WO2019070073A1 - 防眩ハードコート層の形成方法 - Google Patents

防眩ハードコート層の形成方法 Download PDF

Info

Publication number
WO2019070073A1
WO2019070073A1 PCT/JP2018/037463 JP2018037463W WO2019070073A1 WO 2019070073 A1 WO2019070073 A1 WO 2019070073A1 JP 2018037463 W JP2018037463 W JP 2018037463W WO 2019070073 A1 WO2019070073 A1 WO 2019070073A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
coat layer
forming
antiglare
layer
Prior art date
Application number
PCT/JP2018/037463
Other languages
English (en)
French (fr)
Inventor
武喜 細川
侑助 中田
小林 和人
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Priority to CN201880064959.8A priority Critical patent/CN111183375B/zh
Priority to KR1020207011589A priority patent/KR102387661B1/ko
Priority to EP18865033.7A priority patent/EP3693769A4/en
Priority to US16/652,117 priority patent/US20200316826A1/en
Publication of WO2019070073A1 publication Critical patent/WO2019070073A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/005Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2633/00Use of polymers of unsaturated acids or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2633/04Polymers of esters
    • B29K2633/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2833/00Use of polymers of unsaturated acids or derivatives thereof as mould material
    • B29K2833/04Polymers of esters
    • B29K2833/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0098Peel strength; Peelability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures

Definitions

  • the present invention relates to a method of forming an antiglare hard coat layer which can be suitably used particularly for an optical laminate member such as a display.
  • Displays include computers, televisions, mobile phones, personal digital assistants (tablet PCs, mobile devices, electronic organizers, etc.), and digital meters, instrument panels, navigation, console panels, center clusters and heater control panels etc. It is used in various fields such as display panels.
  • an antiglare (AG) layer is often provided on the display surface to roughen the surface.
  • AG antiglare
  • By providing the antiglare layer on the display surface it is possible to diffuse external light by the uneven shape of the surface of the antiglare layer and to blur the outline of the image reflected on the display surface. This makes it possible to reduce the visibility of the reflected image on the display surface, and eliminate the problem of the screen visibility caused by the reflection of the reflected image when the display is used.
  • the antiglare layer exhibits the function of irregularly reflecting external light due to the uneven shape of the surface. Therefore, the antiglare layer is often provided on the surface side, such as the outermost layer of the optical laminated member. And especially in display devices, such as a high definition display in recent years, the pitch of the light ray emitted from a display is finer. Therefore, in order to maintain the image clarity, a finer and denser uneven shape is required.
  • the surface layer surface of an optical layered member such as a display is also required to be excellent in abrasion resistance and durability. For example, when the scratch resistance of the surface layer is poor, the scratch is likely to occur, and the visibility of the display is greatly reduced.
  • an antiglare layer having fine irregularities on the surface is provided on a transparent plastic film substrate, and the outermost side of the antiglare layer with respect to the substrate is It has a scratch resistant layer on the surface, the average film thickness of the scratch resistant layer is 0.03 to 0.50 ⁇ m, and the scratch resistant layer has at least a component (A) average particle diameter of 40 nm to 100 nm.
  • Inorganic fine particles (B) inorganic fine particles having an average particle size of 1 nm or more and less than 40 nm, (C) ionizing radiation curable polyfunctional monomer, (D) organic polymer thickener, and substantially containing a polymerizable fluorine-containing binder
  • An antiglare film is described which is characterized in that it is formed from a curable composition which does not contain it.
  • Patent Document 1 there is a method in which an antiglare layer and an abrasion resistant layer are separately provided.
  • the antiglare layer and the scratch resistant layer are provided separately, the number of layers increases.
  • refraction or the like in the interlayer surface may occur due to a difference in refractive index of each layer or the like, which may affect visibility.
  • Patent Document 2 JP 2007-183653 (Patent Document 2) has a fine uneven structure on the surface to exhibit a good antiglare effect, and also has a surface characteristic excellent in scratch resistance and has a hard coat property.
  • an antiglare hard coat film an active energy ray-curable resin film layer is provided on at least one side of a transparent plastic substrate, and an uneven surface is formed on the surface of the active energy ray-curable resin film layer.
  • An antiglare hard coat film is described which is provided with a concavo-convex structure composed of two kinds of fine concavities and convexities different in height difference (Claim 1).
  • Patent Document 2 also applies the active energy ray-curable resin to at least one surface of a substrate as a method for producing the antiglare hard coat film, and applies an active energy ray to the active energy ray-curable resin film layer. After curing the active energy ray-curable resin film layer by irradiation, at least one of sand blasting and embossing is applied to form a concavo-convex structure consisting of two kinds of fine concavities and convexities having different average height differences of concavities and convexities. It is described that the surface is provided with a cured active energy ray-curable resin coating layer on a substrate (Claim 6).
  • the present invention solves the above-mentioned conventional problems, and the object of the present invention is to form an antiglare hard coat layer having a concavo-convex shape exhibiting good antiglare property and having excellent scratch resistance. To provide a way.
  • a method of forming an antiglare hard coat layer comprising providing an antiglare hard coat layer having a concavo-convex shape on the surface on at least one surface of a transparent support substrate, comprising the steps of: A mold base producing step of producing a mold base having an uneven shape on the surface, Painting a hard coating composition on one side of a transparent support substrate to form an uncured hard coat layer, A surface contact process in which both substrates are brought into surface contact with each other in a direction in which the uneven surface of the mold substrate faces the surface of the uncured hard coat layer; Curing step of curing the uncured hard coat layer by irradiation with active energy rays Exfoliation process of exfoliating the mold base from the hardened hard coat layer, To include
  • the hard coating composition comprises a polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000.
  • the peel strength of the surface contact portion between the uneven surface of the mold base and the uncured hard coat surface is in the range of 0.01 to 2 N / 25 mm
  • the peel strength of the uneven surface of the mold base and the surface contact portion of the hard coat layer after irradiation with active energy rays is in the range of 0.005 to 1.5 N / 25 mm
  • the pressure transfer is 0.001 to 5 MPa, and the transfer ratio of the uneven shape when the pressure is in the above range is 75 to 100%
  • the concavo-convex shape of the surface of the mold base is a concavo-convex shape formed by applying a concavo-convex shape forming coating composition containing the first component and the second component and separating the first component and the second component into phases. , Method of forming an antiglare hard coat layer.
  • the above hard coating composition is A polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000, and a polymerizable unsaturated group containing monomer having a polymerizable unsaturated group equivalent of 90 to 500 g / eq.
  • the amount of the polymerizable unsaturated group-containing oligomer or polymer is 15 to 85 parts by mass with respect to 100 parts by mass of the solid content of the layer-forming resin component contained in the hard coating composition, and the polymerizable unsaturated group The amount of the contained monomer is 85 to 15 parts by mass, Method of forming an antiglare hard coat layer.
  • Method of forming an antiglare hard coat layer Method of forming an antiglare heart coat layer.
  • the method of forming an antiglare hard coat layer wherein the hardness of the antiglare hard coat layer is pencil hardness 3 H or more.
  • the antiglare hard coat layer having an uneven shape on the surface is Ten-point average roughness Rz JIS is 0.2 to 1.0 ⁇ m, The mean length RSm of the roughness curve element is 5 to 100 ⁇ m, With surface irregularities, Method of forming an antiglare hard coat layer.
  • the hard coating composition further comprises translucent fine particles having an average particle diameter of 0.5 to 10 ⁇ m,
  • the refractive index (Rf1) of the translucent fine particles and the refractive index (Rf2) of the layer-forming resin component contained in the hard coating composition satisfy the following relationship 0.01 ⁇
  • the antiglare hard coat layer having an uneven shape on the surface is Sum value (%) of transmitted image definition (%) for optical comb of five widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is in the range of 300 to 480 , With surface irregularities, Method of forming an antiglare hard coat layer.
  • an antiglare hard coat layer having a surface asperity shape exhibiting good antiglare performance and having excellent scratch resistance.
  • the present inventors examined a method for improving the abrasion resistance of the antiglare layer.
  • a means for improving the crosslink density can be considered to increase the hardness of the coating layer.
  • the surface asperity shape of the antiglare layer may be affected. For example, a fine uneven shape can be formed by coating a coating composition containing the first component and the second component, and phase separating the first component and the second component.
  • a coating composition containing such a first component and a second component when designing to increase the crosslink density of the obtained antiglare layer, the properties of the coating composition and the phase separation conditions change. , The fineness of the uneven shape tended to be lost. Furthermore, in the coating composition containing the first component and the second component, when attempts were made to form finer irregularities, it was found by experiments that the crosslink density and the film thickness of the coating layer tend to decrease. Thus, in the case of using the coating composition containing the first component and the second component in particular, it was one of the technical problems to form a fine uneven shape while improving the scratch resistance. .
  • the present inventors have, for example, an antiglare hard coat layer excellent in scratch resistance while having a fine uneven shape which can be formed by using a coating composition containing a first component and a second component.
  • a coating composition containing a first component and a second component we examined how to form In such a study, it has come to be examined means for transferring the asperity shape onto the surface of the hard coat layer using the fine asperity shape antiglare layer as a mold. Then, using the antiglare layer having a surface of fine asperity as a mold, using a hard coating composition containing a specific component, and further transferring the asperity to the hard coat layer by a specific process. It has been found that it is possible to form an antiglare hard coat layer having a fine uneven shape and excellent in abrasion resistance, and the present invention has been completed. Hereinafter, the present invention will be described in detail.
  • the method of forming an antiglare hard coat layer of the present invention is a method of providing an antiglare hard coat layer having a concavo-convex shape on the surface on at least one surface of a transparent support substrate, and includes the following steps: A mold base producing step of producing a mold base having an uneven shape on the surface, Painting a hard coating composition on one side of a transparent support substrate to form an uncured hard coat layer, A surface contact process in which both substrates are brought into surface contact with each other in a direction in which the uneven surface of the mold substrate faces the surface of the uncured hard coat layer; Curing step of curing the uncured hard coat layer by irradiation with active energy rays Peeling process of peeling a mold base from the hardened hard coat layer.
  • the "mold base” has an uneven surface, and is an uncured surface obtained by applying the antiglare hard coating composition to the uneven surface of the mold.
  • the surface contact with the surface of the hard coat layer in the opposite direction means that the asperity shape is transferred and the asperity shape is formed on the surface of the hard coat layer.
  • the uneven surface of the mold base can be formed by various uneven surface forming methods commonly used in the art.
  • a coating composition containing fine particles having an average particle size of 0.1 to 5 ⁇ m is applied and cured to form a surface having an irregular shape due to the size of the particle size of the fine particles.
  • a coating composition containing fine particles having an average particle size of 0.1 to 5 ⁇ m is applied and cured to form a surface having an irregular shape due to the size of the particle size of the fine particles.
  • the fine particles include silica (SiO 2 ) particles, alumina particles, titania particles, tin oxide particles, antimony-doped tin oxide (abbr .; ATO) particles, inorganic oxide particles such as zinc oxide particles, and polystyrene particles, melamine
  • examples thereof include resin particles, acrylic particles, acrylic-styrene particles, silicone particles, polycarbonate particles, polyethylene particles, organic resin particles such as polypropylene particles, and the like.
  • the concavo-convex shape of the surface of the mold base is a concavo-convex shape formed by applying a concavo-convex shape forming coating composition containing the first component and the second component and separating the first component and the second component into phases.
  • the concavo-convex shape obtained by the phase separation of the first component and the second component can form irregular concavo-convex shape because concavo-convex arrangement is determined spontaneously. For this reason, there is an advantage that it does not accompany the occurrence of moiré and the like due to the regularity of the uneven arrangement.
  • a mold base having a high active energy ray transmittance is formed by applying a concavo-convex shape forming coating composition containing the first component and the second component to the transparent base to form a mold base.
  • the SP value (SP 1 ) of the first component and the SP value (SP 2 ) of the second component satisfy the following condition SP 2 ⁇ SP 1 SP 1 -SP 2 0.5 0.5
  • fills is mentioned.
  • the SP value is an abbreviation of solubility parameter (solubility parameter), and is a measure of solubility. As the SP value is larger, the polarity is higher, and conversely, the smaller the value is, the lower the polarity is.
  • the SP value can be measured by the following method [References: SUH, CLARKE, J. Mol. P. S. A-1, 5, 1671-1681 (1967)].
  • Measurement temperature 20 ° C
  • Sample 0.5 g of resin is weighed in a 100 ml beaker, 10 ml of a good solvent is added using a hole pipette, and dissolved by a magnetic stirrer.
  • solvent Good solvent: Dioxane, acetone, poor solvent such as acetone, n-hexane, ion-exchanged water, etc.
  • Measurement of turbidity point 50 ml A poor solvent is dropped using a burette, and the point at which turbidity occurs is defined as the dropping amount.
  • the SP value ⁇ of the resin is given by the following equation.
  • the difference between the SP value of the first component and the SP value of the second component is preferably 0.5 or more, more preferably 0.8 or more.
  • the upper limit of the difference between the SP values is not particularly limited, but is generally 15 or less.
  • an active energy ray curable component is preferably contained as the first component.
  • an unsaturated double bond-containing acrylic copolymer is preferably used as the second component.
  • the first component it is preferable to include a monomer, an oligomer or a polymer having at least one unsaturated double bond group.
  • a monomer, an oligomer or a polymer having at least one unsaturated double bond group include (meth) acrylate monomers, (meth) acrylate oligomers, (meth) acrylate polymers, urethane (meth) acrylate oligomers, urethane (meth) acrylate polymers, which have at least one unsaturated double bond group.
  • These modified monomers, oligomers or polymers may, for example, be mentioned.
  • the first component is a polyfunctional (meth) acrylate monomer, a polyfunctional (meth) acrylate oligomer, a polyfunctional (meth) acrylate polymer, a polyfunctional urethane (meth) acrylate monomer, a polyfunctional urethane (meth) acrylate oligomer, a polyfunctional urethane It is preferable to include at least one selected from polyfunctional (meth) acrylate compounds and polyfunctional urethane (meth) acrylate compounds such as (meth) acrylate polymers. By including such a compound, the crosslink density after curing can be increased, and there is an advantage that the improvement effect of the surface hardness can be increased.
  • the first component comprises a multifunctional (meth) acrylate monomer.
  • polyfunctional (meth) acrylates include, for example, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-adamantyl dimethanol di (meth) acrylate, trimethylolpropane tri (meth) acrylate Trimethylolpropane ethylene oxide modified tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, isocyanuric acid ethylene oxide modified tri (meth) acrylate, pentaerythritol triol (Meth) acrylate, pentaerythritol tetra (meth) acrylate, dimethylolpropane tetra (meth) acrylate, dipentaeriol Ritorupenta (meth) acrylate
  • the (meth) acrylate monomer, and the (meth) acrylate oligomer and the urethane (meth) acrylate oligomer preferably have a weight average molecular weight of less than 5,000.
