などの不活性ガス雰囲気下で行っても良い。重合反応は、温度50~80℃、1~10時間で行うことができる。反応終了後、冷却してpH調整を行う。
 次に、得られた共重合体を含む水溶性樹脂(X)に、活物質、その他バインダー成分、水、及び有機溶剤などを加え、これらの成分からなる水系スラリーを固練りする。活物質は、錫合金、シリコン合金、シリコン酸化物等いずれであってもよい。その他バインダー成分としては、例えばエチレン性不飽和カルボン酸やエチレン性不飽和カルボン酸エステルなどの高分子化合物が挙げられる。有機溶剤としてはN-メチル-2-ピロリドン(NMP)が好ましい。固練りは、所定量を一括投入して行ってもよく、各成分の所定量の約半分を投入して一次固練りを行ったあと、所定量の全量を投入して二次固練りを行ってもよい。適宜、水系スラリーを脱泡する工程を加えてもよい。
 そして、水系スラリーを固練りした後に、スラリーの固形分濃度を下げて水系ラテックス樹脂(Y)を混合することにより負極バインダー組成物が得られる。水溶性樹脂(X)100重量部に対する水系ラテックス樹脂(Y)の配合量は、例えば50~300重量部、好ましくは80~200重量部である。
 さらに、負極合剤スラリーは、上記負極バインダー組成物に、SiO負極材、黒鉛、アセチレンブラック、溶媒など負極を構成する上で必要な成分を加え、イオン交換水などの水性溶剤に分散させことにより得られる。分散は、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置を用いてもよい。また、負極合剤スラリーは、混錬機で混錬を行い、調製をしてもよい。
<負極>
 本発明の負極は、上記負極バインダー組成物を成分として含む。本発明の負極は、水溶性樹脂(X)由来の成分と、水系ラテックス樹脂(Y)由来の成分の合計含有量が、好ましくは1.5重量%以上5.5重量%以下、より好ましくは2.0重量%以上5.0重量%以下である。また、本発明の負極は、黒鉛質主体の材料を主活物質として含み、更に負極の体積密度が1.4g/cm以上であることが好ましい。また、黒鉛質主体の材料とシリコンを含有する材料の少なくとも2種以上の混合活物質を含むことが好ましい。さらに本発明の負極は、合剤層の厚みが80μm以上であることが好ましい。
 本発明の負極は、上記で得られた負極バインダー組成物を含む負極合剤スラリーを集電体銅箔上へ塗布して薄膜として負極層を形成することで得られる。また、後述のように負極バインダー組成物である負極合剤スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで負極を得てもよい。
 上記集電体の材質および形状については、特に限定されず、例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。
 上記の集電体銅箔上に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。
 また、シート状、ペレット状等の形状に成形された負極合剤スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。一体化後の電極密度は、例えば1.0~1.8g/cmであり、好ましくは1.1~1.7g/cmである。
 上記集電体上に形成された負極層および集電体と一体化した負極層は、熱処理をすることが好ましい。熱処理条件は、例えば、80~150℃で5~20時間である。この熱処理により溶媒の除去、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性が向上できる。尚、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、真空雰囲気で行うことが好ましい。
<二次電池>
 本発明の二次電池は、上記本発明の負極から構成される。本発明の二次電池は、例えば、湿式電解質二次電池に用いる場合、正極と、本発明の負極とを、セパレータを介して対向して配置し、電解液を注入することにより構成することができる。
 正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
 正極層に用いる正極材料としては、特に制限されない。二次電池の中でも、リチウムイオン二次電池を作製する場合には、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されない。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複合酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製する非水電解質二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
 本発明の二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 本発明の二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。上述した本発明の負極活物質は、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタ、固体リチウム二次電池などにも適用することが可能である。
 以下、本発明を実施例により詳細に説明する。
 合成例1、合成例4、及び合成例5は、水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)の合成法である。また、合成例6~15は、水溶性樹脂(X)がさらにその他のモノマー(c)を含む場合の合成法である。合成例2は、比較例に用いる水溶性樹脂(X)として、分子量が70万以下の水溶性樹脂(X)の合成法である。合成例16は、本発明の水溶性樹脂(X)から酸基含有モノマー(b)を除いた水溶性樹脂(X)の合成法である。合成例17は、本発明の水溶性樹脂(X)から水酸基含有モノマー(a)を除いた水溶性樹脂(X)の合成法である。また、合成例18~20はスチレンアクリレート共重合体から成る水系ラテックス樹脂(Y)の合成法、及び合成例21はアクリレート共重合体から成る水系ラテックス樹脂(Y)の合成法である。
 負極合剤スラリー作製例1は、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)(合成例1)と水系ラテックス(Y)にSBRを使用した例、負極合剤スラリー作製例2~4は本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)(合成例1、合成例4、合成例5)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。また、負極合剤スラリー作製例5~13は、本発明の水溶性樹脂(X)がさらにその他のモノマー(c)を含む(合成例7~8、合成例11~15)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18~20)を使用した例である。負極合剤スラリー作製例14は、本発明の水溶性樹脂(X)がさらにその他のモノマー(c)を含む(合成例8)と水系ラテックス(Y)にアクリレート共重合体(合成例21)を使用した例である。負極合剤スラリー作製例15~16は、本発明の水溶性樹脂(X)がさらにその他のモノマー(c)を含み、且つ酸基含有モノマー(b)が軽金属水酸化物で中和されたもの(合成例9(Li塩)、合成例10(Na塩))と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。負極合剤スラリー作製例17~18は、本発明の水溶性樹脂(X)がさらにその他のモノマー(c)を含む(合成例8)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用し、更にバインダー添加量を増減させた例である。また、負極合剤スラリー作製例19~20は、本発明の水溶性樹脂(X)がさらにその他のモノマー(c)を含む(合成例8)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用し、更に活物質に黒鉛質主体の材料とシリコンを含有する材料の混合物を用いた例である。
 負極合剤スラリー作製例21は、CMCとSBRを使用した例である。また、負極合剤スラリー作製例22は、水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)(合成例1)のみを使用した例である。負極合剤スラリー作製例23は、CMCと水系ラテックス樹脂(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。負極合剤スラリー作製例24は、分子量が700000未満の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)(合成例2)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。負極合剤スラリー作製例25は、乾燥ポリマーフィルムをカーボネート系混合溶剤に45℃で72時間浸漬させた後の膨潤率が10%以上の水溶性樹脂(X)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。負極合剤スラリー作製例26は、未中和の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)(合成例6)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。スラリー作製例27は、本発明の水溶性樹脂(X)から酸基含有モノマー(b)を除いた水溶性樹脂(X)(合成例16)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。スラリー作製例28は、本発明の水溶性樹脂(X)から水酸基含有モノマー(a)を除いた水溶性樹脂(X)(合成例17)と水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。スラリー作製例29は、市販のポリアクリル酸ナトリウムと水系ラテックス(Y)にスチレンアクリレート共重合体(合成例18)を使用した例である。また、負極合剤スラリー作製例30~31は、CMCとSBRを使用し、更にバインダー添加量を増減させた例である。また、負極合剤スラリー作製例32~33は、CMCとSBRを使用し、更に活物質に黒鉛質主体の材料とシリコンを含有する材料の混合物を用いた例である。
 比較例に用いる水溶性樹脂(X)として、CMC(カルボキシメチルセルロースナトリウム塩、日本製紙社製サンローズMAC350)とPAA-Na(ポリアクリル酸ナトリウム、富士フィルム和光純薬社製、重合度22000~70000)を使用した。また、実施例及び比較例に用いる水系ラテックス樹脂(Y)としては、SBR(スチレンブタジエン共重合体、DIC社製ラックスターDS407H)を使用した。
 正極作製例1~3は、実施例及び比較例の電池に用いた正極の作製法を示す。次に実施例1~24で本発明の負極の作製法を示し、実施例25~48で本発明の電池の作製法を示す。また、比較例1~17で比較例の負極の作製法を示し、比較例18~34で比較例の電池の作製法を示す。
[水系GPC測定]
 水系GPC測定は、HPLC装置としてShimadzu/L20システムを用い、カラムはShodex OHpak SB-806MHQ(8.0mmI.D. ×300mmL.×2本)を使用した。溶離液は0.2mol/L硝酸ナトリウム水溶液を用い、試料を0.5%となるよう溶解し、φ0.45フィルターでろ過した後に測定した。試料を50μL投入し0.70mL/minの流量で流しながらRI検出器を用いて重量平均分子量を決定した。標準物質は、昭和電工製STANDARD P-82(Pullulan)を使用して検量線を作成した。
「水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)の合成例」
〔合成例1〕
