WO2019087249A1 - エレベーター運行管理システムおよびエレベーター運行管理方法 - Google Patents

エレベーター運行管理システムおよびエレベーター運行管理方法 Download PDF

Info

Publication number
WO2019087249A1
WO2019087249A1 PCT/JP2017/039125 JP2017039125W WO2019087249A1 WO 2019087249 A1 WO2019087249 A1 WO 2019087249A1 JP 2017039125 W JP2017039125 W JP 2017039125W WO 2019087249 A1 WO2019087249 A1 WO 2019087249A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
elevator operation
people
car
demand
Prior art date
Application number
PCT/JP2017/039125
Other languages
English (en)
French (fr)
Inventor
貴大 羽鳥
正康 藤原
章 小町
孝道 星野
加藤 学
訓 鳥谷部
藤野 篤哉
渉 鳥海
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019550002A priority Critical patent/JP6974489B2/ja
Priority to CN201780096040.2A priority patent/CN111225865A/zh
Priority to PCT/JP2017/039125 priority patent/WO2019087249A1/ja
Publication of WO2019087249A1 publication Critical patent/WO2019087249A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/18Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages
    • B66B1/20Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages and for varying the manner of operation to suit particular traffic conditions, e.g. "one-way rush-hour traffic"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present invention relates to an elevator operation control system and an elevator operation control method for selecting an elevator responsive to an elevator user's service request from a plurality of elevators and allocating a selected elevator car.
  • an elevator having a minimum waiting time for example, is selected from among a plurality of elevators for the service request of elevator users, that is, registration of a landing call. Then, the selected elevator car is distributed to the floor where the hall call is registered.
  • an operation route (target route) is set such that positions of a plurality of elevators are equally spaced, and an operation route (predicted route) according to the current traffic demand is the most desired route.
  • a landing call is assigned to a nearby elevator.
  • Patent Document 3 a combination of a human flow simulator in the floor that simulates the movement of a person, an elevator entry and exit simulator that simulates the movement of a person in the elevator, and an elevator movement simulator that simulates the movement of the elevator Consistently simulate the flow of people in the direction.
  • elevator specifications, layouts, and operation patterns can be set so as to suppress congestion and stagnation of elevator users at the landing.
  • JP, 2006-264832 A JP, 2011-195280, A JP, 2009-96612, A
  • the present invention provides an elevator operation control system and an elevator operation control method capable of reliably processing the elevator demand.
  • the elevator operation management system selects and assigns elevators from a plurality of elevators to a hall call, and predicts the demand at the hall of the registration floor of the hall call. And an allocation unit for determining the allocation of elevators capable of processing demand based on demand, and an evaluation unit for selecting an elevator according to the determination of the allocation number setting unit.
  • the elevator operation management method is a method of selecting and assigning elevators from a plurality of elevators to a hall call, and the demand at the hall of the registration floor of the hall call According to the demand, determine the number of elevators that can handle the demand, and select the elevator according to the determination.
  • elevator demand can be reliably processed.
  • the appearance of the elevator hall in a building provided with the elevator system of an embodiment is shown.
  • the state of the elevator hall of one floor in FIG. 2 is shown.
  • the state of the elevator hall of one floor in FIG. 2 is shown.
  • An example of a boarding rate set up in an embodiment is shown.
  • An example of the number of capacity of the car in each elevator machine of embodiment is shown. It is an example of the maximum possible boarding number calculated by the embodiment.
  • the predicted number of people in the embodiment is shown.
  • movement diagram of each elevator number in a comparative example is shown.
  • movement diagram of each elevator number in this embodiment is shown
  • FIG. 1 is a functional block diagram showing a configuration of an elevator system according to an embodiment of the present invention.
  • the elevator operation management system 10 is a people forecasting number of people (waiting people) on each floor by a flow forecasting means for predicting the flow (people flow) of building users in the building where the elevator is installed. Forecast the time change of elevator demand.
  • the hall call is registered by the hall elevator service request device 30 (for example, the up and down direction hall call button)
  • the elevator operation management system 10 selects a plurality of elevator cars from each elevator car based on the prediction result of human flow.
  • An optimal elevator No. is selected based on the predetermined evaluation value to be calculated, and the elevator No. control system 20 of the selected elevator No. is commanded to respond to the registered hall call.
  • the elevator operation management system 10 predicts the number of boarding persons from the hall and transports the predicted number of boarding persons based on the predicted human flow and the setting value of the boarding rate at the floor where the hall call is registered. Allocate calls to a sufficient number of elevators. Therefore, the same landing call is assigned to two or more elevator cars depending on the predicted number of passengers and the boarding rate.
  • the boarding rate may be influenced by the feeling of the elevator user at the time of getting into the car, such as the tendency to avoid congestion in the car. Therefore, according to the present embodiment, even if the boarding rate is affected by the feeling of the elevator user, calls are assigned to the elevators of the number that can reliably handle the predicted number of people.
  • the elevator operation management system 10 and its functional units (101 to 110) will be described.
  • the computer system operates as each functional unit by executing a predetermined program.
  • the elevator operation management system 10 calculates a predetermined evaluation value for each elevator No. like various known operation management means, and the optimum evaluation value Select one elevator No. showing and assign a hall call.
  • a target operation route is set in advance for each elevator car, and an elevator car closest to the target route in the case of responding to the hall call is assigned to the hall call (for example, Patent Document 1)).
  • the comprehensive evaluation unit 107 described later includes such an operation management means.
  • an operation route (a locus on a time-position (floor) plane) is set such that a plurality of cars are operated at equal intervals in time.
  • the predicted route is an elevator with the driving condition (number of passengers, position of the car (floor), traveling direction (UP (upper), DN (lower)), and traveling condition (during traveling, stop)) as the initial condition.
  • Unit specifications (rated speed, number of people, etc.), assigned hall calls and car calls (destination floor calls), traffic demand conditions (measured values based on camera images, learning values by learning unit 109, learning values by means of traffic flow prediction means It can be obtained by calculating the estimated arrival time of the car when the registered hall call is assigned, based on any of the predicted values.
  • the closeness between the set target route and the calculated predicted route is quantified, and the quantified proximity is taken as an evaluation value.
  • the predicted arrival time (corresponding to the waiting time) calculated, the predicted number of passengers in the car calculated according to the predicted route (load load).
  • the elevator car may be selected to indicate the optimum value, corresponding to the evaluation of energy consumption) and the comprehensive evaluation value (for example, a value obtained by weighting and adding each evaluation value) obtained from each evaluation value.
  • the evaluation method is not limited to this embodiment.
  • a method may be used in which the arrival time is simply estimated and the elevator No. having a short estimated arrival time is selected.
  • the floor-by-floor people number prediction unit 101 is provided with a people flow prediction means (not shown), and the number of elevator users (hall number of people) at the landing of each floor and its time change based on the people flow in the building predicted by the people flow prediction means. Predict.
  • the people flow forecasting means predicts the people flow in the building based on the information on the building where the elevator equipment is installed, the information on the elevator equipment, the information on the operation status of the elevator, the information on the building user, the information on the external condition of the building, etc.
  • Information on the building where the elevator is installed includes the number of floors and the floor layout of each floor.
  • the information on the elevator installation includes the number of cars, specifications (number of persons, possible loading capacity, etc.), operation method (for example, presence or absence of transit), and the like.
  • Information on the operation status of the elevator includes the registration status of the landing call and the car call, the elevator demand status, and the like.
  • the information about the building user is the attendance information, entering and leaving information, meeting room reservation information, detection information of a surveillance camera and a human sensor installed in the building, and the like.
  • the information about the condition outside the building includes traffic conditions (such as delays) such as railways and road conditions (such as traffic congestion).
  • the people flow prediction means predicts people flow using a predetermined arithmetic expression or model based on any one or more of the above information (see, for example, Patent Document 3 described above).
  • the information on the building where the elevator is installed and the information on the elevator installation are set in advance in the public flow prediction means.
  • information on the operating condition of the elevator is acquired by the elevator control system or the landing elevator service request device 30, and information on the building user is acquired by the monitoring camera 40 and the building management system 50, and information on the external condition of the building Is acquired by the public institution management system 60.
  • Each piece of information to be acquired is sent to the human flow prediction means via the communication network 70.
  • the elevator demand situation is learned by the learning unit 109 in the elevator operation management system 10 based on the number of elevator users detected by a camera image or the like.
  • the people flow prediction means is provided in the floor-by-floor number-of-peoples prediction unit 101 as in this embodiment, or is provided outside the elevator operation management system 10 independently of the elevator operation management system 10. In the latter case, the floor-by-floor people number prediction unit 101 acquires data on the crowd flow at the floor of each floor from the crowd flow forecasting means, and predicts the number of people at each floor and the time change thereof based on the acquired data.
  • the human flow prediction means can be shared by an elevator system, an air conditioning system, a lighting system, and the like.
  • the accuracy verification unit 102 determines the prediction accuracy of the floor-specific people estimation unit 101, and sets the correction amount for the prediction result of the floor-specific people estimation unit 101 according to the determination result.
  • accuracy verification unit 102 detects the number of people waiting for the landing and the number-of-peoples-for-floor estimation unit 101 detected from the image of monitoring camera 40 on the floor where the landing call is registered. The predicted number of people in the hall is compared, and if the difference between the two exceeds a preset threshold value, a predetermined correction amount is given to the prediction result by the floor-based people number prediction unit 101.
  • the required information output unit 103 is the information on the number of people in the hall and the time change thereof (hereinafter referred to as “predicted hall number of people information”), which is predicted by the number-of-persons prediction unit by floor 101 and obtained through the accuracy verification unit 102.
  • the information on the floor set by the output information setting unit 104 is output.
  • the output information setting unit 104 sets the floor to which the estimated number of people to be output is to be output is set as the registered floor of the hall call, with respect to the number-of-persons estimation unit by floor number.
  • the receiving unit 105 receives information from the elevator control system 20, the landing elevator service request device 30, the monitoring camera 40, the building management system 50, and the public organization management system 60, and transmits the information to the functional units of the elevator operation management system 10. In response, information used by each functional unit is distributed.
  • the number-of-vehicles setting unit 106 calculates the maximum possible number of people in each car based on the value of the boarding rate set in the boarding rate setting unit 110 included in the learning unit 109 and the number of capacity of the car. With respect to the predicted number of people obtained by the predicted floor-based people number prediction unit 101 or the current number of people of the landing obtained from the external device, the appropriate number for getting all the people into the car is calculated. From the traffic situation in the building which changes from moment to moment and the characteristics of the users in the building, we constantly learn the number of people who get on the car and calculate the boarding rate. By using the boarding rate, it is possible to realize elevator dispatch in line with human senses, and wait as much as possible for users who are waiting long to avoid temporary congestion. Mitigation is possible.
