WO2019078213A1 - 内燃機関の冷却制御装置 - Google Patents

内燃機関の冷却制御装置 Download PDF

Info

Publication number
WO2019078213A1
WO2019078213A1 PCT/JP2018/038530 JP2018038530W WO2019078213A1 WO 2019078213 A1 WO2019078213 A1 WO 2019078213A1 JP 2018038530 W JP2018038530 W JP 2018038530W WO 2019078213 A1 WO2019078213 A1 WO 2019078213A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake air
fuel cut
cooling
cut operation
internal combustion
Prior art date
Application number
PCT/JP2018/038530
Other languages
English (en)
French (fr)
Inventor
尚 大長
丈 石政
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US16/647,968 priority Critical patent/US11085406B2/en
Priority to CN201880066664.4A priority patent/CN111212965B/zh
Priority to JP2019549299A priority patent/JP6852180B2/ja
Priority to BR112020007082-3A priority patent/BR112020007082B1/pt
Publication of WO2019078213A1 publication Critical patent/WO2019078213A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is a cooling control device for an internal combustion engine that controls intake air supercharged by a supercharger by using a water-cooled intercooler and using an electric water pump that delivers cooling water to the intercooler. About.
  • This cooling control device is a water-cooled intercooler that cools the supercharged intake air with cooling water circulating in a cooling circuit, and an electric water pump (hereinafter referred to as "electric pump") for circulating the cooling water in the cooling circuit. Equipped with An intake air temperature sensor is provided at the outlet of the intercooler, and the drive signal of the electric pump is duty-controlled so that the intake air temperature detected by the intake air temperature sensor becomes a predetermined target temperature.
  • the water-cooled intercooler as described above has an advantage of being excellent in the layout to a small vehicle and low in cost because the piping system is compact and the like as compared with the air-cooled intercooler.
  • the water-cooled intercooler uses an electric pump that circulates cooling water, so if the electric pump is not driven efficiently, power consumption may increase and fuel efficiency may be adversely affected. There is.
  • the conventional cooling control device only controls the electric pump so that the detected intake air temperature at the outlet of the intercooler becomes the target temperature regardless of the operating state of the internal combustion engine. Therefore, although the target intake air temperature can be obtained, there is a possibility that the electric pump may be driven extra depending on the operating condition of the internal combustion engine or the like where the necessity to cool the intake air is low. It is wastefully consumed, which leads to the deterioration of the fuel efficiency of the internal combustion engine.
  • the present invention has been made to solve such a problem, and by efficiently driving an electric water pump, fuel consumption can be achieved while satisfactorily cooling supercharged intake air by an intercooler. It is an object of the present invention to provide a cooling control device for an internal combustion engine that can be improved as much as possible.
  • the invention according to claim 1 comprises a supercharger for supercharging intake air (a turbocharger 11 in the embodiment (hereinafter the same in this section)) and a fuel for the internal combustion engine 3
  • a cooling control device for an internal combustion engine configured to perform power generation by the generator 10 using the internal combustion engine 3 as a power source during the deceleration fuel cut operation for stopping the supply of fuel, and the cooling circuit (intake air cooling circuit 40)
  • the internal combustion engine to which the present invention is applied includes a supercharger for supercharging intake air, and power is generated by a generator using the internal combustion engine as a motive power source during a deceleration fuel cut operation in which the supply of fuel is stopped.
  • a cooling control device for an internal combustion engine includes a water-cooled intercooler that cools supercharged intake air by cooling water circulating in a cooling circuit, and an electric water pump for circulating the cooling water in the cooling circuit. Prepare. Then, according to this cooling control device, the water pump is driven during the decelerating fuel cut operation, whereby cooling of the supercharged intake air by the intercooler is performed in a state where the cooling water circulates through the cooling circuit.
  • the deceleration fuel cut operation state is a state in which power generation is performed by the power (kinetic energy) of the internal combustion engine that rotates with inertia without using fuel at the time of deceleration. Therefore, by driving the water pump during the deceleration fuel cut operation, the electric power generated without fuel consumption is used to reduce the temperature of the supercharged intake as much as possible. The frequency and period of driving the water pump in other operating conditions can be reduced. As a result, the water pump can be driven efficiently, and the fuel consumption can be improved as much as possible while the cooling of the supercharged intake air by the intercooler is well performed.
  • the invention according to claim 2 is the cooling control device for an internal combustion engine according to claim 1, wherein the intake air temperature detection means (intake air temperature sensor 51) for detecting the intake air temperature (intake air temperature TAE) on the outlet side of the intercooler 7 Further, the pump control means is configured to operate the non-deceleration fuel cut operation which is an operation state other than the deceleration fuel cut operation, the detected intake air temperature is equal to or higher than a predetermined first threshold (high temperature side first threshold ⁇ 1H) The water pump is driven at the time of the reduction fuel cut operation, the water pump is performed when the intake air temperature is equal to or higher than the predetermined second threshold (high temperature side second threshold ⁇ 2H) smaller than the first threshold Driving (steps 1 to 3, 6, 7 in FIG. 3, FIG. 4).
  • the intake air temperature detection means intake air temperature sensor 51
  • TAE intake air temperature
  • the pump control means is configured to operate the non-deceleration fuel cut operation which is an operation state other than the deceleration fuel cut operation, the detected intake
  • the water pump is driven when the detected intake air temperature on the outlet side of the intercooler is equal to or higher than the lower second threshold value.
  • the intake air temperature region for driving the water pump is expanded, and the frequency of execution becomes higher, whereby the temperature of the intake air can be further reduced.
  • the water pump since the water pump is not driven when the intake temperature is lower than the second threshold during the deceleration fuel cut operation, the intake temperature is substantially low even during the deceleration fuel cut operation, thereby contributing substantially to the intake cooling. Wasteful operation of the water pump can be effectively avoided.
  • the water pump is driven when the intake air temperature is equal to or higher than the first threshold value larger than the second threshold value.
  • the intake air temperature region for driving the water pump is reduced, and the execution thereof is limited, so that the power consumption during the non-deceleration fuel cut operation can be further reduced.
  • the pump control means is configured to operate during non-deceleration fuel cut operation which is an operation state other than the deceleration fuel cut operation.
  • Driving the water pump with one power (first duty ratio ILow), and driving the water pump with a predetermined second power (second duty ratio IHigh) greater than the first power during the deceleration fuel cut operation (FIG. 3) Step 1, 3, 7) is characterized.
  • the water pump is driven by the larger second power during the deceleration fuel cut operation.
  • the frequency and period of driving the water pump during the non-deceleration fuel cut operation can be further reduced by lowering the temperature of the intake air as much as possible during the limited deceleration fuel cut operation period.
  • the power consumption can be further reduced.
  • FIG. 1 schematically shows a configuration of an internal combustion engine to which the present invention is applied. It is a block diagram showing composition of a cooling control device roughly. It is a flow chart which shows control processing of an electric pump. It is a figure which shows the relationship of the intake air temperature and the electricity supply duty ratio of an electric pump in the deceleration fuel cut driving
  • An internal combustion engine (hereinafter referred to as "engine") 3 shown in FIG. 1 is, for example, a gasoline engine having four cylinders 3a, and is mounted on a vehicle (not shown) as a power source.
  • a generator 10 is connected to the engine 3.
  • the generator 10 generates electric power by regenerating the power (operating energy) of the engine 3.
  • the operation of the generator 10 is controlled by an ECU (Electronic Control Unit) 2 (see FIG. 2).