 攪拌機、温度計および冷却器、窒素ブロー装置を取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部を仕込み、3時間のNブロー後に75℃まで加熱した。これにアクリル酸40.0重量部、ヒドロキシエチルアクリレート60.0重量部、過硫酸アンモニウム0.367重量部(モノマー全モル数に対して1500ppm)、イオン交換水50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。これにより得られた共重合体は、不揮発分14.8重量%、pH6.8、粘度3080mPa・s、水系GPCで測定した重量平均分子量850,000であった。
(カーボネート混合に対する膨潤度の測定)
 得られた共重合体溶液をPETフィルム上に塗布後、室温で3日間放置して乾燥させ、共重合体の被膜を形成した。これを剥離後1.0cm×1.0cmの正方形に切断したのち、80℃の送風乾燥機で1時間、更に110℃の真空乾燥機で10時間乾燥させた。得られた被膜の厚みは100から150μmであった。この被膜の重量を測定後、カーボネート系混合溶媒(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に45℃、72時間浸漬したのち、再度被膜の重量を測定した。下記式(1)より算出したカーボネート混合溶剤に対する膨潤度は5.3%であった。
{(浸漬後の被膜重量-浸漬前の被膜重量)/(浸漬前の被膜重量)}×100   式(1)
〔合成例2〕
 3時間のNブロー行わなかった以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分15.0重量%、pH6.8、粘度1380mPa・s、水系GPCで測定した重量平均分子量480,000であった。また、カーボネート混合溶媒に対する膨潤度は5.3%であった。
〔合成例3〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレート80.0重量部、過硫酸アンモニウム0.340重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分14.9重量%、pH7.0、粘度2800mPa・s、水系GPCで測定した重量平均分子量750,000であった。また、カーボネート混合溶媒に対する膨潤度は26.9%であった。
〔合成例4〕
 ヒドロキシエチルアクリレート60.0重量部の代わりに4-ヒドロキシブチルアクリレート60.0重量部、過硫酸アンモニウム0.332重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分15.1重量%、pH6.9、粘度3000mPa・s、水系GPCで測定した重量平均分子量800,000であった。また、カーボネート混合溶媒に対する膨潤度は6.2%であった。
〔合成例5〕
 アクリル酸40.0重量部の代わりに2-カルボキシエチルアクリレート40.0重量部、過硫酸アンモニウム0.272重量部(モノマー全モル数に対して1500ppm)を用いた以外は、全て合成例1と同様にして重合反応を行った。これにより得られた共重合体は、不揮発分14.9重量%、pH6.9、粘度3000mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は5.5%であった。
〔合成例6〕
 5mol/L水酸化ナトリウム水溶液を加えてpH調整を行わなかった以外は、全て合成例1と同様にして行った。不揮発分15.0重量%、pH3.8、粘度2050mPa・s、水系GPCで測定した重量平均分子量830,000であった。また、カーボネート混合溶媒に対する膨潤度は5.8%であった。
[合成例7〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のNブロー後に75℃まで加熱した。これにアクリル酸30.0重量部、ヒドロキシエチルアクリレート60.0重量部、アクリルアマイド10.0重量部、過硫酸アンモニウム0.443重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。得られた共重合体は、不揮発分15.0重量%、pH7.1、粘度3100mPa・s、水系GPCで測定した重量平均分子量730,000であった。また、カーボネート混合溶媒に対する膨潤度は4.2%であった。
〔合成例8〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレート20.0重量部、アクリルアマイドの60.0重量部、過硫酸アンモニウム0.405重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度12500mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は4.5%であった。
〔合成例9〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレート20.0重量部、アクリルアマイド60.0重量部、過硫酸アンモニウム0.405重量部(モノマー全モル数に対して1500ppm)を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13700mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は6.0%であった。
〔合成例10〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレート20.0重量部、アクリルアマイド60.0重量部、過硫酸アンモニウム0.405重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに5mol/L水酸化リチウム水溶液を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13200mPa・s、水系GPCで測定した重量平均分子量780,000であった。また、カーボネート混合溶媒に対する膨潤度は5.3%であった。
〔合成例11〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレートの20.0重量部、アクリルアマイド60.0重量部の代わりにヒドロキシメチルアクリルアミド、過硫酸アンモニウム0.357重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度17100mPa・s、水系GPCで測定した重量平均分子量830,000であった。また、カーボネート混合溶媒に対する膨潤度は4.6%であった。
〔合成例12〕
 アクリル酸10.0重量部、ヒドロキシエチルアクリレート10.0重量部、アクリルアマイド80.0重量部、過硫酸アンモニウム0.438重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分14.9重量%、pH7.0、粘度15200mPa・s、水系GPCで測定した重量平均分子量860,000であった。また、カーボネート混合溶媒に対する膨潤度は6.2%であった。
〔合成例13〕
 アクリル酸35.0重量部、ヒドロキシエチルアクリレート35.0重量部、アクリルアマイド30.0重量部、過硫酸アンモニウム0.414重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度13300mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は6.0%であった。
〔合成例14〕
 アクリル酸20.0重量部、ヒドロキシエチルアクリレート40.0重量部、アクリルアマイド40.0重量部、過硫酸アンモニウム0.442重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にてアンモニア水溶液を加えてph調整を行った。得られた共重合体は、不揮発分15.1重量%、pH7.0、粘度14500mPa・s、水系GPCで測定した重量平均分子量830,000であった。また、カーボネート混合溶媒に対する膨潤度は5.8%であった。
〔合成例15〕
 アクリル酸30.0重量部、ヒドロキシエチルアクリレート20.0重量部、アクリルアマイド50.0重量部、過硫酸アンモニウム0.424重量部(モノマー全モル数に対して1500ppm)、5mol/L水酸化ナトリウム水溶液の代わりに25%アンモニア水を用いた以外は全て合成例7と同様にして重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にてアンモニア水溶液を加えてph調整を行った。得られた共重合体は、不揮発分15.1重量%、pH7.0、粘度13000mPa・s、水系GPCで測定した重量平均分子量840,000であった。また、カーボネート混合溶媒に対する膨潤度は5.3%であった。
〔合成例16〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のNブロー後に75℃まで加熱した。これにヒドロキシエチルアクリレート70.0重量部、アクリルアマイド30.0重量部、過硫酸アンモニウム0.351重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度4300mPa・s、水系GPCで測定した重量平均分子量750,000であった。また、カーボネート混合溶媒に対する膨潤度は17.5%であった。
〔合成例17〕
 攪拌機、温度計および冷却器、窒素ブローを取り付けた1.0Lの反応容器中に、イオン交換水500.0重量部、を仕込み、3時間のN2ブロー後に75℃まで加熱した。これにヒドロキシエチルアクリレート70.0重量部、アクリルアマイド30.0重量部、過硫酸アンモニウム0.351重量部(モノマー全モル数に対して1500ppm)、イオン交換水の50.0重量部の混合物を3時間かけて滴下投入し、重合反応を行った。滴下終了後同温度で2時間保った後、冷却を行った。温度40℃以下にて5mol/L水酸化ナトリウム水溶液と蒸留水加えて、pHを6.8~7.2の範囲、不揮発分を14.8重量%~15.2重量%の範囲に調整を行った。得られた共重合体は、不揮発分15.0重量%、pH7.0、粘度8900mPa・s、水系GPCで測定した重量平均分子820,000であった。また、カーボネート混合溶媒に対する膨潤度は5.1%であった。
 上記合成例1~17の「水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)の合成例」におけるモノマー組成(重量%)、Nブローの有無、中和に用いた塩基、不揮発分、pH、粘度、重合体の重量平均分子量、及びカーボネート混合溶媒に対する膨潤度をまとめて、以下の表1に示す。
水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)の合成例

Figure JPOXMLDOC01-appb-T000001
 「水系ラテックス樹脂(Y)の合成例」
〔合成例18〕
 攪拌機、温度計、冷却器、および窒素ブロー装置を取り付けた2Lの反応容器中に、イオン交換水を450質量部仕込み、3時間のNブロー後に80℃まで加熱した。これにスチレン272.5質量部、n-ブチルアクリレート150質量部、ヒドロキシエチルメタクリレート40質量部、メタクリル酸25質量部、アクリルアミド10質量部、グルシジルメタクリレート2.5重量部、ドデシルベンゼンスルホン酸ソーダ10質量部、過硫酸アンモニウム1.25質量部、及びイオン交換水120質量部をホモジナイザーで乳化した乳化液を3時間かけて滴下し、乳化重合を行なった。2時間80℃で攪拌後40℃以下に冷却し、アンモニア水にてpHを6-7、イオン交換水にて不揮発分を39-41%に調整をした。得られた水系ラテックス樹脂は不揮発分39.6%、粘度28mPa・s、pH6.9であった。
〔合成例19〕