  • the method of calculating the number of allocated vehicles is not limited to the method uniquely determined from the number of capacity of the car when the required boarding ratio is obtained from the daily learning status as described above, and the predicted number of people in the car
  • the number of vehicles may be set in consideration of this. In the following embodiments, the method will be described later.
  • the present method calculates the possible number of passengers on each floor by subtracting the current predicted number of people from the maximum number of passengers allowed in each car described above. At this time, the predicted number of passengers predicts the number of people getting on and off each floor with respect to the number of people currently in the car, and is the number of people getting in the car at the time of arrival at any given landing floor Predict the number of passengers.
  • the appropriate number of possible people in the car on the floor can be calculated.
  • the number of people who can get on the board changes depending on the operation status of the elevator each time, when determining the number of elevators to be allocated, when an appropriate car is selected by the evaluation method selected from various comprehensive evaluations. If it is not possible to give feedback, to determine whether all the number of people in the platform can be allocated, it is possible to allocate an appropriate car by selecting an appropriate car according to the selected evaluation method among various comprehensive evaluations again. Select the number.
  • the comprehensive evaluation unit 107 uses the operation management means as described above to determine the number of people at the time the call is registered for the number of people on the floor.
  • An elevator No. (hereinafter referred to as a "first allocated elevator No.") showing an optimum evaluation value is selected as (the actual measurement value by the image of the monitoring camera 40 or the prediction value by the human flow prediction means).
  • the comprehensive evaluation unit 107 calculates the estimated arrival times of the cars of all the elevators, the predicted number of passengers, and the predicted number of people to be boarded from the landing.
  • the comprehensive evaluation unit 107 selects the first allocated elevator car with the capacity of the car as the maximum possible number of people, based on the maximum possible number of people calculated by the number-of-vehicles setting unit 106 as a condition. Then, the comprehensive evaluation unit 107 instructs the assignment command unit 108 to assign the hall call to the first assignment elevator station selected from among all the elevator stations.
  • the assignment command unit 108 instructs the elevator car control system 20 of the elevator selected by the comprehensive evaluation unit 107 to respond to the registered hall call.
  • the dispatch number setting unit 106 estimates the estimated arrival time of the first allocation elevator, the predicted number of passengers, and the predicted number of people boarded by the total evaluation unit 107. refer. Further, the number-of-vehicles setting unit 106 extracts the predicted number of people at the predicted arrival time of the first allocated elevator from the predicted number of people information of the landing acquired from the request information output unit 103.
  • the number-of-vehicles setting unit 106 compares the predicted number of people in the first assigned elevator car with the predicted number of people in the predicted arrival time of the first number assigned elevator, and the number of predicted landing people is less than or equal to the predicted number of people Since the predicted number of people can be transported by the first assigned elevator car, the dispatch number setting unit 106 ends the operation. In addition, when the predicted number of people in the landing area is larger than the predicted number of people, the remaining number of elevator users is predicted only by the first allocated elevator car number. On the other hand, the difference between the number of people left unstacked, that is, the predicted number of people at the landing hall and the number of predicted people to be boarded is output, and the second vehicle allocation is set.
  • the comprehensive evaluation unit 107 determines the difference between the number of landings of the floor and the predicted number of peoples of the landings output by the vehicle allocation number setting unit 106 and the predicted number of passengers.
  • a single elevator No. 1 (hereinafter referred to as the “second allocation elevator No.”) showing an optimal evaluation value from a plurality of elevators excluding the first allocation elevator No. as in the case of the first allocation elevator No. Choose).
  • the comprehensive evaluation unit 107 calculates the estimated arrival time of the car of the second assigned elevator car, the predicted number of passengers, and the predicted number of people who can get on the car from the landing.
  • the general evaluation unit 107 selects the second allocated elevator No.
  • the comprehensive evaluation unit 107 instructs the assignment command unit 108 to assign the hall call to the selected second assigned elevator car.
  • the allocation command unit 108 instructs the elevator car control system 20 of the second elevator car to respond to the same landing call.
  • the number of allocated elevators is sufficient to transport the predicted number of people for the same landing call by repeatedly executing the above-described processing by the allocation number setting unit 106, the general evaluation unit 107, and the assignment command unit 108. Assigned.
  • the learning unit 109 learns the traffic demand state in the building used to set the target route, and for each floor based on the camera image in the car and the in-car load detection value. And the boarding rate is learned for each traveling direction (up, down) of the car, and set in the boarding rate setting unit 110. The learning unit 109 may learn the time change of the boarding rate and set it in the boarding rate setting unit 110.
  • the number of passengers in the elevator car is detected or calculated by the load in the elevator or the camera in the car. Furthermore, in order to detect the number of people at the landing, the number of people at the landing is directly detected using a landing camera, a distance sensor, and the like. Alternatively, it may be a method of recognizing that there is a person at the landing when the landing button is pressed, from the button registration status of the landing.
  • the number of people in the landing In response to the landing button registration from each floor, when arrival and opening the door, it is determined whether the number of people in the landing will be exhausted or not. Record your boarding rate. Specifically, if there are 10 people in the platform on the fifth floor and 10 passengers in the car, when the car arrives on the fifth floor and there are 2 people in the platform, the number of passengers in the car is It will be 18 people. When the number of seats is 24 people, the boarding rate in the car will be 75%. Alternatively, instead of the number of people, the occupancy rate of the in-car user at that time or the availability rate in the car may be detected, and the occupancy rate or the availability rate may be recorded.
  • a call for the fifth floor is made, and when the car arrives at the fifth floor, the landing call in the same direction or the same destination within a given time after the door is closed. If there is a service request to the floor, it is determined that the user can not get on the platform and re-registers, and the number of passengers, occupancy rate, and vacancy rate of the floor are recorded.
  • the recorded number of passengers, occupancy rate, and vacancy rate are taken as the ride rate, and these are learned daily by floor.
  • FIG. 2 shows an elevator hall in a building equipped with the elevator system of the present embodiment. In addition, while showing only the landing for 4 floors for simplicity, only one elevator is shown.
  • the car 1 and the counterweight 2 are connected to both ends of the main rope 3.
  • a main rope is wound around a hoisting machine (not shown), and the car 1 and the counterweight 2 are suspended in the hoistway.
  • the main rope 3 is driven by the hoisting machine, the car 1 and the counterweight 2 move up and down in the hoistway.
  • a camera 4 is provided in the car interior of the car 1 and the number of passengers (C) (hereinafter referred to as "the number of people in the room") in the room is measured based on the camera image.
  • an elastic body 5 for example, vibration-proof rubber
  • the load sensor 6 measures the load in the car according to the deflection of the elastic body.
  • the number of passengers in the car room is measured based on the measured load. As described above, the boarding rate is learned based on the measured number of passengers.
  • the number of passengers may be measured using one or both of the camera 4 and the load sensor 6.
  • the camera 4 is also used for monitoring the interior of the car.
  • a surveillance camera 40 is provided at the landing of each floor.
  • the camera images of the hall and the elevator user at the hall which are acquired by the monitoring camera 40, are used for measurement and learning of traffic demand conditions, and measurement and prediction of the number of people in the hall.
  • the hall call in the downward direction is registered on the N to N + 3 floor. Therefore, the downward direction button of the call button (30) corresponding to the landing elevator service request device 30 (FIG. 1) is on.
  • the elevator No. (the above-mentioned "first assigned elevator No.") is assigned to the registered hall call, the lower part of the hall lantern 7 functioning as the arrival notice light is on.
  • the N + 3 floor at the time of landing call registration, elevator user A is waiting for the arrival of a car at the landing, after which elevator user B comes to the landing.
  • FIG. 3 and FIG. 4 show the appearance of the elevator hall of one floor in FIG.
  • FIG. 3 is a view looking in the depth direction from the entrance side of the landing
  • FIG. 4 is a drawing viewing the landing from above.
  • the floor shown in FIGS. 3 and 4 corresponds to the N + 2 floor in FIG.
  • four elevators (Nos. 1 to 4) can be used at one landing.
  • the capacity of each elevator is 24 people, and the boarding rate in the downward direction of the floor set in the boarding rate setting unit 110 (FIG. 1) is 50%.
  • the downward hall call is registered, and at the time of the call registration, 10 elevator users A are waiting.
  • Unit 3 the first assigned elevator
  • the lower part of the hall lantern 7 of Unit 3 lights up to give notice of the arrival of Unit 3.
  • the number of elevator users A is measured by the surveillance camera 40 (FIG. 2) provided at the landing, for verification of the prediction accuracy of the number, prediction of the number of passengers from the landing after call registration, and assignment of elevators. Used.
  • the lower parts of the hall lanterns 7 of the second and first cars are sequentially lighted, and the arrival of these machines is notified.
  • the elevator users at the landing stand on the 1st to 3rd cars, and are transported without leaving any piles.
  • FIG. 5 is a flowchart showing an outline of the flow of main processing in the elevator operation management system of the present embodiment.
  • step S1 the boarding rate is set in the boarding rate setting unit 110 (FIG. 1) for each floor.
  • the boarding rate is set for each floor, in the traveling direction of the car, that is, in the up (UP) direction and the down (DN) direction.
  • the learning unit 109 learns the boarding rate based on the number of people in the car measured by the camera image or the load detection value, and the learning value is the boarding rate setting unit 110. It is set to (FIG. 1).
  • step S2 the dispatching number setting unit 106 (FIG. 1) determines the maximum number of people who can ride in each elevator car based on the boarding rate and the number of cars set in step S1 (hereinafter referred to as “maximum boarding It is described as "the possible number of people”.
  • the maximum possible number of passengers is also set for the UP direction and the DN direction.
  • step S3 at the time of landing call registration, information on the number of elevator users at the landing of each floor (hereinafter referred to as “the number of landings”) is monitored by the reception unit 105 (FIG. 1) at the landing. It is received from the camera 40 (FIG. 1).
  • step S4 when the hall call assignment process is executed by the comprehensive evaluation unit 107 (FIG. 1), the estimated time of arrival on each floor including the hall call registration floor is calculated by the comprehensive evaluation unit 107.
  • step S5 similarly to step S4, when the allocation process is performed, the predicted value of the number of passengers in the car on each floor including the landing call registration floor (hereinafter referred to as “predicted number of passengers") and the landing call registration floor
  • the comprehensive evaluation unit 107 calculates a predicted value of the number of elevator users who get in (hereinafter referred to as “predicted number of people to be boarded”).
  • the number of passengers is the number of elevator users transported by the car. Therefore, when there are elevator users getting on and off between the car and the landing, the number of passengers indicates the number of elevator users in the car after getting on and off.