  • the (meth) acrylate monomer and the urethane (meth) acrylate monomer have a molecular weight of 70 or more and a weight average molecular weight of less than 3,000, and have a molecular weight of 70 or more and a weight average molecular weight of less than 2,500. Is preferred.
  • the (meth) acrylate oligomer and the urethane (meth) acrylate oligomer preferably have a weight average molecular weight of 100 or more and less than 5,000.
  • the (meth) acrylate polymer and the urethane (meth) acrylate polymer preferably have a weight average molecular weight of less than 50,000.
  • an unsaturated double bond containing acrylic copolymer, a cellulose resin, etc. are mentioned, for example.
  • the unsaturated double bond-containing acrylic copolymer is, for example, a resin obtained by copolymerizing a (meth) acrylic monomer and another monomer having an ethylenically unsaturated double bond, a (meth) acrylic monomer and another ethylenic unsaturated resin Acrylic acid or glycidyl acrylate for a resin obtained by reacting a monomer having a double bond and an epoxy group, a resin obtained by reacting a (meth) acrylic monomer with another monomer having an ethylenically unsaturated double bond and an isocyanate group, etc.
  • unsaturated double bond-containing acrylic copolymers may be used alone or in combination of two or more.
  • the unsaturated double bond-containing acrylic copolymer preferably has a weight average molecular weight of 3,000 to 100,000, and more preferably 3,000 to 50,000.
  • cellulose resin cellulose acetate butyrate, cellulose acetate propionate, etc. are mentioned, for example.
  • the asperity-forming coating composition preferably contains a photopolymerization initiator. Due to the presence of the photopolymerization initiator, the resin component is favorably polymerized by irradiation with active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • a photoinitiator an alkyl phenone type photoinitiator, an acyl phosphine oxide type photoinitiator, a titanocene type photoinitiator, an oxime ester type polymerization initiator etc. are mentioned, for example.
  • the preferred amount of the photopolymerization initiator is 0.01 to 20 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of the resin component of the concavo-convex shape forming coating composition.
  • the photopolymerization initiators may be used alone or in combination of two or more photopolymerization initiators.
  • the surface asperity shape is formed by coating and curing the above-described asperity shape forming coating composition on a substrate.
  • corrugated shape-forming coating composition can be timely selected according to the condition of a composition and a coating process, for example, dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method Can be applied by a die coating method, an ink jet method, a gravure coating method or an extrusion coating method (US Pat. No. 2,681,294) or the like.
  • a base material which coats a concavo-convex shape formation coating composition various polymer base materials can be used, for example.
  • a substrate a transparent support substrate described in detail below may be used.
  • phase separation of the first component and the second component contained in the composition occurs to form a mold base having a concavo-convex surface. be able to.
  • This curing can be carried out by irradiation using a light source that emits active energy rays of an optional wavelength.
  • a light source that emits active energy rays of an optional wavelength.
  • the active energy ray to be irradiated for example, light with an integrated light amount of 30 to 5000 mJ / cm 2 can be used.
  • the wavelength of the irradiation light is not particularly limited, and for example, ultraviolet light having a wavelength of 360 nm or less can be used. Such light can be obtained using a high pressure mercury lamp, an ultrahigh pressure mercury lamp, or the like.
  • Transparent Support Substrate As the transparent support substrate on which the antiglare hard coat layer is provided, various substrates used in the art can be used without particular limitation. Specific examples of the transparent support substrate include polyester films such as polycarbonate films, polyethylene terephthalate and polyethylene naphthalate; cellulose films such as diacetyl cellulose and triacetyl cellulose; and acrylic films such as polymethyl methacrylate And substrates made of transparent polymers.
  • polyester films such as polycarbonate films, polyethylene terephthalate and polyethylene naphthalate
  • cellulose films such as diacetyl cellulose and triacetyl cellulose
  • acrylic films such as polymethyl methacrylate And substrates made of transparent polymers.
  • polystyrene, styrene-based films such as acrylonitrile / styrene copolymer, etc .
  • polyvinyl chloride polyethylene, polypropylene, polyolefin having a cyclic to norbornene structure, ethylene / propylene copolymer, etc.
  • Base materials made of transparent polymers such as, for example, olefin-based films of the following; and amide-based films such as nylon and aromatic polyamide.
  • transparent supporting substrate polyimide, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene sulfide, polyvinyl alcohol, polyvinylidene chloride, polyvinyl butyral, polyarylate, polyoxymethylene, epoxy resin, and a blend of the above polymers
  • substrates made of transparent polymers such as objects.
  • the transparent support substrate may further be a laminate of a plurality of transparent polymers.
  • it may be a laminate of a film made of an acrylic resin and a laminate of a film made of a polycarbonate resin or a sheet.
  • transparent polymer substrates as the above-mentioned transparent support substrate, those having less optical birefringence, or a phase difference of 1 ⁇ 4 ( ⁇ / 4) of the wavelength (eg, 550 nm) or 1/1 of the wavelength Those controlled to 2 ( ⁇ / 2) and those not controlled at all at all can be appropriately selected according to the application.
  • the thickness of the transparent support substrate can be appropriately selected according to the application, the member processing method, and the like. Generally, it is about 10 to 5000 ⁇ m, particularly preferably 20 to 3000 ⁇ m, and more preferably 30 to 3000 ⁇ m from the viewpoint of strength and workability such as handleability.
  • Coating step In the coating step, a hard coating composition is coated on at least one surface of the transparent support base to form an uncured hard coat layer.
  • the hard coating composition used in the coating step contains a polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000.
  • the said polymerizable unsaturated group containing oligomer or polymer is a layer formation resin component of a hard-coat layer.
  • the above method comprises the step of bringing the mold base into surface contact with the uncured hard coat layer obtained by applying the hard coating composition. Therefore, even if the mold substrate is brought into surface contact with the hard coating composition in an uncured state, it is required to hold the hard coat layer obtained by coating as a layer.
  • the surface-contacting step described below can be obtained by including a polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000 as a layer forming resin component of the hard coat layer. There is an advantage that can be done well.
  • the polymerizable unsaturated group-containing oligomer or polymer is an oligomer or polymer having a polymerizable unsaturated group having a weight average molecular weight in the range of 1000 to 200,000.
  • the polymerizable unsaturated group contained in the polymerizable unsaturated group-containing oligomer or polymer is preferably one or more selected from the group consisting of acryloyl group and methacryloyl group.
  • polymerizable unsaturated group-containing oligomer or polymer examples include, for example, a urethane (meth) acrylate oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000, and a weight average molecular weight in the range of 1000 to 200,000.
  • acrylic (meth) acrylate oligomers or polymers examples include, for example, a urethane (meth) acrylate oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000, and a weight average molecular weight in the range of 1000 to 200,000.
  • acrylic (meth) acrylate oligomers or polymers examples include, for example, a urethane (meth) acrylate oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000, and a weight average molecular weight in the range of 1000 to 200,000.
  • acrylic (meth) acrylate oligomers or polymers
  • the above urethane (meth) acrylate oligomer or polymer is, for example, (1) Addition reaction of a compound having a hydroxyl group and an acryloyl group (or methacryloyl group) with a polyisocyanate compound having a terminal isocyanate group in the molecule (2) reacting an isocyanate group-containing (meth) acrylate monomer with a polyurethane polyol obtained by reacting a polyisocyanate compound and a polyol, And the like.
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylene diisocyanate, xylylene diisocyanate, 1,5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, 2,2,4-trimethylhexamethylene Diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate or these diisocyanates
  • aromatic isocyanates for example, diisocyanate compounds such as hydrogenated xy
  • Examples of the compound having a hydroxyl group and an acryloyl group (or methacryloyl group) in the above (1) include, for example, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycerol
  • Examples thereof include di (meth) acrylates, and alkylene oxide-modified or lactone-modified compounds obtained by adding ethylene oxide, propylene oxide, ⁇ -caprolactone, ⁇ -butyrolactone or the like to these.
  • polyol in the above (2) examples include ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol, trimethylolpropane, glycerin, pentaerythritol, polycaprolactonediol, polyester polyol, polyether polyol and the like. Can be mentioned.
  • a polyisocyanate compound such as hexamethylene diisocyanate is added to an active hydrogen-containing polymerizable monomer such as isocyanate ethyl acrylate, isocyanate propyl acrylate, or hydroxyethyl acrylate.
  • active hydrogen-containing polymerizable monomer such as isocyanate ethyl acrylate, isocyanate propyl acrylate, or hydroxyethyl acrylate.
  • the urethane (meth) acrylate oligomer or polymer may also be a urethane urea (meth) acrylate oligomer or polymer having a urea bond.
  • the urethane urea (meth) acrylate oligomer or polymer can be prepared, for example, by using a polyamine in combination with the polyol in the above (2).
  • the above-mentioned acrylic (meth) acrylate oligomer or polymer is an acrylic oligomer or polymer containing acryloyl group and / or methacryloyl group.
  • Examples thereof include compounds obtained by adding (meth) acrylate and pentaerythritol tri (meth) acrylate, and resins obtained by adding 2-acryloyloxyethyl isocyanate to an acrylic resin obtained by copolymerizing a hydroxyl group-containing monomer. These may be used alone or in combination of two or more.
  • the above urethane (meth) acrylate oligomers or polymers and acrylic (meth) acrylate oligomers or polymers, those having a weight average molecular weight in the range of 1000 to 200,000 can be used.
  • the number of one or more functional groups selected from the group consisting of acryloyl group and methacryloyl group is preferably 2 or more, more preferably 3 or more, More preferably, it is 5 or more.
  • a commercial item may be used as the above-mentioned polymerizable unsaturated group-containing oligomer or polymer.
  • As commercially available products of the above urethane (meth) acrylate oligomers or polymers for example, DPA-40H, UX-5000, UX-5102D20, UX-5103D, UX-5005, UX-3204, UX-4101, UXT-6100, UX-6101, UX-8101, UX-0937, manufactured by Nippon Kayaku Co., Ltd.
  • acrylic (meth) acrylate oligomer or polymer for example, DIC Corporation, Unidic V-6840, Unidic V-6841, Unidic V-6850, Unidic EMS-635, Unidic WHV-649; Hitachi Chemical Co., Ltd., Hytaloid 7975, Hytaloid 7977, Hytaloid 7988, Hytaloid 7975D; Negami Industrial Co., Ltd., Art Cure RA-3969 MP, Art Cure RA-3960 PG, Art Cure RA-3602 MI, Art Cure OAP-5000, Art Cure OAP-2511, Art Cure AHC-9202 MI80, Art Cure RA-3704 MB, Art Cure RA -3953 MP, Art Cure RA-4101, Art Cure MAP-4000, Art Cure MAP 2801, Etc. can be used.
  • the above polymerizable unsaturated group-containing oligomers or polymers may be used alone or in combination of two or more.
  • the hard coating composition described above contains an uncured hard coat layer by including a polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000.
  • a polymerizable unsaturated group-containing oligomer or polymer having a weight average molecular weight in the range of 1000 to 200,000 there is an advantage that the concavo-convex shape of the surface of the mold base can be favorably transferred to the uncured hard coat layer while maintaining the film thickness of.
  • it contains a polymerizable unsaturated group it has advantages such as good scratch resistance and chemical resistance after curing, and no appearance defects due to bleed out after evaluation of moisture heat, heat resistance, light resistance, etc. There is.
  • the above-mentioned hard coating composition may further contain a polymerizable unsaturated group-containing monomer, if necessary.
  • the polymerizable unsaturated group-containing monomer is a layer forming resin component of the hard coat layer, as in the case of the above-mentioned polymerizable unsaturated group-containing polymer.
  • the polymerizable unsaturated group-containing monomer is required to have a polymerizable unsaturated group equivalent of 90 to 500 g / eq.
  • the above hard coating composition further contains a polymerizable unsaturated group-containing monomer
  • the scratch resistance of the obtained antiglare hard coat layer can be improved.
  • the coating workability is improved by the preparation of the viscosity, and the peel strength after bonding can be adjusted to a suitable range.
  • polymerizable unsaturated group-containing monomer for example, a polyfunctional (meth) acrylate monomer having a polymerizable unsaturated group equivalent of 90 to 500 g / eq can be used.
  • Multifunctional (meth) acrylate monomers can be prepared by dealcoholization reaction of polyhydric alcohol and (meth) acrylate.
  • polyfunctional (meth) acrylate monomers having a polymerizable unsaturated group equivalent of 90 to 500 g / eq for example, Ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol (200) di (meth) acrylate, allyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, ethoxylated (2) bisphenol A di (meth) acrylate, ethoxylated (3) bisphenol A di (meth) acrylate, ethoxylated (4) bisphenol A di (Meth) acrylate, ethoxylated (10) bisphenol A di (meth) acrylate, propoxylated (3) bisphenol A di (meth) acrylate, tricycl
  • One of these polyfunctional (meth) acrylate monomers may be used alone, or two or more thereof may be mixed and used.
  • the amount of the polymerizable unsaturated group-containing oligomer or polymer is 15 to 85 based on 100 parts by mass of the solid content of the layer-forming resin component contained in the hard coating composition. It is preferable that the amount of the polymerizable unsaturated group-containing monomer is 85 to 15 parts by mass.
  • the hard coating composition may, if necessary, further include translucent fine particles having an average particle size in the range of 0.5 to 10 ⁇ m.
  • translucent fine particles having an average particle diameter in the range of 0.5 to 10 ⁇ m in the hard coating composition it is possible to suppress the glare property of the obtained antiglare hard coat layer, and the hardness There is an advantage that can be increased.
  • the average particle size is more preferably in the range of 1.0 to 10 ⁇ m.
  • the term "glare” is a phenomenon in which the brightness of the coat layer is generated.
  • a display device such as a display, displays an image by emitting light from within it.
  • the light incident from the inside of the display device changes depending on the uneven state of the coating layer, and causes convergence of the light amount when the light incident to this uneven state is emitted. is there.
  • the convergence of the light quantity brings about the intensity of the brightness, which is recognized as glare.
  • This glare has a problem that it causes eyestrain of the viewer of the display device.
  • the "light transmitting fine particle” in the present specification means a transparent or translucent fine particle having an average light transmittance of 30% or more in visible light.
  • the average particle diameter of the said translucent fine particle is a value by D50.
  • D50 refers to a particle diameter which is 50% of volume integration integrated measured by a laser diffraction type particle size distribution analyzer.
  • the light-transmitting fine particles have a refractive index (Rf1) of the light-transmitting fine particles and a refractive index (Rf2) of the layer-forming resin component contained in the hard coating composition, the following relationship 0.01 ⁇
  • the antiglare performance of the obtained antiglare hard coat layer is improved when the refractive index (Rf1) of the light transmitting fine particles and the refractive index (Rf2) of the layer forming resin component contained in the hard coating composition satisfy the above relationship There is an advantage that good antiglare performance can be obtained.
