WO2019087259A1 - 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法 - Google Patents

樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2019087259A1
WO2019087259A1 PCT/JP2017/039163 JP2017039163W WO2019087259A1 WO 2019087259 A1 WO2019087259 A1 WO 2019087259A1 JP 2017039163 W JP2017039163 W JP 2017039163W WO 2019087259 A1 WO2019087259 A1 WO 2019087259A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
resin composition
film capacitor
cured product
resin
Prior art date
Application number
PCT/JP2017/039163
Other languages
English (en)
French (fr)
Inventor
香澄 中村
達仁 福原
泰典 川端
尚英 岩谷
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201780098090.4A priority Critical patent/CN111527143B/zh
Priority to US16/759,601 priority patent/US11339284B2/en
Priority to JP2019550012A priority patent/JP7372836B2/ja
Priority to PCT/JP2017/039163 priority patent/WO2019087259A1/ja
Publication of WO2019087259A1 publication Critical patent/WO2019087259A1/ja
Priority to JP2021167208A priority patent/JP2022001652A/ja
Priority to JP2023091646A priority patent/JP2023107833A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the resin composition according to the present invention it is possible to suppress the occurrence of a difference in specific gravity inside the cured product of the resin composition, so that the physical properties of the cured product may be locally different. It is done. As a result, since it is suppressed that a locally inferior part of physical properties is formed in the cured product, deterioration of the cured product can be suppressed, and excellent reliability can be ensured. Furthermore, according to the resin composition according to the present invention, the viscosity of the resin composition can be maintained low even when no solvent is used, and when the resin composition is cast, the resin composition can be used. Excellent in filling workability.
  • the first filler preferably contains expanded graphite. Moreover, it is preferable that the said 1st filler contains a melamine cyanurate.
  • the second filler preferably contains silica.
  • ADVANTAGE OF THE INVENTION it is possible to suppress that specific gravity difference arises in the inside of hardened
  • the resin composition according to the present embodiment is a resin composition for casting.
  • a cast can be obtained by casting the resin composition according to the present embodiment.
  • the cured product according to the present embodiment is a cured product of the resin composition according to the present embodiment, and can be obtained by curing a curable resin composition.
  • the resin composition according to the present embodiment and the cured product thereof have, for example, a black color.
  • cured material which concerns on this embodiment can be used as a sealing part which seals an element. By sealing the element with the sealing portion, deterioration of the element due to moisture or the like can be suppressed.
  • the filler in the resin composition is increased as the first filler has a high buoyancy. It is difficult to suppress the occurrence of a specific gravity difference in the inside of the cured product due to the difficulty in dispersing and the fact that the amount of filler dispersed on the bottom side of the mold member decreases excessively.
  • the content of the epoxy resin is preferably 50% by mass or more based on the total mass of the curable resin, from the viewpoint of easily preventing deterioration of the device when the moisture permeability of the cured product is low and the device is sealed with the cured product. 80 mass% or more is more preferable, and 90 mass% or more is still more preferable.
  • the content of the epoxy resin may be 100% by mass based on the total mass of the curable resin.
  • a phenol resin resin which has a 2 or more phenolic hydroxyl group in 1 molecule can be used.
  • a phenol resin a resin obtained by condensation or co-condensation of phenols and / or naphthols with aldehydes under an acid catalyst, biphenyl skeleton type phenol resin, paraxylylene modified phenolic resin, metaxylylene / paraxylylene modified phenolic resin, melamine Modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, xylylene modified naphthol resin, etc. may be mentioned.
  • phenols include phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F and the like.
  • naphthols ⁇ -naphthol, ⁇ -naphthol, dihydroxy naphthalene and the like can be mentioned.
  • aldehydes include formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde and the like.
  • Examples of the acid anhydride include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, hexahydrophthalic anhydride, endomethylene tetrahydrophthalic anhydride, dodecenyl succinic anhydride, octenyl succinic anhydride and the like.
  • the content of the curing agent is a resin composition from the viewpoint that the excellent strength of the cured product is easily obtained, and from the viewpoint that the moisture permeability of the cured product is low and the element is easily prevented from deteriorating when the device is sealed with the cured product.
  • the content is preferably 10 to 55% by mass, more preferably 12 to 40% by mass, and still more preferably 15 to 30% by mass, based on the total mass of the substance (excluding the solvent such as the organic solvent).
  • the curable component may contain a curing accelerator.
  • the curing accelerator include quaternary ammonium salts, amine curing accelerators, and phosphorus curing accelerators.
  • amine-based curing accelerators include imidazole compounds, aliphatic amines, aromatic amines, modified amines, polyamide resins and the like.
  • phosphine oxide, phosphonium salt, diphosphine and the like can be mentioned.
  • the resin composition according to the present embodiment has the specific aspect ratio (first filler major diameter / first filler thickness) as at least two types of fillers (excluding compounds corresponding to the curable component). And a second filler different from the first filler.
  • the major axis of the first filler and the thickness of the first filler can be obtained, for example, by the following procedure. After the filler to be measured is dispersed in the curable component to prepare a cured product, the cured product is cut so that the filler is exposed. Next, the cut surface is polished until the long diameter (maximum length of the entire filler) and thickness (maximum length of the thickness portion of the filler) can be grasped. And a cutting surface is observed using a scanning electron microscope (SEM) or an optical microscope, and the major axis and thickness of a filler are measured.
  • SEM scanning electron microscope
  • the filler is not dispersed in the cured product, it is possible to obtain the long diameter and thickness of the filler using a scanning electron microscope or an optical microscope. That is, after obtaining an observation image of the filler alone using a scanning electron microscope or an optical microscope, the maximum length of the entire filler in the observation image is obtained as the major axis of the filler, and the maximum length of the filler thickness portion in the observation image It can be obtained as the thickness of the filler.
  • the shape of the first filler scaly, mica, plate, flat and the like can be mentioned.
  • “Square-like” refers to, for example, the shape of a thin piece such as a fish scale, and refers to a shape whose major axis is sufficiently large relative to the thickness.
  • the external shape of the scaly filler is not limited to a circular shape, and may be an irregular shape.
  • Expanded graphite is a material in which the interlayer of the crystal structure of graphite is expanded, and is, for example, a graphite intercalation compound formed by a substance other than graphite penetrating into the interlayer of graphite. Expanded graphite can be obtained, for example, by immersing a graphite material in an acid (sulfuric acid, nitric acid, etc.) and then heat treating it.
  • the first filler can include at least one selected from the group consisting of expanded graphite and melamine cyanurate from the viewpoint of improving the flame retardancy.
  • the aspect ratio of the first filler is preferably 5 or more, more preferably 8 or more, still more preferably 9 or more, and particularly preferably 10 or more, from the viewpoint of easily suppressing the occurrence of a difference in specific gravity inside the cured product.
  • the aspect ratio of the first filler is preferably 20 or less, more preferably 15 or less, still more preferably 12 or less, and particularly preferably 11 or less, from the viewpoint of easy dispersion of the first filler in the resin composition. From these viewpoints, the aspect ratio of the first filler is preferably 5 to 20.
  • the major diameter of the first filler is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, and particularly preferably 12 ⁇ m or more, from the viewpoint of easily suppressing generation of a difference in specific gravity inside the cured product.
  • the major diameter of the first filler is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, still more preferably 400 ⁇ m or less, particularly preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less, from the viewpoint of easy dispersion of the first filler in the resin composition. Very preferably, 50 ⁇ m or less is very preferable. From these viewpoints, the major diameter of the first filler is preferably 5 to 800 ⁇ m.
  • the major diameter of the first filler can be measured by observing the cross section of the cured product using a scanning electron microscope or an optical microscope, as in the measurement of the aspect ratio.
  • the average major axis of the first filler is also preferably in these ranges
  • the content of the first filler is preferably in the following range based on the total amount of the filler (the total amount of the first filler and the second filler).
  • the content of the first filler is preferably 1% by mass or more, more preferably 3% by mass or more, and still more preferably 5% by mass or more, from the viewpoint of easily suppressing generation of a difference in specific gravity inside the cured product. Mass% or more is particularly preferable.
  • the content of the first filler is preferably 15% by mass or less, more preferably 12% by mass or less, still more preferably 10% by mass or less, from the viewpoint that the first filler is easily dispersed in the resin composition. % Or less is particularly preferred. From these viewpoints, the content of the first filler is preferably 1 to 15% by mass.
  • the particle diameter of the second filler is preferably 3 ⁇ m or more, and 5 ⁇ m or more, from the viewpoint that the resin composition is easy to handle because the excessive increase in viscosity of the resin composition is suppressed and the handling of the resin composition is easy. More preferably, 10 ⁇ m or more is more preferable.
  • the particle diameter of the second filler is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 15 ⁇ m or less, from the viewpoint of easily suppressing the occurrence of a difference in specific gravity inside the cured product. From these viewpoints, the particle diameter of the second filler is preferably 3 to 30 ⁇ m.