  • the maximum accessible number of people is the upper limit of the predicted number of people on the registered floor of the hall call.
  • step S6 the predicted value of the number of elevator users waiting for arrival of a car at the landing when the predicted arrival time predicted in step S4 has elapsed (hereinafter referred to as "predicted number of people in the landing") It is calculated by the number-of-vehicles setting unit 106 based on the prediction result by the prediction means. Further, in step S6, on the basis of the predicted number of passengers in the hall, the predicted number of passengers calculated in step S4, and the predicted number of people calculated in step S5, prediction is made by the elevator car assigned to the hall call. It is determined whether the number of people in the hall can be processed without remaining, that is, whether the elevator user who is predicted to wait at the hall can ride without being left behind. Then, when it is determined that there is an unstacked state, as described above, the allocation number setting unit 106 sets the execution of the assignment process to the comprehensive evaluation unit 107 (FIG. 1).
  • step S7 based on a predetermined evaluation value, in the present embodiment, the closeness between the target route and the predicted route, the waiting time (corresponding to the above-mentioned "predicted arrival time") and the like by the comprehensive evaluation unit 107 (FIG. 1) An elevator No. showing the optimum evaluation value is assigned to the landing call.
  • the number of elevator users in the hall at the time after call registration is predicted based on the population flow in the building predicted by the population flow forecasting means, and the predicted number of people are transported Calls are assigned to the number of elevators that can be processed.
  • the number of elevators to which a hall call is assigned is set according to the boarding rate, the number of boarding persons is determined by the user's sense at the time of boarding into the car, such as avoiding boarding in crowded cars. Even if affected, transportation can be processed without leaving the number of people in the hall.
  • the space occupancy rate in the car (for example, the ratio of the occupied area of the elevator user in the car to the car floor area) by the elevator user who gets in the car may be set. .
  • the information on the number of elevator users mentioned above is replaced with the size of the total space occupied by the elevator users.
  • the size of the space occupied by each elevator user is significantly different, for example, even when wheelchair users are mixed, it is possible to transport the elevator user who waits for the car at the landing without leaving a pile. .
  • FIG. 6 shows an example of the boarding rate set in the present embodiment.
  • a boarding rate is set for each of the traveling directions (UP, DN) of the car for the lowest floor (first floor) to the uppermost floor (first floor).
  • the riding rates in the UP direction and the DN direction are 60% and 50%, respectively.
  • the traveling direction of the car is only the UP direction among the UP and DN directions, so the boarding rate is set only in the UP direction.
  • the traveling direction of the car is only the DN direction among the UP and DN directions, so the boarding rate is set only in the DN direction.
  • FIG. 7 shows an example of the capacity of the car in each elevator car of this embodiment.
  • the present embodiment four elevator cars operated and controlled are provided. That is, elevator users can use any of the four elevators at one landing.
  • the maximum number of elevators (Nos. 1 to 4) is 24 in all cases. Note that the capacity of any of the four elevators may be different from the others.
  • the loadable amount (1260 kg) of each elevator is shown together.
  • the boarding rate is learned based on the measured value of the in-car load by the load meter provided in the car, the ratio of the measured value of the in-car load to the loadable amount can be taken as the boarding rate.
  • FIG. 8 is an example of the maximum possible number of passengers calculated by the present embodiment.
  • the maximum possible number of people shown in FIG. 8 is calculated from the boarding rate shown in FIG. 6 and the number of persons shown in FIG. Therefore, the maximum possible number of passengers on each floor is calculated for each traveling direction (UP, DN) of the car and for each elevator (Nos. 1 to 4).
  • the boarding rate in the DN direction on the 6th floor is 50%
  • the number of capacity of each elevator unit (Nos. 1 to 4) is 24 persons.
  • the maximum number of passengers allowed is 50% of the capacity of 24 persons, that is, 12 for all elevators.
  • FIG. 9 shows the number of predicted landings in this embodiment.
  • the number of landings is the number of landings at the time of registration of the landing call. Therefore, in FIG. 9, the hall call is not registered on the floor where the number of halls is zero. Further, in FIG. 9, the predicted number of people in occurrence is the number of elevator users expected to be generated at the landing after the landing call registration time point, that is, the increase or decrease of the elevator users.
  • the number of people in the hall shown in FIG. 9 is a measured value based on the camera image of the monitoring camera 40 (FIG. 2) provided at the hall, or a predicted value based on the prediction result of the above-mentioned flow forecasting means. Further, the predicted number of persons shown in FIG. 9 is a predicted value based on the above-described prediction result of the flow prediction means. The addition value of the number of landings and the number of predicted occurrences shown in FIG. 9 is set as the predicted number of landings. In the present embodiment, as described above, the predicted number of landings is a predicted value of the number of landings at the predicted arrival time of the first elevator car assigned to the landing call.
  • the number of people in the hall at the time of hall call registration is 10, but the number of predicted people generated after the time of hall call registration is 8; There are 18 people. Since the maximum possible number of people is 12 for these 18 people, when using a known operation control means that does not set the boarding rate (comparative example described later), even if empty cars are distributed, there are remaining unstacked cars. It occurs. On the other hand, in the present embodiment, the same hall call is assigned to a plurality of elevator cars so that the predicted hall number of 18 people is transported without being left behind.
  • FIG. 10 shows the initial values of the operating states of the elevators used in the assignment process.
  • the number of passengers is 2, the position is on the eighth floor, the traveling direction is downward (DN), and the driving state of the car is in the stop state. Therefore, when a downward call is registered on the 6th floor, the third unit is closer to the sixth floor in the position (eighth floor), and the number of passengers (two) is smaller than the maximum possible number of passengers (12). Since the traveling direction is the same as the direction of the landing call, there is a relatively high possibility that the landing control of the 6th floor will be assigned by the operation management.
  • FIG. 11 is a comparative example of allocation processing results.
  • this comparative example based on the above-mentioned number of people (FIG. 7), the number of predicted landing people (FIG. 9) and the initial value of the operation state (FIG. 10) It is an example of the result of the allocation process being executed.
  • the predicted number of passengers on the sixth floor is 20, which is the number of the default number of passengers on the third car (FIG. 10) plus 18 predicted landings on the sixth floor. Therefore, the predicted number of passengers from the 6th floor is 18, and in the present comparative example, the maximum number of 24 people can get on the vehicle.
  • the maximum number of people that can get on the third unit is twelve, so two people who do not get off on the sixth floor get on The expected number of passengers for the third car is 10 only. Therefore, in the present comparative example, unstacked occurs on the sixth floor, and the elevator user of the hall will register the hall call again.
  • FIG. 12 is an example of the assignment processing result according to the present embodiment. Similarly to the comparative example, FIG. 12 sets the boarding rate (FIG. 6) under the above-mentioned number of capacity (FIG. 7), the number of predicted landing people (FIG. 9) and the initial value of the operation state (FIG. 10). At the same time, the maximum possible number of passengers (FIG. 8) is calculated, and it is an example of the result of the assignment process being executed as described above.
  • the 3rd station (first allocated elevator) is assigned to the hall call in the DN direction on the 6th floor similarly to the comparative example, but in this embodiment, the 2nd station (the 2nd station)
  • the assigned elevators # 1 and # 1 are sequentially assigned.
  • the maximum possible number of passengers for the third unit on the 6th floor is 12 (not shown, but 2 of them have already got on the 6th floor and will not get off), and from the 6th floor, the predicted number of passengers is 18 Of the people (Fig. 9), you can ride up to 10 people. Therefore, the predicted number of people on board will be the upper limit of 10, and 8 out of 18 of the predicted number of passengers will remain. For this reason, additional allocation of elevators is set, and the second car is allocated.
  • the maximum number of passengers allowed for the second unit on the sixth floor is 12 (not shown, but seven of them have already got on the sixth floor and will not get off), and it is predicted that the sixth floor will not take the third unit. You can get in to 5 out of 8 people. Therefore, the predicted number of people on board will be 5 people at the upper limit, leaving 3 out of 8 people who are predicted not to get on Unit 3. For this reason, additional allocation of elevators is set, and the first elevator is allocated.
  • the maximum number of passengers allowed for the third unit on the sixth floor is 12 (not shown, but the third unit is empty and distributed to the sixth floor), and from the sixth floor, it is predicted that three people will not board the second unit everybody can get in. Therefore, the predicted number of passengers will be three, and the remaining three of the three predicted to not get on the second car will be zero.
  • FIG. 13 shows an operation diagram of each elevator car in the comparative example shown in FIG. Note that this operation diagram is a plot of the relationship between the floor and the estimated arrival time in the assignment processing result shown in FIG. 11 on the floor-time plane. Therefore, on each operation line, only the stop state of the car accompanying the response to the hall call is shown, and the stop state on the destination floor accompanying the response to the car call is not shown.
  • the operation management means for setting the target route and evaluating the closeness between the predicted route and the target route is used, so each operation diagram in FIG. Shows the predicted route after being
  • Arrows in FIG. 13 indicate the response to the hall call in the DN direction on the sixth floor.
  • the third vehicle traveling in the DN direction responds to the hall call in the DN direction on the sixth floor.
  • the waiting time is the largest when answering a call in the DN direction.
  • a landing call is assigned to the short 3rd unit.
  • FIG. 14 shows an operation diagram of each elevator car in the present embodiment. Note that this operation diagram is a plot of the relationship between the floor and the estimated arrival time in the assignment processing result shown in FIG. 12 on the floor-time plane. Therefore, as in FIG. 13, on each operation line, the stop state of the car at the destination floor accompanying the response to the car call is not shown. Also, as in FIG. 13, each operation diagram in FIG. 14 shows the predicted route after the assignment process has been executed.
  • the third vehicle traveling in the DN direction responds to the hall call in the DN direction on the sixth floor.
  • the second and first vehicles traveling in the DN direction also sequentially respond to the hall call in the DN direction on the sixth floor.
  • the waiting time of each elevator is evaluated along with the closeness of the predicted route and the target route, so the waiting time in the case of answering the call in the DN direction is ordered in ascending order
  • a landing call is assigned to the 2nd and 1st units.
  • the operation management means for evaluating the closeness between the predicted route and the target route since the operation management means for evaluating the closeness between the predicted route and the target route is used, the overall pattern of the predicted route such as the interval of the operation diagram is roughly the same. It is. Further, since the proximity and the waiting time of the predicted route and the target route are comprehensively evaluated, the hall calls are assigned in the ascending order of the waiting time as described above.
  • the present invention is not limited to the embodiment described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • the evaluation value in the operation management means is not limited to the proximity and waiting time of the target route and the predicted route, and may be power consumption and the like.
  • the landing elevator service request device 30 not only the landing call button but also a destination floor registration device provided at the landing may be applied.
  • the number of elevator machines operated and controlled is not limited to four, and may be any plural number.
  • the hoisting machine and elevator No. machine control system (including the inverter for driving the motor) constituting the elevator No. may be installed in the machine room or in the hoistway.