  • the power generation by the generator 10 is executed during the decelerating fuel cut operation for stopping the supply of fuel, and also under predetermined conditions such as the charging rate of the battery dropping to a predetermined value or less in an operating state other than the decelerating fuel cut operation. Is executed as appropriate when The generated power is charged to a battery (not shown).
  • the engine 3 includes a turbocharger 11 and a cooling device 21.
  • the turbocharger 11 includes a compressor 12 provided in the intake passage 4 and a turbine 14 provided in the exhaust passage 5 and integrally coupled with the compressor 12 via a shaft 13.
  • the exhaust gas flowing through the exhaust passage 5 rotationally drives the turbine 14, and the intake air is pressurized (supercharged) by the compressor 12 which rotates integrally therewith.
  • a bypass passage 6 for bypassing the turbine 14 is connected to the exhaust passage 5, and a waste gate valve (hereinafter referred to as “WG valve”) 15 is provided in the bypass passage 6.
  • the degree of opening of the WG valve 15 is controlled by a drive signal from the ECU 2 (see FIG. 2), whereby the supercharging pressure is adjusted.
  • An intercooler 7 and a throttle valve 8 are provided in order downstream of the compressor 12 of the intake passage 4.
  • the intercooler 7 is a water-cooled type, and cools the intake air, which is supercharged by the compressor 12 of the turbocharger 11 and heated up, by heat exchange with cooling water flowing inside.
  • the throttle valve 8 is disposed upstream of the intake manifold 4 a in the intake passage 4.
  • the degree of opening of the throttle valve 8 is controlled by the drive signal from the ECU 2 via the TH actuator 8a (see FIG. 2), whereby the amount of intake drawn into the cylinder 3a is controlled.
  • the cooling device 21 includes an engine cooling circuit 30 for cooling the engine 3 and an intake air cooling circuit 40 for cooling the supercharged intake air by the intercooler 7. Both cooling circuits 30, 40 are independent of each other. doing.
  • the engine cooling circuit 30 is connected to the engine body 3 b, the main radiator 31, the engine body 3 b and the main radiator 31, and has an annular cooling water passage 32 filled with cooling water and a mechanical type driven by the engine 3. It has a water pump (hereinafter referred to as “mechanical pump”) 33 and a buffer expansion tank 34 provided between the main radiator 31 and the mechanical pump 33.
  • mechanical pump water pump
  • the cooling water is delivered by the mechanical pump 33 during operation of the engine 3 and circulated in the clockwise direction (arrow A direction in FIG. 1) via the cooling water passage 32.
  • the cooling water cools the engine 3 when passing through the engine main body 3 b and radiates heat when passing through the main radiator 31. Since the engine body 3b is in a high temperature state due to combustion and heat generation in the engine 3, the cooling water of the engine cooling circuit 30 becomes relatively high temperature.
  • the intake air cooling circuit 40 is connected to the intercooler 7, the sub radiator 41, the inter cooler 7 and the sub radiator 41, and an annular cooling water passage 42 filled with cooling water, an electric water pump And a buffer expansion tank 44 provided between the intercooler 7 and the sub radiator 41.
  • the cooling water is delivered by the electric pump 43 and circulated in the counterclockwise direction (arrow B direction) of FIG. 1 through the cooling water passage 42. Along with the circulation, the cooling water cools the intake air flowing inside when passing through the intercooler 7 and radiates heat when passing through the sub radiator 41. Since the temperature of the supercharged intake air is usually lower than the temperature of the engine body 3 b, the cooling water of the intake air cooling circuit 40 is lower in temperature than the cooling water of the engine cooling circuit 30.
  • the electric pump 43 described above is controlled in accordance with the duty ratio (hereinafter referred to as “energization duty ratio”) Iduty of the drive signal supplied from the ECU 2 (see FIG. 2). Specifically, when the energization duty ratio Iduty is the stop command duty, the electric pump 43 is stopped, and as the energization duty ratio Iduty is higher, the amount of cooling water delivered by the electric pump 43 increases, and the cooling capacity of the intercooler 7 Becomes higher.
  • energization duty ratio Iduty the stop command duty
  • an intake temperature sensor 51 is provided immediately downstream of the intercooler 7 in the intake passage 4.
  • the intake air temperature sensor 51 detects an intake air temperature at the outlet side of the intercooler 7 (hereinafter referred to as “intake air temperature”) TAE, and outputs a detection signal to the ECU 2.
  • the engine 3 is also provided with a crank angle sensor 52 (see FIG. 2).
  • the crank angle sensor 52 outputs a CRK signal, which is a pulse signal, to the ECU 2 at each predetermined crank angle (for example, 30 °) as the crankshaft (not shown) rotates.
  • the ECU 2 calculates the number of revolutions NE of the engine 3 (hereinafter referred to as "engine revolution number") based on the CRK signal.
  • the ECU 2 receives, from the accelerator opening sensor 53, a detection signal indicating the depression amount AP (hereinafter referred to as "accelerator opening") of the accelerator pedal (not shown) of the vehicle.
  • the ECU 2 is configured by a microcomputer including a CPU, a RAM, a ROM, an I / O interface (all not shown) and the like.
  • the ECU 2 executes various control processes in accordance with the detection signals of the sensors 51 to 53 described above, and in the present embodiment, particularly executes the control process of the electric pump 43 as the cooling control of the engine 3.
  • the ECU 2 constitutes a pump control means.
  • FIG. 3 shows a control process of the electric pump 43.
  • the present process is repeatedly performed in a predetermined cycle.
  • step 1 shown as “S1”; the same applies to the following
  • step 1 it is determined whether or not the engine 3 is in a deceleration fuel cut (F / C) operation.
  • the decelerating fuel cut operation is performed when a predetermined decelerating fuel cut condition is satisfied, for example, when the engine rotational speed NE is equal to or higher than the predetermined fuel cut rotational speed and the accelerator opening degree AP is approximately 0. Ru. Further, as described above, during the deceleration fuel cut operation, the power generation by the generator 10 is performed.
  • step 1 If the answer to step 1 is NO, and the engine 3 is not in the deceleration fuel cut operation, for example, when a traveling operation other than deceleration or idle operation is performed (hereinafter referred to as "non-deceleration fuel cut operation"), It is determined whether the intake air temperature TAE detected by the intake air temperature sensor 51 is equal to or higher than a first threshold ⁇ 1H on the high temperature side (step 2).
  • the electric pump 43 is driven with low power by setting the energization duty ratio Iduty to the electric pump 43 to a relatively small first duty ratio ILow (step 3), This process ends.
  • step 2 it is determined whether the intake air temperature TAE is lower than or equal to a first low threshold ⁇ 1L (see FIG. 4) which is smaller than the high first threshold ⁇ 1H (see FIG. 4).
  • Step 4 The high temperature side low temperature side first threshold values ⁇ 1H and ⁇ 1L are paired with each other to set the hysteresis. If the answer to this step 3 is YES and TAE ⁇ ⁇ 1 L, the electric pump 43 is stopped by setting the energization duty ratio I duty to the stop command duty (step 5), and the present process is ended.
  • step 4 If the answer to step 4 is NO, that is, if the intake air temperature TAE is between the high temperature side and low temperature side first threshold values ⁇ 1H and ⁇ 1L ( ⁇ 1L ⁇ TAE ⁇ 1H), the present process is ended. That is, in this case, the control state (low power driving state or stop state) of the electric pump 43 in the previous processing cycle is maintained, whereby hunting of the control of the electric pump 43 is reliably avoided.
  • step 6 it is determined whether the intake air temperature TAE is equal to or higher than the second threshold ⁇ 2H on the high temperature side (step 6). As shown in FIG. 4, the high temperature side second threshold value ⁇ 2H is smaller than the above-described low temperature side first threshold value ⁇ 1L for the non-fuel cut operation. If the answer to this step 6 is YES and TAE ⁇ ⁇ 2H, then the energization duty ratio Iduty to the electric pump 43 is set to a second duty ratio IHigh larger than the first duty ratio ILow (step 7). The electric pump 43 is driven with high power, and the present process is ended.
  • step 6 it is determined whether the intake air temperature TAE is less than or equal to a second threshold ⁇ 2L (see FIG. 4) on the low temperature side, which is smaller than the second threshold ⁇ 2H on the high temperature side (see FIG. 4).
  • Step 8 The high temperature side low temperature side second threshold values ⁇ 2 H and ⁇ 2 L are paired with each other to set the hysteresis.
  • the electric pump 43 is stopped by setting the energization duty ratio Iduty to the stop command duty (step 9), and the present process is ended.