  • the particle diameter of the second filler can be measured by a laser diffraction particle size distribution analyzer (trade name: LA920, manufactured by Horiba, Ltd.) The average particle diameter of the second filler is also within these ranges. Is preferred.
  • the content of the second filler is preferably in the following range based on the total mass of the resin composition (excluding the mass of the solvent).
  • the content of the second filler is from the viewpoint that the excellent strength of the cured product can be easily obtained, and from the viewpoint that the moisture permeability of the cured product is low and the element is easily prevented from deteriorating when the device is sealed with the cured product. 30 mass% or more is preferable, 35 mass% or more is more preferable, 40 mass% or more is more preferable, 45 mass% or more is especially preferable.
  • the content of the second filler is preferably 90% by mass or less from the viewpoint that the resin composition can be easily handled (the workability can be easily secured) by suppressing an excessive increase in the viscosity of the resin composition.
  • the mass% or less is more preferable, 80 mass% or less is more preferable, and 70 mass% or less is particularly preferable. From these viewpoints, the content of the second filler is preferably 30 to 90% by mass.
  • molded object which concerns on this embodiment is provided with an element and the sealing part which seals an element, and the sealing part contains the resin composition which concerns on this embodiment, or its hardened
  • molded bodies include electronic components such as capacitors (film capacitors etc.), chip inductors, reactors, transformers, molded coils, LSI chips, IC chips, sensors (tire air pressure sensors etc.), engine control units (ECUs) etc.
  • FIG. 2 is a perspective view which shows a film capacitor as an example of the molded object which concerns on this embodiment.
  • FIG. 3 is an end elevation which shows a film capacitor as an example of the molded object which concerns on this embodiment.
  • (A) of FIG. 3 is an end view along the line IIIa-IIIa of FIG.
  • (B) of FIG. 3 is an end view taken along the line IIIb-IIIb of FIG.
  • the film capacitor (molded body) 100 shown in FIGS. 2 and 3 is a case type film capacitor.
  • the film capacitor 100 includes a film capacitor element (film capacitor winding element) 10, a bottomed outer case (case) 20 having an element housing space 20a for housing the film capacitor element 10, and a film capacitor in the element housing space 20a.
  • the sealing unit 30 includes a cured product of the resin composition according to the present embodiment.
  • the film capacitor element 10 has, for example, a wound body 12, a metallikon electrode 14, and a lead wire 16.
  • a step of obtaining a wound body 12 by winding a member (metallized film) obtained by metal deposition on a resin film to obtain a wound body 12, and a direction orthogonal to the winding direction of the resin film A step of obtaining a metallikon electrode 14 by vapor deposition (metallicon treatment) of metal (metallicon material) on both end faces of the wound body 12 and a step of connecting the lead wire 16 to the metallikon electrode 14 are provided.
  • a resin film a polyethylene terephthalate (PET) film, a polypropylene (PP) film, etc.
  • the exterior case 20 has, for example, a rectangular parallelepiped shape, and has a rectangular parallelepiped element housing space 20a inside. In the upper part of the outer case 20, an opening communicating with the element housing space 20a is formed.
  • the exterior case 20 is made of, for example, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT) or the like.
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • the lead wire 16 of the film capacitor element 10 extends in the opening direction of the opening of the outer case 20, and the tip end portion of the lead wire 16 protrudes outside the element housing space 20a.
  • the sealing portion 30 is, for example, filled in the element housing space 20 a of the outer case 20 so as to cover the entire wound body 12 of the film capacitor element 10 (so as not to be exposed to the outside).
  • the sealing portion 30 is interposed between the film capacitor element 10 and the bottom surface of the outer case 20, and the film capacitor element 10 is disposed apart from the bottom surface of the outer case 20.
  • the sealing portion 30 is interposed between the film capacitor element 10 and the side wall of the outer case 20, and the film capacitor element 10 is disposed apart from the side wall of the outer case 20.
  • the resin composition according to the present embodiment is cast to obtain a molded article.
  • the method for producing a molded body according to the present embodiment includes, for example, a resin supply step of supplying a resin composition according to the present embodiment to a mold member (mold, frame) as a curable sealing material, and a resin composition And curing the product to obtain a molded product in this order.
  • a molding method vacuum casting, insert molding, injection molding, extrusion molding, transfer molding and the like can be mentioned.
  • the resin composition which concerns on this embodiment is cast, The seal which seals a film capacitor element To obtain a film capacitor with a part.
  • the method of manufacturing a film capacitor according to the present embodiment includes, for example, a resin supplying step of supplying the resin composition according to the present embodiment as a curable sealing material to the element accommodation space of the outer case, And a curing step for curing the object.
  • the resin composition (curable sealant) according to the present embodiment is supplied into the element accommodation space in which the film capacitor element is accommodated.
  • the resin supply process can be performed, for example, under conditions of a temperature of 20 to 90 ° C. under vacuum.
  • the film capacitor element floats up to the liquid surface of the resin composition by the buoyancy accompanying the supply of the resin composition, whereby the resin composition is interposed between the film capacitor element and the bottom surface of the outer case. May be
  • the resin composition supplied into the element housing space is cured to obtain a cured product.
  • the thermosetting resin composition is heated to obtain a cured product.
  • the curing temperature of the resin composition is preferably 110 ° C. or less.
  • the curing step can be performed, for example, at 85 to 105 ° C. for 3 to 8 hours. A plurality of conditions may be combined, and heating at one temperature may be followed by heating at another temperature (for example, higher than the one temperature).
  • the resin composition according to the present embodiment it is possible to suppress large differences in the amount of filler between the top side and the bottom side of the mold member in the resin composition. Even when curing is performed a plurality of times, the filler at the upper side of the mold member in the cured product of the resin composition supplied earlier and the bottom side of the mold member in the cured product of the resin composition supplied later It is possible to suppress large differences in the amount of presence of the filler, and to suppress the formation of an interface between the two cured products, which is caused by the difference in the content of the filler.
  • FIG. 4 is a perspective view which shows the manufacturing method of a film capacitor as an example of the manufacturing method of the molded object which concerns on this embodiment.
  • the film capacitor element 10 is disposed in the element accommodation space 20 a of the outer case 20 in the element disposition step.
  • the resin composition 30a is supplied into the element housing space 20a as a curable sealing material.
  • the resin composition 30a is filled in the element storage space 20a.
  • the curing step the resin composition 30a in the element housing space 20a is cured to obtain a cured product, whereby the film capacitor 100 shown in FIGS. 2 and 3 can be obtained.
  • the film capacitor may be provided with a film capacitor element and a sealing portion for sealing the film capacitor element, and the sealing portion may contain the resin composition or the cured product thereof, without providing the outer case.
  • the aspect which the whole sealing part which seals a film capacitor element may be exposed outside may be sufficient.
  • the number of film capacitor elements sealed in the sealing portion may be one or more.
  • the film capacitor element is not particularly limited as long as it has a film body (capacitor body, film element body) formed of a film.
  • the film capacitor element has a laminate of films (a film structure formed by laminating films) in place of a wound body of a film (a film structure formed by winding a film). May be A wound body or a laminate of a metallized film can be used as the film body.
  • a resin composition was prepared by mixing the following components shown in Tables 1 to 3.
  • thermosetting resin Bisphenol A type epoxy resin, manufactured by Mitsui Chemicals, Inc., trade name: Epomic R-139S Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name: JER 834
  • Expanded graphite manufactured by Suzu Hiro Chemical Co., Ltd., trade name: GREP-EG, average aspect ratio: 9.5, average major axis: 600 ⁇ m Expanded graphite, manufactured by Fuji Graphite Industry Co., Ltd., trade name: EXP-100S, average aspect ratio: 10.5, average major axis: 200 ⁇ m Melamine cyanurate, manufactured by Nissan Chemical Industries, Ltd., trade name: MC-4000, average aspect ratio: 5, average major axis: 14 ⁇ m Melamine cyanurate, manufactured by Nissan Chemical Industries, Ltd., trade name: MC-6000, average aspect ratio: 5, average major axis: 2 ⁇ m
  • viscosity The viscosity of the resin composition was measured under the conditions of a temperature of 40 ° C. and a rotation number of 60 rpm (60 revolutions) using a B-type rotational viscometer (trade name: BL manufactured by TOKIMEC). The temperature was adjusted using a thermostat (manufactured by Yamato Scientific Co., Ltd., trade name: BF600).
  • the resin composition was thermally cured at 105 ° C. for 8 hours to obtain a cured product, and then the cured product was processed into a rectangular parallelepiped shape of 125 mm ⁇ 13.0 mm and 5 mm in thickness to obtain a test piece.
  • the flame retardance was evaluated according to the test method of UL94V using the test piece. According to the UL 94 V criteria, upper and lower flames were judged in four stages of “V-0”, “V-1”, “V-2” and “V-NOT” (classification not possible). “V-0” is the highest in flame retardancy, and the flame retardancy decreases in the order of “V-1”, “V-2” and “V-NOT”.
  • SYMBOLS 10 Film capacitor element, 12 ... Winding body, 14 ... Metallikon electrode, 16 ... Lead wire, 20 ... Outer case, 20a ... Element accommodation space, 30 ... Sealing part, 30a ... Resin composition, 100 ... Film capacitor ( Moldings), F, F1, F2 ... fillers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