Abstract

本発明は、エレベーター需要を確実に処理することができるエレベーター運行管理システを提供する。本発明によるエレベーター運行管理システムは、乗場呼びに対して、複数台のエレベーターからエレベーターを選択して割り当てるものであって、乗場呼びの登録階の乗場における需要を予測する予測部(101)と、需要に基づいて、需要を処理できるエレベーターの割り当て台数を判断する配車台数設定部(106)と、配車台数設定部の判断に応じて、エレベーターを選択する評価部(107)とを備える。

Description

エレベーター運行管理システムおよびエレベーター運行管理方法
 本発明は、複数台のエレベーターから、エレベーター利用者のサービス要求に応答するエレベーターを選択して、選択されたエレベーターの乗りかごを配車するエレベーター運行管理システムおよびエレベーター運行管理方法に関する。
 オフィスビル、ホテル、病院などの多階床のビルには、多数のビル利用者を輸送するために複数台のエレベーターが設置される。エレベーターを設置する際には、ビル内の交通量を処理できるように、エレベーターの仕様(定員数、台数)や運行パターンを適切に設定することが要求される。
 これに対する技術として、エレベーターの運行管理制御が知られている。この運行管理制御においては、エレベーター利用者のサービス要求、すなわち乗場呼びの登録に対し、複数台のエレベーターから、最適な、例えば、待ち時間が最小となるようなエレベーターが選択される。そして、選択されたエレベーターの乗りかごが、乗り場呼びが登録された階床へ配車される。
 このような運行管理制御に関する従来技術として、特許文献1および特許文献2に記載の技術が知られている。
 特許文献1に記載の技術では、複数台のエレベーターの位置が等間隔になるような運行ルート(目標ルート)を設定し、現状の交通需要に応じた運行ルート(予測ルート)が目標ルートに最も近いエレベーターに乗場呼びが割り当てられる。これにより、効率的な運行サービスが長期間継続される。
 特許文献2に記載の技術では、乗場呼びが登録されると、カメラ画像から検出される待ち人数に基づいて算出される需要度に応じて、乗り場呼びに割り当てるエレベーターの台数が算出される。これにより、乗場の混雑度が解消される。
 さらに、上記要求に応じる従来技術として、特許文献3に記載の技術が知られている。本技術では、人の動きを模擬するフロア内人流シミュレータと、エレベーターへの人の乗り降りを模擬するエレベーター乗降シミュレータと、エレベーターの動きを模擬するエレベーター移動シミュレータとを組み合わせて、ビル内の水平および垂直方向の人の流れを一貫してシミュレーションする。本技術によるシミュレーション結果に基づいて、乗場におけるエレベーター利用者の混雑や滞留を抑制されるように、エレベーターの仕様、レイアウト、運行パターンを設定できる。
特開2006-264832号公報 特開2011-195280号公報 特開2009-96612号公報
 上記従来技術では、時々刻々変化するエレベーター需要に対して精度よく追従することが難しく、需要の変化の状態によっては、配車台数に過不足が生じる可能性がある。また、混雑状態の乗りかごへの乗車を避けるなど、乗りかごへの乗りこみ時における利用者の感覚によっては、輸送力を満たしながらも、需要を処理するに足りる台数が配車されない怖れがある。
 そこで、本発明は、エレベーター需要を確実に処理することができるエレベーター運行管理システムおよびエレベーター運行管理方法を提供する。
 上記課題を解決するために、本発明によるエレベーター運行管理システムは、乗場呼びに対して、複数台のエレベーターからエレベーターを選択して割り当てるものであって、乗場呼びの登録階の乗場における需要を予測する予測部と、需要に基づいて、需要を処理できるエレベーターの割り当てを判断する配車台数設定部と、配車台数設定部の判断に応じて、エレベーターを選択する評価部と、を備える。
 また、上記課題を解決するために、本発明によるエレベーター運行管理方法は、乗場呼びに対して、複数台のエレベーターからエレベーターを選択して割り当てる方法であって、乗場呼びの登録階の乗場における需要を予測し、需要に基づいて、需要を処理できるエレベーターの割り当て台数を判断し、判断に応じて、エレベーターを選択する。
 本発明によれば、エレベーター需要を確実に処理することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
一実施形態であるエレベーターシステムの構成を示す機能ブロック図である。 実施形態のエレベーターシステムを備える建物におけるエレベーター乗場の様子を示す。 図2における一つの階床のエレベーター乗場の様子を示す。 図2における一つの階床のエレベーター乗場の様子を示す。 実施形態のエレベーター運行管理システムにおける主たる処理の流れの概要を示すフローチャートである。 実施形態において設定される乗車率の一例を示す。 実施形態の各エレベーター号機における乗りかごの定員数の一例を示す。 実施形態により演算される最大乗車可能人数の一例である。 実施形態における予測乗場人数を示す。 割り当て処理において用いられる各エレベーター号機の運行状態の初期値である。 割り当て処理結果の比較例である。 実施形態による割り当て処理結果の一例である。 比較例における各エレベーター号機の運行線図を示す。 本実施形態における各エレベーター号機の運行線図を示す。
 以下、本発明の実施形態について図面を用いて説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の一実施形態であるエレベーターシステムの構成を示す機能ブロック図である。
 本実施形態のエレベーターシステムにおいて、エレベーター運行管理システム10は、エレベーターが設置される建物内におけるビル利用者の流れ(人流)を予測する人流予測手段によって、各階床における乗り込み予定人数(待ち人数)すなわちエレベーター需要の時間変化を予測する。エレベーター運行管理システム10は、乗場エレベーターサービス要求装置30(例えば、上下方向乗場呼び釦)によって乗場呼びが登録されると、人流の予測結果に基づいて、複数台のエレベーター号機から、各エレベーター号機について演算される所定の評価値に基づいて最適なエレベーター号機を選択し、選択されたエレベーター号機のエレベーター号機制御システム20に、登録された乗場呼びへの応答を指令する。
 エレベーター運行管理システム10は、予測された人流と、乗場呼びが登録された階床における乗車率の設定値とに基づいて、乗場からの乗り込み人数を予測し、予測された乗り込み人数を輸送するに足りる台数のエレベーター号機に呼びを割り当てる。従って、予測乗込み人数および乗車率によっては、同じ乗場呼びが、2台以上のエレベーター号機に割り当てられる。ここで、乗車率は、乗りかご内の混雑状態を避ける傾向など、乗りかごへの乗り込み時におけるエレベーター利用者の感覚に影響され得る。従って、本実施形態によれば、このようなエレベーター利用者の感覚によって乗車率が影響を受けても、予測乗り込み人数を確実に処理できる台数のエレベーター号機に呼びが割り当てられる。
 次に、エレベーター運行管理システム10およびその各機能部(101~110)について説明する。なお、本実施形態においては、コンピュータシステムが、所定のプログラムを実行することにより、各機能部として動作する。
 まず、エレベーター運行管理システム10は、乗場エレベーターサービス要求装置30によって乗場呼びが登録されると、公知の各種運行管理手段のように、各エレベーター号機について所定の評価値を演算し、最適な評価値を示す一台のエレベーター号機を選択して、乗場呼びを割り当てる。本実施形態における運行管理手段では、予め各エレベーター号機について目標とする運行ルートを設定し、乗場呼びに応答する場合の予測ルートが最も目標ルートに近いエレベーター号機が乗場呼びに割り当てられる(例えば、前述の特許文献1参照)。なお、本実施形態では、後述する総合評価部107がこのような運行管理手段を備えている。
 目標ルートは、複数の乗りかごが時間的に等間隔で運転されるような運行ルート(時間-位置(階床)平面上の軌跡)が設定される。予測ルートは、現時点における運転状態(乗車人数、乗りかごの位置(階床)、走行方向(UP(上)、DN(下))、走行状態(走行中、停止))を初期状態として、エレベーター号機の仕様(定格速度、定員数など)、既に割り当てられている乗場呼びおよびかご呼び(行先階呼び)、交通需要状態(カメラ画像に基づく実測値、学習部109による学習値、人流予測手段による予測値のいずれでも良い)に基づいて、登録された乗場呼びを割当てた場合の乗りかごの到着予測時間を演算することにより、求められる。設定された目標ルートと演算された予想ルートの近さを数値化し、数値化された近さを評価値とする。なお、目標ルートと演算された予想ルートの近さに加えて、演算された到着予測時間(待ち時間に対応)や、予想ルートに応じて演算される乗りかご内の予測乗車人数(負荷荷重に相当し、消費エネルギーに対応)を評価し、各評価値から求められる総合評価値(例えば、各評価値に重みを付けて加算した値)が最適値を示すエレベーター号機を選択しても良い。
 評価方法については、本実施例に限らない。例えば、単純に到着時間を予測し、その到着予測時間の短いエレベーター号機を選定する方式でも良い。
 階床別人数予測部101は、図示されない人流予測手段を備え、人流予測手段によって予測される建物内の人流に基づいて、各階の乗場におけるエレベーター利用者の人数(乗場人数)およびその時間変化を予測する。
 人流予測手段は、エレベーター設備が設置される建物に関する情報、エレベーター設備に関する情報、エレベーターの運行状態に関する情報、建物利用者に関する情報、建物外部の状況に関する情報などに基づいて、建物内における人流を予測する。エレベーターが設置される建物に関する情報は、階床数や、各階のフロアレイアウトなどである。エレベーター設備に関する情報は、号機台数や、仕様(定員数、可能積載量など)、運転方式(例えば、乗継の有無)などである。エレベーターの運行状態に関する情報は、乗場呼びやかご呼びの登録状況、エレベーター需要状況などである。建物利用者に関する情報は、出退勤情報、入退室情報、会議室予約情報、建物に設置される監視カメラや人感センサの検出情報などである。建物外部の状況に関する情報は、鉄道などの交通状況(遅延など)や道路状況(渋滞など)などである。
 人流予測手段は、上記の情報のいずれかあるいは複数に基づいて、所定の演算式あるいはモデルを用いて人流を予測する(例えば、前述の特許文献3参照)。本実施形態において、エレベーターが設置される建物に関する情報およびエレベーター設備に関する情報は、予め人流予測手段に設定される。また、エレベーターの運行状態に関する情報は、エレベーター号機制御システムもしくは乗場エレベーターサービス要求装置30によって取得され、建物利用者に関する情報は、監視カメラ40およびビル管理システム50によって取得され、建物外部の状況に関する情報は、公共機関管理システム60によって取得される。取得される各情報は、通信ネットワーク70を介して、人流予測手段に送られる。また、エレベーターの運行状態に関する情報の内、エレベーター需要状況は、エレベーター運行管理システム10における学習部109によって、カメラ画像などによって検出されるエレベーター利用者人数に基づいて、学習される。
 人流予測手段は、本実施形態のように階床別人数予測部101に備えられたり、エレベーター運行管理システム10の外部において、エレベーター運行管理システム10とは独立に備えられたりする。後者の場合、階床別人数予測部101は、人流予測手段から、各階の乗場における人流に関するデータを取得して、取得されるデータに基づいて、各階床に乗場人数およびその時間変化を予測する。なお、人流予測手段が、エレベーター運行管理システム10とは独立に設けられる場合、人流予測手段は、エレベーターシステム、空調システム、照明システムなどで共用できる。
 精度検証部102は、階床別人数予測部101の予測精度を判定し、判定結果に応じて、階床別人数予測部101の予測結果に対する補正量を設定する。本実施形態において、精度検証部102は、乗場呼びが登録された時点で、乗場呼びが登録された階床における監視カメラ40の画像から検出される乗場待ち人数と階床別人数予測部101によって予測される乗場人数を比較し、両者の差が予め設定される閾値を超えていたら、所定の補正量を階床別人数予測部101による予測結果に与える。
 要求情報出力部103は、階床別人数予測部101によって予測され、精度検証部102を介して得られる、乗場人数およびその時間変化に関する情報(以下、「予測乗場人数情報」と記す)の内、出力情報設定部104によって設定される階床に関する情報を出力する。
 出力情報設定部104は、階床別人数予測部101に対して、予測乗込み人数情報の出力対象とする階床を、乗場呼びの登録階に設定する。
 受信部105は、エレベーター号機制御システム20、乗場エレベーターサービス要求装置30、監視カメラ40、ビル管理システム50、公共機関管理システム60からの情報を受信して、エレベーター運行管理システム10の各機能部に対して、各機能部が用いる情報を配信する。