  • the refractive index (Rf1) of the light-transparent fine particles and the refractive index (Rf2) of the layer-forming resin component contained in the hard coating composition can be measured, for example, using an Abbe refractometer.
  • translucent fine particles having an average particle size in the range of 0.5 to 10 ⁇ m organic fine particles or inorganic fine particles in the above range of the average particle size can be used.
  • a commercially available product may be used as translucent fine particles having an average particle size in the range of 0.5 to 10 ⁇ m.
  • Commercially available products include, for example, Techpolymer SSX series (styrene-acrylic copolymer fine particles) manufactured by Sekisui Chemical Co., Ltd., Chemisnow SX series (styrene polymer fine particles) manufactured by Soken Chemical Co., Ltd., Chemisnow MX series (acrylic polymer fine particles) ), Nippon Shokuhin Co., Ltd.
  • Seahoster KE-P, KE-S series (silica fine particles), Soriostar RA (silicon-acrylic copolymer fine particles), Eperor S12 (melamine polymer fine particles), Eperor MA series (styrene-acrylics) Copolymer microparticles), acrylic copolymer microparticles, MSP series manufactured by Nikko Rica Co., Ltd., NH series (silicone microparticles), AZ series manufactured by Shin Nippon Sumikin Materials Co., Ltd., AY series (alumina microparticles), and the like.
  • the above-mentioned techpolymers SSX series (styrene-acrylic copolymer fine particles) Chemisnow SX series (styrene polymer fine particles) and Epostor MA series (styrene-acrylic copolymer fine particles) have suitable refractive index (Rf1) satisfying the above relationship. It is more preferable from the point which it has, and the point which is excellent in dispersibility.
  • the hard coating composition preferably comprises a photoinitiator. Due to the presence of the photopolymerization initiator, the resin component is favorably polymerized by irradiation with active energy rays such as ultraviolet rays. As an example of a photoinitiator, the above-mentioned photoinitiator can be used suitably.
  • the preferred amount of the photopolymerization initiator is 0.01 to 20 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of the resin component of the hard coating composition.
  • the photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination.
  • additives can be added to the above hard coating composition as required.
  • additives include conventional additives such as polymerization initiators, antistatic agents, plasticizers, surfactants, antioxidants, ultraviolet absorbers, surface conditioners, leveling agents and the like.
  • fine particles having an average particle size of less than 0.5 ⁇ m may be used.
  • fine particles include translucent fine particles having an average particle diameter D50 of 5 nm or more and less than 500 nm.
  • translucent fine particles having an average particle diameter D50 of 5 nm or more and less than 500 nm include organic fine particles or inorganic fine particles in the nanometer order. It is preferable to use colloidal silica as the translucent fine particles.
  • the colloidal silica may be a reactive colloidal silica in which a reactive group such as (meth) acryloyl group is introduced to the surface of the silica particle by surface modification, or one having no reactive group on the surface of the silica particle, Alternatively, it may be non-reactive colloidal silica surface-modified with a non-reactive organic group.
  • the above-mentioned hard coating composition can be prepared by a method which is commonly performed by those skilled in the art. For example, it can be prepared by mixing the above components using a commonly used mixing apparatus such as a paint shaker, a mixer, a disper and the like.
  • the hard coating composition is coated on at least one surface of the transparent support to form an uncured hard coat layer.
  • the coating of the hard coating composition can be appropriately selected depending on the properties of the hard coating composition and the situation of the coating process, for example, dip coating, air knife coating, curtain coating, roller coating, wire bar coating It can be coated by a method, a die coating method, an ink jet method, a gravure coating method or an extrusion coating method (US Pat. No. 2,681,294) or the like.
  • the film thickness of the uncured hard coat layer is in the range of 0.5 to 20 ⁇ m, so that the film thickness is in the range of 1 to 15 ⁇ m. It is more preferable to paint.
  • the film thickness is in the above range, the impact resistance, heat resistance, curl resistance, crack resistance, abrasion resistance, hardness and the like of the obtained antiglare hard coat layer can be designed in a good range. There is an advantage.
  • the uneven surface of the mold base is brought into surface contact with the uncured hard coat layer formed in the painting step in the direction opposite to the surface of the hard coat layer. .
  • the surface shape of the uncured hard coat layer is deformed to the uneven shape of the surface of the mold base in surface contact, and the uneven shape of the surface of the mold base is transferred onto the surface of the uncured hard coat layer. It will be done.
  • the pressure applied in the surface contact step of the uneven surface of the mold base and the uncured hard coat surface is in the range of 0.001 to 25 MPa.
  • the pressure is preferably in the range of 0.001 to 5 MPa, and more preferably in the range of 0.005 to 5 MPa.
  • the concavo-convex shape of the mold base can be favorably transferred to the uncured hard coat layer, and the concavo-convex shaped surface of the mold base and the uncured hard coat It is possible to prevent the generation of voids between the layers, deformation of the substrate, nonuniformity of the film thickness, and extrusion of the coating from the end.
  • the peel strength of the surface contact portion between the uneven surface of the mold base and the uncured hard coat surface is preferably in the range of 0.01 to 2 N / 25 mm.
  • the peel strength of the surface contact portion in the case where the hard coat layer surface is uncured is within the above range, the void of the mold base and the uncured hard coat layer is suppressed, and the uneven shape of the mold base.
  • a polymerizable unsaturated having a weight average molecular weight in the range of 1000 to 200,000 examples include a method using a hard coating composition containing a group-containing oligomer or polymer, and a polymerizable unsaturated group-containing monomer having a polymerizable unsaturated group equivalent of 90 to 500 g / eq.
  • active energy rays are irradiated to cure the uncured hard coat layer while the uneven surface of the mold base is in surface contact with the surface of the uncured hard coat layer.
  • the irradiation of the active energy ray may be performed from the transparent support base side provided with the uncured hard coat layer, and when the mold base has light permeability, the active energy ray is applied from the mold base side. It may be irradiated.
  • the irradiation of the active energy ray can be performed by irradiation using a light source emitting an active energy ray of a wavelength as required.
  • a light source emitting an active energy ray of a wavelength for example, light with an integrated light amount of 15 to 5000 mJ / cm 2 can be used.
  • the wavelength of the irradiation light is not particularly limited, and for example, ultraviolet light having a wavelength of 360 nm or less can be used. Such light can be obtained using a high pressure mercury lamp, an ultrahigh pressure mercury lamp, or the like.
  • peeling Step the mold base is peeled from the hard coat layer cured in the curing step.
  • the peel strength of the uneven surface of the mold base and the surface contact portion of the hard coat layer after irradiation with active energy rays is in the range of 0.005 to 1.5 N / 25 mm. Is preferred.
  • the mold base is peeled without destroying the concavo-convex shape formed on the surface of the hard coat layer. There is an advantage that can be.
  • the uneven shape transfer rate is 75 to 100% when the pressure is 0.001 to 5 MPa. Is preferred.
  • the surface contact step of the uneven surface of the mold base and the uncured hard coat layer surface when the pressing pressure is 0.001 to 5 MPa, the surface of the uncured hard coat layer is not greatly impaired. You can make contact.
  • the surface asperity shape of the mold base when the pressing pressure is 0.001 to 5 MPa, can be favorably transferred onto the surface of the hard coat layer, more specifically, the asperity shape transfer It is preferable in the above method that the transfer can be made within a range of 75 to 100%.
  • the concavo-convex shape transfer rate can be determined by the following procedure. Measure the Rz JIS (A) value of the mold base. The uneven surface of the mold base is brought into surface contact with the surface of the uncured hard coat layer by pressing in the range of 0.001 to 5 MPa. With the mold base in surface contact, active energy rays are irradiated to cure the uncured hard coat layer. The mold base is peeled from the obtained hard coat layer, and the Rz JIS (B) of the formed uneven surface is measured.
  • the antiglare hard coat layer preferably has a pencil hardness of 2 H or more.
  • the pencil hardness can be measured in accordance with JIS K 5600-5-4. When the pencil hardness of the antiglare hard coat layer is 2H or more, it can be judged that the hardness of the antiglare hard coat layer is sufficiently high and it has sufficient abrasion resistance.
  • the antiglare hard coat layer is characterized in that it has a fine uneven shape, and the hardness of the hard coat layer is high, that is, a pencil hardness of 2 H or more.
  • the pencil hardness of the antiglare hard coat layer is more preferably 3H or more.
  • the antiglare hard coat layer preferably has a ten-point average roughness Rz JIS of 0.2 to 1.0 ⁇ m.
  • ten-point average roughness Rz JIS is one of the parameters indicating the surface asperity shape (roughness shape) defined in Annex JA of JIS B0601; 2001.
  • Ten-point average roughness Rz JIS is the average of the peak heights from the highest peak (convex part) to the fifth highest in the roughness curve of the reference length obtained by applying the cutoff value phase compensation band pass filter And the average of the valley depths from the deepest valley bottom (recess) to the fifth deepest.
  • the ten-point average roughness Rz JIS can be obtained, for example, using a laser microscope in accordance with the provisions of JIS B0601;
  • the antiglare hard coat layer preferably has an average length RSm of 5 to 100 ⁇ m in terms of the roughness curvilinear element of the surface asperity shape.
  • the average length RSm of the roughness curvilinear element is one of the parameters indicating the size and distribution of the surface asperity shape (roughness shape) defined in JIS B0601; 2001.
  • the average length RSm of the roughness curve element means the average of the lengths of the contour curve (roughness curve) elements at the reference length.
  • the average length RSm of the roughness curvilinear element can be obtained, for example, using a laser microscope (manufactured by VK-8700 KEYENCE etc.) in accordance with JIS B0601; 2001.
  • the above antiglare hard coat layer has five types of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm in the transmission image definition measurement test defined in JIS K 7374 (2007). It is preferable that the total value Tc (%) of each transmitted image sharpness Cn (%) in the optical comb of the width of is 300 or more. The total value Tc (%) is more preferably in the range of 300 to 480.
  • the above transmission image sharpness measurement test is to measure the light quantity of the transmitted light of the antiglare hard coat layer through an optical comb of width n (mm) moving at a speed of 10 mm / min, orthogonal to the ray axis of the transmitted light. is there. Specifically, it is measured using an image clarity measuring device (manufactured by Suga Test Instruments Co., Ltd.).
  • the image clarity measuring device detects the light transmitted through the slit as parallel rays from the side opposite to the uneven surface of the antiglare hard coat layer perpendicularly to the antiglare hard coat layer and detects the transmitted light through the moving optical comb And a measurement system device that records the fluctuation of the detected light quantity as a waveform.
  • the optical comb has a ratio of width of bright part to dark part of 1: 1, its width n (mm) is 0.125, 0.25, 0.5, 1, 2 and 5 types, and moving speed is 10 mm / Min.
  • the total transmission value Tc (%) is five transmitted image sharpness C 0.125 (%) when the width n (mm) of the optical comb is 0.125, 0.25, 0.5, 1, 2 respectively , C.sub.0.25 (%), C.sub.0.5 (%), C.sub.1 (%), and C.sub.2 (%), and thus the maximum value that can be taken is 500%.
  • the antiglare hard coat layer has antiglare performance, and further, the image sharpness is high and the image clarity is high. .
  • the high image definition of the antiglare hard coat layer has an advantage that the image definition of, for example, a high detail display is not significantly reduced while exhibiting the antiglare effect.
  • the antiglare hard coat layer preferably has a deviation of luminance variation of 2.6% or less on a 326 ppi display.
  • the said deviation can be calculated
  • the deviation can be calculated by performing numerical analysis using the TrueTest as software. If the above-mentioned deviation in the antiglare hard coat layer is 2.6% or less, the occurrence of glare which reduces the screen visibility is reduced, and it can be judged that the visibility is good.
  • the antiglare hard coat layer By forming the antiglare hard coat layer by the above method, it is possible to form an antiglare hard coat layer having a fine uneven shape on the surface and having high hardness and excellent abrasion resistance.
  • Functional layer A functional layer according to need may be further provided on the uneven surface of the obtained antiglare hard coat layer after the peeling step.
  • the functional layer include a high refractive index layer, a low refractive index layer, a double layer including a low refractive index layer and a high refractive index layer, and an antifouling layer.
  • These functional layers can be formed by techniques commonly used in the art, such as coating and curing a functional layer-forming coating composition.
  • a decorative layer may be formed on the transparent support base on which the antiglare hard coat layer is formed, if necessary.
  • the antiglare hard coat layer may be provided on one surface of a transparent support substrate, and a decorative layer may be provided on the other surface of the transparent support substrate.
  • a decoration layer it can be used as a lamination member for shaping decoration.
  • the anti-glare hard-coat layer When providing a decoration layer, after providing the said anti-glare hard-coat layer on one side of a transparent support base material, you may provide a decoration layer on the other side of a transparent support base material. . Also, if the permeability of the decorative layer is high, or if the permeability of the template substrate is high, a decorative layer is provided in advance on the other surface of the transparent support substrate. Alternatively, the antiglare hard coat layer may be provided on one side.
  • the said decoration layer is a layer which gives decoration, such as a pattern, a character, or metallic luster.
  • a decoration layer a printing layer or a vapor deposition layer etc. are mentioned, for example.
  • Both the printing layer and the vapor deposition layer are layers for decorating.
  • only either the printing layer or the deposition layer may be provided as the decoration layer, or both the printing layer and the deposition layer may be provided.
  • the print layer may be a layer composed of a plurality of layers. It is preferable that the said decoration layer is a printing layer from the ease of a work process etc.
  • the printed layer is to decorate the surface of the molded body with patterns and / or characters.
  • the pattern which consists of a grain, a grain, a grain, a grain, a geometric pattern, a character, the whole surface solid etc. is mentioned, for example.
  • Materials for the printing layer include polyvinyl resins such as vinyl chloride / vinyl acetate copolymers, polyamide resins, polyester resins, polyacrylic resins, polyurethane resins, polyvinyl acetal resins, polyester urethane resins, cellulose It is preferable to use a colored ink containing a resin such as an ester resin, an alkyd resin, and a chlorinated polyolefin resin as a binder and containing a pigment or dye of an appropriate color as a colorant.
  • a pigment of the ink used for a printing layer the following can be used, for example.
  • an azo pigment such as polyazo as a yellow pigment, an organic pigment such as isoindolinone or an inorganic pigment such as titanium nickel antimony oxide, an azo pigment such as polyazo as a red pigment, an organic pigment such as quinacridone Or inorganic pigments such as red iron oxide, organic pigments such as phthalocyanine blue as blue pigments, inorganic pigments such as cobalt blue, organic pigments such as aniline black as black pigments, inorganic pigments such as titanium dioxide as white pigments .