硬化性成分と、第1のフィラーと、前記第1のフィラーとは異なる第2のフィラーと、を含有し、前記第1のフィラーの厚さに対する前記第1のフィラーの長径の比率が3~25である、注型用の樹脂組成物。素子と、前記素子を封止する封止部と、を備え、前記封止部が前記樹脂組成物又はその硬化物を含む、成形体。

Description

樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
 本発明は、樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法に関する。
 フィルムコンデンサ等の電子部品は、例えば、太陽電池、産業機器、電気自動車等における電力変換装置(パワーコンディショナ)に用いられている。電子部品として用いられる成形体は、例えば、素子と、素子を封止する封止部とを備えている。例えば、フィルムコンデンサは、フィルムコンデンサ素子と、フィルムコンデンサ素子を封止する封止部とを備えており、フィルムコンデンサ素子を収容する空間を有する型部材の前記空間内にフィルムコンデンサ素子を配置した後に前記空間に封止材を供給して封止部を形成することにより得ることができる(例えば、下記特許文献1参照)。封止部としては、樹脂材料を含む硬化性の樹脂組成物の硬化物を用いることができる。
特開平7-161578号公報
 本発明者の知見によれば、フィルムコンデンサの封止部として用いられる硬化物の劣化を抑制して優れた信頼性を確保する観点から、硬化物の内部において物性に差が生じることを抑制することが望ましく、特に、注型用の樹脂組成物の硬化物の内部において比重差が生じることを抑制することが望ましい。
 本発明は、このような事情に鑑みなされたものであり、硬化物の内部において比重差が生じることを抑制することが可能な樹脂組成物、及び、その硬化物を提供することを目的とする。また、本発明は、前記樹脂組成物又はその硬化物を用いた成形体及びその製造方法を提供することを目的とする。さらに、本発明は、前記樹脂組成物又はその硬化物を用いたフィルムコンデンサ及びその製造方法を提供することを目的とする。
 本発明に係る樹脂組成物は、硬化性成分と、第1のフィラーと、前記第1のフィラーとは異なる第2のフィラーと、を含有し、前記第1のフィラーの厚さに対する前記第1のフィラーの長径の比率が3~25である、注型用の樹脂組成物である。
 ところで、樹脂組成物の硬化物において熱安定性、機械的強度等の物性が局所的に劣る部分があると、当該物性の劣る部分を起点に硬化物が劣化しやすい。これに対し、本発明に係る樹脂組成物によれば、当該樹脂組成物の硬化物の内部において比重差が生じることを抑制することができるため、硬化物の物性が局所的に異なることが抑制されている。これにより、物性が局所的に劣る部分が硬化物に形成されることが抑制されているため、硬化物の劣化を抑制できることから、優れた信頼性を確保することができる。さらに、本発明に係る樹脂組成物によれば、溶剤を用いない場合であっても樹脂組成物の粘度を低く維持することが可能であり、樹脂組成物を注型する際に樹脂組成物の充填作業性に優れる。
 前記硬化性成分は、エポキシ樹脂を含むことが好ましい。
 B型粘度計を用いて40℃、60rpmの条件で測定した場合の樹脂組成物の粘度は、8.0Pa・s以下であることが好ましい。
 前記第1のフィラーは、膨張黒鉛を含むことが好ましい。また、前記第1のフィラーは、メラミンシアヌレートを含むことが好ましい。
 前記第2のフィラーは、シリカを含むことが好ましい。
 本発明に係る硬化物は、上述の樹脂組成物の硬化物である。
 本発明に係る成形体は、素子と、前記素子を封止する封止部と、を備え、前記封止部が上述の樹脂組成物又はその硬化物を含む。本発明に係る成形体の製造方法においては、上述の樹脂組成物を注型して成形体を得る。
 本発明に係るフィルムコンデンサは、フィルムコンデンサ素子と、前記フィルムコンデンサ素子を封止する封止部と、を備え、前記封止部が上述の樹脂組成物又はその硬化物を含む。本発明に係るフィルムコンデンサの製造方法においては、上述の樹脂組成物を注型して、フィルムコンデンサ素子を封止する封止部を備えたフィルムコンデンサを得る。
 本発明によれば、硬化物の内部において比重差が生じることを抑制することが可能であり、優れた信頼性を確保することができる。また、本発明によれば、溶剤を用いない場合であっても樹脂組成物の粘度を低く維持することが可能であり、樹脂組成物を注型する際に樹脂組成物の充填作業性に優れる。本発明によれば、注型への樹脂組成物の応用を提供できる。
図1は、フィラーの沈降を説明するための図である。 図2は、本発明の一実施形態に係る成形体を示す斜視図である。 図3は、本発明の一実施形態に係る成形体を示す端面図である。 図4は、本発明の一実施形態に係る成形体の製造方法を示す斜視図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
<樹脂組成物及び硬化物>
 本実施形態に係る樹脂組成物は、注型用の樹脂組成物である。本実施形態に係る樹脂組成物を注型することにより成形体を得ることができる。本実施形態に係る硬化物は、本実施形態に係る樹脂組成物の硬化物であり、硬化性の樹脂組成物を硬化させることにより得ることができる。本実施形態に係る樹脂組成物及びその硬化物は、例えば、黒色を呈している。本実施形態に係る硬化物は、素子を封止する封止部として用いることができる。封止部によって素子を封止することにより、水分等によって素子が劣化することを抑制することができる。
 本実施形態に係る樹脂組成物は、硬化性成分と、第1のフィラーと、第1のフィラーとは異なる第2のフィラーと、を含有し、第1のフィラーの厚さに対する第1のフィラーの長径の比率(第1のフィラーの長径/第1のフィラーの厚さ。以下、「アスペクト比」という。)が3~25である。すなわち、本実施形態に係る樹脂組成物は、アスペクト比3~25のフィラーを含む少なくとも2種のフィラーを含有する。
 本実施形態に係る樹脂組成物によれば、樹脂組成物の硬化物の内部において比重差が生じることを抑制することができる。このような効果が発現される理由は必ずしも明らかではないが、本発明者は、以下のように推察している。
 すなわち、注型用の樹脂組成物のフィラーが、前記特定のアスペクト比を有するフィラーを含有していない場合、図1の(a)に示すように、注型用の樹脂組成物が型部材に注入された際に、フィラーFが樹脂組成物における型部材の底部側に過剰に沈降しやすい。一方、本実施形態に係る樹脂組成物によれば、図1の(b)に示すように、注型用の樹脂組成物が型部材に注入された際に、前記特定のアスペクト比を有する第1のフィラーF1の浮力が大きいため、第1のフィラーF1が第2のフィラーF2を押し上げることにより、第2のフィラーF2の過剰な沈降を抑制することができる。これにより、フィラーが樹脂組成物における型部材の底部側に過剰に沈降すること(フィラーの偏在)が抑制されてフィラーが均一に分散することにより、樹脂組成物において型部材の上部側と底部側とでフィラーの存在量が大きく異なることが抑制される。その結果、硬化物の内部において比重差が生じることを抑制できる。
 本実施形態に係る樹脂組成物が、第2のフィラーを含有することなく第1のフィラーのみを含有する場合には、第1のフィラーの浮力が大きいことに伴い、樹脂組成物中においてフィラーが分散しにくくなること、型部材の底部側に分散されるフィラー量が過剰に少なくなること等により、硬化物の内部において比重差が生じることを抑制し難い。
(硬化性成分)
 硬化性成分は、例えば、硬化性樹脂及び硬化剤を含むことができる。硬化剤を用いることなく硬化性樹脂が硬化可能である場合には、硬化剤を用いなくてもよい。
 硬化性成分としては、熱硬化性成分又は光硬化性成分を用いることが可能であり、硬化性樹脂としては、熱硬化性樹脂又は光硬化性樹脂を用いることができる。硬化性成分としては、硬化性に優れる観点から、熱硬化性成分が好ましい。熱硬化性樹脂としては、エポキシ樹脂、尿素樹脂、メラミン樹脂、ポリエステル、シリコーン樹脂、ポリウレタン等が挙げられる。光硬化性樹脂としては、アクリル樹脂、メタクリル樹脂等が挙げられる。硬化性成分は、硬化物の透湿性が低く、硬化物により素子を封止した際に素子の劣化を防ぎやすい観点から、エポキシ樹脂を含むことが好ましい。
 エポキシ樹脂としては、1分子中に2個以上のグリシジル基を有する樹脂を用いることができる。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールG型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールPH型エポキシ樹脂、ビスフェノールTMC型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールS型エポキシ樹脂(ヘキサンジオールビスフェノールSジグリシジルエーテル等)、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビキシレノール型エポキシ樹脂(ビキシレノールジグリシジルエーテル等)、水添ビスフェノールA型エポキシ樹脂(水添ビスフェノールAグリシジルエーテル等)、これら樹脂の二塩基酸変性ジグリシジルエーテル型エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。