 スチレン172.5重量部、n-ブチルアクリレート250質量部を用いた以外は、全て合成例14と同様にして重合反応を行った。40℃以下に冷却し、アンモニア水にてpHを6-7、イオン交換水にて不揮発分を39-41%に調整をした。得られたポリマーエマルジョンは不揮発分40.5%、粘度31mPa・s、pH7.0であった。
[合成例20]
 スチレン222.5重量部、n-ブチルアクリレート220質量部を用いた以外は、全て合成例14と同様にして重合反応を行った。40℃以下に冷却し、アンモニア水にてpHを6-7、イオン交換水にて不揮発分を39-41%に調整をした。得られたポリマーエマルジョンは不揮発分40.0%、粘度27mPa・s、pH7.0であった。
〔合成例21〕
 スチレンの代わりにベンジルアクリレート272.5重量部を用いた以外は、全て合成例14と同様にして重合反応を行った。40℃以下に冷却し、アンモニア水にてpHを6-7、イオン交換水にて不揮発分を39-41%に調整をした。得られたポリマーエマルジョンは不揮発分40.0%、粘度34mPa・s、pH7.0であった。
 上記合成例18~21の「水系ラテックス樹脂(Y)の合成例」におけるモノマー組成(重量%)、中和に用いた塩基、pH、重合体の重量平均分子量、不揮発分、及び粘度をまとめて、以下の表2に示す。
水系ラテックス樹脂(Y)の合成例
Figure JPOXMLDOC01-appb-T000002
「負極合剤スラリーの作製例」
〔スラリー作製例1〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)96.0重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例1に示すバインダー組成物(HEA/AA=60/40,Na塩,重量平均分子量850000,不揮発分濃度14.8%)を蒸留水で希釈し、不揮発分濃度4.0%に調整した水溶液を、27.0重量部(固形分換算重量で1.08重量部)、蒸留水25.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度4%に調製した上記合成例1に示すバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.42重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を7重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を2.95重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例2〕
 SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例3〕
 合成例1の代わりに、合成例4で合成したバインダー組成物(HBA/AA=60/40,Na塩,重量平均分子量800000,不揮発分濃度15.1%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例4〕
 合成例1の代わりに、合成例5で合成したバインダー組成物(HBA/CEA=60/40,Na塩,重量平均分子量840000,不揮発分濃度14.9%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例5〕
 合成例1の代わりに、合成例7で合成したバインダー組成物(HEA/AA/AAM=60/30/10,Na塩,重量平均分子量730000,不揮発分濃度15.1%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例6〕
 合成例1の代わりに、合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例7〕
 合成例1の代わりに、合成例11で合成したバインダー組成物(HEA/AA/HAAM=20/20/60,アンモニウム塩,重量平均分子量830000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例8〕
 合成例1の代わりに、合成例12で合成したバインダー組成物(HEA/AA/AAM=10/10/80,アンモニウム塩,重量平均分子量860000,不揮発分濃度14.9%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例9〕
 合成例1の代わりに、合成例13で合成したバインダー組成物(HEA/AA/AAM=35/35/30,アンモニウム塩,重量平均分子量840000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例10〕
 合成例1の代わりに、合成例14で合成したバインダー組成物(HEA/AA/AAM=20/40/40,アンモニウム塩,重量平均分子量830000,不揮発分濃度15.1%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例11〕
 合成例1の代わりに、合成例15で合成したバインダー組成物(HEA/AA/AAM=30/20/50,アンモニウム塩,重量平均分子量840000,不揮発分濃度15.1%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例12〕
 合成例1の代わりに、合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例19で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例13〕
 合成例1の代わりに、合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例19で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=34.5/50/8/5/2/0.5、不揮発分濃度40.5%)を3.70重量部、用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例14〕
 合成例1の代わりに、合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例20で合成した水系ラテックス樹脂(Y)(BNA/BA/HEMA/MMA/AAM/GMA=34.5/50/8/5/2/0.5、不揮発分濃度40.0%)を3.75重量部、用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例15〕
 合成例1の代わりに、合成例9で合成したバインダー組成物(HEA/AA/AAM=20/20/60,Li塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例16〕
 合成例1の代わりに、合成例10で合成したバインダー組成物(HEA/AA/AAM=20/20/60,Na塩,重量平均分子量780000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例17〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)95.0重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)を蒸留水で希釈し、不揮発分濃度4.0%に調整した水溶液を、39.5重量部(固形分換算重量で1.58重量部)、蒸留水12.5重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度4%に調製した上記合成例8に示すバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.42重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を6重量部と、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を4.98重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例18〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)96.0重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)を蒸留水で希釈し、不揮発分濃度4.0%に調整した水溶液を、19.5重量部(固形分換算重量で0.78重量部)、蒸留水32.5重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度4%に調製した上記合成例8に示すバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.42重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を6重量部と、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を2.99重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例19〕
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)3.7重量部、人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)92.3重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例8で合成したバインダー組成物(HEA/AA/AAM=20/20/60,アンモニウム塩,重量平均分子量780000,不揮発分濃度15.0%)を蒸留水に溶解し、不揮発分濃度4.0%に調整した水溶液を、27.0重量部(固形分換算重量で1.08重量部)、蒸留水21.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度4%に調製した上記合成例8で合成したバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.42重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を7重量部と、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例20〕
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)5.3重量部、人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)90.7重量部を用いた以外は全てスラリー作製例19と同様にして負極合剤スラリーを作製した。
〔スラリー作製例21〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)96.0重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。カルボキシメチルセルロースNa塩(CMC、日本製紙社製サンローズMAC350HC)を蒸留水に溶解し、不揮発分濃度2.0%に調整した水溶液を、48.0重量部(固形分換算重量で0.96重量部)を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度2%に調製した上記CMCの水溶液を、27.0重量部(不揮発分換算重量0.54重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を20重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を2.95重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例22〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)96.0重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。上記合成例1で合成したバインダー組成物(HEA/AA=60/40,Na塩,重量平均分子量850000,不揮発分濃度14.8%)、を蒸留水で希釈し、不揮発分濃度8.0%に調整した水溶液を、27.0重量部(固形分換算重量で2.16重量部)、蒸留水21.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度8.0%に調製した上記合成例7で合成したバインダー組成物の水溶液を、10.5重量部(不揮発分換算重量0.84重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を7重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例23〕
 SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例21と同様にして負極合剤スラリーを作製した。
〔スラリー作製例24〕
 合成例1の代わりに、合成例2で合成したバインダー組成物(HBA/AA=60/40,Na塩,重量平均分子量480000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例25〕
 合成例1の代わりに、合成例3で合成したバインダー組成物(HBA/AA=75/35,Na塩,重量平均分子量750000,不揮発分濃度14.9%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例26〕
 合成例1の代わりに、合成例6で合成したバインダー組成物(HBA/AA=60/40,中和なし,重量平均分子量830000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例27〕
 合成例1の代わりに、合成例16で合成したバインダー組成物(HEA/AAM=70/30,Na塩,重量平均分子量750000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例28〕
 合成例1の代わりに、合成例17で合成したバインダー組成物(AA/AAM=70/30,Na塩,重量平均分子量820000,不揮発分濃度15.0%)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例29〕
 合成例1の代わりに、ポリアクリル酸Na塩(和光純薬社製、重合度22000~70000)、SBRの代わりに、合成例18で合成した水系ラテックス樹脂(Y)(ST/BA/HEMA/MMA/AAM/GMA=54.5/30/8/5/2/0.5、不揮発分濃度40.2%)を3.73重量部、を用いた以外は、全てスラリー作製例1と同様にして負極合剤スラリーを作製した。
〔スラリー作製例30〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)95.0重量部、アセチレンブラック1.0重量部、カルボキシメチルセルロースNa塩(CMC、日本製紙社製サンローズMAC350HC)2.0重量部を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。蒸留水48.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。蒸留水10.5重量部を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を25重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を3.94重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例31〕
 人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)96.6重量部、アセチレンブラック1.0重量部、カルボキシメチルセルロースNa塩(CMC、日本製紙社製サンローズMAC350HC)1.2重量部を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。蒸留水48.0重量部を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。蒸留水10.5重量部(不揮発分換算重量0.42重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を20重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を2.36重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例32〕
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)3.7重量部、人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)92.3重量部、アセチレンブラック1.0重量部、を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。カルボキシメチルセルロースNa塩(CMC、日本製紙社製サンローズMAC350HC)を蒸留水に溶解し、不揮発分濃度2.0%に調整した水溶液を、48.0重量部(固形分換算重量で0.96重量部)を加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、攪拌により発熱したので氷水で室温まで冷却した。再度、自転1000rpm、公転2000rpmの条件で、2分間攪拌後、氷水で室温まで冷却した。先に不揮発分濃度2%に調製した上記CMCの水溶液を、27.0重量部(不揮発分換算重量0.54重量部)を加え、全体が均一になるまで混ぜ合わせたのち、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌し、氷水で室温に冷却した。蒸留水を20重量部と、スチレンブタジエン共重合体(SBR)(DIC社製 DS407H, 不揮発分濃度50.8%)を2.95重量部加え、再び自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒間攪拌することで負極合剤スラリーを調製した。
〔スラリー作製例33〕
 SiO負極材(初回充電容量2062mAh/g、初回放電容量1631mAh/g)5.3重量部、人造黒鉛(初回充電容量390mAh/g、初回放電容量350mAh/g)91.3重量部を用いた以外は全てスラリー作製例32と同様にして負極合剤スラリーを作製した。
「負極の作製」
〔実施例1〕
 乾燥後の負極合剤塗工量(面密度)が13.2mg/cmになるようにバーコータのギャップを調整し、このバーコータによりスラリー作製例1で調製した負極合剤スラリーを集電体である電解銅箔(厚さ10μm、幅180mm)上に塗工した。その後、80℃に設定した送風型乾燥機で8分乾燥した。乾燥した電極を幅40mmの短冊に切断し、ロールプレス機(テスター産業株式会社製 小型卓上ロールプレス SA-602)を用いて、合剤層密度が1.70g/cm3(合剤層の厚みで77.6μm)となるようにプレスした。110℃で10時間、真空乾燥したのち、合剤層密度を再度測定したところ、1.65g/cm(合剤層の厚みで80.0μm)であった。この電極の単位面積当たりの初回充電容量は4.97mAh/cm2である。これにより、実施例1の負極(面密度13.2gm/cm2、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)が得られた。
(ピール強度の測定及び電極の巻回耐性の確認)
 上記で作製した負極を温度25℃、相対湿度50%の恒温恒湿室内に6時間放置後、幅25mm、長さ100mmの短冊状に切り出した。ついで、両面テープ(日東電工社製 Nо5015)を用いてステンレス板に活物質面を被着面として張り合わせ、ピール強度試験用サンプルとした。銅箔端部を10mmほど引き剥がし、そこへポリイミドテープを貼り付け、剥離試験器への取り付け部とした。剥離試験機((株)島津製作所社製 オートグラフ AG-X Plus)にピール強度試験用サンプルを装着し、180度ピール試験を行った。ピール強度は34.5N/mであった。そして、負極塗膜の剥離(破壊)状態を観察した。また、負極塗膜をφ5mmの芯に巻き付け、塗膜にクラックが発生するか否かを目視観察した。このときのクラックの発生は無かった。
〔実施例2〕
 上記スラリー作製例2に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして実施例2の負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は31.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例3〕
 上記スラリー作製例3に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして実施例3の負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は27.8N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例4〕
 上記スラリー作製例4に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は28.9N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例5〕
 上記スラリー作製例5に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は28.9N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例6〕
 上記スラリー作製例6に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は30.7N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例7〕
 上記スラリー作製例7に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は28.4N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例8〕
 上記スラリー作製例8に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は29.1N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例9〕
 上記スラリー作製例9に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は30.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例10〕
 上記スラリー作製例10に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は28.6N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例11〕
 上記スラリー作製例11に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は28.6N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例12〕
 上記スラリー作製例12に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は30.1N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例13〕