 配車台数設定部106は、学習部109が備える乗車率設定部110において設定されている乗車率の値と、乗りかごの定員数によって、各乗りかごにおける最大乗車可能人数を算出する。予測階床別人数予測部101によって得られた予測人数、あるいは外部機器から得られた現在の乗場の人数に対して、全人数をかごに乗車させるための適切な台数を算出する。時々刻々と変化するビル内の交通状況や、ビル内の利用者の特性から、かごに乗車する人数を常に学習し、乗車率を算出している。当該乗車率を利用することにより、人間の感覚にそったエレベーターの配車を実現することが可能となり、一時的な混雑を避けるため長待ちとなってしまう利用者に対して、できる限りの待ち時間軽減が可能となる。
 また、配車台数を算出する方式は上記のように日々の学習状況から、求められる乗車率が得られた際にかごの定員数から一意に決定される方式に限らず、かごの予測乗車人数を考慮し、配車台数を設定する方式でも良い。以下実施例においては、当該方式において後述する。本方式は前述した各かごの最大乗車可能人数から、現在の予測乗車人数を引いて、各階における乗車可能人数を算出する。このとき、予測乗車人数は、現在かごに乗車している人数に対して各階に乗降車する人数を予測し、ある任意の乗場階に到着した時点のかご内に乗車している人数である予測乗車人数を予測する。当該予測乗車人数から最大乗車可能人数に対して引くことで、当該階における当該かごの適切な乗車可能人数が算出される。 本方式は都度、エレベーターの運行状況によって乗車可能人数が変化するため、エレベーターの配車台数を決める際には、様々な総合評価のうち、選択された評価方法によって適切なかごが選ばれた際に、フィードバックをかけ、乗り場の人数を全て配車可能か、判定し、不可であった場合、再度様々な総合評価のうち、選択された評価方法によって、適切なかごを選定することで、適切な配車台数を選定する。
 総合評価部107は、配車台数設定部106によって1台目の配車が設定されると、上述のような運行管理手段を用いて、当該階床の乗場人数を呼びが登録された時点における乗場人数(監視カメラ40の画像による実測値、もしくは人流予測手段による予測値)として、最適な評価値を示す一台のエレベーター号機(以下、「第1割当てエレベーター号機」と記す)を選択する。また、総合評価部107は、全てのエレベーター号機の乗りかごの到着予測時間、予測乗車人数、並びに乗場から乗りかごへの予測乗込み人数を演算する。ここで、総合評価部107は、配車台数設定部106によって演算された最大乗車可能人数を条件として、いわば乗りかごの定員を最大乗車可能人数として、第1割当てエレベーター号機を選択する。そして、総合評価部107は、全てのエレベーター号機の中から選択した第1割当てエレベーター号機への乗場呼びの割り当てを割当て指令部108に指令する。
 割当て指令部108は、総合評価部107からの指令を受けると、総合評価部107によって選択されたエレベーター号機のエレベーター号機制御システム20に対して、登録された乗場呼びへの応答を指令する。
 配車台数設定部106は、総合評価部107によって第1割当てエレベーター号機が選択されると、総合評価部107によって演算された第1割当てエレベーター号の到着予測時間、予測乗車人数、予測乗込み人数を参照する。また、配車台数設定部106は、要求情報出力部103から取得する予測乗場人数情報から、第1割当てエレベーター号の到着予測時間における予測乗場人数を抽出する。
 次に、配車台数設定部106は、第1割当てエレベーター号機の予測乗込み人数および第1割当てエレベーター号の到着予測時間における予測乗場人数を比較し、予測乗場人数が予測乗込み人数以下である場合、第1割当てエレベーター号機の乗りかごにより予測乗場人数を輸送処理できるので、配車台数設定部106は動作を終了する。また、予測乗場人数が予測乗込み人数より大である場合、第1割当てエレベーター号機の乗りかごだけでは、エレベーター利用者の積み残しが予測されるので、配車台数設定部106は、総合評価部107に対し、積み残し人数すなわち予測乗場人数と予測乗込み人数の差分を出力するとともに、2台目の配車を設定する。
 配車台数設定部106によって2台目の配車が設定されると、総合評価部107は、当該階床の乗場人数を、配車台数設定部106によって出力される予測乗場人数と予測乗込み人数の差分として、第1割当てエレベーター号機を除く複数台のエレベーター号機から、第1割当てエレベーター号機の場合と同様に、最適な評価値を示す一台のエレベーター号機(以下、「第2割当てエレベーター号機」と記す)を選択する。また、総合評価部107は、第2割当てエレベーター号機の乗りかごの到着予測時間、予測乗車人数、並びに乗場から乗りかごへの予測乗込み人数を演算する。ここで、総合評価部107は、第1割当てエレベーター号機の場合と同様に、最大乗車可能人数を条件として、第2割当てエレベーター号機を選択する。そして、総合評価部107は、選択した第2割当てエレベーター号機への乗場呼びの割り当てを割当て指令部108に指令する。そして、割当て指令部108が、第2割当てエレベーター号機のエレベーター号機制御システム20に対して、同じ乗場呼びへの応答を指令する。
 配車台数設定部106、総合評価部107および割当て指令部108が、上述のような処理を繰り返し実行することにより、同じ乗場呼びに対して、予測乗場人数を輸送処理するに足りる台数のエレベーター号機が割り当てられる。
 学習部109は、上述のように、目標ルートを設定するために用いられる建物内における交通需要状態を学習するとともに、乗りかご内のカメラ画像や乗りかご内荷重検出値に基づいて、階床毎および乗りかごの走行方向(上、下)毎に乗車率を学習して、乗車率設定部110に設定する。なお、学習部109は、乗車率の時間変化を学習して、乗車率設定部110に設定しても良い。
 乗車率の学習方法としては、エレベーター内の荷重やかご内カメラによって、エレベーターかご内の乗車人数を、検出、あるいは算出する。更に、乗り場の人数を検出するため、乗り場カメラや、距離センサ等を用いて乗り場の人数を直接検出する。あるいは乗場のボタン登録状況から、乗り場ボタンが押下された時点で乗り場に人がいるということを認識すう方式でも良い。
 各階からの乗り場ボタン登録に応答し、到着してドアが開いた際、乗り場の人数がいなくなるか否かを判定し、乗り場の人数がいた場合、現在の乗車人数から、人が乗車可能と判断する乗車率を記録する。具体的には、5階に乗り場に10名存在し、かご内に10名乗車していた場合、かごが5階に到着し、乗り場の人数が2名残った場合、かご内の乗車人数は18名となる。定員数が24人乗りであった場合、かご内の乗車率は75%となる。あるいは、人数でなく、その際のかご内利用者の占有率、またはかご内の空き率を検出し、その占有率、あるいは空き率を記録する方式でも良い。
 乗り場のカメラが不付きの場合、5階の呼びが作成され、かごが5階に到着した際に、ドアが戸閉した後、ある任意の時間内に同一方向への乗場呼び、あるいは同一行先階へのサービス要求があった場合、乗り場に利用者が乗車できず、再登録したと判断し、その際の当該階の乗車人数、あるいは占有率、空き率を記録する。
 記録された、乗車人数、あるいは占有率、空き率を乗車率とし、これらを日々、階別に学習する。
 図2は、本実施形態のエレベーターシステムを備える建物におけるエレベーター乗場の様子を示す。なお、簡単のため、4階床分の乗場だけを示すと共に、エレベーター号機は1台のみ示す。
 図2に示すように、エレベーター号機において、乗りかご1と釣り合い錘2とが主ロープ3の両端に接続される。図示しない巻上機に主ロープが巻き掛けられて、乗りかご1および釣り合い錘2が昇降路内に吊られる。巻上機によって主ロープ3が駆動されると、乗りかご1および釣り合い錘2は昇降路内を昇降する。
 乗りかご1のかご室内には、カメラ4が設けられ、カメラ画像に基づいて、室内における乗客(C)の人数(以下、「乗車人数」と記す)が計測される。また、かご床の下部には防振用の弾性体5(例えば、防振ゴム)と、荷重センサ6が設けられる。荷重センサ6は、弾性体の撓みに応じて、乗りかご内の荷重を計測する。計測される荷重に基づいて、かご室内における乗車人数が計測される。上述のように、計測された乗車人数に基づいて、乗車率が学習される。
 乗車人数は、カメラ4および荷重センサ6のどちらか一方、あるいは両方を用いて計測すれば良い。なお、カメラ4は、かご室内の監視用としても用いられる。
 図2に示すように、各階床の乗場には、監視カメラ40が設けられる。監視カメラ40によって取得される、乗場と、乗場におけるエレベーター利用者とのカメラ画像が、上述のように、交通需要状況の計測や学習、乗場人数の計測や予測などに用いられる。
 図2において、N~N+3階において、下方向の乗場呼びが登録されている。このため、乗場エレベーターサービス要求装置30(図1)に相当する呼びボタン(30)の下方向ボタンが点灯している。また、登録された乗場呼びに対して、エレベーター号機(上述の「第1割当てエレベーター号機」)が割り当てられているので、到着予告灯として機能するホールランタン7の下部が点灯している。N+3階において、乗場呼び登録時点では、エレベーター利用者Aが乗場で乗りかごの到着を待っているが、その後、エレベーター利用者Bが乗場に来る。本実施形態では、このように第1割当てエレベーター号機の到着時には乗場待ち人数が変化していることが予測され、第1割当てエレベーター号機に全員乗りきれないと予測される場合は、同じ乗場呼びに対して割り当てるエレベーター号機を追加する。
 図3および図4は、図2における一つの階床のエレベーター乗場の様子を示す。図3は、乗場の入側から奥行き方向を見た図であり、図4は乗場を上から見た図である。なお、図3および図4に示す階床は、図2におけるN+2階に相当する。また、一つの乗場で利用できるエレベーター号機は4台(1~4号機)としている。各エレベーター号機の定員は24名、乗車率設定部110(図1)に設定されている当該階床の下方向の乗車率は50%とする。
 図3に示す乗場においては、下方向の乗場呼びが登録され、呼び登録時点では10人のエレベーター利用者Aが待っている。この乗場呼びに対し、まず、3号機(第1割当てエレベーター号機)が割り当てられ、3号機のホールランタン7の下部が点灯して3号機の到着を予告している。このエレベーター利用者Aの人数は、乗場に設けられる監視カメラ40(図2)によって計測され、人数の予測精度の検証、呼び登録時点以降の乗場からの乗り込み人数の予測、並びにエレベーター号機の割り当てに用いられる。
 さらに、図3に示す乗場においては、呼び登録時点以降に、8人のエレベーター利用者Bが乗場に発生している。このため、3号機到着時点において、乗場からの乗り込み人数は18人となる。この場合、当該階床の下方向の乗車率が50%であり、3号機だけでは利用者の積み残しが発生すると予測される。本実施形態では、このような状況を判定し、さらに2号機(第2割当てエレベーター号機)に同じ乗場呼びを割り当てられる。さらに、2号機によっても積み残しが発生すると予測されるため、本実施形態では、1号機(第3割当てエレベーター号機)に同じ乗場呼びが割り当てられる。このため、図3に示すように、2号機および1号機のホールランタン7の下部が順次点灯して、これらの号機の到着が予告される。そして図4の矢印が示すように、乗場のエレベーター利用者は、1~3号機に分乗し、積み残しなく輸送処理される。
 図5は、本実施形態のエレベーター運行管理システムにおける主たる処理の流れの概要を示すフローチャートである。
 ステップS1において、階床別に乗車率が、乗車率設定部110(図1)に設定される。本実施形態において、乗車率は、各階床毎に、乗りかごの走行方向、すなわち上(UP)方向および下(DN)方向について設定される。なお、上述のように、学習部109(図1)が、カメラ画像あるいは荷重検出値によって計測される乗りかご内の乗車人数に基づいて乗車率を学習して、学習値が乗車率設定部110(図1)に設定される。
 ステップS2において、ステップS1で設定される乗車率および乗りかごの定員数から、配車台数設定部106(図1)によって、各エレベーター号機の乗りかごにおける乗車可能人数の最大値(以下、「最大乗車可能人数」と記す)が設定される。本実施形態においては、乗車率がUP方向およびDN方向について設定されるので、最大乗車可能人数もUP方向およびDN方向について設定される。
 ステップS3においては、乗場呼び登録時点において、各階床の乗場におけるエレベーター利用者の人数(以下、「乗場人数」と記す)に関する情報が、受信部105(図1)によって、乗場に設置される監視カメラ40(図1)から受信される。
 ステップS4においては、総合評価部107(図1)によって乗場呼びの割り当て処理が実行される時に、乗場呼び登録階を含む各階床への到着予測時間が総合評価部107によって算出される。
 ステップS5において、ステップS4と同様に割り当て処理実行時に、乗場呼び登録階を含む各階床における乗りかご内の乗車人数の予測値(以下、「予測乗車人数」と記す)、および乗場呼び登録階から乗り込むエレベーター利用者の人数の予測値(以下、「予測乗込み人数」と記す)が総合評価部107によって算出される。ここで、乗車人数とは、乗りかごによって輸送されるエレベーター利用者の人数である。従って、乗りかごおよび乗場間でエレベーター利用者の乗降が有る場合、乗車人数は、乗降後の乗りかご内のエレベーター利用者の人数を示す。なお、本実施形態では、乗車率が設定されているので、乗場呼びの登録階では、最大乗車可能人数が予測乗車人数の上限となる。