 エポキシ樹脂の含有量は、硬化物の透湿性が低く、硬化物により素子を封止した際に素子の劣化を防ぎやすい観点から、硬化性樹脂の全質量を基準として、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。エポキシ樹脂の含有量は、硬化性樹脂の全質量を基準として100質量%であってもよい。
 硬化性樹脂の含有量は、樹脂組成物の全質量(溶剤の質量を除く)を基準として下記の範囲が好ましい。硬化性樹脂の含有量は、樹脂組成物の粘度の過剰な上昇が抑制されて樹脂組成物の取り扱いが容易である(作業性を確保しやすい)観点から、10質量%以上が好ましく、15質量%以上がより好ましく、18質量%以上が更に好ましく、20質量%以上が特に好ましい。硬化性樹脂の含有量は、吸水率の低い硬化物を得やすい観点から、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましい。これらの観点から、硬化性樹脂の含有量は、10~60質量%が好ましい。
 硬化剤としては、グリシジル基と反応する官能基を1分子中に2個以上有する化合物を用いることができる。硬化剤としては、フェノール樹脂、酸無水物等が挙げられる。
 フェノール樹脂としては、1分子中に2個以上のフェノール性水酸基を有する樹脂を用いることができる。フェノール樹脂としては、フェノール類及び/又はナフトール類とアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られる樹脂、ビフェニル骨格型フェノール樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン・パラキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、キシリレン変性ナフトール樹脂等が挙げられる。フェノール類としては、フェノール、クレゾール、キシレノール、レゾルシノール、カテコール、ビスフェノールA、ビスフェノールF等が挙げられる。ナフトール類としては、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等が挙げられる。アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等が挙げられる。
 酸無水物としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、オクテニル無水コハク酸等が挙げられる。
 硬化剤の含有量は、硬化物の優れた強度が得られやすい観点、及び、硬化物の透湿性が低く、硬化物により素子を封止した際に素子の劣化を防ぎやすい観点から、樹脂組成物の全質量(有機溶剤等の溶剤を除く)を基準として、10~55質量%が好ましく、12~40質量%がより好ましく、15~30質量%が更に好ましい。
 硬化性成分は、硬化促進剤を含んでいてもよい。硬化促進剤としては、4級アンモニウム塩、アミン系の硬化促進剤、リン系の硬化促進剤等が挙げられる。アミン系の硬化促進剤としては、イミダゾール化合物、脂肪族アミン、芳香族アミン、変性アミン、ポリアミド樹脂等が挙げられる。リン系の硬化促進剤としては、ホスフィンオキサイド、ホスホニウム塩、ダイホスフィン等が挙げられる。
(フィラー)
 本実施形態に係る樹脂組成物は、少なくとも2種のフィラー(硬化性成分に該当する化合物を除く)として、前記特定のアスペクト比(第1のフィラーの長径/第1のフィラーの厚さ)を有する第1のフィラーと、第1のフィラーとは異なる第2のフィラーと、を含有する。
 第1のフィラーの長径及び第1のフィラーの厚さは、例えば、次の手順により得ることができる。測定対象のフィラーを硬化性成分に分散させて硬化物を作製した後、フィラーが露出するように硬化物を切断する。次に、フィラーの長径(フィラー全体の最大長さ)及び厚さ(フィラーの厚み部分の最大長さ)が把握できるまで切断面を研磨する。そして、走査電子顕微鏡(SEM)又は光学顕微鏡を用いて切断面を観察し、フィラーの長径及び厚さを測定する。
 フィラーが硬化物中に分散していない場合についても、走査電子顕微鏡又は光学顕微鏡を用いてフィラーの長径及び厚さを得ることができる。すなわち、走査電子顕微鏡又は光学顕微鏡を用いてフィラー単独の観察像を得た後、観察像におけるフィラー全体の最大長さをフィラーの長径として取得し、観察像におけるフィラーの厚み部分の最大長さをフィラーの厚さとして取得することができる。
 第1のフィラーの形状としては、鱗片状、雲母状、板状、扁平状等が挙げられる。「鱗片状」とは、例えば、魚の鱗のような薄い小片の形状を言い、厚さに対して長径が充分大きい形状を指す。鱗片状のフィラーの外形は、円形とは限らず、不定形であってもよい。
 第1のフィラーの構成材料としては、膨張黒鉛、鱗片状黒鉛(膨張黒鉛を除く)、メラミンシアヌレート、ウォラストナイト、フレーク状シリカ等が挙げられる。膨張黒鉛は、黒鉛の結晶構造の層間が拡張された材料であり、例えば、黒鉛以外の物質が黒鉛の層間内に侵入して形成された黒鉛層間化合物である。膨張黒鉛は、例えば、黒鉛材料を酸(硫酸、硝酸等)に浸漬させた後に熱処理することで得ることができる。第1のフィラーは、難燃性が向上する観点から、膨張黒鉛及びメラミンシアヌレートからなる群より選ばれる少なくとも一種を含むことができる。
 第1のフィラーの比重(真比重)は、硬化物の内部において比重差が生じることを抑制しやすい観点から、第2のフィラーの比重(真比重)よりも小さいことが好ましい。第1のフィラーの比重は、硬化物の内部において比重差が生じることを抑制しやすい観点から、硬化性成分の比重よりも小さいことが好ましい。
 第1のフィラーのアスペクト比は、硬化物の内部において比重差が生じることを抑制する観点から、3~25である。アスペクト比が3未満であると、第1のフィラーの充分な浮力が得られないことにより、第1のフィラーが第2のフィラーを押し上げられず、第2のフィラーの過剰な沈降を抑制し難い。アスペクト比が25を超えると、第1のフィラーが樹脂組成物中において分散しにくくなり、第2のフィラーの過剰な沈降を抑制し難い。
 第1のフィラーのアスペクト比は、硬化物の内部において比重差が生じることを抑制しやすい観点から、5以上が好ましく、8以上がより好ましく、9以上が更に好ましく、10以上が特に好ましい。第1のフィラーのアスペクト比は、第1のフィラーが樹脂組成物中において分散しやすい観点から、20以下が好ましく、15以下がより好ましく、12以下が更に好ましく、11以下が特に好ましい。これらの観点から、第1のフィラーのアスペクト比は、5~20が好ましい。
 第1のフィラーの長径は、硬化物の内部において比重差が生じることを抑制しやすい観点から、2μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、12μm以上が特に好ましい。第1のフィラーの長径は、第1のフィラーが樹脂組成物中において分散しやすい観点から、800μm以下が好ましく、600μm以下がより好ましく、400μm以下が更に好ましく、200μm以下が特に好ましく、100μm以下が極めて好ましく、50μm以下が非常に好ましい。これらの観点から、第1のフィラーの長径は、5~800μmが好ましい。第1のフィラーの長径は、アスペクト比の測定と同様に、走査電子顕微鏡又は光学顕微鏡を用いて硬化物の断面を観察することにより測定することができる。第1のフィラーの平均長径についても、これらの範囲であることが好ましい。
 第1のフィラーの含有量は、樹脂組成物の全質量(溶剤の質量を除く)を基準として下記の範囲が好ましい。第1のフィラーの含有量は、硬化物の内部において比重差が生じることを抑制しやすい観点から、1.5質量%以上が好ましく、1.8質量%以上がより好ましく、2質量%以上が更に好ましい。第1のフィラーの含有量は、第1のフィラーが樹脂組成物中において分散しやすい観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましく、10質量%以下が特に好ましく、8質量%以下が極めて好ましく、7質量%以下が非常に好ましく、6質量%以下がより一層好ましい。これらの観点から、第1のフィラーの含有量は、1.5~30質量%が好ましい。