 上記スラリー作製例13に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は32N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例14〕
 上記スラリー作製例14に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm2)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は29.8N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例15〕
 上記スラリー作製例15に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm2)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は29.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例16〕
 上記スラリー作製例16に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は34.6N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例17〕
 上記スラリー作製例17に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.89mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は56.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例18〕
 上記スラリー作製例18に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は16.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例19〕
 上記スラリー作製例6に示す負極合剤スラリーを用い、真空乾燥後の電極密度の値が1.40g/cm(合剤層の厚みで94.3μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.40g/cm、合剤層厚み94.3μm、単位面積初回充電容量4.97mAh/cm)を作製した。このときのピール強度は29.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例20〕
上記スラリー作製例6に示す負極合剤スラリーを用い、真空乾燥後の電極密度の値が1.75g/cm(合剤層の厚みで75.4μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.75g/cm、合剤層厚み75.4μm、単位面積初回充電容量4.97mAh/cm)を作製した。このときのピール強度は35.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例21〕
 上記スラリー作製例6に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が18.2mg/cmになるようにバーコータのギャップを調整した以外は、全て実施例1と同様にして負極(面密度18.2gm/cm、合剤層密度1.65g/cm、合剤層厚み110.0μm、単位面積初回充電容量6.81mAh/cm2)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで110.3μm)となるように適宜調整した。このときのピール強度は30.1N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例22〕
 上記スラリー作製例6に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が20.7mg/cmになるようにバーコータのギャップを調整した以外は、全て実施例1と同様にして負極(面密度20.7gm/cm、合剤層密度1.65g/cm、合剤層厚み125.5μm、単位面積初回充電容量7.75mAh/cm2)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで125.5μm)となるように適宜調整した。このときのピール強度は25.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例23〕
 上記スラリー作製例19に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が11.3mg/cmになるようにバーコータのギャップを調整し、真空乾燥後の電極密度の値が1.65g/cm(合剤層の厚みで68.5μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度11.3gm/cm2、合剤層密度1.65g/cm、合剤層厚み68.5μm、単位面積初回充電容量4.94mAh/cm)を作製した。このときのピール強度は32.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔実施例24〕
 上記スラリー作製例20に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が10.7mg/cmになるようにバーコータのギャップを調整し、真空乾燥後の電極密度の値が1.65g/cm(合剤層の厚みで64.8μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度10.7gm/cm、合剤層密度1.65g/cm、合剤層厚み64.8μm、単位面積初回充電容量4.98mAh/cm)を作製した。このときのピール強度は34.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例1〕
 上記スラリー作製例21に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は16.8N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例2〕
 上記スラリー作製例22に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm2、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は38.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例3〕
 上記スラリー作製例23に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は14.8N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例4〕
 上記スラリー作製例24に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は17.4N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例5〕
 上記スラリー作製例25に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は14.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例6〕
 上記スラリー作製例26に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は18.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例7〕
 上記スラリー作製例27(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は15.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例8〕
 上記スラリー作製例28に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は14.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例9〕
 上記スラリー作製例29に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は16.4N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例10〕
 上記スラリー作製例17に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.89mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は56.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例11〕
 上記スラリー作製例18に示す負極合剤スラリーを用いた以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.65g/cm、合剤層厚み80.0μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで80.0μm)となるように適宜調整した。このときのピール強度は16.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例12〕
 上記スラリー作製例21に示す負極合剤スラリーを用い、真空乾燥後の電極密度の値が1.40g/cm(合剤層の厚みで94.3μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.40g/cm、合剤層厚み94.3μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.40g/cm3(合剤層の厚みで94.3μm)となるように適宜調整した。このときのピール強度は14.6N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例13〕
 上記スラリー作製例21に示す負極合剤スラリーを用い、真空乾燥後の電極密度の値が1.75g/cm(合剤層の厚みで75.4μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度13.2gm/cm、合剤層密度1.75g/cm、合剤層厚み75.4μm、単位面積初回充電容量4.97mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.75g/cm3(合剤層の厚みで75.4μm)となるように適宜調整した。このときのピール強度は18.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例14〕
 上記スラリー作製例21に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が18.2mg/cmになるようにバーコータのギャップを調整した以外は、全て実施例1と同様にして負極(面密度18.2gm/cm、合剤層密度1.65g/cm、合剤層厚み110.0μm、単位面積初回充電容量6.18mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで110.0μm)となるように適宜調整した。このときのピール強度は20.0N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例15〕