  • a dye of the ink used for a printing layer various well-known dyes can be used in the range which does not impair the effect of this invention.
  • a printing method of the ink it is preferable to use a known printing method such as offset printing method, gravure printing method, screen printing method or a known coating method such as roll coating method or spray coating method.
  • a known printing method such as offset printing method, gravure printing method, screen printing method or a known coating method such as roll coating method or spray coating method.
  • the deposited layer is made of at least one metal selected from the group consisting of aluminum, nickel, gold, platinum, chromium, iron, copper, indium, tin, silver, titanium, lead, zinc and the like, or an alloy or compound thereof It can form by methods, such as a vacuum evaporation method or sputtering method, the ion plating method, the plating method.
  • the thickness of the printing layer or vapor deposition layer for decoration can be appropriately selected according to a commonly used method according to the degree of elongation at the time of molding so as to obtain a desired surface appearance of the molded body.
  • a transparent support substrate having an antiglare hard coat layer provided by the above method can be suitably used as a member disposed in a display section.
  • a display a liquid crystal display, an organic electroluminescent display, a plasma display etc. are mentioned, for example.
  • the optical laminate of the present invention is disposed in a display unit, the antiglare hard coat layer side formed on one side of the transparent support substrate is the outer layer, and the other surface of the transparent support substrate, or The decorative layer laminated on the other surface of the transparent support substrate is disposed to face the surface of the display unit. Thereby, the antiglare hard coat layer is disposed on the front side of the display.
  • a touch panel display is mentioned as a suitable example of the above-mentioned display.
  • it can be suitably used as an optical laminated member for in-vehicle device touch panel display.
  • tertiary butylperoxy- A solution of 80.0 parts of propylene glycol monomethyl ether containing 1.8 parts of 2-ethylhexanoate was dropped simultaneously at the same speed over 3 hours, and then reacted at 110 ° C. for 30 minutes. Thereafter, a solution of 17.0 parts of propylene glycol monomethyl ether was added dropwise to 0.2 parts of tertiarybutylperoxy-2-ethylhexanoate, and 1.4 parts of tetrabutylammonium bromide and 0.1 parts of hydroquinone were contained.
  • Production Example 2 A production container for forming a concavo-convex shape forming composition 1 37.5 parts of n-butanol, 24.88 parts of methyl ethyl ketone, ALONIX M-402 (manufactured by Toagosei Co., Ltd., dipentaerythritol penta and hexaacrylate, SP value 12) .1) 13.30 parts, cyclomer ACA-Z320M (acrylic acrylate manufactured by Daicel Co., Ltd., SP value 11.49) 15.52 parts, CAP-482-20 (cellulose acetate manufactured by EASTAN CHEMICAL, SP value 8.70 2.66 parts and 1.42 parts of OMNIRAD 184 (photopolymerization initiator manufactured by IGM Resins, 1-hydroxycyclohexyl phenyl ketone) were added and mixed and stirred. Thereafter, 4.72 parts of the unsaturated double bond-containing acrylic copolymer A was added while stirring to prepare a concavo
  • Example 3 Preparation Example 1 of a mold base having a concavo-convex shape
  • the unevenness forming composition 1 was coated on a 100 ⁇ m PET film (trade name A4300, manufactured by Toyobo Co., Ltd.) using a bar coater. After drying at 65 ° C. for 1 minute to volatilize the solvent, it is cured by ultraviolet irradiation treatment with an integrated light quantity of 1200 mJ / cm 2 in N 2 atmosphere, and external Hz 22.1% having a film thickness of 2 ⁇ m, A template substrate 1 of Rzjis 0.51 ⁇ m was obtained.
  • Production Example 7 A production container for the uneven surface forming coating composition 2 was prepared using 2.31 parts of methyl isobutyl ketone, 46.75 parts of isopropyl alcohol, and 11.97 parts of Alonix M-402 (manufactured by Toagosei Co., Ltd., SP value 12.1). ARONIX M-305 (Toagosei Co., Ltd., SP value 12.7) 9.98 parts, ARONIX M-315 (Toho Synthesis Co., Ltd. SP value 12.5) 11.97 parts, ARONIX M-220 Toho Gosei Co., Ltd.
  • a production container for the uneven surface forming coating composition 3 was prepared by mixing 42.5 parts of n-butanol, 14.94 parts of methyl ethyl ketone, 19.98 parts of saturated ethyl ketone, Alonix M-402 (manufactured by Toagosei Co., Ltd., SP value 12). 1) 7.98 parts, Cyclomer ACA-Z320M (manufactured by Daicel Co., Ltd., SP value 11.49) 9.32 parts, CAP-482-20 (EASTAN CHEMICAL, SP value 8.70) 1.60 parts, 0.85 parts of OMNIRAD 184 (manufactured by IGM Resins) was added and mixed and stirred. Thereafter, 2.83 parts of the unsaturated double bond-containing acrylic copolymer A was added while stirring to prepare a concavo-convex shape forming coating composition 3 so as to have a solid content concentration of 15%.
  • KOH potassium hydroxide
  • a mixed solution of 043 parts is added, reacted for 2 hours at 70 ° C., cooled to 60 ° C. or lower, a mixed solution of 2.0 parts of methanol and 10.0 parts of toluene is added, and the weight average is An unsaturated double bond-containing acrylic copolymer B having a molecular weight of 350,000 was obtained.
  • Example 1 Method of Producing Hard Coating Composition 1
  • KRM-8452 made by Daicel Co., Ltd., a polymerizable unsaturated group-containing urethane ( 27.8 parts of a meta) acrylate oligomer or polymer
  • 0.98 parts of OMNIRAD 184 IGM Resins, photoinitiator, 1-hydroxycyclohexyl phenyl ketone
  • OMNIRAD TPO IGM Resins, photoinitiator, 2 (1,4,6-trimethyl benzoyl diphenyl phosphine oxide
  • MIBK-AC-2140Z Nonvolatile content of 40% by mass
  • Example 2 Method of Producing Hard Coating Composition 2
  • Example 3 Method of producing hard coating composition 3
  • Example 4 Method of producing hard coating composition 4
  • Example 5 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 2 which is the mold base having the above-mentioned uneven shape are pasted by a laminating machine under a pressure of 0.5 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 6 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 3 which is the mold base having the above-mentioned uneven shape are bonded by a laminating machine under a pressure of 0.5 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 7 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 4 which is the mold base having the above-mentioned uneven shape are bonded by a laminating machine under a pressure of 0.5 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 8 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 1 which is the mold base having the uneven shape are pasted by a laminating machine with a pressure of 0.006 MPa, and the integrated light quantity is 1100 mJ / from the mold base surface side.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 9 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 1 which is the mold base having the above-mentioned uneven shape are bonded by a laminating machine under a pressure of 2.5 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 10 Method of producing hard coating composition 5
  • Example 11 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of the adjustment example 5 which is the mold base having the above-mentioned concavo-convex shape are bonded by a laminating machine with a pressure of 0.5 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 12 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent.
  • the hard coating surface and the uneven surface of the mold base of adjustment example 6 which is the mold base having the above-mentioned concavo-convex shape are pasted with a press of 0.5MPa by a laminating machine,
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Example 13 Production method of functional layer composition 1
  • a container 912.7 parts of propylene glycol monomethyl ether, 5.36 parts of Alonix M-402 (manufactured by Toagosei Co., Ltd.), Art resin UN-906S (urethane acrylate manufactured by Rikage Kogyo Co., Ltd.) 04 parts, 1.88 parts of OMNIRAD 127 (manufactured by IGM Resins), and 6.70 parts of OPTOOL DAC-HP (product of Daikin Industries, Ltd., fluorine-based additive) were added and mixed and stirred. While stirring, 65.33 parts of Sururia 4320 (manufactured by Nikkei Catalyst Chemicals Co., Ltd.) was added to prepare Functional Layer Composition 1 so that the solid content concentration was 3%.
  • Sururia 4320 manufactured by Nikkei Catalyst Chemicals Co., Ltd.
  • the hard coating surface and the uneven surface of the mold base of Preparation Example 1 which is the mold base having the above-mentioned uneven shape are bonded by a laminating machine under a pressure of 0.5 MPa, and the accumulated light quantity 120 mJ / It was cured by ultraviolet irradiation treatment of cm 2 to peel off the surface of the mold base, and to obtain an antiglare hard coat layer having irregularities formed on the surface.
  • the functional layer composition 1 described above is applied by a bar coater on the resulting uneven surface of the antiglare hard coat layer to a dry film thickness of 80 nm and dried at 65 ° C. for 1 minute to evaporate the solvent.
  • curing was performed by ultraviolet irradiation treatment with an integrated light quantity of 1500 mJ / cm 2 in an N 2 atmosphere to obtain an antiglare hard coat layer on which a functional layer is laminated.
  • Example 14 Method of producing hard coating composition 6
  • the refractive index of the cured film of only the binder resin was 1.51.
  • the refractive index of the layer-forming resin component film contained in the hard coating composition was measured using an Abbe refractometer by a method according to JIS K0062.
  • the measurement of the light transmitting fine particles three points different in the amount of light transmitting fine particles to be added are prepared during the layer forming resin contained in the hard coating composition, and after preparing each cured film, each refractive index is It measured using an equation refractometer.
  • the refractive index of the translucent fine particles was calculated from the calibration curve.
  • Comparative Example 1 Method of Producing Hard Coating Composition 7
  • a container 23.66 parts of propylene glycol monomethyl ether, 61.79 parts of an acrylic copolymer B containing unsaturated double bonds, 0.98 parts of OMNIRAD 184 (manufactured by IGM Resins), OMNIRAD TPO
  • the hard coating composition 7 was prepared by adding 1.31 parts (manufactured by IGM Resins) and 12.27 parts of MIBK-AC-2140Z (manufactured by Nissan Chemical Co., Ltd.) and mixing and stirring to obtain a solid content concentration of 35%. .
  • Comparative example 2 Method of Producing Hard Coating Composition 8
  • a container 29.84 parts of propylene glycol monomethyl ether, 13.9 parts of ethyl acetate, 13.9 parts of butyl acetate, ARONIX M-305 (pentaerythritol tri and tetra acrylate manufactured by Toagosei Co., Ltd.) 27.8 parts, 0.98 parts of OMNIRAD 184 (manufactured by IGM Resins), 1.31 parts of OMNIRAD TPO (manufactured by IGM Resins), 12.27 parts of MIBK-AC-2140Z (manufactured by Nissan Chemical Industries, Ltd.)
  • the hard coating composition 8 was prepared to have a solid concentration of 35%.
  • Comparative example 3 Production method of antiglare hard coat layer Hard coating on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm.
  • Composition 3 was applied by a bar coater to a dry film thickness of 6 ⁇ m, and dried at 65 ° C. for 4 minutes to evaporate the solvent. After that, the hard coating surface and the uneven surface of the mold base of Preparation Example 1 which is the mold base having the above-mentioned uneven shape are pasted by a laminating machine with a pressure of 0.0005 MPa.
  • the antiglare hard coat layer was obtained by curing by ultraviolet irradiation treatment of cm 2 and peeling the mold substrate surface.
  • Comparative example 4 Hard coat layer manufacturing method
  • Hard coating composition on one side of a three-layer (PMMA / PC / PMMA) sheet (trade name: MT3 LTR, manufactured by Kuraray Co., Ltd.) made of PMMA and PC having a thickness of 1.0 mm. 3 to a dry film thickness of 6 ⁇ m with a bar coater, dried at 65 ° C for 4 minutes to volatilize the solvent, and cured by ultraviolet irradiation treatment with an integrated light quantity of 1100 mJ / cm 2 in a nitrogen atmosphere, The hard coat layer was obtained by peeling off the surface.
  • PMMA / PC / PMMA sheet trade name: MT3 LTR, manufactured by Kuraray Co., Ltd.
  • Comparative example 5 Production method of hard coat layer Composition having an unevenness forming on one surface of a 3-layer (PMMA / PC / PMMA) sheet (trade name: MT3LTR, manufactured by Kuraray Co., Ltd.) having a thickness of 1.0 mm and made of PMMA and PC 1 is applied by a bar coater to a dry film thickness of 2 ⁇ m, dried at 65 ° C. for 4 minutes to evaporate the solvent, and cured by ultraviolet irradiation treatment with an integrated light quantity of 1200 mJ / cm 2 in a nitrogen atmosphere, The hard coat layer was obtained by peeling off the surface.
  • PMMA / PC / PMMA sheet trade name: MT3LTR, manufactured by Kuraray Co., Ltd.
  • Comparative example 6 In the production of the antiglare hard coat layer, after the hard coating composition 3 is applied and dried, the uneven surface of the mold substrate 1 is laminated, and then the mold substrate is peeled without being irradiated with ultraviolet light A hard coat layer was obtained by the same procedure as in Example 3 except that irradiation was performed.
  • Comparative example 7 Method of Producing Hard Coating Composition 9
  • a container 29.84 parts of propylene glycol monomethyl ether, 13.9 parts of ethyl acetate, 13.9 parts of butyl acetate, Alonix M-315 (isocyanuric acid EO modified di and tri made by Toagosei Co., Ltd.
  • the hard coating composition 9 was prepared to have a solid content concentration of 35%.
  • the calculated film thickness of the film thickness was measured as follows.
  • the test sample was cut out to 10 mm ⁇ 10 mm, and the cross section of the coating was precipitated with a microtome (LEICA RM2265).
  • the deposited cross section was observed with a laser microscope (manufactured by VK 8700 KEYENCE), the film thickness of 10 concave portions and 10 convex portions was measured, and the film thickness was determined by calculating the average value thereof.
  • the test sample of the antiglare hard coat layer was placed under a fluorescent lamp to visually confirm the surface layer of the antiglare hard coat layer.
  • the evaluation criteria of the appearance after bonding are as follows. ⁇ : The film after bonding was not observed in the film after being stuck, dented, a step, or coating film.
  • X Peeling, dents, steps, and protrusion of the coating film were observed on the film after lamination.
  • the evaluation criteria for the appearance after peeling are as follows. Good: The uneven appearance was uniformly applied to the front, and no step and no protrusion of the coating film were visible.
  • X A clear part where unevenness was not transferred, a level difference, or a protrusion of the coating film was visually recognized.
  • Rz JIS of antiglare hard coat layer surface Test sample of antiglare hard coat layer cut out to 50 mm ⁇ 50 mm, laser microscope equipped with 20 ⁇ magnification of eyepiece and 50 ⁇ magnification of objective lens ( It measured based on JISB0601; 2001 by VK8700 KEYECE make), and obtained Rz jis value.
  • the concavo-convex transfer rate in the test sample of the antiglare hard coat layer was determined by the following procedure.
  • the Rz JIS (A) value of the mold base was measured by the same procedure as described above.