 第1のフィラーの含有量は、フィラーの合計量(第1のフィラー及び第2のフィラーの総量)を基準として下記の範囲が好ましい。第1のフィラーの含有量は、硬化物の内部において比重差が生じることを抑制しやすい観点から、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、6質量%以上が特に好ましい。第1のフィラーの含有量は、第1のフィラーが樹脂組成物中において分散しやすい観点から、15質量%以下が好ましく、12質量%以下がより好ましく、10質量%以下が更に好ましく、9質量%以下が特に好ましい。これらの観点から、第1のフィラーの含有量は、1~15質量%が好ましい。
 第2のフィラーとしては、例えば、前記特定のアスペクト比を有しないフィラー(球状フィラー、破砕フィラー等)が挙げられる。第2のフィラーの構成材料としては、シリカ、カーボンブラック、水酸化アルミニウム、水酸化マグネシウム、アエロジル、アルミナ、炭酸カルシウム、珪酸カルシウム、マイカ、タルク、クレー、チタンホワイト、窒化珪素、炭化珪素などが挙げられる。シリカとしては、結晶シリカ、溶融シリカ等が挙げられる。第2のフィラーは、硬化性成分との親和性(なじみやすさ)、及び、汎用性に優れる観点から、シリカ及び水酸化アルミニウムからなる群より選ばれる少なくとも一種を含むことが好ましく、シリカを含むことがより好ましい。
 第2のフィラーの粒径は、樹脂組成物の粘度の過剰な上昇が抑制されて樹脂組成物の取り扱いが容易である(作業性を確保しやすい)観点から、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。第2のフィラーの粒径は、硬化物の内部において比重差が生じることを抑制しやすい観点から、30μm以下が好ましく、20μm以下がより好ましく、15μm以下が更に好ましい。これらの観点から、第2のフィラーの粒径は、3~30μmが好ましい。第2のフィラーの粒径は、レーザー回折粒度分布計(株式会社堀場製作所製、商品名:LA920により測定することができる。第2のフィラーの平均粒径についても、これらの各範囲であることが好ましい。
 第2のフィラーの含有量は、樹脂組成物の全質量(溶剤の質量を除く)を基準として下記の範囲が好ましい。第2のフィラーの含有量は、硬化物の優れた強度が得られやすい観点、及び、硬化物の透湿性が低く、硬化物により素子を封止した際に素子の劣化を防ぎやすい観点から、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上が更に好ましく、45質量%以上が特に好ましい。第2のフィラーの含有量は、樹脂組成物の粘度の過剰な上昇が抑制されて樹脂組成物の取り扱いが容易である(作業性を確保しやすい)観点から、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下が更に好ましく、70質量%以下が特に好ましい。これらの観点から、第2のフィラーの含有量は、30~90質量%が好ましい。
(その他の添加剤)
 本実施形態に係る樹脂組成物は、硬化性成分及びフィラーとは異なる添加剤を含有することができる。添加剤としては、消泡剤、難燃剤、カップリング剤、反応希釈剤、可撓性付与剤、顔料、着色剤、溶剤等が挙げられる。
(粘度)
 B型粘度計を用いて40℃、60rpmの条件で測定した場合の樹脂組成物の粘度は、樹脂組成物を注型する際に樹脂組成物の充填作業性に更に優れる観点から、8.0Pa・s以下が好ましく、7.0Pa・s以下がより好ましく、5.0Pa・s以下が更に好ましく、3.0Pa・s以下が特に好ましく、2.0Pa・s以下が極めて好ましい。前記粘度は、例えば、1.0Pa・s以上であってもよい。
<成形体>
 本実施形態に係る成形体は、素子と、素子を封止する封止部と、を備え、封止部が本実施形態に係る樹脂組成物又はその硬化物を含む。成形体としては、例えば、コンデンサ(フィルムコンデンサ等)、チップインダクタ、リアクトル、トランス、モールドコイル、LSIチップ、ICチップ、センサー(タイヤ空気圧センサー等)、エンジンコントロールユニット(ECU)などの電子部品が挙げられる。
 図2は、本実施形態に係る成形体の一例として、フィルムコンデンサを示す斜視図である。図3は、本実施形態に係る成形体の一例として、フィルムコンデンサを示す端面図である。図3の(a)は、図2のIIIa-IIIa線に沿った端面図である。図3の(b)は、図2のIIIb-IIIb線に沿った端面図である。
 図2及び図3に示すフィルムコンデンサ(成形体)100は、ケース型フィルムコンデンサである。フィルムコンデンサ100は、フィルムコンデンサ素子(フィルムコンデンサ巻回素子)10と、フィルムコンデンサ素子10を収容する素子収容空間20aを有する有底の外装ケース(ケース)20と、素子収容空間20a内においてフィルムコンデンサ素子10を封止する封止部30と、を備える。封止部30は、本実施形態に係る樹脂組成物の硬化物を含む。
 フィルムコンデンサ素子10は、例えば、巻回体12と、メタリコン電極14と、リード線16と、を有している。フィルムコンデンサ素子10の製造方法は、例えば、樹脂フィルムに金属蒸着して得られる部材(金属化フィルム)を巻き回して巻回体12を得る工程と、樹脂フィルムの巻回方向に直行する方向における巻回体12の両端面に金属(メタリコン材)を蒸着(メタリコン処理)してメタリコン電極14を得る工程と、メタリコン電極14にリード線16を接続する工程と、を備える。樹脂フィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリプロピレン(PP)フィルム等が挙げられる。金属蒸着の金属としては、亜鉛、錫、アルミニウム等が挙げられる。巻回体12は、例えば、略楕円形状の断面を有する筒状体である。メタリコン電極14は、巻回体12の両端面のそれぞれの全面に形成することができる。メタリコン電極14の金属としては、亜鉛、錫、アルミニウム等が挙げられる。リード線16は、例えば、巻回体12の両端面のそれぞれに2本ずつ配置されており、2本のリード線16は、両端面のそれぞれにおいて、端面の長手方向に互いに離れて配置されている。リード線16は、例えば、はんだによりメタリコン電極14に接続されている。
 外装ケース20は、例えば、直方体形状を有しており、直方体形状の素子収容空間20aを内部に有している。外装ケース20の上部には、素子収容空間20aと連通する開口部が形成されている。外装ケース20は、例えば、ポリフェニレンスルファイド(PPS)、ポリブチレンテレフタレート(PBT)等によって形成されている。フィルムコンデンサ素子10のリード線16は、外装ケース20の開口部の開口方向に伸びており、リード線16の先端側の部分は、素子収容空間20aの外に突出している。
 封止部30は、例えば、フィルムコンデンサ素子10の巻回体12の全体が覆われるように(外部に露出しないように)外装ケース20の素子収容空間20a内に充填されている。封止部30内において、フィルムコンデンサ素子10と外装ケース20の底面との間には封止部30が介在しており、フィルムコンデンサ素子10は外装ケース20の底面から離れて配置されている。封止部30内において、フィルムコンデンサ素子10と外装ケース20の側壁との間には封止部30が介在しており、フィルムコンデンサ素子10は外装ケース20の側壁から離れて配置されている。これらのようにフィルムコンデンサ素子10と外装ケース20との間に封止部30が介在している場合、フィルムコンデンサ素子10が封止部30に充分に保護されやすいため、フィルムコンデンサを長寿命化させやすい。
<成形体の製造方法>
 本実施形態に係る成形体の製造方法においては、本実施形態に係る樹脂組成物を注型して成形体を得る。本実施形態に係る成形体の製造方法は、例えば、硬化性の封止材として、本実施形態に係る樹脂組成物を型部材(鋳型、枠体)に供給する樹脂供給工程と、樹脂組成物を硬化し成形体を得る硬化工程と、をこの順に備えている。成形方法としては、真空注型、インサート成形、射出成形、押出成形、トランスファ成形等が挙げられる。
 本実施形態に係る成形体の製造方法の一例として、本実施形態に係るフィルムコンデンサの製造方法においては、本実施形態に係る樹脂組成物を注型して、フィルムコンデンサ素子を封止する封止部を備えたフィルムコンデンサを得る。本実施形態に係るフィルムコンデンサの製造方法は、例えば、硬化性の封止材として、本実施形態に係る樹脂組成物を外装ケース(ケース)の素子収容空間に供給する樹脂供給工程と、樹脂組成物を硬化する硬化工程と、をこの順に備えている。
 樹脂供給工程では、フィルムコンデンサ素子が収容された素子収容空間内に、本実施形態に係る樹脂組成物(硬化性の封止材)を供給する。樹脂供給工程は、例えば、真空下、温度20~90℃の条件で行うことができる。樹脂供給工程では、例えば、樹脂組成物の供給に伴い、浮力によってフィルムコンデンサ素子が樹脂組成物の液面に浮き上がることにより、フィルムコンデンサ素子と外装ケースの底面との間に樹脂組成物が介在してもよい。