 上記スラリー作製例21に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が20.7mg/cm2になるようにバーコータのギャップを調整した以外は、全て実施例1と同様にして負極(面密度20.7gm/cm、合剤層密度1.65g/cm、合剤層厚み125.5μm、単位面積初回充電容量7.75mAh/cm)を作製した。ロールプレスの圧力は、真空乾燥後の合剤層密度が1.65g/cm(合剤層の厚みで125.5μm)となるように適宜調整した。このときのピール強度は13.2N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例16〕
 上記スラリー作製例30に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が11.3mg/cmになるようにバーコータのギャップを調整し、真空乾燥後の電極密度の値が1.65g/cm(合剤層の厚みで68.5μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度11.3gm/cm2、合剤層密度1.65g/cm、合剤層厚み68.5μm、単位面積初回充電容量4.94mAh/cm)を作製した。このときのピール強度は20.3N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
〔比較例17〕
 上記スラリー作製例31に示す負極合剤スラリーを用い、負極合剤塗工量(面密度)が10.7mg/cmになるようにバーコータのギャップを調整し、真空乾燥後の電極密度の値が1.65g/cm(合剤層の厚みで64.8μm)となるようにロールプレスの圧力を適宜調整した以外は、全て実施例1と同様にして負極(面密度10.7gm/cm2、合剤層密度1.65g/cm、合剤層厚み64.8μm、単位面積初回充電容量4.98mAh/cm)を作製した。このときのピール強度は22.5N/mであった。また、φ5mmの芯に巻き付けた時、クラックの発生は無かった。
「正極の作製」
「正極合剤スラリーの調製」
 正極材LiMn0.6Co0.2Ni0.2O2 (初回充電容量191mAh/g、初回放電容量171mAh/g)94.0重量部、アセチレンブラック3.0重量部、ポリフッ化ビニリデン3.0重量部をN-メチル-2-ピロリドンに分散させることで、正極合剤スラリーを形成した。なお、正極合剤スラリー中の不揮発分はスラリー総質量に対して50重量部であった。
 露点-30℃以下に制御したドライルーム内で、正極材LiMn0.6Co0.2Ni0.2O2(初回充電容量191mAh/g、初回放電容量171mAh/g)94.0重量部、アセチレンブラック3.0重量部を秤取り、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、30秒攪拌した。ポリフッ化ビニリデン(クレハ社製PVDF、#1100)の10%NMP溶液を30.0重量部(固形分換算重量で3.0重量部)加え、全体がペースト状になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で1分間攪拌した。攪拌により発熱したので室温まで放冷した。この自転・公転ミキサーによる攪拌と、放冷の操作を更に3回繰り返した。次にNMP10.0重量部加え、全体が均一になるまで混ぜ合わせた。次いで自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で1分間攪拌した。攪拌により発熱したので室温まで放冷した。この自転・公転ミキサーによる攪拌と、放冷の操作を更に3回繰り返した。次にNMP10.0重量部加え、自転・公転ミキサー(Thinky社製ARE-310)にて、自転1000rpm、公転2000rpmの条件で、2分間攪拌することで正極合剤スラリーを調製した。
〔正極作製例1〕
「面密度25.0mg/cmの正極作製」
 まず、乾燥後の合剤塗工量(面密度)が25.0mg/cmになるようにバーコータのギャップを調整し、このバーコータにより上記で調製した正極合剤スラリーを集電体であるアルミニウム集電箔(厚さ15μm、幅180mm)上に塗工した。次に、正極合剤スラリーを80℃に設定した送風型乾燥機で15分乾燥した。そして、乾燥後の正極合剤をロールプレス機により合剤密度が3.40g/cmとなるようにプレスした。最後に、正極合剤を110℃で10時間真空乾燥することで、面密度25.0mg/cmの正極(面密度25.0gm/cm、合剤層密度3.40g/cm、合剤層厚み73.5μm、単位面積初回充電容量4.49mAh/cm)を作製した。
〔正極作製例2〕
「面密度34.2mg/cmの正極作製」
 合剤塗工量(面密度)が34.2mg/cmになるようにバーコータのギャップを調整した以外は全て正極作製例1と同様にして正極(面密度34.2gm/cm、合剤層密度3.40g/cm、合剤層厚み58.4μm、単位面積初回充電容量6.14mAh/cm2)
〔正極作製例3〕
「面密度39.2mg/cmの正極作製」
 合剤塗工量(面密度)が39.2mg/cmになるようにバーコータのギャップを調整した以外は全て正極作製例1と同様にして正極(面密度39.2gm/cm、合剤層密度3.40g/cm、合剤層厚み68.0μm、単位面積初回充電容量7.04mAh/cm2)
「電池の作製」
〔実施例25〕
 実施例1で示した負極をTabの付いた24mm×24mmの正方形に、正極作製例1で示した正極をTabの付いた22mm×22mmの正方形に、トムソン刃を用いて各々カットした。カットした電極のTab部に負極はニッケル、正極はアルミのタブリードを各々溶接した。次に、セパレータ(厚み20ミクロンのポリエチレン製微多孔膜)を28mm×38mmの長方形にトムソン刃を用いてカットした。セパレータを介して正極と負極を対向させ、ラミネートフィルムで包装し、Tab部を熱圧着により固定した。そして、電解液(1.0MのLiPF6 エチレンカーボネート/ジメチルカーボネート/メチルエチルカーボネート=30/30/40混合溶液(体積比)+1%ビニルカーボネート+5%フルオロエチレンカーボネート)を300μL加え、真空ラミネートすることで封じ、ラミネート型二次電池を作製した。
(初回充放電(化成処理))
 上記で作製した二次電池を2枚のゴアハイパーシート、更にその上から2枚のアクリル板で挟み、ダブルクリップ2個で固定し、電極部位に一定の圧力が均一に掛かる状態で固定した。これを充放電装置に取り付け、25℃で3時間放置後、0.1Cの充放電レートで1回充放電した。このときの初回充放電効率は84.6%であった。
(電極膨張測定)
 初回充放電後、45℃に保持し、0.5Cで1回充電を行ったのち、ドライルーム内で二次電池を解体し、満充電状態の負極を取り出した。ジメチルカーボネートで洗浄、自然乾燥後、マイクロメータにて電極厚みを測定し、集電体の厚みを減ずることで合剤層の厚みを得た。充電前の電極合剤層厚みを100として電極膨張率を算出した結果、17.5%であった。
(45℃サイクル特性)
 初回充放電後の上記で作製した二次電池温度を45℃に保持し、0.5Cで100回充放電を繰り返した。0.5C1回目の放電容量を100%とした時の100サイクル後の放電容量維持率は91.8%であった。
(-10℃サイクル特性)
 初回充放電後の上記で作製した二次電池温度を-10℃に保持し、0.5Cで100回充放電を繰り返した。0.5C1回目の放電容量を100%とした時の50サイクル後の放電容量維持率は84.9%であった。
〔実施例26〕
 実施例2で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は85.0%、電極膨張率は16.3%、45℃0.5Cで100サイクル後の放電容量維持率は93.2%、-10℃0.5Cで50サイクル後の放電容量維持率は85.6%であった。
〔実施例27〕
 実施例3で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.6%、45℃0.5Cで100サイクル後の放電容量維持率は93.3%、-10℃0.5Cで50サイクル後の放電容量維持率は85.5%であった。
〔実施例28〕
 実施例4で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は16.5%、45℃0.5Cで100サイクル後の放電容量維持率は91.7%、-10℃0.5Cで50サイクル後の放電容量維持率は84.8%であった。
〔実施例29〕
 実施例5で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は85.0%、電極膨張率は17.0%、45℃0.5Cで100サイクル後の放電容量維持率は91.5%、-10℃0.5Cで50サイクル後の放電容量維持率は84.6%であった。
〔実施例30〕
 実施例6で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は85.0%、電極膨張率は16.8%、45℃0.5Cで100サイクル後の放電容量維持率は92.1%、-10℃0.5Cで50サイクル後の放電容量維持率は85.0%であった。
〔実施例31〕
 実施例7で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.4%、45℃0.5Cで100サイクル後の放電容量維持率は91.8%、-10℃0.5Cで50サイクル後の放電容量維持率は85.2%であった。
〔実施例32〕
 実施例8で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は16.7%、45℃0.5Cで100サイクル後の放電容量維持率は91.5%、-10℃0.5Cで50サイクル後の放電容量維持率は84.9%であった。
〔実施例33〕
 実施例9で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は16.4%、45℃0.5Cで100サイクル後の放電容量維持率は91.7%、-10℃0.5Cで50サイクル後の放電容量維持率は85.0%であった。
〔実施例34〕
 実施例10で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.3%、45℃0.5Cで100サイクル後の放電容量維持率は91.5%、-10℃0.5Cで50サイクル後の放電容量維持率は83.9%であった。
〔実施例35〕
 実施例11で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は16.5%、45℃0.5Cで100サイクル後の放電容量維持率は91.7%、-10℃0.5Cで50サイクル後の放電容量維持率は84.5%であった。
〔実施例36〕
 実施例12で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.6%、45℃0.5Cで100サイクル後の放電容量維持率は91.8%、-10℃0.5Cで50サイクル後の放電容量維持率は85.2%であった。
〔実施例37〕
 実施例13で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.3%、45℃0.5Cで100サイクル後の放電容量維持率は91.4%、-10℃0.5Cで50サイクル後の放電容量維持率は84.7%であった。
〔実施例38〕
 実施例14で示した負極を用いた以外は全て、実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.4%、45℃0.5Cで50サイクル後の放電容量維持率は91.8%、-10℃0.5Cで50サイクル後の放電容量維持率は84.5%であった。
〔実施例39〕
 実施例15で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は86.2%、電極膨張率は16.7%、45℃0.5Cで100サイクル後の放電容量維持率は92.1%、-10℃0.5Cで50サイクル後の放電容量維持率は85.4%であった。
〔実施例40〕