  • step 8 If the answer to step 8 is NO, that is, if the intake air temperature TAE is between the high temperature side and low temperature side second threshold values ⁇ 2H and ⁇ 2L ( ⁇ 2L ⁇ TAE ⁇ 2H), the present process is terminated. That is, in this case, the control state (high power drive state or stop state) of the electric pump 43 in the previous processing cycle is maintained, whereby hunting of the control of the electric pump 43 is reliably avoided.
  • the fuel cut flag F_FC is set to “1” when the predetermined deceleration fuel cut condition is satisfied in the period from time t2 to t3 and the period from time t6 to t7, and the deceleration fuel cut operation is performed. It is running. The other period is the non-decelerating fuel cut operation period.
  • the engine 3 is started at time t1, and after idle operation, the engine rotational speed NE and the vehicle speed VP increase along with the start operation. It has shifted to the steady running state where NE value and VP value are almost constant. During this time, the intake air temperature TAE rises, but does not reach the high temperature side first threshold value ⁇ 1H even in the steady traveling state (step 2: NO in FIG. 3), so the energization duty ratio Iduty is set to the stop command duty (Step 5) The electric pump 43 is held in the stopped state.
  • the intake air temperature TAE is higher than the high temperature second threshold ⁇ 2H over the entire period from time t2 to t3 (step 6: YES).
  • the ratio I duty is set to the second duty ratio I High (step 7), and the electric pump 43 is driven with high power. As a result, the supercharged intake air is cooled and the intake air temperature TAE decreases in a state where the amount of delivery of the cooling water by the electric pump 43 and the cooling capacity of the intercooler 7 are high.
  • the intake air temperature TAE is lower than the high temperature first threshold ⁇ 1H (step 2: NO).
  • the ratio I duty is set to the stop command duty (step 5), and the electric pump 43 is held in the stop state.
  • the energization duty ratio Iduty is the first duty ratio It is set to ILow (step 3), and the electric pump 43 is driven with low power.
  • the supercharged intake air is cooled and the intake air temperature TAE decreases in a state where the amount of delivery of the cooling water by the electric pump 43 and the cooling capacity of the intercooler 7 are low.
  • the low power driving state of the electric pump 43 is maintained until the intake air temperature TAE falls below the low temperature side first threshold value ⁇ 1 L (step 4: NO), and at time t5, the intake air temperature TAE has a low temperature side first threshold When it becomes equal to or less than the value ⁇ 1L (step 4: YES), the energization duty ratio Iduty is set to the stop command duty (step 5), and the electric pump 43 is controlled to the stop state. Thereafter, as long as the intake air temperature TAE does not reach the high temperature side first threshold value ⁇ 1H, the engine is kept in the stopped state.
  • the intake air temperature TAE is higher than the high-temperature second threshold ⁇ 2H over the entire period from time t6 to t7, and thus the same as in the period from time t2 to t3.
  • the energization duty ratio Iduty is set to the second duty ratio IHigh (step 7), and the electric pump 43 is driven with high power.
  • the engine 3 is stopped after passing through idle operation from a stop.
  • the control of the electric pump 43 in this case is basically the same as in the case of the period from the time t3 to the time t6 described above. That is, at the beginning of this period, the electric pump 43 is controlled to the stop state because the intake air temperature TAE is lower than the high temperature side first threshold value ⁇ 1H (step 5).
  • the energization duty ratio Iduty is set to the first duty ratio ILow, and the mode is switched to the low power driving state (step 3). This low power driving state is held until the intake air temperature TAE falls below the low temperature side first threshold value ⁇ 1L (time t9), and thereafter, the electric pump 43 is controlled to a stop state.
  • step 8 the situation where the intake air temperature TAE becomes lower than or equal to the second low temperature threshold ⁇ 2L is not shown during the deceleration fuel cut operation, but in such a case (step 8: YES)
  • the duty ratio I duty is set to the stop command duty (step 9), and the electric pump 43 is controlled to the stop state.
  • the present embodiment by performing the driving of the electric pump 43 during the deceleration fuel cut operation, the power generated by the generator 10 in the state where there is no consumption of fuel is used, and the supercharged intake
  • the frequency and period of driving the electric pump 43 during the non-decelerating fuel cut operation can be reduced by lowering the temperature of the motor as much as possible.
  • the electric pump 43 is driven efficiently, and the fuel consumption can be improved as much as possible while the cooling of the supercharged intake air by the intercooler 7 is satisfactorily performed.
  • the electric pump 43 is driven when the detected intake air temperature TAE on the outlet side of the intercooler 7 is equal to or higher than the smaller high temperature second threshold value ⁇ 2H.
  • the intake air temperature region for driving the electric pump 43 is expanded, and the frequency of execution thereof is increased, whereby the temperature of the intake air can be further reduced.
  • the electric pump 43 is not driven when the intake air temperature TAE is lower than the second low temperature threshold ⁇ 2L during the deceleration fuel cut operation, the intake temperature is low even during the deceleration fuel cut operation. It is possible to effectively avoid the wasteful operation of the electric pump 43 which hardly contributes to the cooling of the motor.
  • the electric pump 43 is driven when the intake air temperature TAX is equal to or higher than the high temperature first threshold ⁇ 1H, which is larger than the high temperature second threshold ⁇ 2H.
  • the intake air temperature region for driving the electric pump 43 is reduced, and the execution thereof is limited. Therefore, the power consumption during the non-deceleration fuel cut operation can be further reduced.
  • the electric pump 43 is driven at a larger second duty ratio IHigh.
  • the frequency and period of driving the electric pump 43 during the non-deceleration fuel cut operation can be further reduced by lowering the temperature of the intake air as much as possible during the limited deceleration fuel cut operation period.
  • the electric pump 43 is driven with the smaller first duty ratio ILow during the non-deceleration fuel cut operation, power consumption can be further reduced.
  • the threshold value for the deceleration fuel cut operation is configured by the second threshold values ⁇ 2 H and ⁇ 2 L on the high temperature side and the low temperature side, and the threshold value for the non deceleration fuel cut operation is the first on the high temperature side and the low temperature side.
  • this invention can be implemented in various aspects, without being limited to the described embodiment.
  • changing the holding of the threshold value with respect to the intake air temperature TAE (second threshold value ⁇ 2H ⁇ first threshold value ⁇ 1H) between the deceleration fuel cut operation and the non-deceleration fuel cut operation
  • both of the switching of the current supply duty ratio Iduty (second duty ratio IHigh / first duty ratio ILow) are performed, only one of them may be performed.
  • the energization duty ratios I duty for the deceleration fuel cut operation and the non-deceleration fuel cut operation are set to the second duty ratio IHigh and the first duty ratio ILow, which are fixed values, respectively. It may be set variably. In this case, for example, the energization duty ratio Iduty for the decelerating fuel cut operation is set to be larger as the difference between the intake air temperature TAE and the high temperature side second threshold value ⁇ 2H becomes larger. The energization duty ratio Iduty for the cut operation may be set to be larger as the difference between the intake air temperature TAE and the high temperature side first threshold value ⁇ 1H is larger.
  • the thresholds for the deceleration fuel cut operation and the non-deceleration fuel cut operation are respectively configured with two thresholds, high and low, and hysteresis Although this hysteresis setting may be omitted, each threshold may be configured with a single threshold.
  • the intake air cooling circuit 40 for cooling intake air by the intercooler 7 is independent of the engine cooling circuit 30 for cooling the engine 3.
  • the invention is not limited thereto.
  • the cooling water may be shared with the cooling circuit for cooling the electric components of the
  • the turbocharger 11 drives the turbine 14 with the energy of the exhaust gas and uses the turbocharger 11 to supercharge the intake air with the compressor 12.
  • the present invention has a water-cooled intercooler. It is also applicable to other types of turbochargers, such as mechanical turbochargers (superchargers) driven directly by the engine. In addition, it is possible to change suitably within the range of the meaning of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