 硬化工程では、素子収容空間内に供給された樹脂組成物を硬化して硬化物を得る。硬化工程では、例えば、熱硬化性の樹脂組成物を加熱して硬化物を得る。樹脂組成物の硬化温度は、110℃以下であることが好ましい。硬化工程は、例えば、85~105℃、3~8時間の条件で行うことができる。複数の条件を組み合わせてもよく、一の温度で加熱した後に他の温度(例えば、前記一の温度よりも高温)で加熱してもよい。
 本実施形態に係るフィルムコンデンサの製造方法では、樹脂供給工程と硬化工程とを繰り返し行ってもよい。例えば、フィルムコンデンサ素子の巻回体の底部が浸漬されるまで樹脂組成物を素子収容空間内に供給した後に樹脂組成物を硬化させ、さらに、樹脂組成物を素子収容空間内に供給した後に樹脂組成物を硬化させてもよい。すなわち、フィルムコンデンサ素子の巻回体の全体が覆われるまで、樹脂組成物の供給及び硬化は複数回行われてもよい。フィルムコンデンサ素子の巻回体の底部が浸漬されるまで樹脂組成物を素子収容空間内に供給した後に樹脂組成物を硬化させることにより、その後の樹脂組成物の供給の際に、浮力によってフィルムコンデンサ素子が樹脂組成物の液面に浮き上がることを抑制することができる。本実施形態に係る樹脂組成物によれば、上述のとおり、樹脂組成物において型部材の上部側と底部側とでフィラーの存在量が大きく異なることが抑制されるため、樹脂組成物の供給及び硬化が複数回行われる場合であっても、先に供給された樹脂組成物の硬化物における型部材の上部側と、後に供給された樹脂組成物の硬化物における型部材の底部側とでフィラーの存在量が大きく異なることが抑制され、フィラーの含有量の差に伴い生じる界面が両硬化物の間に形成されることを抑制することができる。
 本実施形態に係るフィルムコンデンサの製造方法は、樹脂供給工程の前に、フィルムコンデンサ素子を素子収容空間内に配置する素子配置工程を備えていてもよい。また、本実施形態に係るフィルムコンデンサの製造方法では、素子収容空間内に樹脂組成物を供給した後にフィルムコンデンサ素子を素子収容空間内に配置してもよい。
 図4は、本実施形態に係る成形体の製造方法の一例として、フィルムコンデンサの製造方法を示す斜視図である。まず、図4の(a)に示すように、素子配置工程において、フィルムコンデンサ素子10を外装ケース20の素子収容空間20a内に配置する。次に、図4の(b)に示すように、樹脂供給工程において、硬化性の封止材として樹脂組成物30aを素子収容空間20a内に供給する。これにより、図4の(c)に示すように、樹脂組成物30aが素子収容空間20a内に充填される。そして、硬化工程において、素子収容空間20a内の樹脂組成物30aを硬化して硬化物を得ることにより、図2及び図3に示すフィルムコンデンサ100を得ることができる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されない。例えば、フィルムコンデンサは、フィルムコンデンサ素子と、フィルムコンデンサ素子を封止する封止部と、を備え、封止部が樹脂組成物又はその硬化物を含んでいればよく、外装ケースを備えることなく、フィルムコンデンサ素子を封止する封止部の全体が外部に露出した態様であってもよい。封止部に封止されるフィルムコンデンサ素子は、一つであってもよく、複数であってもよい。
 フィルムコンデンサの封止部内において、フィルムコンデンサ素子と外装ケースの底面との間に封止部が介在することなく、フィルムコンデンサ素子が外装ケースの底面に接していてもよい。封止部内において、フィルムコンデンサ素子と外装ケースの側壁との間に封止部が介在することなく、フィルムコンデンサ素子が外装ケースの側壁に接していてもよい。
 フィルムコンデンサ素子は、フィルムで形成されたフィルム本体(コンデンサ本体、フィルム素子本体)を有していればよく、特に限定されない。例えば、フィルムコンデンサ素子は、フィルムの巻回体(フィルムを巻き回して形成されたフィルム構造体)に代えて、フィルムの積層体(フィルムを積層して形成されたフィルム構造体)を有していてもよい。フィルム本体としては、金属化フィルムの巻回体又は積層体を用いることができる。
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は下記実施例に限定されるものではない。
<樹脂組成物の調製>
 表1~3に示す下記成分を混合することにより樹脂組成物を調製した。
(熱硬化性樹脂)
 ビスフェノールA型エポキシ樹脂、三井化学株式会社製、商品名:エポミックR-139S
 ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製、商品名:JER834
(硬化剤)
 酸無水物、3or4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、日立化成株式会社製、商品名:HN-2000
(硬化促進剤)
 塩化ベンザルコニウム、日本油脂株式会社製、商品名:M2-100R
(第1のフィラー:鱗片状フィラー)
 膨張黒鉛、株式会社鈴裕化学製、商品名:GREP-EG、平均アスペクト比:9.5、平均長径:600μm
 膨張黒鉛、富士黒鉛工業株式会社製、商品名:EXP-100S、平均アスペクト比:10.5、平均長径:200μm
 メラミンシアヌレート、日産化学工業株式会社製、商品名:MC-4000、平均アスペクト比:5、平均長径:14μm
 メラミンシアヌレート、日産化学工業株式会社製、商品名:MC-6000、平均アスペクト比:5、平均長径:2μm
(第2のフィラー:アスペクト比3~25を満たさないその他のフィラー)
 カーボンブラック、着色剤、三菱ケミカル株式会社製、商品名:MA-100
 結晶シリカ、フミテック株式会社製、商品名:HC-15、平均粒径:12.8μm
 結晶シリカ、シベルコ・ジャパン株式会社製、商品名:CA0040、平均粒径:3.65μm
 水酸化アルミニウム、日本軽金属株式会社製、商品名:AL-B143、平均粒径:5μm
(その他の添加剤)
 消泡剤、シリコーン系消泡剤、信越化学工業株式会社製、商品名:KS-603
 カップリング剤、エポキシ基含有シランカップリング剤、ダウコーニング社製、商品名:OFS-6040
 可塑剤、エポキシ系可塑剤、ジャパンケムテック株式会社製、商品名:カージュラE10P
 難燃剤、芳香族環状ホスファゼン系難燃剤、大塚化学株式会社製、商品名:SPB-100
 難燃剤、芳香族環状ホスファゼン系難燃剤、株式会社伏見製薬所製、商品名:ラビトルFP-110
 界面活性剤、ポリエーテルエステル型界面活性剤、楠本化成株式会社製、商品名:ディスパロン3600N
<物性測定>
 前記樹脂組成物を用いて下記の物性測定を行った。物性測定は、上述の硬化剤と他成分とを混合した後、速やかに行った。物性測定の結果を表1~3に示す。
(粘度)
 B型回転粘度計(TOKIMEC社製、商品名:BL)を用いて、温度40℃、回転数60rpm(60回転)の条件における前記樹脂組成物の粘度を測定した。温度は、恒温槽(ヤマト科学株式会社製、商品名:BF600)を用いて調整した。
(比重)
 前記樹脂組成物を内径18mm、長さ15cmのポリプロピレン製の試験管に注入した後、前記樹脂組成物を105℃で8時間熱硬化させて硬化物を得た。試験管から硬化物を取り出した後、前記硬化物の上部10%及び下部10%を切断して上部試験片及び下部試験片を得た。電子比重計(ミラージュ貿易株式会社製、商品名:SD200L)を用いて、試験片の比重を水中置換法にてそれぞれ測定した。フィラーの沈降性の指標として、下記式により比重差の割合を算出した。
 比重差の割合(%)=(下部試験片の比重-上部試験片の比重)/(下部試験片の比重)×100
(難燃性)
 前記樹脂組成物を105℃で8時間熱硬化させて硬化物を得た後、縦125mm×横13.0mm、厚さ5mmの直方体形状に硬化物を加工して試験片を得た。前記試験片を用いて、UL94Vの試験方法に従い難燃性を評価した。UL94Vの判定基準に従い、上部接炎及び下部接炎について「V-0」、「V-1」、「V-2」、「V-NOT」(分類不可)の4段階で判定した。「V-0」が最も難燃性が高く、「V-1」、「V-2」及び「V-NOT」の順に難燃性が低下する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び表2に示されるとおり、アスペクト比3~25を有する第1のフィラーと、第1のフィラーとは異なる第2のフィラーと、を用いた各実施例では、硬化物の内部において比重差が生じることが抑制されている。一方、表3に示されるとおり、第1のフィラーを用いていない各比較例では、硬化物の内部において比重差が大きい結果が得られている。また、各実施例では、溶剤を用いないものの樹脂組成物の粘度が低く維持されている。実施例1~7では、優れた難燃性が達成されている。
 10…フィルムコンデンサ素子、12…巻回体、14…メタリコン電極、16…リード線、20…外装ケース、20a…素子収容空間、30…封止部、30a…樹脂組成物、100…フィルムコンデンサ(成形体)、F,F1,F2…フィラー。