 実施例16で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は85.1%、電極膨張率は16.5%、45℃0.5Cで100サイクル後の放電容量維持率は92.2%、-10℃0.5Cで50サイクル後の放電容量維持率は85.5%であった。
〔実施例41〕
 実施例17で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.9%、45℃0.5Cで50サイクル後の放電容量維持率は91.0%、-10℃0.5Cで50サイクル後の放電容量維持率は84.4%であった。
〔実施例42〕
 実施例18で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.2%、電極膨張率は18.2%、45℃0.5Cで100サイクル後の放電容量維持率は92.4%、-10℃0.5Cで50サイクル後の放電容量維持率は85.7%であった。
〔実施例43〕
 実施例19で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は16.8%、45℃0.5Cで100サイクル後の放電容量維持率は93.1%、-10℃0.5Cで50サイクル後の放電容量維持率は86.3%であった。
〔実施例44〕
 実施例20で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は17.2%、45℃0.5Cで100サイクル後の放電容量維持率は90.1%、-10℃0.5Cで50サイクル後の放電容量維持率は83.5%であった。
〔実施例45〕
実施例21で示した負極と正極作製例2で示した正極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.0%、電極膨張率は19.6%、45℃0.5Cで100サイクル後の放電容量維持率は88.3%、-10℃0.5Cで50サイクル後の放電容量維持率は81.9%であった。
〔実施例46〕
 実施例22で示した負極と正極作製例5で示した正極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は83.9%、電極膨張率は20.1%、45℃0.5Cで100サイクル後の放電容量維持率は84.2%、-10℃0.5Cで50サイクル後の放電容量維持率は78.1%であった。
〔実施例47〕
 実施例23で示した負極と正極作製例3で示した正極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は83.2%、電極膨張率は25.5%、45℃0.5Cで100サイクル後の放電容量維持率は88.5%、-10℃0.5Cで50サイクル後の放電容量維持率は82.0%であった。
〔実施例48〕
 実施例24で示した負極と正極作製例4で示した正極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は82.9%、電極膨張率は30.0%、45℃0.5Cで100サイクル後の放電容量維持率は86.5%、-10℃0.5Cで50サイクル後の放電容量維持率は80.2%であった。
〔比較例18〕
 比較例1で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.5%、電極膨張率は20.0%、45℃0.5Cで100サイクル後の放電容量維持率は91.0%、-10℃0.5Cで50サイクル後の放電容量維持率は64.8%であった。
〔比較例19〕
 比較例2で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.2%、電極膨張率は15.3%、45℃0.5Cで100サイクル後の放電容量維持率は88.0%、-10℃0.5Cで50サイクル後の放電容量維持率は62.5%であった。
〔比較例20〕
 比較例3で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.3%、電極膨張率は19.0%、45℃0.5Cで100サイクル後の放電容量維持率は88.4%、-10℃0.5Cで50サイクル後の放電容量維持率は63.0%であった。
〔比較例21〕
 比較例4で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は18.0%、45℃0.5Cで100サイクル後の放電容量維持率は89.0%、-10℃0.5Cで50サイクル後の放電容量維持率は63.4%であった。
〔比較例22〕
 比較例5で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.3%、電極膨張率は22.0%、45℃0.5Cで100サイクル後の放電容量維持率は85.4%、-10℃0.5Cで50サイクル後の放電容量維持率は63.8%であった。
〔比較例23〕
 比較例6で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.9%、電極膨張率は17.2%、45℃0.5Cで100サイクル後の放電容量維持率は90.2%、-10℃0.5Cで50サイクル後の放電容量維持率は64.6%であった。
〔比較例24〕
 比較例7で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.7%、電極膨張率は25.1%、45℃0.5Cで100サイクル後の放電容量維持率は87.0%、-10℃0.5Cで50サイクル後の放電容量維持率は63.3%であった。
〔比較例25〕
 比較例8で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.6%、電極膨張率は18.1%、45℃0.5Cで100サイクル後の放電容量維持率は88.0%、-10℃0.5Cで50サイクル後の放電容量維持率は62.9%であった。
〔比較例26〕
 比較例9で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.3%、電極膨張率は20.1%、45℃0.5Cで100サイクル後の放電容量維持率は86.5%、-10℃0.5Cで50サイクル後の放電容量維持率は64.4%であった。
〔比較例27〕
 比較例10で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.6%、電極膨張率は19.8%、45℃0.5Cで100サイクル後の放電容量維持率は89.6%、-10℃0.5Cで50サイクル後の放電容量維持率は64.4%であった。
〔比較例28〕
 比較例11で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.3%、電極膨張率は22.0%、45℃0.5Cで100サイクル後の放電容量維持率は88.3%、-10℃0.5Cで50サイクル後の放電容量維持率は63.8%であった。
〔比較例29〕
 比較例12で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は19.3%、45℃0.5Cで100サイクル後の放電容量維持率は92.3%、-10℃0.5Cで50サイクル後の放電容量維持率は69.7%であった。
〔比較例30〕
 比較例13で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.8%、電極膨張率は21.5%、45℃0.5Cで100サイクル後の放電容量維持率は89.2%、-10℃0.5Cで50サイクル後の放電容量維持率は67.4%であった。
〔比較例31〕
 比較例14で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.1%、電極膨張率は23.5%、45℃0.5Cで100サイクル後の放電容量維持率は86.1%、-10℃0.5Cで50サイクル後の放電容量維持率は65.1%であった。
〔比較例32〕
 比較例15で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は84.0%、電極膨張率は24.3%、45℃0.5Cで100サイクル後の放電容量維持率は82.3%、-10℃0.5Cで50サイクル後の放電容量維持率は62.2%であった。
〔比較例33〕
 比較例16で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は86.0%、電極膨張率は30.2%、45℃0.5Cで100サイクル後の放電容量維持率は82.3%、-10℃0.5Cで50サイクル後の放電容量維持率は65.0%であった。
〔比較例34〕
 比較例17で示した負極を用いた以外は、全て実施例25と同時にして行った。得られた二次電池の初回充放電容量は82.8%、電極膨張率は35.4%、45℃0.5Cで100サイクル後の放電容量維持率は83.9%、-10℃0.5Cで50サイクル後の放電容量維持率は63.4%であった。
 上記合成例、負極スラリー作製例、正極作製例、実施例1~24及び比較例1~17で作製した負極、及び実施例25~48及び比較例18~34で作製した電池のデータをまとめて表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例25に示す通り、バインダーに本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)とSBRを用いると、比較例1に示すCMCとSBRを用いた場合に比べて、ピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が良好になる。また、実施例26~28に示す通り、バインダーに本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)とラテックス樹脂(Y)を用いた場合においても比較例1と比べて、ピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が良好になる。また、実施例29~38に示す通り、水溶性樹脂(X)がさらにその他のモノマー(c)を含む場合においても、比較例1に示すCMCとSBRを用いた場合と比べて、ピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が良好になる。これらの結果は、バインダーに本発明の水酸基含有モノマー(a)及び酸基含有モノマ(b)を必須成分とする共重合を含む水溶性樹脂(X)、或いは、前記水溶性樹脂(X)がさらにその他のモノマー(c)を含む樹脂とラテックス樹脂(Y)を用いることで良好な電極及び電池特性が得られる事を示している。
 実施例38~40に示す通り、前記酸基含有モノマー(b)が、アンモニウム塩、リチウム塩、及びナトリウム塩であっても、ピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が良好になる。これらの結果は、前記酸基含有モノマー(b)が塩基性組成物若しくは軽金属水酸化物で中和されたものであっても良好な電極及び電池特性が得られる事を示している。
 一方、比較例17が示す通り、水系ラテックス(Y)を使用せず、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)のみをバインダーとして用いた場合には、比較例1に示すCMCとSBRを用いた場合に比べて、ピール強度が大きく改善されたが、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が低下した。このことから、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)と水系ラテックス(Y)の双方を同時に用いた方が黒鉛単独系負極において、良好な電極及び電池特性が得られる事を示している。
 また比較例18に示す通り、CMCと本発明の水系ラテックス(Y)を用いた場合には、比較例1に示すCMCとSBRを用いた場合に比べて、ピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率が各々低下した。これらの結果は、本発明の本発明の水系ラテックス(Y)は本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)と併用した場合において、良好な電極及び電池特性が得られる事を示している。