電動式のウォーターポンプを効率良く駆動することによって、インタークーラによる過給吸気の冷却を良好に行いながら、燃費を可能な限り向上させることができる内燃機関の冷却制御装置を提供する。本発明が適用されるエンジン3は、吸気を過給するターボチャージャ11を備えるとともに、燃料の供給を停止する減速フューエルカット運転中に、エンジン3を動力源として発電機10による発電が行われるように構成されている。本発明の冷却制御装置では、吸気冷却回路40を循環する冷却水によって、ターボチャージャ11で過給された吸気を冷却する水冷式のインタークーラ7と、吸気冷却回路40に冷却水を循環させるための電動ポンプ43を備え、減速フューエルカット運転中に電動ポンプ43を駆動する(図3のステップ1、7)。

Description

内燃機関の冷却制御装置
 本発明は、過給機で過給された吸気の冷却を、水冷式のインタークーラによって行うとともに、インタークーラに冷却水を送出する電動式のウォーターポンプを用いて制御する内燃機関の冷却制御装置に関する。
 従来のこの種の内燃機関の冷却制御装置として、例えば特許文献1に開示されたものが知られている。この冷却制御装置は、冷却回路を循環する冷却水によって過給吸気を冷却する水冷式のインタークーラと、冷却回路に冷却水を循環させるための電動式のウォーターポンプ(以下「電動ポンプ」という)を備える。インタークーラの出口には吸気温度センサが設けられており、吸気温度センサで検出された吸気温度が所定の目標温度になるように、電動ポンプの駆動信号がデューティ制御される。
特開2016-94904号公報
 上述したような水冷式のインタークーラは、空冷式のインタークーラと比較して、配管系がコンパクトであることなどから、小型車両へのレイアウト性に優れ、低コストであるという利点を有する。一方で、水冷式のインタークーラは、空冷式のものと異なり、冷却水を循環させる電動ポンプが用いられるため、電動ポンプを効率良く駆動しないと、消費電力が増大し、燃費に悪影響を及ぼすおそれがある。
 これに対し、従来の冷却制御装置では、内燃機関の運転状態にかかわらず、検出されたインタークーラの出口の吸気温度が目標温度になるように、電動ポンプを制御するにすぎない。このため、目標の吸気温度は得られるものの、内燃機関の運転状態によっては、吸気を冷却する必要性が低い状況などにおいて電動ポンプが余分に駆動されるおそれがあり、その場合には、電力が無駄に消費され、ひいては内燃機関の燃費の悪化を招いてしまう。
 本発明は、このような課題を解決するためになされたものであり、電動式のウォーターポンプを効率良く駆動することによって、インタークーラによる過給吸気の冷却を良好に行いながら、燃費を可能な限り向上させることができる内燃機関の冷却制御装置を提供することを目的とする。
 この目的を達成するために、請求項1に係る発明は、吸気を過給する過給機(実施形態における(以下、本項において同じ)ターボチャージャ11)を備えるとともに、内燃機関3への燃料の供給を停止する減速フューエルカット運転中に、内燃機関3を動力源として発電機10による発電が行われるように構成された内燃機関の冷却制御装置であって、冷却回路(吸気冷却回路40)を循環する冷却水によって、過給機で過給された吸気を冷却する水冷式のインタークーラ7と、冷却回路に冷却水を循環させるための電動式のウォーターポンプ(電動ポンプ43)と、減速フューエルカット運転中にウォーターポンプを駆動するポンプ制御手段(ECU2、図3のステップ1、7)と、を備えることを特徴とする。
 本発明が適用される内燃機関は、吸気を過給する過給機を備えるとともに、燃料の供給が停止される減速フューエルカット運転中に、内燃機関を動力源として、発電機による発電が行われる。また、内燃機関の冷却制御装置は、冷却回路を循環する冷却水によって、過給された吸気を冷却する水冷式のインタークーラと、冷却回路に冷却水を循環させるための電動式のウォーターポンプを備える。そして、この冷却制御装置によれば、減速フューエルカット運転中にウォーターポンプが駆動され、それにより、冷却水が冷却回路を循環した状態で、インタークーラによる過給吸気の冷却が行われる。
 以上の構成から、減速フューエルカット運転状態は、減速時、燃料を用いることなく、惰性で回転する内燃機関の動力(運動エネルギ)によって発電が行われている状態である。したがって、ウォーターポンプの駆動を減速フューエルカット運転中に行うことにより、燃料の消費がない状態で発電された電力を利用し、過給吸気の温度を可能な限り低下させることで、減速フューエルカット運転以外の運転状態でウォーターポンプを駆動する頻度や期間を低減することができる。これにより、ウォーターポンプが効率良く駆動され、インタークーラによる過給吸気の冷却を良好に行いながら、燃費を可能な限り向上させることができる。
 請求項2に係る発明は、請求項1に記載の内燃機関の冷却制御装置において、インタークーラ7の出口側の吸気温度(吸気温TAE)を検出する吸気温度検出手段(吸気温センサ51)をさらに備え、ポンプ制御手段は、減速フューエルカット運転以外の運転状態である非減速フューエルカット運転中は、検出された吸気温度が所定の第1しきい値(高温側第1しきい値α1H)以上のときにウォーターポンプを駆動し、減速フューエルカット運転中は、吸気温度が第1しきい値よりも小さい所定の第2しきい値(高温側第2しきい値α2H)以上のときにウォーターポンプを駆動すること(図3のステップ1~3、6、7、図4)を特徴とする。
 この構成によれば、減速フューエルカット運転中は、検出されたインタークーラの出口側の吸気温度がより小さい第2しきい値以上のときに、ウォーターポンプが駆動される。これにより、ウォーターポンプを駆動する吸気温度領域が拡大され、その実行頻度が高くなることによって、吸気の温度をより低下させることができる。また、減速フューエルカット運転中、吸気温度が第2しきい値未満のときには、ウォーターポンプは駆動されないので、減速フューエルカット運転中であっても、吸気の温度が低いことで吸気の冷却にほとんど寄与しないウォーターポンプの無駄な作動を、有効に回避することができる。
 一方、非減速フューエルカット運転中は、吸気温度が第2しきい値よりも大きい第1しきい値以上のときに、ウォーターポンプが駆動される。これにより、ウォーターポンプを駆動する吸気温度領域が縮小され、その実行が制限されるので、非減速フューエルカット運転中の消費電力をさらに低減することができる。