  • the uneven surface of the mold base is brought into surface contact by pressing the unhardened hard coat layer surface in the range of 0.001 to 5 MPa, with the mold base in surface contact,
  • the uncured hard coat layer was cured by irradiating an ultraviolet ray at an integrated light amount of 1100 mJ / cm 2 .
  • the mold base was peeled from the obtained hard coat layer, and the Rz JIS (B) of the formed uneven surface was measured.
  • the haze value (all haze values) of the antiglare hard coat layer was measured using a haze meter (NDH 2000 manufactured by Nippon Denshoku Co., Ltd.) by the method according to JIS K7136. The haze value Ha of the layer was measured.
  • Tt (%) T1 / T0 ⁇ 100
  • Average length RSm of roughness curvilinear element of antiglare hard coat layer surface Average length RSm of roughness curvilinear element of antiglare hard coat layer surface, using a laser microscope (manufactured by VK-8700 KEYENCE, etc.) It measured based on JIS B0601; 2001 prescription
  • the light quantity of the transmitted light of the antiglare hard coat layer is orthogonal to the ray axis of the transmitted light using an image clarity meter ICM-1T (manufactured by Suga Test Instruments Co., Ltd.), It was measured through an optical comb of width n (mm) moving at a speed of 10 mm / min.
  • the optical comb has a ratio of width of bright part to dark part of 1: 1, its width n (mm) is 0.125, 0.25, 0.5, 1, 2 and 5 types, and moving speed is 10 mm / Min.
  • the transmitted image sharpness Cn (%) is the transmitted image sharpness measurement test and the transmitted portion (bright portion) of the optical comb is on the light axis in the transmission image sharpness measurement test
  • the maximum value of the transmitted light amount is Mn.
  • the minimum value of the transmitted light amount when there is a portion (dark portion) is mn, it is calculated by the following equation.
  • Cn ⁇ (Mn ⁇ mn) / (Mn + mn) ⁇ ⁇ 100
  • the total value Tc (%) was determined.
  • the total transmission value Tc (%) is five transmitted image sharpness C 0.125 (%) when the width n (mm) of the optical comb is 0.125, 0.25, 0.5, 1, 2 respectively , C0.25 (%), C0.5 (%), C1 (%), C2 (%) (the maximum value that can be taken is 500%).
  • the pencil hardness of the coating was measured in accordance with JIS K 5600-5-4. Specifically, it was measured using a pencil scratched film hardness tester (Model P manufactured by Toyo Seiki Seisaku-sho, Ltd .; pressure load 100 g to 1 kg). Using a pencil scratch test (manufactured by Japan Paint Inspection Association) manufactured by Mitsubishi Uni, the tip of the core was adjusted with abrasive paper (3M P-1000) so that the cross section was smooth and circular. After placing the sample on the measurement table, the pencil was fixed so that the scratch angle was 45 °, and the test was performed under the condition of a load of 750 g. For each test, the test was repeated 5 times while shifting the test place while smoothing the core.
  • the occurrence of dents on the coating film surface was visually confirmed. For example, in the case of a test using a 3H pencil, if no scar was generated, it was judged as 3H or more. It was judged as 3H when the occurrence of a slight dent was visually recognized in one of five tests. And when generation
  • the surface of the antiglare hard coat layer was subjected to a scratch resistance test by reciprocating steel wool # 0000 10 times with a load of 2 N or 4 N per 2 cm 2 .
  • the sample surface after the scratch resistance test was observed using a microscope with a magnification of 100 ⁇ (digital microscope VHX-2000, lens Z2100, manufactured by Keyence Corporation), and judged in the visual field range of the microscope based on the following criteria.
  • no damage having a length of 500 ⁇ m or more with a load of 4 N per 2 cm 2 was observed at all
  • no damage having a length of 500 ⁇ m or more with a load of 2 N per 2 cm 2 was not recognized at all.
  • the test sample of the antiglare hard coat layer was visually evaluated based on the following evaluation criteria using a display with a pixel density of 326 ppi.
  • The glare was hardly recognized and was good.
  • Glaring was recognized a little, but was good.
  • Glare was recognized and was poor.
  • X The glaring was clearly recognized and was poor.
  • Evaluation of anti-glare property A test sample of a black PET film (manufactured by PANAC, trade name: gel poly GPH100E82A04) and an anti-glare coating layer was attached to each other to prepare a test piece. The test piece was placed under a fluorescent light, and the degree of reflection of the fluorescent light was visually confirmed. Evaluation criteria are as follows. ⁇ : The contour of the reflected fluorescent light was distorted. ⁇ : The outline of the reflected fluorescent light was slightly distorted. X: The outline of the reflected fluorescent light was recognized.
  • the external haze value (external Hz) of the mold base was measured by the following procedure.
  • the haze value (total haze value) of the template substrate was measured using the haze meter (NDH 2000 manufactured by Nippon Denshoku Co., Ltd.) according to JIS K7136 to measure the total haze value Ha of the template substrate.
  • Test samples of the mold base were cut into 50 mm ⁇ 50 mm.
  • the item of "Rz JIS " and the "concave shape transfer ratio" is the item which evaluated in the state before providing a functional layer. The other items were evaluated in the condition after the functional layer was provided.
  • Comparative Example 1 is an example in which the weight average molecular weight of the polymerizable unsaturated group-containing polymer contained in the hard coating composition exceeds the range of claim 1. In this example, the peel strength (peeling strength before curing) of the surface contact portion of the uneven surface of the mold base and the uncured hard coat layer surface was reduced, and the uneven shape could not be transferred well.
  • Comparative Example 2 is an example where the hard coating composition contains no polymerizable unsaturated group-containing oligomer or polymer.
  • the peel strength (peeling strength before curing) of the surface contact portion of the uneven surface of the mold base and the uncured hard coat surface is small, the coating film protrudes from the end, and the film thickness becomes uneven. The shape could not be transferred well.
  • the comparative example 3 is an example whose pressure of the press at the time of surface contact is less than 0.001 MPa. In this example, a void was generated between the mold base and the antiglare hard coat layer, no transfer of the uneven shape could be confirmed in the void portion, and the uneven shape could not be transferred well.
  • the comparative example 4 is an example which does not perform the surface contact process by a casting_mold
  • a hard coat layer having no concavo-convex shape was formed.
  • Comparative Example 5 is an example formed without using a mold base, and is an example using the unevenness forming coating composition 1 used for forming the mold base instead of the hard coating composition. In this example, the hardness of the hard coat layer was less than 3H.
  • Comparative Example 6 is an example in which after the mold base was brought into surface contact with the uncured hard coat layer, the mold base was peeled without being irradiated with ultraviolet light, and the ultraviolet light was irradiated after peeling.
  • Comparative Example 7 is an example in which a polymerizable unsaturated group-containing oligomer or polymer is not contained in the hard coating composition, and is an example in which one having a high viscosity is used as the polymerizable unsaturated group-containing monomer.
  • the mold base can not be peeled off after ultraviolet irradiation, and the mold base peel strength after ultraviolet irradiation can not be measured.
  • an antiglare hard coat layer having a surface asperity shape exhibiting good antiglare performance and having excellent scratch resistance.