 実施例30、実施例43、実施例44、比較例16、比較例25、比較例26に示す通り、負極の電極密度を1.40~1.75g/cm3の範囲で変化させた場合においても、実施例30(電極密度1.50g/cm3)、実施例43(電極密度1.40g/cm3)、及び実施例44(電極密度1.75g/cm3)のピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率は、比較例16(電極密度1.50g/cm3)、比較例25(電極密度1.40g/cm3)、及び比較例26(電極密度1.75g/cm3)よりも良好であった。これらの結果は、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)がさらにその他のモノマー(c)を含む樹脂と、水系ラテックス(Y)を用いることで、良好な電極及び電池特性が得られる事を示している。
 実施例45、及び比較例27、または、上記実施例46、及び比較例28に示す通り、負極を厚膜化させた場合においても、実施例45(負極合剤層厚み110μm)、及び実施例46(負極合剤層厚み125μm)のピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率は、各々同じ合剤層厚みを持つ比較例27(負極合剤層厚み110μm)、及び比較例28(負極合剤層厚み125μm)よりも良好であった。これは、負極を厚膜化させた場合においても、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)がさらにその他のモノマー(c)を含む樹脂と、水系ラテックス(Y)を用いることで、良好な電極及び電池特性が得られる事を示している。
 実施例47、及び比較例48、または、比較例29、及び比較例30に示す通り、SiO負極材と黒鉛の混合系活物質を用いた場合においても、実施例47(SiO負極材3.7重量部)、及び実施例48(SiO負極材5.3重量部)のピール強度、45℃100サイクル後の容量維持率、及び0℃100サイクル後の容量維持率は、各々同じ混合系活物質を用いた比較例29(SiO負極材3.7重量部)、及び比較例30(SiO負極材5.3重量部)よりも良好であった。これは、負極にSiO負極材と黒鉛の混合系活物質を用いた場合においても、本発明の水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合を含む水溶性樹脂(X)がさらにその他のモノマー(c)を含む樹脂と、水系ラテックス(Y)を用いることで、良好な電極及び電池特性が得られる事を示している。

Claims (17)

  1.  水酸基含有モノマー(a)及び酸基含有モノマー(b)を必須成分とする共重合体を含む水溶性樹脂(X)と、水系ラテックス樹脂(Y)と、を含む負極バインダー組成物であって、
     水系GPC測定装置を用いて測定したときの前記共重合体の重量平均分子量が700,000以上であり、且つ前記共重合体の乾燥フィルムを45℃のカーボネート系混合溶剤(EC(エチレンカーボネート)/DEC(ジエチレンカーボネート)=50/50(wt))に72時間浸漬させた後の膨潤率が0~10重量%である負極バインダー組成物。
  2.  前記水酸基含有モノマー(a)が、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、及び4-ヒドロキシブチルメタクリレートからなる群のうちいずれか1種以上である請求項1に記載の負極バインダー組成物。
  3.  前記酸基含有モノマー(b)が、塩基性組成物若しくは軽金属塩で中和されたものである請求項1に記載の負極バインダー組成物。
  4.  前記酸基含有モノマー(b)が、アクリル酸、メタクリル酸、マレイン酸、モノメチルマレイン酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、マレイン酸、及びイタコン酸からなる群のうちいずれか1種以上である請求項1に記載の負極バインダー組成物。
  5.  前記水溶性樹脂(X)が、更にアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうちいずれか1種以上を含む請求項1に記載の負極バインダー組成物。
  6.  前記水溶性樹脂(X)全量に対する、前記水酸基含有モノマー(a)と前記酸基含有モノマー(b)由来の樹脂成分の合計含有量が5~80重量%である請求項1に記載の負極バインダー組成物。
  7.  前記のアクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-ヒドロキシメチルアクリルアミドからなる群のうちいずれか1種以上の含有量が0~80重量%である請求項1に記載の負極バインダー組成物。
  8.  前記水系ラテックス樹脂(Y)が、SBR、スチレンアクリレート共重合体、及びアクリレート共重合体のうちいずれか1種以上である請求項1に記載の負極バインダー組成物。
  9.  前記スチレンアクリレート共重合体が、ブチルアクリレートである請求項8に記載の負極バインダー組成物。
  10.  前記スチレンアクリレート共重合体全量における、スチレン単量体由来の構成単位の含有量が40~60重量%、且つブチルアクリレート単量体由来の構成単位の含有量が20~40重量%である請求項9に記載の負極バインダー組成物。
  11.  請求項1~10のいずれか一項に記載の負極バインダー組成物を成分として含む負極。
  12.  水溶性樹脂(X)由来の成分と、水系ラテックス樹脂(Y)由来の成分の合計含有量が、1.5重量%以上5.5重量%以下である請求項11に記載の負極。
  13.  黒鉛質主体の材料を主活物質として含み、更に負極の体積密度が1.4g/cm以上である請求項11に記載の負極。
  14.  合剤層の厚みが80μm以上である請求項11に記載の負極。
  15.  黒鉛質主体の材料とシリコンを含有する材料の少なくとも2種以上の混合活物質を含む請求項11に記載の負極。
  16.  請求項11に記載の負極から構成される二次電池。
  17.  少なくとも活物質と前記水溶性樹脂(X)から成る水系スラリーを固練りする工程と、その後に固形分濃度を下げて前記水系ラテックス樹脂(Y)を混合する工程を有する請求項1~10のいずれか一項に記載の負極バインダー組成物の製造方法。
PCT/JP2023/008947 2022-04-12 2023-03-09 負極バインダー組成物およびその製造方法、負極、及び二次電池 WO2023199657A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533710A JP7359337B1 (ja) 2022-04-12 2023-03-09 負極バインダー組成物およびその製造方法、負極、及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022065647 2022-04-12
JP2022-065647 2022-04-12

Publications (1)

Publication Number Publication Date
WO2023199657A1 true WO2023199657A1 (ja) 2023-10-19

Family

ID=88329344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008947 WO2023199657A1 (ja) 2022-04-12 2023-03-09 負極バインダー組成物およびその製造方法、負極、及び二次電池

Country Status (2)

Country Link
TW (1) TW202405120A (ja)
WO (1) WO2023199657A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089834A (ja) * 2012-10-29 2014-05-15 Nippon Zeon Co Ltd リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2019159706A1 (ja) * 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089834A (ja) * 2012-10-29 2014-05-15 Nippon Zeon Co Ltd リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2019159706A1 (ja) * 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Also Published As

Publication number Publication date
TW202405120A (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
JP5927788B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7170330B2 (ja) 二次電池用負極及び二次電池
JP2971451B1 (ja) リチウム二次電池
JP2007250433A (ja) 非水電解質電池
JP2003077463A (ja) リチウム二次電池及びその製造方法
CN108780892B (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池
JP2009064714A (ja) 電極体およびそれを用いたリチウム二次電池
EP3863084A1 (en) Negative electrode and secondary battery comprising same
WO2019156031A1 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
CN113851608A (zh) 用于锂二次电池的负极和包含其的锂二次电池
JP5169181B2 (ja) 非水電解液二次電池
CN114930577A (zh) 负极活性材料、以及包含该负极活性材料的负极和二次电池
JP7359337B1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
JP4601273B2 (ja) 非水溶媒系二次電池
KR20210153997A (ko) 음극 및 이를 포함하는 이차전지
JP5279362B2 (ja) 非水電解質二次電池
CN114051666B (zh) 制造二次电池的方法
JP2004047487A (ja) リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP7311059B2 (ja) 負極バインダー組成物、負極、及び二次電池
WO2023199657A1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
CN113646946A (zh) 二次电池
JPH10334888A (ja) 非水電解質二次電池用負極および該負極を使用した非水電解質二次電池
JP3512543B2 (ja) 非水電解液二次電池
JP2004273281A (ja) 非水二次電池
JP7245100B2 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023533710

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788079

Country of ref document: EP

Kind code of ref document: A1