 請求項3に係る発明は、請求項1又は2に記載の内燃機関の冷却制御装置において、ポンプ制御手段は、減速フューエルカット運転以外の運転状態である非減速フューエルカット運転中は、所定の第1電力(第1デューティ比ILow)によってウォーターポンプを駆動し、減速フューエルカット運転中は、第1電力より大きい所定の第2電力(第2デューティ比IHigh)によってウォーターポンプを駆動すること(図3のステップ1、3、7)を特徴とする。
 この構成によれば、ウォーターポンプは、減速フューエルカット運転中は、より大きい第2電力によって駆動される。これにより、限られた減速フューエルカット運転期間中に、吸気の温度をできる限り低下させておくことによって、非減速フューエルカット運転中にウォーターポンプを駆動する頻度や期間をさらに低減することができる。また、この非減速フューエルカット運転中におけるウォーターポンプの駆動をより小さい第1電力によって行うので、消費電力をさらに低減することができる。
本発明を適用した内燃機関の構成を概略的に示す図である。 冷却制御装置の構成を概略的に示すブロック図である。 電動ポンプの制御処理を示すフローチャートである。 減速フューエルカット運転及び非減速フューエルカット運転における吸気温と電動ポンプの通電デューティ比との関係を示す図である。 図3の処理によって得られる動作例を示すタイミングチャートである。
 以下、図面を参照しながら、本発明の実施形態について説明する。図1に示す内燃機関(以下「エンジン」という)3は、例えば4つの気筒3aを有するガソリンエンジンであり、車両(図示せず)に動力源として搭載されている。
 エンジン3には発電機10が連結されている。発電機10は、エンジン3の動力(運転エネルギ)を回生することによって発電を行うものである。発電機10の動作は、ECU(電子制御ユニット)2(図2参照)によって制御される。発電機10による発電は、燃料の供給を停止する減速フューエルカット運転中に実行される他、減速フューエルカット運転以外の運転状態において、バッテリの充電率が所定値以下に低下するなどの所定の条件が成立したときに適宜、実行される。発電された電力はバッテリ(図示せず)に充電される。
 また、エンジン3は、ターボチャージャ11及び冷却装置21を備えている。ターボチャージャ11は、吸気通路4に設けられたコンプレッサ12と、排気通路5に設けられ、シャフト13を介してコンプレッサ12と一体に連結されたタービン14を備えている。排気通路5を流れる排ガスによってタービン14が回転駆動され、それと一体に回転するコンプレッサ12によって、吸気が加圧(過給)される。
 また、排気通路5には、タービン14をバイパスするバイパス通路6が接続され、バイパス通路6には、ウェイストゲート弁(以下「WG弁」という)15が設けられている。このWG弁15の開度は、ECU2からの駆動信号によって制御され(図2参照)、それにより過給圧が調整される。
 吸気通路4のコンプレッサ12よりも下流側には、インタークーラ7及びスロットル弁8が順に設けられている。
 インタークーラ7は、水冷式のものであり、ターボチャージャ11のコンプレッサ12で過給され、昇温した吸気を、内部を流れる冷却水との熱交換によって冷却する。
 スロットル弁8は、吸気通路4内の吸気マニホルド4aよりも上流側に配置されている。スロットル弁8の開度は、ECU2からの駆動信号により、THアクチュエータ8aを介して制御され(図2参照)、それにより気筒3aに吸入される吸気量が制御される。
 冷却装置21は、エンジン3を冷却するためのエンジン冷却回路30と、過給された吸気をインタークーラ7によって冷却するための吸気冷却回路40を備えており、両冷却回路30、40は互いに独立している。
 エンジン冷却回路30は、エンジン本体3bと、メインラジエータ31と、エンジン本体3b及びメインラジエータ31に接続され、冷却水が満たされた環状の冷却水通路32と、エンジン3によって駆動される機械式のウォーターポンプ(以下「機械ポンプ」という)33と、メインラジエータ31と機械ポンプ33の間に設けられた緩衝用の膨張タンク34を有する。
 このエンジン冷却回路30では、冷却水は、エンジン3の運転時に、機械ポンプ33によって送出され、冷却水通路32を介して図1の時計方向(矢印A方向)に循環する。この循環に伴い、冷却水は、エンジン本体3bを通る際にエンジン3を冷却し、メインラジエータ31を通る際に放熱する。エンジン本体3bは、エンジン3での燃焼・発熱により高温状態にあるため、エンジン冷却回路30の冷却水は、比較的高温になる。
 一方、吸気冷却回路40は、インタークーラ7と、サブラジエータ41と、インタークーラ7及びサブラジエータ41に接続され、冷却水が満たされた環状の冷却水通路42と、電動式のウォーターポンプ(以下「電動ポンプ」という)43と、インタークーラ7とサブラジエータ41の間に設けられた緩衝用の膨張タンク44を有する。
 この吸気冷却回路40では、冷却水は、電動ポンプ43によって送出され、冷却水通路42を介して図1の反時計方向(矢印B方向)に循環する。この循環に伴い、冷却水は、インタークーラ7を通る際に、その内部を流れる吸気を冷却するとともに、サブラジエータ41を通る際に放熱する。通常、過給された吸気の温度はエンジン本体3bの温度よりも低いため、吸気冷却回路40の冷却水は、エンジン冷却回路30の冷却水よりも低温になる。
 上記の電動ポンプ43は、ECU2から通電される駆動信号のデューティ比(以下「通電デューティ比」という)Idutyに応じて制御される(図2参照)。具体的には、通電デューティ比Idutyが停止指令dutyのときには、電動ポンプ43は停止され、通電デューティ比Idutyが高いほど、電動ポンプ43による冷却水の送出量が増加し、インタークーラ7の冷却能力がより高くなる。
 また、吸気通路4のインタークーラ7のすぐ下流側には、吸気温センサ51が設けられている。吸気温センサ51は、インタークーラ7の出口側の吸気温度(以下「吸気温」という)TAEを検出し、その検出信号をECU2に出力する。
 また、エンジン3には、クランク角センサ52(図2参照)が設けられている。クランク角センサ52は、クランクシャフト(図示せず)の回転に伴い、所定のクランク角度(例えば30°)ごとに、パルス信号であるCRK信号をECU2に出力する。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。さらに、ECU2には、アクセル開度センサ53から、車両のアクセルペダル(図示せず)の踏込み量(以下「アクセル開度」という)APを表す検出信号が入力される。
 ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU2は、上記のセンサ51~53の検出信号などに応じ、各種の制御処理を実行し、本実施形態では特に、エンジン3の冷却制御として、電動ポンプ43の制御処理を実行する。本実施形態では、ECU2がポンプ制御手段を構成する。
 図3は、この電動ポンプ43の制御処理を示す。本処理は、所定の周期で繰り返し実行される。本処理では、まずステップ1(「S1」と図示。以下同じ)において、エンジン3が減速フューエルカット(F/C)運転中であるか否かを判別する。
 なお、減速フューエルカット運転は、所定の減速フューエルカット条件、例えばエンジン回転数NEが所定のフューエルカット回転数以上で、かつアクセル開度APがほぼ0であるという条件が成立したときに、実行される。また、前述したように、減速フューエルカット運転中には、発電機10による発電が行われる。
 上記ステップ1の答えがNOで、エンジン3が減速フューエルカット運転中でないとき、例えば減速以外の走行運転やアイドル運転などが行われているとき(以下「非減速フューエルカット運転」という)には、吸気温センサ51で検出された吸気温TAEが、高温側の第1しきい値α1H以上であるか否かを判別する(ステップ2)。この答えがYESで、TAE≧α1Hのときには、電動ポンプ43への通電デューティ比Idutyを比較的小さい第1デューティ比ILowに設定する(ステップ3)ことによって、電動ポンプ43を低電力で駆動し、本処理を終了する。
 上記ステップ2の答えがNOのときには、吸気温TAEが、高温側第1しきい値α1Hよりも小さい低温側の第1しきい値α1L(図4参照)以下であるか否かを判別する(ステップ4)。これらの高温側及び低温側第1しきい値α1H、α1Lは、互いに対をなし、ヒステリシスを設定するためのものである。このステップ3の答えがYESで、TAE≦α1Lのときには、通電デューティ比Idutyを停止指令dutyに設定する(ステップ5)ことによって、電動ポンプ43を停止し、本処理を終了する。
 上記ステップ4の答えがNOのとき、すなわち吸気温TAEが高温側及び低温側の第1しきい値α1H、α1Lの間にあるときには(α1L<TAE<α1H)、そのまま本処理を終了する。すなわち、この場合には、前回の処理サイクルにおける電動ポンプ43の制御状態(低電力駆動状態又は停止状態)が維持され、それにより、電動ポンプ43の制御のハンチングが確実に回避される。
 一方、前記ステップ1の答えがYESで、エンジン3が減速フューエルカット運転中のときには、吸気温TAEが、高温側の第2しきい値α2H以上であるか否かを判別する(ステップ6)。図4に示すように、この高温側第2しきい値α2Hは、上述した非フューエルカット運転用の低温側第1しきい値α1Lよりも小さい。このステップ6の答えがYESで、TAE≧α2Hのときには、電動ポンプ43への通電デューティ比Idutyを、前記第1デューティ比ILowよりも大きい第2デューティ比IHighに設定する(ステップ7)ことによって、電動ポンプ43を高電力で駆動し、本処理を終了する。
 上記ステップ6の答えがNOのときには、吸気温TAEが、高温側第2しきい値α2Hよりも小さい低温側の第2しきい値α2L(図4参照)以下であるか否かを判別する(ステップ8)。これらの高温側及び低温側第2しきい値α2H、α2Lは、互いに対をなし、ヒステリシスを設定するためのものである。このステップ8の答えがYESで、TAE≦α2Lのときには、通電デューティ比Idutyを停止指令dutyに設定する(ステップ9)ことによって、電動ポンプ43を停止し、本処理を終了する。
 上記ステップ8の答えがNOのとき、すなわち吸気温TAEが高温側及び低温側の第2しきい値α2H、α2Lの間にあるときには(α2L<TAE<α2H)、そのまま本処理を終了する。すなわち、この場合には、前回の処理サイクルにおける電動ポンプ43の制御状態(高電力駆動状態又は停止状態)が維持され、それにより、電動ポンプ43の制御のハンチングが確実に回避される。
 次に、図5を参照しながら、これまでに説明した図4の電動ポンプ43の制御処理によって得られる動作例を説明する。この例では、時刻t2~t3の期間及び時刻t6~t7の期間において、所定の減速フューエルカット条件が成立していることで、フューエルカットフラグF_FCが「1」にセットされ、減速フューエルカット運転が実行されている。他の期間が非減速フューエルカット運転期間である。
 具体的には、時刻t1~t2の非減速フューエルカット運転期間では、時刻t1においてエンジン3が始動され、アイドル運転の後、発進動作に伴ってエンジン回転数NE及び車速VPが増大し、その後、NE値及びVP値がほぼ一定である定常走行状態に移行している。この間、吸気温TAEは、上昇するものの、定常走行状態においても高温側第1しきい値α1Hに達していないため(図3のステップ2:NO)、通電デューティ比Idutyは停止指令dutyに設定され(ステップ5)、電動ポンプ43は停止状態に保持される。
 時刻t2で減速フューエルカット運転が開始されると、この例では時刻t2~t3の全期間にわたり、吸気温TAEが高温側第2しきい値α2Hよりも高いため(ステップ6:YES)、通電デューティ比Idutyが第2デューティ比IHighに設定され(ステップ7)、電動ポンプ43は高電力で駆動される。これにより、電動ポンプ43による冷却水の送出量とインタークーラ7の冷却能力が高い状態で、過給吸気が冷却され、吸気温TAEが低下する。
 時刻t3で非減速フューエルカット運転に移行した後、停車やアイドル運転が行われている状態では、吸気温TAEは高温側第1しきい値α1Hよりも低いため(ステップ2:NO)、通電デューティ比Idutyは停止指令dutyに設定され(ステップ5)、電動ポンプ43は停止状態に保持される。その後、車両が走行状態に移行するのに伴い、吸気温TAEが上昇し、時刻t4において高温側第1しきい値α1Hに達すると(ステップ2:YES)、通電デューティ比Idutyは第1デューティ比ILowに設定され(ステップ3)、電動ポンプ43は低電力で駆動される。これにより、電動ポンプ43による冷却水の送出量とインタークーラ7の冷却能力が低い状態で、過給吸気が冷却され、吸気温TAEが低下する。
 この電動ポンプ43の低電力駆動状態は、吸気温TAEが低温側第1しきい値α1L以下に低下するまで保持され(ステップ4:NO)、時刻t5において吸気温TAEが低温側第1しきい値α1L以下になると(ステップ4:YES)、通電デューティ比Idutyは停止指令dutyに設定され(ステップ5)、電動ポンプ43は停止状態に制御される。その後、吸気温TAEが高温側第1しきい値α1Hに達しない限り、停止状態に保持される。