 ステップS6では、ステップS4で予測される到着予測時間が経過した時点において乗場において乗りかごの到着を待つエレベーター利用者の人数の予測値(以下、「予測乗場人数」と記す)が、前述の人流予測手段による予測結果に基づいて、配車台数設定部106によって算出される。さらに、ステップS6では、算出される予測乗場人数、ステップS4で算出される予測乗車人数、ステップS5で算出される予測乗込み人数に基づいて、乗場呼びに割り当てられたエレベーター号機の乗りかごによって予測乗場人数を積み残しなく処理できるか、すなわち乗場に待つと予測されるエレベーター利用者が積み残しなく乗車できるかが判定される。そして、積み残しがあると判定される場合は、上述のように、配車台数設定部106によって、総合評価部107(図1)に対して、割り当て処理の実行が設定される。
 ステップS7では、総合評価部107(図1)によって、所定の評価値、本実施形態では、目標ルートと予測ルートの近さ、待ち時間(上述の「予測到着時間」に相当)などに基づいて、最適な評価値を示すエレベーター号機が乗場呼びに割り当てられる。
 上述のように、本実施形態によれば、人流予測手段によって予測される建物内の人流に基づいて、呼び登録以降の時点における乗場のエレベーター利用者の人数を予測し、予測される人数を輸送処理できる台数のエレベーター号機に呼びが割り当てられる。これにより、乗りかごが到着するまでに、乗場人数が変動しても、乗場人数を積み残しなく輸送処理することができる。さらに、乗場呼びを割り当てるエレベーター号機の台数が、乗車率に応じて設定されるので、混雑状態の乗りかごへの乗車を避けるなど、乗りかごへの乗りこみ時における利用者の感覚によって、乗車人数が影響を受ける場合でも、乗場人数を積み残しなく輸送処理することができる。
 なお、乗車率として、乗りかご内に乗車するエレベーター利用者による乗りかご内の空間占有率(例えば、かご床面積に対する、乗りかご内のエレベーター利用者の占有面積の比率)を設定しても良い。この場合、上述のエレベーター利用者の人数に関する情報は、エレベーター利用者の総占有空間の大きさに置き換えられる。これにより、各エレベーター利用者の占有する空間の大きさが大きく異なる場合、例えば、車いす利用者が混在する場合などにおいても、乗場で乗りかごの待つエレベーター利用者を積み残しなく輸送処理することができる。
 次に、乗車率の設定例、定員数の一例、最大乗車可能人数の一例、予測乗場人数の一例、乗場呼びの割り当て結果の比較例、並びに本実施形態による乗場呼びの割り当て結果の一例について説明する。
 図6は、本実施形態において設定される乗車率の一例を示す。
 図6に示すように、最下階(1階)~最上階(11階)について、乗りかごの走行方向(UP,DN)毎に、乗車率が設定される。例えば、6階においては、UP方向およびDN方向の乗車率が、それぞれ、60%および50%である。なお、最下階(1階)において、乗りかごの走行方向は、UPおよびDN方向の内、UP方向のみであるから、UP方向のみについて乗車率が設定される。また、最上階(11階)において、乗りかごの走行方向は、UPおよびDN方向の内、DN方向のみであるから、DN方向のみについて乗車率が設定される。
 図7は、本実施形態の各エレベーター号機における乗りかごの定員数の一例を示す。
 図7に示すように、本実施形態では、運行管理制御されるエレベーター号機を4台備える。すなわち、エレベーター利用者は、一つの乗場において、4台のエレベーター号機のいずれかを利用することができる。各エレベーター号機(1~4号機)の定員数は、いずれも24人である。なお、4台のエレベーター号機のいずれかの定員数が、他と異なっていても良い。
 図7中には、各エレベーター号機の積載可能量(1260kg)が併記される。乗りかごに設けられる荷重計による乗りかご内荷重の計測値に基づいて、乗車率が学習される場合、積載可能量に対する乗りかご内荷重の計測値の比率を乗車率とすることができる。
 図8は、本実施形態により演算される最大乗車可能人数の一例である。
 図8に示す最大乗車可能人数は、図6に示す乗車率と図7に示す定員数から演算される。従って、各階床における最大乗車可能人数が、乗りかごの進行方向(UP,DN)毎に、かつ各エレベーター号機(1~4号機)について、演算される。例えば、図6において6階のDN方向の乗車率は50%であり、図7において各エレベーター号機(1~4号機)の定員数は、いずれも24人であるので、6階のDN方向の最大乗車可能人数は、いずれのエレベーター号機も、定員24名の50%、すなわち12人である。
 図9は、本実施形態における予測乗場人数を示す。
 図9において、乗場人数は、乗場呼び登録時における乗場人数である。従って、図9中、乗場人数が0人の階床では、乗場呼びが登録されていない。また、図9において、予測発生人数は乗場呼び登録時点以降に乗場に発生すると予測されるエレベーター利用者の人数、すなわちエレベーター利用者の増減分である。
 図9に示す乗場人数は、乗場に設けられる監視カメラ40(図2)のカメラ画像に基づく計測値、もしくは前述の人流予測手段の予測結果に基づく予測値である。また、図9に示す予測発生人数は、前述の人流予測手段の予測結果に基づく予測値である。これら、図9に示す乗場人数と予測発生人数との加算値を予測乗場人数とする。なお、本実施形態では、上述のように、予測乗場人数は、乗場呼びに割り当てられる1台目のエレベーター号機の予測到着時点における乗場人数の予測値である。
 図9において、例えば、6階では、乗場呼び登録時における乗場人数が10人であるが、乗場呼び登録時以降における予測発生人数が8人であるので、乗場呼び登録時以降における予測乗場人数は18人である。この18人に対し、最大乗車可能人数が12名であるから、乗車率を設定しない公知の運行管理手段を用いる場合(後述の比較例)、空の乗りかごが配車されたとしても、積み残しが生じる。これに対し、本実施形態では、予測乗場人数18人が積み残しなく輸送処理されるように、複数台のエレベーター号機に同じ乗場呼びが割り当てられる。
 図10は、割り当て処理において用いられる各エレベーター号機の運行状態の初期値である。例えば、3号機については、乗車人数が2人、位置が8階、走行方向が下方向(DN)、乗りかごの運転状態が停止状態である。従って、6階で下方向の乗場呼びが登録される場合、3号機は、位置(8階)が6階に近く、乗車人数(2人)が最大乗車可能人数(12名)より少なく、さらに走行方向が乗場呼びの方向と同じであるため、運行管理によって6階の乗場呼びが割り当てられる可能性が比較的高くなる。しかし、6Fの下方向の最大乗車可能人数が12人であるため、3号機だけでは18人の乗場人数を輸送処理することはできないと判定され、前述もしくは後述のように、同じ乗場呼びに対して他のエレベーター号機(後述の図12では2号機と1号機)が追加割り当てされる。
 図11は、割り当て処理結果の比較例である。本比較例においては、前述の定員数(図7)、予測乗場人数(図9)および運行状態の初期値(図10)のもとで、乗車率を考慮することなく公知の運行管理手段により割り当て処理が実行された結果の一例である。
 例えば、6階におけるDN方向の呼びに対しては、図11に示すように、3号機が割り当てられる。6階における予測乗車人数は20人であるが、これは3号機の乗車人数の初期値2人(図10)に6階における予測乗場人数18人が加算された人数である。従って、6階からの予測乗込み人数は18人であり、本比較例では、定員数24人までは乗車可能としているので、乗車率を考慮しなければ、積み残しは発生しないことになる。しかし、図6に示すように、6階における3号機のDN方向の乗車率が50%であれば、3号機の最大乗車可能人数は12名であるから、6階では降車しない2人が乗車する3号機の乗りかごへの予測乗込み人数は10人だけである。従って、本比較例では、6階において積み残しが発生し、乗場のエレベーター利用者は、再度、乗場呼びを登録することになる。
 図12は、本実施形態による割り当て処理結果の一例である。図12は、比較例と同様に前述の定員数(図7)、予測乗場人数(図9)および運行状態の初期値(図10)のもとで、さらに、乗車率(図6)を設定すると共に、最大乗車可能人数(図8)を演算して、前述のように割り当て処理が実行された結果の一例である。
 図12に示すように、6階におけるDN方向の乗場呼びに対して、比較例と同様に3号機(第1割当てエレベーター号機)が割り当てられるが、本実施形態では、さらに、2号機(第2割当てエレベーター号機)および1号機(第3割当てエレベーター号機)が、順次割り当てられる。
 ここで、6階における3号機の最大乗車可能人数は12人(図示していないが、内2人は6階到着時に乗車済で降車しない)であり、6階からは、予測乗場人数は18人(図9)の内、10人まで乗込むことができる。従って、予測乗り込み人数は上限の10人となり、予測乗場人数18人のうち8人が残る。このため、エレベーター号機の割当追加が設定され、2号機が割り当てられる。
 6階における2号機の最大乗車可能人数は12人(図示していないが、内7人は6階到着時に乗車済で降車しない)であり、6階からは、3号機に乗車しないと予測される8人の内、5人まで乗込むことができる。従って、予測乗り込み人数は上限の5人となり、3号機に乗車しないと予測される8人の内、3人が残る。このため、エレベーター号機の割当追加が設定され、1号機が割り当てられる。
 6階における3号機の最大乗車可能人数は12人(図示していないが、3号機は空状態で6階に配車)であり、6階からは、2号機に乗車しないと予測される3人全員が乗込むことができる。従って、予測乗り込み人数は3人となり、2号機に乗車しないと予測される3人の内、残りは0人となる。
 このように、図12に示すようなエレベーター号機の割り当てにより、乗車率50%である6階において、乗場呼び登録時以降に乗場人数が変動しても、予測される乗場人数を積み残しなく輸送処理できる台数のエレベーター号機の乗りかごを配車することができる。
 図13は、図11に示す比較例における各エレベーター号機の運行線図を示す。なお、本運行線図は、図11に示す割り当て処理結果における階床と到着予測時間の関係を、階床-時間平面にプロットしたものである。従って、各運行線上では、乗場呼びへの応答に伴う乗りかごの停止状態だけが示され、かご呼びへの応答に伴う行先階での停止状態については図示を省略している。なお、本比較例においては、目標ルートを設定して、予測ルートと目標ルートとの近さを評価する運行管理手段が用いられているので、図13における各運行線図は、割り当て処理が実行された後の予測ルートを示す。
 図13中の、矢印が、6階におけるDN方向の乗場呼びへの応答を示す。図13の矢印が示すように、本比較例においては、DN方向に走行する3号機が、6階におけるDN方向の乗場呼びに応答している。なお、本比較例においては、予測ルートと目標ルートとの近さに併せて、各エレベーター号機の予測到着時間すなわち待ち時間も評価されるため、DN方向の呼びに応答した場合に最も待ち時間が短い3号機に乗場呼びが割り当てられている。
 図14は、本実施形態における各エレベーター号機の運行線図を示す。なお、本運行線図は、図12に示す割り当て処理結果における階床と到着予測時間の関係を、階床-時間平面にプロットしたものである。従って、図13と同様に、各運行線上では、かご呼びへの応答に伴う行先階での乗りかごの停止状態については図示を省略している。また、図13と同様に、図14における各運行線図は、割り当て処理が実行された後の予測ルートを示す。
 図14中の矢印が示すように、本実施形態においても、DN方向に走行する3号機が、6階におけるDN方向の乗場呼びに応答している。さらに、本実施形態においては、DN方向に走行する2号機および1号機も、6階におけるDN方向の乗場呼びに順次応答している。なお、本比較例においても、予測ルートと目標ルートとの近さに併せて、各エレベーター号機の待ち時間も評価されるため、DN方向の呼びに応答した場合の待ち時間が短い順に、3号機、2号機およご1号機に乗場呼びが割り当てられている。
 なお、比較例と本実施形態は、共に、予測ルートと目標ルートとの近さを評価する運行管理手段が用いられているので、運行線図の間隔など予測ルートの全体的なパターンは概略同様である。また、予測ルートと目標ルートとの近さと待ち時間を総合的に評価されるため、上述のように、待ち時間の短い順に乗場呼びが割り当てられている。
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、運行管理手段における評価値は、目標ルートと予測ルートの近さや待ち時間に限らず、消費電力量などでもよい。また、乗場エレベーターサービス要求装置30として、乗場呼び釦に限らず、乗場に備えられる行先階登録装置を適用しても良い。
 また、運行管理されるエレベーター号機の台数は、4台に限らず、任意の複数台でも良い。
 また、エレベーター号機を構成する巻上機やエレベーター号機制御システム(モータ駆動用のインバータを含む)は、機械室に設置されても良いし、昇降路内に設置されても良い。
1…乗りかご、2…釣り合い錘、3…主ロープ、4…カメラ、5…弾性体、6…荷重センサ、7…ホールランタン、10…エレベーター運行管理システム、20…エレベーター号機制御システム、30…乗場エレベーターサービス要求装置、40…監視カメラ、50…ビル管理システム、60…公共機関管理システム、101…階床別人数予測部、102…精度検証部、103…要求情報出力部、104…出力情報設定部、105…受信部、106…配車台数設定部、107…総合評価部、108…割当て指令部、109…学習部、110…乗車率設定部