  • the antiglare hard coat layer formed according to the present invention can be suitably provided, for example, in a high detail display.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明は、良好な防眩性を発揮する凹凸形状を有し、かつ耐擦傷性に優れた、防眩ハードコート層の形成方法を提供することを課題とする。 本発明は、透明支持基材の少なくとも一方の面上に、表面に凹凸形状を有する防眩ハードコート層を設ける、防眩ハードコート層の形成方法であって、下記工程、 表面に凹凸形状を有する鋳型基材を作成する、鋳型基材作成工程、 透明支持基材の一方の面上にハードコーティング組成物を塗装し、未硬化のハードコート層を形成する、塗装工程、 前記鋳型基材の凹凸形状面と、前記未硬化のハードコート層の面とが対向する方向で、両基材を面接触させる、面接触工程、 活性エネルギー線を照射して、未硬化のハードコート層を硬化させる、硬化工程、 硬化したハードコート層から、鋳型基材を剥離する、剥離工程、 を包含し、 前記ハードコーティング組成物は、重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマーを含み、 前記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度は、0.01~2N/25mmの範囲内であり、 活性エネルギー線照射後における、前記鋳型基材の凹凸形状面およびハードコート層の面接触部分の剥離強度は、0.005~1.5N/25mmの範囲内であり、および、 前記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程における、押圧の圧力が0.001~5MPaであり、および、押圧の圧力が前記範囲である場合の凹凸形状転写率が75~100%である、 防眩ハードコート層の形成方法、に関する。

Description

防眩ハードコート層の形成方法
 本発明は、特にディスプレイなどの光学積層部材に好適に用いることができる、防眩ハードコート層の形成方法に関する。
 ディスプレイは、コンピュータ、テレビジョン、携帯電話、携帯情報端末機器(タブレットパソコン、モバイル機器および電子手帳など)、そして、デジタルメーター、インストルメントパネル、ナビゲーション、コンソールパネル、センタークラスターおよびヒーターコントロールパネルなどの車載用表示パネル、などの様々な分野で使用されている。これらのディスプレイにおいては、ディスプレイ表面上に、表面を粗面化する防眩(AG:Anti Glare)層が設けられることが多い。ディスプレイ表面上に防眩層を設けることによって、防眩層の表面の凹凸形状によって外光を乱反射させ、ディスプレイ表面に反射した像の輪郭をぼかすことができる。これによって、ディスプレイ表面上における反射像の視認性を低下することができ、そしてディスプレイ使用時における反射像の映り込みによる画面視認性の障害を解消することができる。
 防眩層は上記の通り、表面の凹凸形状によって、外光を乱反射させる機能を発揮する。そのため防眩層は、例えば光学積層部材の最表層などといった、表層側に設けられることが多い。そして特に、近年における高精細ディスプレイなどの表示装置においては、ディスプレイから発せられる光線のピッチがより細かくなっている。そのため、画像鮮明性を保持するためにはより微細で緻密な凹凸形状が求められている。
 ところで、ディスプレイなどの光学積層部材の表層面は、耐擦傷性および耐久性に優れることも求められる。例えば、表面層の耐擦傷性が劣る場合は、擦傷が付きやすくなり、ディスプレイの視認性を大きく低下させることとなるためである。
 例えば特開2011-69913号公報(特許文献1)には、透明プラスチックフィルム基材上に、表面に微細な凹凸を有する防眩層を有し、かつ基材に対して防眩層側の最表面に耐擦傷性層を有し、該耐擦傷性層の平均膜厚が0.03~0.50μmであり、該耐擦傷性層が少なくとも成分(A)平均粒径が40nm以上100nm以下の無機微粒子、(B)平均粒径が1nm以上40nm未満の無機微粒子、(C)電離放射線硬化性多官能モノマー、(D)有機高分子増粘剤を含有し、かつ重合性含フッ素バインダーを実質的に含有しない硬化性組成物より形成されることを特徴とする防眩フィルムについて記載される。上記課題を解決する手段として、この特許文献1に記載されるように、防眩層および耐擦傷性層を別々に設ける方法が挙げられる。しかしながら、防眩層および耐擦傷性層を別々に設ける場合は、層の数が増えることとなる。機能層それぞれを別に設けることによって、各層の屈折率の差などにより層間面での屈折などが生じ、視認性に影響が生じるおそれがある。
 特開2007-183653号公報(特許文献2)には、表面に微細凹凸構造を備え良好な防眩効果を発揮すると共に、耐擦傷性にも優れた表面特性を有し、ハードコート性を兼ね備えた防眩性ハードコートフィルムとして、透明プラスチックからなる基材の少なくとも片面に、活性エネルギー線硬化型樹脂被膜層が設けてあり、該活性エネルギー線硬化型樹脂被膜層の側の表面に、凹凸の高低差が異なる2種類の微細な凹凸からなる凹凸構造を備えていることを特徴とする防眩性ハードコートフィルムが記載される(請求項1)。特許文献2はまた、上記防眩性ハードコートフィルムの製造方法として、基材の少なくとも片面に、該活性エネルギー線硬化型樹脂を塗布し、該活性エネルギー線硬化型樹脂被膜層に活性エネルギー線を照射して活性エネルギー線硬化型樹脂被膜層を硬化した後に、サンドブラスト加工か又はエンボス加工法の少なくともいずれかを施すことによって、凹凸の平均高低差が異なる2種類の微細な凹凸からなる凹凸構造を表面に備え且つ硬化した活性エネルギー線硬化型樹脂被膜層を基材上に設けることを記載する(請求項6)。
特開2011-69913号公報 特開2007-183653号公報
 本発明は上記従来の課題を解決するものであり、その目的とするところは、良好な防眩性を発揮する凹凸形状を有し、かつ耐擦傷性に優れた、防眩ハードコート層の形成方法を提供することにある。
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 透明支持基材の少なくとも一方の面上に、表面に凹凸形状を有する防眩ハードコート層を設ける、防眩ハードコート層の形成方法であって、下記工程、
 表面に凹凸形状を有する鋳型基材を作成する、鋳型基材作成工程、
 透明支持基材の一方の面上にハードコーティング組成物を塗装し、未硬化のハードコート層を形成する、塗装工程、
 上記鋳型基材の凹凸形状面と、上記未硬化のハードコート層の面とが対向する方向で、両基材を面接触させる、面接触工程、
 活性エネルギー線を照射して、未硬化のハードコート層を硬化させる、硬化工程、
 硬化したハードコート層から、鋳型基材を剥離する、剥離工程、
を包含し、
 上記ハードコーティング組成物は、重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマーを含み、
 上記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度は、0.01~2N/25mmの範囲内であり、
 活性エネルギー線照射後における、上記鋳型基材の凹凸形状面およびハードコート層の面接触部分の剥離強度は、0.005~1.5N/25mmの範囲内であり、および、
 上記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程における、押圧の圧力が0.001~5MPaであり、および、押圧の圧力が上記範囲である場合の凹凸形状転写率が75~100%である、
防眩ハードコート層の形成方法。
[2]
 上記鋳型基材の表面の凹凸形状は、第1成分および第2成分を含む凹凸形状形成コーティング組成物を塗装し、第1成分および第2成分を相分離させることによって形成された凹凸形状である、
防眩ハードコート層の形成方法。
[3]
 上記ハードコーティング組成物は、
上記重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマー、および
重合性不飽和基当量が90~500g/eqである、重合性不飽和基含有モノマー、
を含み、
上記ハードコーティング組成物中に含まれる層形成樹脂成分の固形分100質量部に対して、上記重合性不飽和基含有オリゴマーまたはポリマーの量が15~85質量部であり、上記重合性不飽和基含有モノマーの量が85~15質量部である、
防眩ハードコート層の形成方法。
[4]
 上記重合性不飽和基含有ポリマーが有する重合性不飽和基は、アクリロイル基およびメタクリロイル基からなる群から選択される1種またはそれ以上である、防眩ハートコート層の形成方法。
[5]
 上記防眩ハードコート層の硬度は、鉛筆硬度3Hまたはそれ以上である、防眩ハードコート層の形成方法。
[6]
 上記表面に凹凸形状を有する防眩ハードコート層は、
十点平均粗さRzJISが0.2~1.0 μmであり、
粗さ曲線要素の平均長さRSmが5~100μmである、
表面凹凸形状を有する、
防眩ハードコート層の形成方法。
[7]
 上記ハードコーティング組成物は、平均粒子径が0.5~10μmである透光性微粒子をさらに含み、
 上記透光性微粒子の屈折率(Rf1)、および、上記ハードコーティング組成物中に含まれる層形成樹脂成分の屈折率(Rf2)が、下記関係
0.01≦|Rf1―Rf2|≦0.23
を満たす、
防眩ハードコート層の形成方法。
[8]
 上記表面に凹凸形状を有する防眩ハードコート層は、
0.125mm、0.25mm、0.5mm、1.0mmおよび2.0mmの5種類の幅の光学くしに対する透過像鮮明度(%)の総和値(%)が300~480の範囲内である、
表面凹凸形状を有する、
防眩ハードコート層の形成方法。
[9]
 上記剥離工程後にさらに、
 得られた防眩ハードコート層の凹凸形状面の上に、高屈折率層、低屈折率層および防汚層からなる群から選択される1種またはそれ以上の機能層を形成する工程、
を包含する、
防眩ハードコート層の形成方法。
[10]
 上記透明支持基材の他の一方の面上に、加飾層を形成する、加飾層形成工程、
をさらに包含する、
防眩ハードコート層の形成方法。
[11]
 上記方法によって得られた防眩ハードコート層を、ディスプレイの表面に配置する工程、
を包含する、防眩ハードコート層を有するディスプレイの製造方法。
[12]
 上記ディスプレイが、タッチパネルディスプレイである、上記製造方法。
 本発明の形成方法によれば、良好な防眩性能を発揮する表面凹凸形状を有し、かつ、耐擦傷性に優れた防眩ハードコート層を形成することができる。
 まず、本発明に至った経緯を説明する。本発明者らは、防眩層の耐擦傷性を向上させる手法について検討を行った。防眩層の耐擦傷性を向上させる手段の1つとして、例えば、コーティング層の硬度を高めるために架橋密度を向上させる手段が考えられる。一方で、コーティング層の架橋密度を向上させることによって、防眩層の表面凹凸形状に影響が生じる可能性がある。例えば、第1成分および第2成分を含むコーティング組成物を塗装し、第1成分および第2成分を相分離させることによって、微細な凹凸形状を形成することができる。一方で、このような第1成分および第2成分を含むコーティング組成物において、得られる防眩層の架橋密度を高める設計を行う場合は、コーティング組成物の性状および相分離条件が変化してしまい、凹凸形状の微細さが損なわれる傾向があった。さらに、第1成分および第2成分を含むコーティング組成物において、より微細な凹凸形状の形成を試みたところ、架橋密度およびコーティング層の膜厚が下がる傾向があることが、実験により判明した。このように、特に、第1成分および第2成分を含むコーティング組成物を用いる場合において、耐擦傷性を向上させつつ、微細な凹凸形状を形成することは、技術的課題の1つであった。
 本発明者らは、例えば、第1成分および第2成分を含むコーティング組成物を用いることによって形成することができる微細な凹凸形状を有しつつ、かつ、耐擦傷性に優れる防眩ハードコート層を形成する方法について検討を行った。このような検討の中で、微細な凹凸形状の防眩層を鋳型として用いて、ハードコート層の表面上に凹凸形状を転写させる手段を検討するに至った。そして、微細な凹凸形状の表面を有する防眩層を鋳型として用いること、特定の成分を含むハードコーティング組成物を用いること、さらに、特定の工程によりハードコート層に凹凸形状を転写すること、によって、微細な凹凸形状を有し、かつ耐擦傷性に優れる防眩ハードコート層を形成することができることを見いだし、本発明を完成するに至った。以下、本発明をについて詳述する。
 本発明の防眩ハードコート層の形成方法は、透明支持基材の少なくとも一方の面上に、表面に凹凸形状を有する防眩ハードコート層を設ける方法であって、下記工程を包含する:
 表面に凹凸形状を有する鋳型基材を作成する、鋳型基材作成工程、
 透明支持基材の一方の面上にハードコーティング組成物を塗装し、未硬化のハードコート層を形成する、塗装工程、
 上記鋳型基材の凹凸形状面と、上記未硬化のハードコート層の面とが対向する方向で、両基材を面接触させる、面接触工程、
 活性エネルギー線を照射して、未硬化のハードコート層を硬化させる、硬化工程、
 硬化したハードコート層から、鋳型基材を剥離する、剥離工程。
鋳型基材の作成
 本明細書において「鋳型基材」とは、凹凸形状面を有しており、この鋳型基材の凹凸形状面を、防眩ハードコーティング組成物を塗装して得られる未硬化のハードコート層の面と、対向する方向で面接触させることにより、凹凸形状が転写され、ハードコート層の表面に凹凸形状が形成されることとなる基材を意味する。
 上記鋳型基材の凹凸形状面は、当分野において通常用いられる種々の凹凸形状面形成方法によって形成することができる。通常用いられる方法として、例えば、平均粒子径が0.1~5μmである微粒子を含むコーティング組成物を塗装し硬化させることによって、微粒子の粒子径の大きさに起因した凹凸形状面を形成することができる。上記微粒子として、例えば、シリカ(SiO)粒子、アルミナ粒子、チタニア粒子、酸化スズ粒子、アンチモンドープ酸化スズ(略称;ATO)粒子、酸化亜鉛粒子等の無機酸化物粒子、および、ポリスチレン粒子、メラミン樹脂粒子、アクリル粒子、アクリル-スチレン粒子、シリコーン粒子、ポリカーボネート粒子、ポリエチレン粒子、ポリプロピレン粒子などの有機樹脂粒子などが挙げられる。その他の方法として例えば、基材の表面を切削するなどの手段により、凹凸形状面を形成する方法が挙げられる。
 上記鋳型基材の表面の凹凸形状は、第1成分および第2成分を含む凹凸形状形成コーティング組成物を塗装し、第1成分および第2成分を相分離させることによって形成された凹凸形状であるのが好ましい。第1成分および第2成分の相分離によって得られる凹凸形状は、自然発生的に凹凸配置が決まるので、不規則な凹凸形状を形成することができる。このため、凹凸配置の規則性に起因するモアレ発生などを伴わないという利点がある。さらに、透明基材に、第1成分および第2成分を含む凹凸形状形成コーティング組成物を塗装して鋳型基材を形成することによって、活性エネルギー線透過率が高い鋳型基材を形成することができる利点がある。活性エネルギー線透過率が高い鋳型基材を用いることによって、以下に詳述する硬化工程において、鋳型基材側から活性エネルギー線を照射して、未硬化のハードコート層を硬化させることができる利点がある。
 上記凹凸形状形成コーティング組成物において、相分離が生じる第1成分および第2成分の組み合わせとして、第1成分のSP値(SP)および第2成分のSP値(SP)において、下記条件
SP<SP
SP-SP ≧ 0.5
を満たす態様が挙げられる。
 上記条件を満たす第1成分および第2成分を含む凹凸形状形成コーティング組成物を基材上に塗布すると、第1成分および第2成分のSP値の差に基づいて第1成分と第2成分とが相分離し、表面に、連続したランダムな凹凸を有する塗膜を形成することができる。
 SP値とは、solubility parameter(溶解性パラメーター)の略であり、溶解性の尺度となるものである。SP値は数値が大きいほど極性が高く、逆に数値が小さいほど極性が低いことを示す。
 例えば、SP値は次の方法によって実測することができる[参考文献:SUH、CLARKE、J.P.S.A-1、5、1671~1681(1967)]。
測定温度:20℃
サンプル:樹脂0.5gを100mlビーカーに秤量し、良溶媒10mlをホールピペットを用いて加え、マグネティックスターラーにより溶解する。
溶媒:
良溶媒…ジオキサン、アセトンなど
貧溶媒…n-ヘキサン、イオン交換水など
濁点測定:50mlビュレットを用いて貧溶媒を滴下し、濁りが生じた点を滴下量とする。
 樹脂のSP値δは次式によって与えられる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Vi:溶媒の分子容(ml/mol)
φi:濁点における各溶媒の体積分率
δi:溶媒のSP値
ml:低SP貧溶媒混合系
mh:高SP貧溶媒混合系
 第1成分のSP値と第2成分のSP値との差は0.5以上であるのが好ましく、0.8 以上であるのがより好ましい。このSP値の差の上限は特に限定されないが、一般には15以下である。第1成分のSP値と第2成分のSP値との差が0.5以上である場合は、互いの成分の相溶性が低く、それにより凹凸形状形成コーティング組成物の塗布後に第1成分と第2成分との相分離がもたらされると考えられる。
 この実施態様においては、活性エネルギー線硬化性成分が第1成分として含まれるのが好ましい。そして、第2成分として、不飽和二重結合含有アクリル共重合体が用いられるのが好ましい。
 第1成分として、不飽和二重結合基を少なくとも1つ有するモノマー、オリゴマーまたはポリマーを含むのが好ましい。これらの具体例として、不飽和二重結合基を少なくとも1つ有する、(メタ)アクリレートモノマー、(メタ)アクリレートオリゴマー、(メタ)アクリレートポリマー、ウレタン(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートポリマーおよびこれらの変性モノマー、オリゴマーまたはポリマーなどが挙げられる。第1成分は、多官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートオリゴマー、多官能(メタ)アクリレートポリマー、多官能ウレタン(メタ)アクリレートモノマー、多官能ウレタン(メタ)アクリレートオリゴマー、多官能ウレタン(メタ)アクリレートポリマーなどの、多官能(メタ)アクリレート化合物および多官能ウレタン(メタ)アクリレート化合物から選択される少なくとも1種を含むのが好ましい。このような化合物を含むことによって、硬化後の架橋密度を高くすることができ、表面硬度の向上効果を高くすることができる利点がある。
 第1成分は、多官能(メタ)アクリレートモノマーを含むのがより好ましい。多官能(メタ)アクリレートの具体例として、例えば、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1、3-アダマンチルジメタノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 上記(メタ)アクリレートモノマー、そして(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートオリゴマーは、重量平均分子量が5000未満であるのが好ましい。例えば(メタ)アクリレートモノマー、ウレタン(メタ)アクリレートモノマーは、分子量が70以上であって重量平均分子量が3000未満であるのが好ましく、分子量が70以上であって重量平均分子量が2500未満であるのが好ましい。また、(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートオリゴマーは、重量平均分子量が100以上であって5000未満であるのが好ましい。また上記(メタ)アクリレートポリマー、ウレタン(メタ)アクリレートポリマーは、重量平均分子量が50000未満であるのが好ましい。