Claims (11)

  1.  硬化性成分と、第1のフィラーと、前記第1のフィラーとは異なる第2のフィラーと、を含有し、
     前記第1のフィラーの厚さに対する前記第1のフィラーの長径の比率が3~25である、注型用の樹脂組成物。
  2.  前記硬化性成分がエポキシ樹脂を含む、請求項1に記載の樹脂組成物。
  3.  B型粘度計を用いて40℃、60rpmの条件で測定した場合の粘度が8.0Pa・s以下である、請求項1又は2に記載の樹脂組成物。
  4.  前記第1のフィラーが膨張黒鉛を含む、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記第1のフィラーがメラミンシアヌレートを含む、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記第2のフィラーがシリカを含む、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の樹脂組成物の硬化物。
  8.  素子と、前記素子を封止する封止部と、を備え、
     前記封止部が、請求項1~6のいずれか一項に記載の樹脂組成物又はその硬化物を含む、成形体。
  9.  請求項1~6のいずれか一項に記載の樹脂組成物を注型して成形体を得る、成形体の製造方法。
  10.  フィルムコンデンサ素子と、前記フィルムコンデンサ素子を封止する封止部と、を備え、
     前記封止部が、請求項1~6のいずれか一項に記載の樹脂組成物又はその硬化物を含む、フィルムコンデンサ。
  11.  請求項1~6のいずれか一項に記載の樹脂組成物を注型して、フィルムコンデンサ素子を封止する封止部を備えたフィルムコンデンサを得る、フィルムコンデンサの製造方法。
PCT/JP2017/039163 2017-10-30 2017-10-30 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法 WO2019087259A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780098090.4A CN111527143B (zh) 2017-10-30 2017-10-30 树脂组合物、固化物、成型体及其制造方法、以及薄膜电容器及其制造方法
US16/759,601 US11339284B2 (en) 2017-10-30 2017-10-30 Resin composition, cured product, formed body and manufacturing method thereof, and film capacitor and manufacturing method thereof
JP2019550012A JP7372836B2 (ja) 2017-10-30 2017-10-30 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
PCT/JP2017/039163 WO2019087259A1 (ja) 2017-10-30 2017-10-30 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
JP2021167208A JP2022001652A (ja) 2017-10-30 2021-10-12 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
JP2023091646A JP2023107833A (ja) 2017-10-30 2023-06-02 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039163 WO2019087259A1 (ja) 2017-10-30 2017-10-30 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019087259A1 true WO2019087259A1 (ja) 2019-05-09