Claims (17)

  1.  乗場呼びに対して、複数台のエレベーターからエレベーターを選択して割り当てるエレベーター運行管理システムにおいて、
     前記乗場呼びの登録階の乗場における需要を予測する予測部と、
     前記需要に基づいて、前記需要を処理できるエレベーターの割り当て台数を判断する配車台数設定部と、
     前記配車台数設定部の判断に応じて、前記エレベーターを選択する評価部と、
    を備えることを特徴とするエレベーター運行管理システム。
  2.  請求項1に記載のエレベーター運行管理システムにおいて、前記乗場における乗りかごの乗車率が設定される乗車率設定部を備え、前記配車台数設定部が前記需要および前記乗車率に基づいて、前記需要を処理できるエレベーターの割り当て台数を判断することを特徴とするエレベーター運行管理システム。
  3.  請求項1または請求項2に記載のエレベーター運行管理システムにおいて、
     前記評価部は、前記登録階への乗りかごの到着予測時間を演算し、
     前記予測部は、前記到着予測時間経過後の前記需要を予測することを特徴とするエレベーター運行管理システム。
  4.  請求項1ないし3のいずれか一項に記載のエレベーター運行管理システムにおいて、
     前記予測部は、
     前記複数台のエレベーターが設置されるビルにおけるビル利用者の移動状態を予測する人流予測手段を備え、
     前記人流予測手段の予測結果に基づいて、前記需要を予測することを特徴とするエレベーター運行管理システム。
  5.  請求項1ないし3のいずれか一項に記載のエレベーター運行管理システムにおいて、
     前記予測部は、
     前記複数台のエレベーターが設置されるビルにおけるビル利用者の移動状態を予測する人流予測手段を備え、
     前記人流予測手段の予測結果と、前記乗場に設けられるカメラの画像とに基づいて、前記需要を予測することを特徴とするエレベーター運行管理システム。
  6.  請求項1または請求項2に記載のエレベーター運行管理システムにおいて、
     前記予測部は、前記需要として、前記登録階の前記乗場における乗場人数を予測し、
     前記評価部は、前記乗車率に応じて設定される最大乗車可能人数を条件として、前記登録階における前記乗場から前記乗りかごへの予測乗込み人数を演算し、
     前記配車台数設定部は、前記乗場人数と前記予測乗込み人数に基づいて、前記割り当てを判断することを特徴とするエレベーター運行管理システム。
  7.  請求項1、請求項2および請求項5のいずれか一項に記載のエレベーター運行管理システムにおいて、
     前記乗車率の値を学習して、学習した前記乗車率を前記乗車率設定部に設定する学習部を備えることを特徴とするエレベーター運行管理システム。
  8.  請求項6に記載のエレベーター運行管理システムにおいて、
     前記学習部は、前記乗りかごの室内に設けられるカメラの画像に基づいて、前記乗車率を学習することを特徴とするエレベーター運行管理システム。
  9.  請求項6に記載のエレベーター運行管理システムにおいて、
     前記学習部は、前記乗りかごに設けられる荷重計によって検出される前記乗りかごの室内の荷重に基づいて、前記乗車率を学習することを特徴とするエレベーター運行管理システム。
  10.  請求項1または請求項2に記載のエレベーター運行管理システムにおいて、
     前記乗車率は、前記複数台のエレベーターが設置されるビルの階床ごとに設定されることを特徴とするエレベーター運行管理システム。
  11.  請求項1または請求項2に記載のエレベーター運行管理システムにおいて、
     前記乗車率は、前記乗りかごの走行方向ごとに設定されることを特徴とするエレベーター運行管理システム。
  12.  請求項1または請求項2に記載のエレベーター運行管理システムにおいて、
     前記乗場における需要計測値に基づいて、前記予測部の予測精度を検証する精度検証部を備えることを特徴とするエレベーター運行管理システム。
  13.  乗場呼びに対して、複数台のエレベーターからエレベーターを選択して割り当てるエレベーター運行管理方法において、
     前記乗場呼びの登録階の乗場における需要を予測し、
     前記需要に基づいて、前記需要を処理できるエレベーターの割り当て台数を判断し、
     前記判断に応じて、エレベーターを選択することを特徴とするエレベーター運行管理方法。
  14. 請求項13に記載のエレベーター運行管理方法において、前記乗場における乗りかごの乗車率を設定し、前記需要および前記乗車率に基づいて、前記需要を処理できるエレベーター台数を判断することを特徴とするエレベーター運行管理方法。
  15.  請求項13または請求項14に記載のエレベーター運行管理方法において、
     前記登録階への乗りかごの到着予測時間を演算し、前記到着予測時間経過後の前記需要を予測することを特徴とするエレベーター運行管理方法。
  16.  請求項13ないし15のいずれか一項に記載のエレベーター運行管理方法において、
     前記複数台のエレベーターが設置されるビルにおけるビル利用者の移動状態を予測し、
     予測される前記ビル利用者の移動状態に基づいて、前記需要を予測することを特徴とするエレベーター運行管理方法。
  17.  請求項13または請求項14に記載のエレベーター運行管理方法において、
     前記需要として、前記登録階の前記乗場における乗場人数を予測し、
     前記乗車率に応じて設定される最大乗車可能人数を条件として、前記登録階における前記乗場から前記乗りかごへの予測乗込み人数を演算し、
     前記乗場人数と前記予測乗込み人数に基づいて、前記割り当てを判断することを特徴とするエレベーター運行管理方法。
PCT/JP2017/039125 2017-10-30 2017-10-30 エレベーター運行管理システムおよびエレベーター運行管理方法 WO2019087249A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019550002A JP6974489B2 (ja) 2017-10-30 2017-10-30 エレベーター運行管理システムおよびエレベーター運行管理方法
CN201780096040.2A CN111225865A (zh) 2017-10-30 2017-10-30 电梯运行管理系统以及电梯运行管理方法
PCT/JP2017/039125 WO2019087249A1 (ja) 2017-10-30 2017-10-30 エレベーター運行管理システムおよびエレベーター運行管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039125 WO2019087249A1 (ja) 2017-10-30 2017-10-30 エレベーター運行管理システムおよびエレベーター運行管理方法