 時刻t6で再び減速フューエルカット運転が開始されると、時刻t6~t7の全期間にわたり、吸気温TAEが高温側第2しきい値α2Hよりも高いため、時刻t2~t3の期間の場合と同様、通電デューティ比Idutyは第2デューティ比IHighに設定され(ステップ7)、電動ポンプ43は高電力で駆動される。
 その後、時刻t7で非減速フューエルカット運転に移行した後、停車からアイドル運転を経てエンジン3が停止されている。この場合の電動ポンプ43の制御は、前述した時刻t3~t6期間の場合と基本的に同じである。すなわち、電動ポンプ43は、この期間の当初においては吸気温TAEが高温側第1しきい値α1Hよりも低いことで、停止状態に制御され(ステップ5)、その後、アイドル運転中に吸気温TAEが高温側第1しきい値α1Hまで上昇したときに(時刻t8)、通電デューティ比Idutyが第1デューティ比ILowに設定され、低電力駆動状態に切り替えられる(ステップ3)。この低電力駆動状態は、吸気温TAEが低温側第1しきい値α1L以下に低下するまで(時刻t9)保持され、その後、電動ポンプ43は停止状態に制御される。
 なお、上記の例では、減速フューエルカット運転中、吸気温TAEが低温側第2しきい値α2L以下になる状況は示されていないが、そのような場合には(ステップ8:YES)、通電デューティ比Idutyは停止指令dutyに設定され(ステップ9)、電動ポンプ43は停止状態に制御される。
 以上のように、本実施形態によれば、電動ポンプ43の駆動を減速フューエルカット運転中に行うことにより、燃料の消費がない状態で発電機10で発電された電力を利用し、過給吸気の温度を可能な限り低下させることで、非減速フューエルカット運転中に電動ポンプ43を駆動する頻度や期間を低減することができる。これにより、電動ポンプ43が効率良く駆動され、インタークーラ7による過給吸気の冷却を良好に行いながら、燃費を可能な限り向上させることができる。
 また、減速フューエルカット運転中は、検出されたインタークーラ7の出口側の吸気温TAEが、より小さい高温側第2しきい値α2H以上のときに、電動ポンプ43が駆動される。これにより、電動ポンプ43を駆動する吸気温度領域が拡大され、その実行頻度が高くなることによって、吸気の温度をより低下させることができる。また、減速フューエルカット運転中、吸気温TAEが低温側第2しきい値α2L未満のときには、電動ポンプ43は駆動されないので、減速フューエルカット運転中であっても、吸気の温度が低いことで吸気の冷却にほとんど寄与しない電動ポンプ43の無駄な作動を、有効に回避することができる。
 一方、非減速フューエルカット運転中は、吸気温TAXが高温側第2しきい値α2Hよりも大きい高温側第1しきい値α1H以上のときに、電動ポンプ43が駆動される。これにより、電動ポンプ43を駆動する吸気温度領域が縮小され、その実行が制限されるので、非減速フューエルカット運転中の消費電力をさらに低減することができる。
 さらに、減速フューエルカット運転中は、電動ポンプ43をより大きい第2デューティ比IHighで駆動する。これにより、限られた減速フューエルカット運転期間中に、吸気の温度をできる限り低下させておくことによって、非減速フューエルカット運転中に電動ポンプ43を駆動する頻度や期間をさらに低減することができる。また、この非減速フューエルカット運転中における電動ポンプ43駆動を、より小さい第1デューティ比ILowによって行うので、消費電力をさらに低減することができる。
 また、減速フューエルカット運転用のしきい値を高温側及び低温側の第2しきい値α2H、α2Lで構成し、非減速フューエルカット運転用のしきい値を高温側及び低温側の第1しきい値α1H、α1Lで構成することによって、それぞれヒステリシスが設定されているので、吸気温TAEがしきい値付近にある場合の電動ポンプ43の制御ハンチングを確実に回避することができる。
 なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、減速フューエルカット運転と非減速フューエルカット運転の間で、吸気温TAEに対するしきい値の持ち替え(第2しきい値α2H⇔第1しきい値α1H)と、電動ポンプ43への通電デューティ比Idutyの持ち替え(第2デューティ比IHigh⇔第1デューティ比ILow)の双方を行っているが、これらのいずれか一方のみを行ってもよい。
 また、実施形態では、減速フューエルカット運転用及び非減速フューエルカット運転用の通電デューティ比Idutyを、それぞれ固定値である第2デューティ比IHigh及び第1デューティ比ILowに設定しているが、これらを可変に設定してもよい。この場合、例えば、減速フューエルカット運転用の通電デューティ比Idutyを、吸気温TAEと高温側第2しきい値α2Hとの差が大きいほど、より大きくなるように設定し、同様に、非減速フューエルカット運転用の通電デューティ比Idutyを、吸気温TAEと高温側第1しきい値α1Hとの差が大きいほど、より大きくなるように設定してもよい。
 さらに、実施形態では、電動ポンプ43の制御ハンチングを確実に回避するために、減速フューエルカット運転用及び非減速フューエルカット運転用のしきい値を、それぞれ高低2つのしきい値で構成し、ヒステリシスを設定しているが、このヒステリシス設定を省略し、各しきい値を単一のしきい値で構成してもよい。
 また、実施形態では、吸気をインタークーラ7で冷却する吸気冷却回路40は、エンジン3を冷却するエンジン冷却回路30と独立しているが、これに限らず、エンジン冷却回路30や、例えばハイブリッド車両の電気部品を冷却するための冷却回路と、冷却水を共用するものでもよい。さらに、実施形態では、過給機として、排ガスのエネルギでタービン14を駆動し、コンプレッサ12で吸気を過給するターボチャージャ11を用いているが、本発明は、水冷式のインタークーラを有する限り、エンジンで直接、駆動される機械式過給機(スーパーチャージャ)などの他のタイプの過給機にも適用可能である。その他、本発明の趣旨の範囲内で適宜、変更することが可能である。
 2 ECU(ポンプ制御手段)
 3 内燃機関
 7 インタークーラ
10 発電機
11 ターボチャージャ(過給機)
40 吸気冷却回路(冷却回路)
43 電動ポンプ(電動式のウォーターポンプ)
51 吸気温センサ(吸気温度検出手段)
  TAE 吸気温(インタークーラの出口側の吸気温度)
  α1H 高温側第1しきい値(第1しきい値)
  α2H 高温側第2しきい値(第2しきい値)
 ILow 第1デューティ比(第1電力)
IHigh 第2デューティ比(第2電力)