Family

ID=66331592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039163 WO2019087259A1 (ja) 2017-10-30 2017-10-30 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法

Country Status (4)

Country Link
US (1) US11339284B2 (ja)
JP (3) JP7372836B2 (ja)
CN (1) CN111527143B (ja)
WO (1) WO2019087259A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087258A1 (ja) * 2017-10-30 2019-05-09 日立化成株式会社 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384058A (ja) * 1989-08-28 1991-04-09 Sekisui Chem Co Ltd 搖変性エポキシ樹脂組成物
JP2004210901A (ja) * 2002-12-27 2004-07-29 Hitachi Chem Co Ltd 液状エポキシ樹脂組成物及び電子部品装置
WO2007100078A1 (ja) * 2006-03-03 2007-09-07 Pi R & D Co., Ltd. スクリーン印刷用感光性インク組成物及びそれを用いたポジ型レリーフパターンの形成方法
WO2009047886A1 (ja) * 2007-10-12 2009-04-16 Panasonic Corporation ケースモールド型コンデンサとその製造方法
JP2010077303A (ja) * 2008-09-26 2010-04-08 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2011077154A (ja) * 2009-09-29 2011-04-14 Denki Kagaku Kogyo Kk 易解体性太陽電池モジュール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725993B2 (ja) * 1988-10-03 1995-03-22 日立化成工業株式会社 エポキシ樹脂組成物
JPH07161578A (ja) 1993-12-06 1995-06-23 Rubikon Denshi Kk フィルムコンデンサの製造方法
JP2001114990A (ja) 1999-10-21 2001-04-24 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP4948716B2 (ja) * 2001-06-29 2012-06-06 東レ・ダウコーニング株式会社 硬化性エポキシ樹脂組成物
JP2003147052A (ja) 2001-11-12 2003-05-21 Nec Corp 難燃性エポキシ樹脂組成物
JP2003218249A (ja) * 2002-01-18 2003-07-31 Mitsui Chemicals Inc 半導体中空パッケージ
JP4368121B2 (ja) 2003-03-24 2009-11-18 株式会社イノアックコーポレーション 液体と粉体の混合方法及び混合装置
JP4780041B2 (ja) * 2007-06-07 2011-09-28 住友ベークライト株式会社 半導体用樹脂ペースト及び半導体装置
JP2009170882A (ja) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 電子部品、固体電解コンデンサおよび回路基板
JP5353379B2 (ja) * 2009-03-31 2013-11-27 三菱化学株式会社 異方性形状の窒化アルミニウムフィラーを含有する熱硬化性樹脂組成物
JP5973202B2 (ja) 2011-03-31 2016-08-23 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 電子部品封止用難燃性ポリオルガノシロキサン組成物
JP5935100B2 (ja) 2011-04-28 2016-06-15 京セラ株式会社 フィルムコンデンサの製造方法及びフィルムコンデンサ
SG11201404295QA (en) * 2012-01-26 2014-10-30 Toray Industries Resin composition and semiconductor mounting substrate obtained by molding same
EP3243855A1 (en) * 2013-03-06 2017-11-15 DIC Corporation Epoxy resin composition, cured product, heat dissipation material, and electronic material
KR102171427B1 (ko) * 2014-08-27 2020-10-29 세키스이가가쿠 고교가부시키가이샤 열팽창성 내화 수지 조성물
WO2019087258A1 (ja) * 2017-10-30 2019-05-09 日立化成株式会社 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384058A (ja) * 1989-08-28 1991-04-09 Sekisui Chem Co Ltd 搖変性エポキシ樹脂組成物
JP2004210901A (ja) * 2002-12-27 2004-07-29 Hitachi Chem Co Ltd 液状エポキシ樹脂組成物及び電子部品装置
WO2007100078A1 (ja) * 2006-03-03 2007-09-07 Pi R & D Co., Ltd. スクリーン印刷用感光性インク組成物及びそれを用いたポジ型レリーフパターンの形成方法
WO2009047886A1 (ja) * 2007-10-12 2009-04-16 Panasonic Corporation ケースモールド型コンデンサとその製造方法
JP2010077303A (ja) * 2008-09-26 2010-04-08 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2011077154A (ja) * 2009-09-29 2011-04-14 Denki Kagaku Kogyo Kk 易解体性太陽電池モジュール

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Melamine Cyanurate", NISSAN CHEMICAL INDUSTRIES, LTD., February 2017 (2017-02-01), XP055614575, Retrieved from the Internet <URL:https://www.nissanchem.co.jp/eng/products/chemicals/pdf/melamine.pdf> [retrieved on 20180701] *
IIZUKA, YOSHIO: "Thixotropic Agent", JOURNAL OF THE JAPAN SOCIETY OF COLOUR MATERIAL, vol. 65, no. 12, 1992, pages 775 - 785, XP055614568, DOI: 10.4011/shikizai1937.65.775 *
NAKAGAWA, YUICHI: "Recent Development of Flame Retardant Polymeric Materials Containing Expandable Graphite", BULLETIN OF JAPAN ASSOCIATION FOR FIRE SCIENCE AND ENGINEERING, vol. 56, no. 2, 2006, pages 37 - 43, XP055614572 *

Also Published As

Publication number Publication date
JP7372836B2 (ja) 2023-11-01
US20200347221A1 (en) 2020-11-05
US11339284B2 (en) 2022-05-24
CN111527143B (zh) 2023-06-23
JPWO2019087259A1 (ja) 2020-11-12
JP2022001652A (ja) 2022-01-06
CN111527143A (zh) 2020-08-11
JP2023107833A (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
KR102359868B1 (ko) 필름형 에폭시 수지 조성물, 필름형 에폭시 수지 조성물의 제조 방법, 및 반도체 장치의 제조 방법
JP7115520B2 (ja) 封止用フィルム及び封止構造体
JP7276398B2 (ja) 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
US20220195141A1 (en) Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles
WO2021095747A1 (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exoergic resin composition
WO2018221682A1 (ja) 圧縮成型用液状樹脂組成物及び電子部品装置
WO2018221681A1 (ja) 封止用液状樹脂組成物及び電子部品装置
JP2023107833A (ja) 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
KR102153807B1 (ko) 밀봉 조성물 및 반도체 장치
JP2019083260A (ja) フィルムコンデンサ
JP2019081838A (ja) 樹脂組成物、フィルムコンデンサ及びその製造方法
TWI838452B (zh) 環氧樹脂組成物及其硬化物、預浸料、黏接片材、積層板
CN109983052B (zh) 密封用膜及其固化物、以及电子装置
CN110462818B (zh) 密封膜、电子部件装置的制造方法及电子部件装置
JP2019083251A (ja) 樹脂組成物、フィルムコンデンサ及びその製造方法
CN113242873A (zh) 密封组合物及半导体装置
JP2019081832A (ja) 樹脂組成物、成形体及びその製造方法、並びに、モールドコイル及びその製造方法
CN113195586A (zh) 密封组合物及半导体装置
CN113348192A (zh) 密封组合物及半导体装置
TW201930538A (zh) 密封組成物及其製造方法以及半導體裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931000

Country of ref document: EP

Kind code of ref document: A1