Publications (1)

Publication Number Publication Date
WO2019087249A1 true WO2019087249A1 (ja) 2019-05-09

Family

ID=66331646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039125 WO2019087249A1 (ja) 2017-10-30 2017-10-30 エレベーター運行管理システムおよびエレベーター運行管理方法

Country Status (3)

Country Link
JP (1) JP6974489B2 (ja)
CN (1) CN111225865A (ja)
WO (1) WO2019087249A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989405A (zh) * 2019-12-30 2020-04-10 北京百度网讯科技有限公司 电梯场景模拟的方法、装置、系统、电子设备和存储介质
CN112744653A (zh) * 2019-10-31 2021-05-04 株式会社日立大厦系统 电梯运行诊断装置、电梯运行诊断系统和电梯运行诊断方法
JP2021080038A (ja) * 2019-11-14 2021-05-27 株式会社構造計画研究所 エレベータの制御装置、エレベータの制御方法、機械学習装置、機械学習方法及びプログラム
WO2022009260A1 (ja) * 2020-07-06 2022-01-13 日本電信電話株式会社 エレベータ制御装置、エレベータ制御方法、プログラム
WO2022097188A1 (ja) * 2020-11-04 2022-05-12 株式会社日立製作所 エレベーターおよびエレベーターの制御方法
JP2022090259A (ja) * 2020-12-07 2022-06-17 フジテック株式会社 エレベータの制御装置
CN114647958A (zh) * 2022-05-20 2022-06-21 深圳市城市交通规划设计研究中心股份有限公司 一种电梯场景仿真模拟系统、方法、电子设备及存储介质
KR20220139528A (ko) * 2021-04-08 2022-10-17 네이버랩스 주식회사 로봇 및 사람이 탑승하는 엘리베이터를 제어하는 방법 및 엘리베이터 제어 시스템
WO2023053290A1 (ja) * 2021-09-29 2023-04-06 三菱電機ビルソリューションズ株式会社 監視制御装置、監視制御システムおよび監視制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446424B1 (ko) * 2022-06-17 2022-09-22 에이원엘리베이터 주식회사 엘리베이터 운영 및 배치 제어 방법 및 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113958A (ja) * 1974-02-20 1975-09-06
JPS5948365A (ja) * 1982-09-07 1984-03-19 株式会社日立製作所 エレベータ装置
JPH0635266U (ja) * 1985-04-22 1994-05-10 インベンテイオ・アクテイエンゲゼルシヤフト エレベータケージ制御装置
JP2009084020A (ja) * 2007-10-02 2009-04-23 Hitachi Ltd エレベータ群管理システム
JP2012140232A (ja) * 2011-01-05 2012-07-26 Toshiba Corp エレベータの群管理制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374667B2 (ja) * 1999-08-23 2009-12-02 三菱電機株式会社 エレベーターの群管理制御システム
JP4139819B2 (ja) * 2005-03-23 2008-08-27 株式会社日立製作所 エレベータの群管理システム
JP5351510B2 (ja) * 2008-12-26 2013-11-27 株式会社日立製作所 乗り場行先階予約式群管理エレベーターの制御装置
JP5965823B2 (ja) * 2012-11-12 2016-08-10 株式会社日立製作所 エレベータ群管理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113958A (ja) * 1974-02-20 1975-09-06
JPS5948365A (ja) * 1982-09-07 1984-03-19 株式会社日立製作所 エレベータ装置
JPH0635266U (ja) * 1985-04-22 1994-05-10 インベンテイオ・アクテイエンゲゼルシヤフト エレベータケージ制御装置
JP2009084020A (ja) * 2007-10-02 2009-04-23 Hitachi Ltd エレベータ群管理システム
JP2012140232A (ja) * 2011-01-05 2012-07-26 Toshiba Corp エレベータの群管理制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744653A (zh) * 2019-10-31 2021-05-04 株式会社日立大厦系统 电梯运行诊断装置、电梯运行诊断系统和电梯运行诊断方法
JP2021080038A (ja) * 2019-11-14 2021-05-27 株式会社構造計画研究所 エレベータの制御装置、エレベータの制御方法、機械学習装置、機械学習方法及びプログラム
JP7409831B2 (ja) 2019-11-14 2024-01-09 株式会社構造計画研究所 エレベータの制御装置、エレベータの制御方法、機械学習装置、機械学習方法及びプログラム
CN110989405B (zh) * 2019-12-30 2023-08-04 北京百度网讯科技有限公司 电梯场景模拟的方法、装置、系统、电子设备和存储介质
CN110989405A (zh) * 2019-12-30 2020-04-10 北京百度网讯科技有限公司 电梯场景模拟的方法、装置、系统、电子设备和存储介质
WO2022009260A1 (ja) * 2020-07-06 2022-01-13 日本電信電話株式会社 エレベータ制御装置、エレベータ制御方法、プログラム
WO2022097188A1 (ja) * 2020-11-04 2022-05-12 株式会社日立製作所 エレベーターおよびエレベーターの制御方法
JP7160082B2 (ja) 2020-12-07 2022-10-25 フジテック株式会社 エレベータの制御装置
JP2022090259A (ja) * 2020-12-07 2022-06-17 フジテック株式会社 エレベータの制御装置
KR20220139528A (ko) * 2021-04-08 2022-10-17 네이버랩스 주식회사 로봇 및 사람이 탑승하는 엘리베이터를 제어하는 방법 및 엘리베이터 제어 시스템
KR102541959B1 (ko) * 2021-04-08 2023-06-12 네이버랩스 주식회사 로봇 및 사람이 탑승하는 엘리베이터를 제어하는 방법 및 엘리베이터 제어 시스템
WO2023053290A1 (ja) * 2021-09-29 2023-04-06 三菱電機ビルソリューションズ株式会社 監視制御装置、監視制御システムおよび監視制御方法
JPWO2023053290A1 (ja) * 2021-09-29 2023-04-06
JP7351044B2 (ja) 2021-09-29 2023-09-26 三菱電機ビルソリューションズ株式会社 監視制御装置、監視制御システムおよび監視制御方法
CN114647958B (zh) * 2022-05-20 2022-09-23 深圳市城市交通规划设计研究中心股份有限公司 一种电梯场景仿真模拟系统、方法、电子设备及存储介质
CN114647958A (zh) * 2022-05-20 2022-06-21 深圳市城市交通规划设计研究中心股份有限公司 一种电梯场景仿真模拟系统、方法、电子设备及存储介质

Also Published As

Publication number Publication date
JPWO2019087249A1 (ja) 2020-10-22
CN111225865A (zh) 2020-06-02
JP6974489B2 (ja) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2019087249A1 (ja) エレベーター運行管理システムおよびエレベーター運行管理方法
KR101292457B1 (ko) 엘리베이터의 그룹 관리 시스템
JP6426066B2 (ja) エレベータ群管理システムおよびエレベータの群管理方法
KR920011080B1 (ko) 엘리베이터의 군(群)관리장치
WO2009123014A1 (ja) エレベータの群管理装置
JP5705704B2 (ja) エレベータ群管理システムおよびその制御方法
KR101399424B1 (ko) 승객 혼란을 회피하기 위한 엘리베이터 디스패치 제어
JP4784509B2 (ja) エレベータの群管理制御装置
JP2014504998A (ja) エレベータ呼び及び供給かごの割り当てにおける自動化
KR20180008691A (ko) 군 관리 엘리베이터 장치 및 군 관리에 의한 승차 호기의 할당 방법
EP3686143B1 (en) Elevator call registration when a car is full
WO2013080276A1 (ja) エレベーターシステム
US7549517B2 (en) Elevator car dispatching including passenger destination information and a fuzzy logic algorithm
CN104340783B (zh) 电梯运转装置和电梯运转方法
CN111344244B (zh) 组管理控制装置及组管理控制方法
JP2011195280A (ja) エレベータの群管理制御装置
JP5570901B2 (ja) エレベーターの制御方法および装置
JP2011140381A (ja) 火災時避難運転用機能を備えるエレベータの群管理制御装置および方法
CN116323452A (zh) 电梯以及电梯的控制方法
JPH02270782A (ja) エレベータの群管理制御装置
JP6079874B2 (ja) エレベータ制御システム
JP2017043432A (ja) エレベータ群管理システム
JP2012056700A (ja) エレベータ
JP2017114661A (ja) エレベーター群管理システム及びかご運行制御方法
JP2010208708A (ja) エレベータの群管理制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930746

Country of ref document: EP

Kind code of ref document: A1