Claims (3)

  1.  吸気を過給する過給機を備えるとともに、内燃機関への燃料の供給を停止する減速フューエルカット運転中に、当該内燃機関を動力源として、発電機による発電が行われるように構成された内燃機関の冷却制御装置であって、
     冷却回路を循環する冷却水によって、前記過給機で過給された吸気を冷却する水冷式のインタークーラと、
     前記冷却回路に冷却水を循環させるための電動式のウォーターポンプと、
     前記減速フューエルカット運転中に前記ウォーターポンプを駆動するポンプ制御手段と、
     を備えることを特徴とする内燃機関の冷却制御装置。
  2.  前記インタークーラの出口側の吸気温度を検出する吸気温度検出手段をさらに備え、
     前記ポンプ制御手段は、前記減速フューエルカット運転以外の運転状態である非減速フューエルカット運転中は、前記検出された吸気温度が所定の第1しきい値以上のときに前記ウォーターポンプを駆動し、前記減速フューエルカット運転中は、前記吸気温度が前記第1しきい値よりも小さい所定の第2しきい値以上のときに前記ウォーターポンプを駆動することを特徴とする、請求項1に記載の内燃機関の冷却制御装置。
  3.  前記ポンプ制御手段は、前記減速フューエルカット運転以外の運転状態である非減速フューエルカット運転中は、所定の第1電力によって前記ウォーターポンプを駆動し、前記減速フューエルカット運転中は、前記第1電力より大きい所定の第2電力によって前記ウォーターポンプを駆動することを特徴とする、請求項1又は2に記載の内燃機関の冷却制御装置。
PCT/JP2018/038530 2017-10-17 2018-10-16 内燃機関の冷却制御装置 WO2019078213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/647,968 US11085406B2 (en) 2017-10-17 2018-10-16 Cooling control system for internal combustion engine
CN201880066664.4A CN111212965B (zh) 2017-10-17 2018-10-16 内燃机的冷却控制装置
JP2019549299A JP6852180B2 (ja) 2017-10-17 2018-10-16 内燃機関の冷却制御装置
BR112020007082-3A BR112020007082B1 (pt) 2017-10-17 2018-10-16 Sistema de controle de resfriamento para motor de combustão interna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-200821 2017-10-17
JP2017200821 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019078213A1 true WO2019078213A1 (ja) 2019-04-25

Family

ID=66174074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038530 WO2019078213A1 (ja) 2017-10-17 2018-10-16 内燃機関の冷却制御装置

Country Status (5)

Country Link
US (1) US11085406B2 (ja)
JP (1) JP6852180B2 (ja)
CN (1) CN111212965B (ja)
BR (1) BR112020007082B1 (ja)
WO (1) WO2019078213A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114135403B (zh) * 2021-11-25 2024-06-14 中国第一汽车股份有限公司 发动机停缸的控制方法、装置及发动机
CN115247592B (zh) * 2022-08-19 2023-11-14 中国第一汽车股份有限公司 发动机热管理系统、控制方法及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029464A (ja) * 2010-07-23 2012-02-09 Toyota Motor Corp 車両の回生発電制御システム
JP2016211430A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の冷却制御装置
WO2017119445A1 (ja) * 2016-01-06 2017-07-13 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置及び制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261613A (en) * 1991-11-22 1993-05-26 Ford Motor Co Operation of an internal combustion engine
JP4123707B2 (ja) * 2000-11-15 2008-07-23 三菱自動車工業株式会社 エンジンの制御装置
US8875505B2 (en) * 2012-04-05 2014-11-04 GM Global Technology Operations LLC Internal combustion engine and method for controlling internal combustion engine speed
JP5962534B2 (ja) * 2013-02-15 2016-08-03 トヨタ自動車株式会社 インタークーラの温度制御装置
KR101566746B1 (ko) * 2014-10-31 2015-11-06 현대자동차 주식회사 차량용 냉각 시스템
KR20160050924A (ko) * 2014-10-31 2016-05-11 현대자동차주식회사 수랭식 인터쿨러를 구비한 차량의 워터 펌프 제어 시스템 및 방법
US9709065B2 (en) * 2014-11-06 2017-07-18 Ford Global Technologies, Llc System and method for a turbocharger driven coolant pump
JP6225887B2 (ja) 2014-11-14 2017-11-08 トヨタ自動車株式会社 内燃機関の制御装置
KR20160057781A (ko) * 2014-11-14 2016-05-24 현대자동차주식회사 수냉식 인터쿨러 장치가 장착된 차량의 제어 방법 및 시스템
CN109944718B (zh) * 2015-02-26 2020-11-03 本田技研工业株式会社 内燃机的控制装置
US20170074157A1 (en) * 2015-09-16 2017-03-16 General Electric Company Systems and method for harvesting energy from a turbocharger wastegate
JP6265197B2 (ja) * 2015-11-26 2018-01-24 トヨタ自動車株式会社 内燃機関の制御装置
JP6332320B2 (ja) * 2016-04-11 2018-05-30 トヨタ自動車株式会社 内燃機関の制御装置
KR101846886B1 (ko) * 2016-04-21 2018-05-24 현대자동차 주식회사 엔진 시스템 및 이를 이용한 엔진 제어 방법
US9945311B2 (en) * 2016-09-01 2018-04-17 General Electric Company Method and systems for adjusting flow resistance in a thermal management system during an engine start
JP6848827B2 (ja) * 2017-11-24 2021-03-24 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029464A (ja) * 2010-07-23 2012-02-09 Toyota Motor Corp 車両の回生発電制御システム
JP2016211430A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の冷却制御装置
WO2017119445A1 (ja) * 2016-01-06 2017-07-13 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置及び制御方法

Also Published As

Publication number Publication date
JPWO2019078213A1 (ja) 2020-10-22
CN111212965B (zh) 2021-12-14
BR112020007082A2 (pt) 2020-09-24
BR112020007082B1 (pt) 2023-11-07
US20200217282A1 (en) 2020-07-09
JP6852180B2 (ja) 2021-03-31
CN111212965A (zh) 2020-05-29
US11085406B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
JP2013170455A (ja) 内燃機関、その排気循環方法、及びその制御方法
US10975790B2 (en) Systems and methods for controlling boost during an engine cold start
JP6537487B2 (ja) 内燃機関の制御装置
WO2019078213A1 (ja) 内燃機関の冷却制御装置
US20160215781A1 (en) Electric regenerative turbocharger
JP2018127017A (ja) ハイブリッド車両
JP2006214273A (ja) エンジンの過給装置
JP5644227B2 (ja) 内燃機関の排気エネルギー回収装置
JP7192591B2 (ja) ハイブリッド車両、及び過給機の冷却方法
JP2018159271A (ja) 内燃機関の制御方法及び内燃機関の制御装置
CN111417772B (zh) 车辆用内燃机的控制方法以及控制装置
JP2004208420A (ja) 車両制御装置
JP2008075565A (ja) 内燃機関の制御装置
JP5765409B2 (ja) ハイブリッド車両の制御装置
CN106996339B (zh) 用于运行驱动设备的方法和控制设备
JP2010236381A (ja) 内燃機関のegr装置
JP5565378B2 (ja) 内燃機関の制御システム
JP4582054B2 (ja) 車両用エンジンシステムの制御装置
JP2017214893A (ja) 排気駆動発電機を備えたエンジン
JP6561828B2 (ja) エンジンの制御装置
JP5598416B2 (ja) 内燃機関の制御システム
JP2023116003A (ja) 内燃機関の制御システム
JP2022117032A (ja) 内燃機関の排気エネルギー回収装置
JP2017214890A (ja) ターボ過給機付エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020007082

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020007082

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200408

122 Ep: pct application non-entry in european phase

Ref document number: 18867338

Country of ref document: EP

Kind code of ref document: A1