 第2成分として、例えば、不飽和二重結合含有アクリル共重合体、セルロース樹脂などが挙げられる。不飽和二重結合含有アクリル共重合体は、例えば(メタ)アクリルモノマーと他のエチレン性不飽和二重結合を有するモノマーとを共重合した樹脂、(メタ)アクリルモノマーと他のエチレン性不飽和二重結合およびエポキシ基を有するモノマーとを反応させた樹脂、(メタ)アクリルモノマーと他のエチレン性不飽和二重結合およびイソシアネート基を有するモノマーとを反応させた樹脂などにアクリル酸またはグリシジルアクリレートなどの不飽和二重結合を有しかつ他の官能基を有する成分を付加させたものなどが挙げられる。これらの不飽和二重結合含有アクリル共重合体は1種を単独で用いてもよく、また2種以上を混合して用いてもよい。この不飽和二重結合含有アクリル共重合体は、重量平均分子量で3000~100000であるのが好ましく、3000~50000であるのがより好ましい。
 セルロース樹脂として、例えば、セルロースアセテートブチレート、セルロースアセテートプロピオネートなどが挙げられる。
 上記第1成分および第2成分の質量比は、第1成分:第2成分=98.5:1.5~55:45であるのが好ましく、98.5:1.5~60:40であるのがより好ましく、98:2~70:30であるのがさらに好ましい。
 上記凹凸形状形成コーティング組成物は光重合開始剤を含むのが好ましい。光重合開始剤が存在することによって、紫外線などの活性エネルギー線照射により樹脂成分が良好に重合することとなる。光重合開始剤の例として、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系重合開始剤などが挙げられる。光重合開始剤の好ましい量は、凹凸形状形成コーティング組成物の樹脂成分100質量部に対して、0.01~20質量部であり、より好ましくは1~10質量部である。上記光重合開始剤は、単独で用いてもよく、また、2種以上の光重合開始剤を組合せて用いてもよい。
 表面凹凸形状は、基材上に、上記の凹凸形状形成コーティング組成物を塗装し硬化させることにより形成される。凹凸形状形成コーティング組成物の塗装方法は、組成物および塗布工程の状況に応じて適時選択することができ、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、ダイコート法、インクジェット法、グラビアコート法またはエクストルージョンコート法(米国特許2681294号明細書)などにより塗布することができる。凹凸形状形成コーティング組成物を塗装する基材として、例えば、各種高分子基材を用いることができる。基材として、以下に詳述する透明支持基材を用いてもよい。
 凹凸形状形成コーティング組成物の塗装により得られた塗膜を硬化させることによって、組成物中に含まれる第1成分および第2成分の相分離が生じ、凹凸形状面を有する鋳型基材を形成することができる。この硬化は、必要に応じた波長の活性エネルギー線を発する光源を用いて照射することによって行うことができる。照射する活性エネルギー線として、例えば、積算光量30~5000mJ/cmの光を用いることができる。またこの照射光の波長は特に限定されるものではないが、例えば360nm以下の波長を有する紫外光などを用いることができる。このような光は、高圧水銀灯、超高圧水銀灯などを用いて得ることができる。
透明支持基材
 防眩ハードコート層を設ける上記透明支持基材として、当分野において用いられる各種基材を、特に限定されることなく用いることができる。透明支持基材の具体例として、例えば、ポリカーボネート系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム;ジアセチルセルロース、トリアセチルセルロース等のセルロース系フィルム;ポリメチルメタクリレート等のアクリル系フィルムのような、透明ポリマーからなる基材が挙げられる。また、透明支持基材の他の例としては、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系フィルム;ポリ塩化ビニル、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系フィルム;ナイロン、芳香族ポリアミド等のアミド系フィルムのような、透明ポリマーからなる基材も挙げられる。
 またさらに、透明支持基材として、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリビニルアルコール、ポリ塩化ビニリデン、ポリビニルブチラール、ポリアリレート、ポリオキシメチレン、エポキシ樹脂、および上記ポリマーのブレンド物のような、透明ポリマーからなる基材なども挙げられる。
 上記透明支持基材はさらに、透明ポリマーからなる複数の基材が積層されたものであってもよい。例えば、アクリル系樹脂からなるフィルムおよびポリカーボネート系樹脂からなるフィルムの積層体またはシートの積層体であってもよい。
 上記透明支持基材として、このような透明高分子基材のうち、光学的に複屈折の少ないもの、あるいは位相差を波長(例えば550nm)の1/4(λ/4)または波長の1/2(λ/2)に制御したもの、さらには複屈折をまったく制御していないものを、用途に応じて適宜選択することができる。
 透明支持基材の厚さは、その用途および部材加工方法などに応じて適宜選択することができる。一般には強度および取扱性等の作業性などの点より、10~5000μm程度であり、特に20~3000μmが好ましく、30~3000μmがより好ましい。
塗装工程
 塗装工程では、上記透明支持基剤の少なくとも一方の面に、ハードコーティング組成物を塗装し、未硬化のハードコート層を形成する。
ハードコーティング組成物
 塗装工程において用いるハードコーティング組成物は、重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマーを含む。上記重合性不飽和基含有オリゴマーまたはポリマーは、ハードコート層の層形成樹脂成分である。
 上記方法は、ハードコーティング組成物を塗装して得られる未硬化のハードコート層に対して、鋳型基材を面接触させる工程を含む。そのため、ハードコーティング組成物が未硬化の状態で鋳型基材を面接触させても、塗装により得られたハードコート層を層として保持することが必要とされる。このような方法において、重量平均分子量が1000~200000の範囲内である重合性不飽和基含有オリゴマーまたはポリマーを、ハードコート層の層形成樹脂成分として含むことによって、以下に記載する面接触工程を良好に行うことができる利点がある。
 上記重合性不飽和基含有オリゴマーまたはポリマーは、重量平均分子量が1000~200000の範囲内である、重合性不飽和基を有するオリゴマーまたはポリマーである。上記重合性不飽和基含有オリゴマーまたはポリマーが有する重合性不飽和基は、アクリロイル基およびメタクリロイル基からなる群から選択される1種またはそれ以上であるのが好ましい。
 上記重合性不飽和基含有オリゴマーまたはポリマーの具体例として、例えば、重量平均分子量が1000~200000の範囲内であるウレタン(メタ)アクリレートオリゴマーまたはポリマー、重量平均分子量が1000~200000の範囲内であるアクリル(メタ)アクリレートオリゴマーまたはポリマー、が挙げられる。
 上記ウレタン(メタ)アクリレートオリゴマーまたはポリマーは、例えば、
(1)分子内に末端イソシアネート基を有するポリイソシアネート化合物に、水酸基及びアクリロイル基(またはメタクリロイル基)を有する化合物を付加反応させる、
(2)ポリイソシアネート化合物とポリオールとを反応させて得られるポリウレタンポリオールにイソシアネート基含有(メタ)アクリレートモノマーを反応させる、
などの方法により調製することができる。
 上記ポリイソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシレンジイソシアネート、1,4-キシレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネートあるいはこれらジイソシアネート化合物のうち芳香族のイソシアネート類を水添して得られるジイソシアネート化合物(例えば、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネートなどのジイソシアネート化合物)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのような2価あるいは3価のポリイソシアネート化合物、および、これらのジイソシアネートのビュレットタイプ付加物やイソシアヌレート環タイプ付加物などが挙げられる。
 上記(1)における、水酸基及びアクリロイル基(またはメタクリロイル基)を有する化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリセロールジ(メタ)アクリレート、及び、これらにエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトン、γ-ブチロラクトン等を付加して得られるアルキレンオキサイド変性又はラクトン変性の化合物等を挙げることができる。
 上記(2)におけるポリオールとしては、例えばエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリカプロラクトンジオール、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。
 上記(2)におけるイソシアネート基含有(メタ)アクリレートモノマーとしては、例えばイソシアネートエチルアクリレート、イソシアネートプロピルアクリレート、さらにヒドロキシエチルアクリレート等の活性水素含有重合性モノマーにヘキサメチレンジイソシアネート等のポリイソシアネート化合物を付加してなる不飽和化合物などが挙げられる。
 上記ウレタン(メタ)アクリレートオリゴマーまたはポリマーはまた、ウレア結合を有するウレタンウレア(メタ)アクリレートオリゴマーまたはポリマーであってもよい。ウレタンウレア(メタ)アクリレートオリゴマーまたはポリマーは、例えば、上記(2)におけるポリオールに加えてポリアミンを併用することによって調製することができる。
 上記アクリル(メタ)アクリレートオリゴマーまたはポリマーは、アクリロイル基および/またはメタクリロイル基を含有するアクリルオリゴマーまたはポリマーである。具体的には、グリシジルメタクリレートを共重合したアクリル樹脂に(メタ)アクリル酸を付加した化合物、2-アクリロイルオキシエチルイソシアネートを共重合したアクリル樹脂に2-ヒドロキシエチル(メタ)アクリレートや4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどを付加した化合物、水酸基含有モノマーを共重合したアクリル樹脂に2-アクリロイルオキシエチルイソシアネートを付加した樹脂、等が挙げられる。これらは、単独で用いても2種以上を併用してもよい。
 上記のようなウレタン(メタ)アクリレートオリゴマーまたはポリマー、アクリル(メタ)アクリレートオリゴマーまたはポリマーのうち、重量平均分子量が1000~200000の範囲内であるものを用いることができる。上記重合性不飽和基含有オリゴマーまたはポリマーとして、アクリロイル基およびメタクリロイル基からなる群から選択される1種またはそれ以上の官能基数が2以上であるのが好ましく、3以上であるのがより好ましく、5以上であるのがさらに好ましい。
 上記重合性不飽和基含有オリゴマーまたはポリマーとして、市販品を用いてもよい。上記ウレタン(メタ)アクリレートオリゴマーまたはポリマーの市販品として、例えば、
日本化薬社製のDPHA-40H、UX-5000、UX-5102D20、UX-5103D、UX-5005、UX-3204、UX-4101、UXT-6100、UX-6101、UX-8101、UX-0937、UXF-4001-M35,UXF-4002;
共栄社化学社製のUF-8001G、UA-510H;
ダイセル・オルネクス株式会社製のEBECRYL 244、EBECRYL 284、EBECRYL 8402、EBECRYL 8807、EBECRYL 264、EBECRYL 265、EBECRYL 9260、EBECRYL 8701、EBECRYL 8405、EBECRYL 1290、EBECRYL 5129、EBECRYL 220、KRM 8200、KRM 7804、KRM 8452;
日本合成化学社製の紫光UV-1600B、紫光UV-1700B、紫光UV-6300B、紫光UV-7600B、紫光UV-7640B、紫光UV-7461B、紫光UV-7650B、紫光UV-3520EA、紫光UV-6640B、紫光UV-7000B、紫光UV-305F;
アルケマ社製のCN-9001、CN-9004、CN-9005、CN-965、CN-9178、CN-9893、CN-9782、CN-964、CN-9013、CN-9010;
新中村化学社製のU-10PA、U-10HA、UA-33A、UA-53H、UA-32P、U-15HA、UA-122P、UA-160TM、UA-31F、UA-7100、UA-4200、UA-4400;
根上工業社製のアートレジンUN-3320HA、アートレジンUN-3320HB、アートレジンUN-3320HC、アートレジンUN-3320HS、アートレジンUN-904、アートレジンUN-901T、アートレジンUN-905、アートレジンUN-951、アートレジンUN-952、アートレジンUN-953、アートレジンUN-954、アートレジンUN-906、アートレジンUN-906S、アートレジンUN-907、アートレジンUN-908、アートレジンUN-333、アートレジンUN-5507、アートレジンUN-6300、アートレジンUN-6301、アートレジンUN-7600、アートレジンUN-7700、アートレジンUN-9000PEP、アートレジンUN-9200、アートレジンUN-904UREA、アートレジンUN-H7UREA;
などを用いることができる。
 上記アクリル(メタ)アクリレートオリゴマーまたはポリマーの市販品として、例えば、
DIC株式会社社製、ユニディックV-6840、ユニディックV-6841、ユニディックV-6850、ユニディックEMS-635、ユニディックWHV-649;
日立化成株式会社製、ヒタロイド7975、ヒタロイド7977、ヒタロイド7988、ヒタロイド7975D;
根上工業社製、アートキュアRA-3969MP、アートキュアRA-3960PG、アートキュアRA-3602MI、アートキュアOAP-5000、アートキュアOAP-2511、アートキュアAHC-9202MI80、アートキュアRA-3704MB、アートキュアRA-3953MP、アートキュアRA-4101、アートキュアMAP-4000、アートキュアMAP2801、
などを用いることができる。
 上記重合性不飽和基含有オリゴマーまたはポリマーは、1種を単独で用いてもよく、2種またはそれ以上を併用してもよい。
 上記ハードコーティング組成物が、上記重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマーを含むことによって、以下に記載する面接触工程において、未硬化のハードコート層の膜厚を保持しつつ、鋳型基材の表面の凹凸形状を、未硬化のハードコート層に良好に転写することができる利点がある。さらに、重合性不飽和基を含有しているため硬化後は耐擦傷性、耐薬品性が良好となり、また耐湿熱、耐熱性、耐光性などの評価後にブリードアウトによる外観不具合がないなどの利点がある。
 上記ハードコーティング組成物は、必要に応じて、さらに重合性不飽和基含有モノマーを含んでもよい。重合性不飽和基含有モノマーは、上記重合性不飽和基含有ポリマーと同様に、ハードコート層の層形成樹脂成分である。上記重合性不飽和基含有モノマーは、重合性不飽和基当量が90~500g/eqであることを条件とする。
 上記ハードコーティング組成物が、さらに重合性不飽和基含有モノマーを含むことによって、得られる防眩ハードコート層の耐擦傷性を向上させることができる利点がある。さらに、粘度の調製により塗工作業性が向上し、貼りあわせ後の剥離強度を好適な範囲に調整することができる利点がある。
 上記重合性不飽和基含有モノマーとして、例えば、多官能(メタ)アクリレートモノマーであって重合性不飽和基当量が90~500g/eqであるものを用いることができる。多官能(メタ)アクリレートモノマーは、多価アルコールと(メタ)アクリレートとを脱アルコール化反応することによって、調製することができる。
 重合性不飽和基当量が90~500g/eqである多官能(メタ)アクリレートモノマーの具体例として、例えば、
エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコール(200)ジ(メタ)アクリレート、アリル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、エトキシ化(2)ビスフェノールAジ(メタ)アクリレート、エトキシ化(3)ビスフェノールAジ(メタ)アクリレート、エトキシ化(4)ビスフェノールAジ(メタ)アクリレート、エトキシ化(10)ビスフェノールAジ(メタ)アクリレート、プロポキシ化(3)ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオロレンジ(メタ)アクリレートなどの2官能(メタ)アクリレートモノマー;
グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、エトキシ化(6)トリメチロールプロパントリアクリレート、エトキシ化(9)トリメチロールプロパントリアクリレート、プロポキシ化(3)トリメチロールプロパントリアクリレート、プロポキシ化(6)トリメチロールプロパントリアクリレート、プロポキシ化(9)トリメチロールプロパントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化(4)ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化(8)ペンタエリスリトールトリ(メタ)アクリレート、リス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、カプロラクトン変性(1)トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、カプロラクトン変性(3)トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、などの3官能(メタ)アクリレートモノマー;
ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化(4)ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化(8)ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能(メタ)アクリレートモノマー;
ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレートなどの5官能(メタ)アクリレートモノマー;
ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレートなどの6官能(メタ)アクリレートモノマー;
トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレートなどの7官能以上の(メタ)アクリレートモノマー;
などが挙げられる。
 これらの多官能(メタ)アクリレートモノマーは、1種を単独で用いてもよく、また2種以上を混合して用いてもよい。
 ハードコーティング組成物が、上記重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマー、および、上記重合性不飽和基当量が90~500g/eqである、重合性不飽和基含有モノマー、を含む場合は、上記ハードコーティング組成物中に含まれる層形成樹脂成分の固形分100質量部に対して、上記重合性不飽和基含有オリゴマーまたはポリマーの量が15~85質量部であり、上記重合性不飽和基含有モノマーの量が85~15質量部であるのが好ましい。上記質量範囲を満たすことによって、得られる防眩ハードコート層において良好な凹凸形状転写率および耐擦傷性、耐薬品性が得られる利点がある。
 ハードコーティング組成物は、必要に応じてさらに、平均粒子径が0.5~10μmの範囲内である透光性微粒子を含んでもよい。ハードコーティング組成物に、平均粒子径が0.5~10μmの範囲内である透光性微粒子が含まれることによって、得られる防眩ハードコート層のギラツキ性を抑制することができ、そして、硬度を高めることができる利点がある。上記平均粒子径は、1.0~10μmの範囲内であるのがより好ましい。
 なおギラツキとは、コート層において輝度の強弱が生じる現象である。ディスプレイなどの表示装置は、その内部から光線を発することによって画像を表示する。ここで、表示装置内部から発せられた光線は、コート層の凹凸状態に依存して入光状態が変化し、この凹凸状態に入光した光が出光する際に光量の収束などを引き起こすことがある。光量の収束は、輝度の強弱をもたらし、これはギラツキとして認識される。このギラツキは、表示装置を観る者の目の疲れを引き起こすという問題がある。
 本明細書における「透光性微粒子」とは、可視光における平均光透過率が30%以上である、透明または半透明の微粒子を意味する。なお、上記透光性微粒子の平均粒子径はD50による値である。本明細書におけるD50は、レーザー回折式粒度分布計によって測定される体積換算の積算50%となる粒子径をいう。
 透光性微粒子は、透光性微粒子の屈折率(Rf1)、および、ハードコーティング組成物中に含まれる層形成樹脂成分の屈折率(Rf2)が、下記関係
0.01≦|Rf1―Rf2|≦0.23
を満たすものを用いるのがより好ましい。透光性微粒子の屈折率(Rf1)およびハードコーティング組成物中に含まれる層形成樹脂成分の屈折率(Rf2)が上記関係を満たすことによって、得られる防眩ハードコート層のギラツキ防止性能が向上し、良好な防眩性能を得ることができる利点がある。
 透光性微粒子の屈折率(Rf1)およびハードコーティング組成物中に含まれる層形成樹脂成分の屈折率(Rf2)は、例えば、アッベ式屈折率計を用いて測定することができる。
 平均粒子径が0.5~10μmの範囲内である透光性微粒子として、上記平均粒子径の範囲内である有機微粒子または無機微粒子を用いることができる。平均粒子径が0.5~10μmの範囲内である透光性微粒子として市販品を用いてもよい。市販品として、例えば、積水化成品工業社製のテクポリマーSSXシリーズ(スチレン-アクリル共重合体微粒子)、綜研化学株式会社製ケミスノーSXシリーズ(スチレン重合体微粒子)、ケミスノーMXシリーズ(アクリル重合体微粒子)、株式会社日本触媒製シーホスターKE-P、KE-Sシリーズ(シリカ微粒子)、ソリオスターRA(シリコンーアクリル共重合体微粒子)、エポスターS12(メラミン重合体微粒子)、エポスターMAシリーズ(スチレン-アクリル共重合体微粒子)、アクリル共重合体微粒子、日興リカ株式会社製MSPシリーズ、NHシリーズ(シリコーン微粒子)、新日本住金マテリアルズ株式会社製AZシリーズ、AYシリーズ(アルミナ微粒子)などが挙げられる。上記テクポリマーSSXシリーズ(スチレン-アクリル共重合体微粒子)ケミスノーSXシリーズ(スチレン重合体微粒子)、エポスターMAシリーズ(スチレン-アクリル共重合体微粒子)は、上記関係を満たす好適な屈折率(Rf1)を有している点、そして分散性に優れる点などから、より好ましい。
その他の成分
 上記ハードコーティング組成物は、光重合開始剤を含むのが好ましい。光重合開始剤が存在することによって、紫外線などの活性エネルギー線照射により樹脂成分が良好に重合することとなる。光重合開始剤の例として、上述の光重合開始剤を好適に用いることができる。光重合開始剤の好ましい量は、ハードコーティング組成物の樹脂成分100質量部に対して、0.01~20質量部であり、より好ましくは1~10質量部である。光重合開始剤は、単独で用いてもよく、また、2種以上の光重合開始剤を組合せて用いてもよい。
 上記ハードコーティング組成物は、必要に応じて、種々の添加剤を添加することができる。このような添加剤として、例えば、重合開始剤、帯電防止剤、可塑剤、界面活性剤、酸化防止剤、紫外線吸収剤、表面調整剤、レベリング剤などの常用の添加剤が挙げられる。
 その他の成分として、例えば、平均粒子径が0.5μm未満である微粒子を用いてもよい。このような微粒子として、例えば、平均粒子径D50が5nm以上500nm未満である透光性微粒子が挙げられる。平均粒子径D50が5nm以上500nm未満である透光性微粒子として、例えば、ナノメーターオーダーの有機微粒子または無機微粒子が挙げられる。透光性微粒子として、コロイダルシリカを用いるのが好ましい。コロイダルシリカは、シリカ粒子の表面に(メタ)アクリロイル基等の反応性基を表面修飾により導入した、反応性コロイダルシリカであってもよく、シリカ粒子の表面に反応性基を有さないもの、または、非反応性の有機基で表面修飾した、非反応性コロイダルシリカであってもよい。
 上記ハードコーティング組成物は、当業者において通常行われる手法によって調製することができる。例えば、ペイントシェーカー、ミキサー、ディスパーなどの通常用いられる混合装置を用いて、上記各成分を混合することによって調製することができる。
ハードコーティング組成物の塗装
 塗装工程では、上記ハードコーティング組成物を、透明支持基剤の少なくとも一方の面上に塗装し、未硬化のハードコート層を形成する。ハードコーティング組成物の塗装は、ハードコーティング組成物の性状および塗装工程の状況に応じて適時選択することができ、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、ダイコート法、インクジェット法、グラビアコート法またはエクストルージョンコート法(米国特許2681294号明細書)などにより塗装することができる。
 上記ハードコーティング組成物の塗装において、未硬化のハードコート層の膜厚が0.5~20μmの範囲内となるように塗装するのが好ましく、膜厚が1~15μmの範囲内となるように塗装するのがより好ましい。膜厚が上記範囲内であることによって、得られる防眩ハードコート層の耐衝撃性、耐熱性、耐カール性、耐クラック性、耐擦傷性、硬度などを良好な範囲に設計することができる利点がある。
面接触工程
 面接触工程では、上記塗装工程で形成された未硬化のハードコート層に対して、上記鋳型基材の凹凸形状面を、ハードコート層の面に対して対向する方向で面接触させる。これにより、未硬化のハードコート層の表面形状が、面接触する鋳型基材の表面の凹凸形状に変形し、未硬化のハードコート層の表面上に、鋳型基材の表面の凹凸形状が転写されることとなる。
 上記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程における、押圧の圧力は、0.001~25MPaの範囲内である。上記圧力は、0.001~5MPaの範囲内であるのが好ましく、0.005~5MPaの範囲内であるのがより好ましい。押圧の圧力が上記範囲内であることによって、鋳型基材の凹凸形状を、未硬化のハードコート層に良好に転写することができ、また、鋳型基材の凹凸形状面および未硬化のハードコート層との間における空隙の発生、基材変形、膜厚の不均一化、端部からの塗膜のはみだしを防ぐことができる。
 上記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度は、0.01~2N/25mmの範囲内であるのが好ましい。ハードコート層面が未硬化である場合における面接触部分の剥離強度が上記範囲内であることによって、上記鋳型基材と未硬化ハードコート層のうきが抑制されることとなり、鋳型基材の凹凸形状を、未硬化のハードコート層に良好に転写することができる利点がある。さらに、面接触不良による形状転写不良が抑制され、歩留まりを向上させることができ、また、作業性が良好となる利点もある。
 鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度を上記範囲内に調節する手法として、例えば、重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマー、および、重合性不飽和基当量が90~500g/eqである、重合性不飽和基含有モノマー、を含むハードコーティング組成物を用いる手法などが挙げられる。
硬化工程
 硬化工程では、鋳型基材の凹凸形状面と未硬化のハードコート層の面とが面接触した状態のまま、活性エネルギー線を照射して、未硬化のハードコート層を硬化させる。活性エネルギー線の照射は、未硬化のハードコート層を設けた透明支持基材側から行ってもよく、また、鋳型基材が光透過性を有する場合は、鋳型基材側から活性エネルギー線を照射してもよい。
 活性エネルギー線の照射は、必要に応じた波長の活性エネルギー線を発する光源を用いて照射することによって行うことができる。照射する活性エネルギー線として、例えば、積算光量15~5000mJ/cmの光を用いることができる。またこの照射光の波長は特に限定されるものではないが、例えば360nm以下の波長を有する紫外光などを用いることができる。このような光は、高圧水銀灯、超高圧水銀灯などを用いて得ることができる。
剥離工程
 剥離工程では、上記硬化工程で硬化したハードコート層から、鋳型基材を剥離する。ハードコート層が硬化した後、鋳型基材を剥離することによって、より緻密な凹凸形状を、ハードコート層に設けることができる利点がある。
防眩ハードコート層
 上記方法において、活性エネルギー線照射後における、鋳型基材の凹凸形状面およびハードコート層の面接触部分の剥離強度は、0.005~1.5N/25mmの範囲内であるのが好ましい。硬化後のハードコート層および鋳型基材の面接触部分における剥離強度が上記範囲内であることによって、ハードコート層の面上に形成された凹凸形状を破壊することなく、鋳型基材を剥離することができる利点がある。
 また、上記方法において、鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程における、押圧の圧力が0.001~5MPaである場合の凹凸形状転写率が75~100%であるのが好ましい。鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程において、押圧の圧力が0.001~5MPaである場合は、未硬化のハードコート層の層厚を大きく損なうことなく、面接触を行うことができる。そしてこのように、押圧の圧力が0.001~5MPaである場合において、鋳型基材が有する表面凹凸形状を、ハードコート層の表面上に良好に転写できること、より具体的には、凹凸形状転写率が75~100%の範囲内で転写できること、が上記方法において好ましい。
 本明細書において、凹凸形状転写率は、以下の手順で求めることができる。
 鋳型基材のRzJIS(A)値を測定する。この鋳型基材の凹凸形状面を、未硬化のハードコート層面に対して、押圧の圧力が0.001~5MPaの範囲で押圧することによって面接触させる。鋳型基材が面接触した状態で、活性エネルギー線を照射して、未硬化のハードコート層を硬化させる。得られたハードコート層から鋳型基材を剥離し、形成された凹凸形状面のRzJIS(B)を測定する。鋳型基材のRzJIS(A)と、形成された凹凸形状面のRzJIS(B)を用いて、下記式(B)/(A)×100(%)より、凹凸形状転写率を求めることができる。
 上記防眩ハードコート層は、鉛筆硬度2Hまたはそれ以上であるのが好ましい。鉛筆硬度は、JIS K 5600-5-4に準拠して測定することができる。防眩ハードコート層の鉛筆硬度が2Hまたはそれ以上であることによって、防眩ハードコート層の硬度が十分高く、十分な耐擦傷性を有すると判断することができる。上記防眩ハードコート層は、微細な凹凸形状を有し、かつ、ハードコート層の硬度が鉛筆硬度2Hまたはそれ以上と、硬度が高いことを特徴とする。上記防眩ハードコート層の鉛筆硬度は、3Hまたはそれ以上であるのがより好ましい。
 上記防眩ハードコート層は、表面凹凸形状の十点平均粗さRzJISが0.2~1.0 μmであるのが好ましい。ここで「十点平均粗さRzJIS」とは、JIS B0601;2001の附属書JAに規定される、表面の凹凸形状(粗さ形状)を示すパラメータの1種である。十点平均粗さRzJISは、カットオフ値位相補償帯域通過フィルタを適用して得た基準長さの粗さ曲線において、最高の山頂(凸部)から高い順に5番目までの山高さの平均と、最深の谷底(凹部)から深い順に5番目までの谷深さの平均との和である。十点平均粗さRzJISは、例えばレーザー顕微鏡を用いて、JIS B0601;2001の規定に準拠して求められる。
 また、上記防眩ハードコート層は、表面凹凸形状の粗さ曲線要素の平均長さRSmが5~100μmであるのが好ましい。ここで「粗さ曲線要素の平均長さRSm」とは、JIS B0601;2001に規定される、表面の凹凸形状(粗さ形状)の大きさ・分布を示すパラメータの1種である。粗さ曲線要素の平均長さRSmは、基準長さにおける輪郭曲線(粗さ曲線)要素の長さの平均を意味する。粗さ曲線要素の平均長さRSmは、例えばレーザー顕微鏡(VK-8700 KEYENCE製など)を用いて、JIS B0601;2001規定に準拠して求められる。
 上記防眩ハードコート層は、JIS  K  7374(2007)に規定される透過像鮮明度測定試験において、0.125mm、0.25mm、0.5mm、1.0mm、及び、2.0mmの5種類の幅の光学くしにおけるそれぞれの透過像鮮明度Cn(%)の総和値Tc(%)が300以上であるのが好ましい。総和値Tc(%)は300~480の範囲内であるのがより好ましい。
 上記透過像鮮明度測定試験は、防眩ハードコート層の透過光の光量を、透過光の光線軸に直交し、速度10mm/minで移動する幅n(mm)の光学くしを通して測定するものである。具体的には、写像性測定器(スガ試験機(株)製)を用いて測定する。写像性測定器は、スリットを透過した光を平行光線として、防眩ハードコート層の凹凸形状面と反対側から防眩ハードコート層に垂直に入射させ、その透過光を移動する光学くしを通して検知する光学装置と、検知した光量の変動を波形として記録する計測系装置とから構成される。光学くしは、明部と暗部の幅の比が1:1で、その幅n(mm)は、0.125、0.25、0.5、1、2の5種類とし、移動速度は10mm/minとする。
 透過像鮮明度Cn(%)は、透過像鮮明度測定試験において光線軸上に光学くしの透過部分(明部)があるときの透過光量の最高値をMn、光線軸上に光学くしの遮光部分(暗部)があるときの透過光量の最小値をmnとした場合に、下記の式で算出される。
  Cn={(Mn-mn)/(Mn+mn)}×100
 総和値Tc(%)は、光学くしの幅n(mm)が、それぞれ0.125、0.25、0.5、1、2である場合の5つの透過像鮮明度C0.125(%)、C0.25(%)、C0.5(%)、C1(%)、C2(%)の総和値であり、したがって取りうる最大値は500%である。
 防眩ハードコート層における上記総和値Tc(%)が300以上であることは、防眩ハードコート層が防眩性能を有する一方で、さらに、像鮮明度が高く写像性が高いことを意味する。防眩ハードコート層の像鮮明度が高いことによって、防眩効果を発揮しつつ、例えば高詳細ディスプレイの画像鮮明性を大きく低下させないという利点がある。
 上記防眩ハードコート層は、326ppiディスプレイ上での輝度のバラツキの偏差が2.6%以下であるのが好ましい。上記偏差は、RADIANT社製のI16の機器を用いて、326ppiディスプレイを使用し、距離500mmでの輝度の値のバラツキを測定することによって求めることができる。偏差の算出は、上述より求めた輝度の値を、ソフトウェアとしてTrueTestを使用して数値解析を行うことによって求めることができる。防眩ハードコート層における上記偏差が2.6%以下であれば、画面視認性を低下されるギラツキの発生が低減されており、視認性が良好であると判断することができる。
 上記方法により防眩ハードコート層を形成することによって、表面に微細な凹凸形状を有し、かつ、硬度が高く耐擦傷性に優れる防眩ハードコート層を形成することができる。
機能層
 上記剥離工程後にさらに、得られた防眩ハードコート層の凹凸形状面の上に、必要に応じた機能層を設けてもよい。機能層として、例えば、高屈折率層、低屈折率層、低屈折率層および高屈折率層を含む複層、防汚層などが挙げられる。これらの機能層は、機能層形成用コーティング組成物を塗装し硬化させるなどの、当分野において通常用いられる手法により形成することができる。
加飾層
 上記防眩ハードコート層を形成する透明支持基材に対して、必要に応じて加飾層を形成してもよい。例えば、透明支持基材の一方の面上に上記防眩ハードコート層を設け、透明支持基材の他の一方の面上に、加飾層を設けてもよい。加飾層を設けることによって、成形加飾用積層部材として用いることができる。
 加飾層を設ける場合は、透明支持基材の一方の面上に上記防眩ハードコート層を設けた後に、透明支持基材の他の一方の面上に、加飾層を設けてもよい。また、加飾層の活性エネルギー線透過性が高い場合、または、鋳型基材の活性エネルギー線透過性が高い場合は、透明支持基材の他の一方の面上に予め加飾層を設けておき、一方の面上に上記防眩ハードコート層を設けてもよい。
 上記加飾層は、模様、文字または金属光沢などの加飾を施す層である。このような加飾層として、例えば印刷層または蒸着層などが挙げられる。印刷層および蒸着層はいずれも、加飾を施すための層である。本発明においては、加飾層として印刷層または蒸着層の何れかのみを設けてもよく、あるいは印刷層および蒸着層の両方を設けてもよい。また印刷層は複数の層から構成される層であってもよい。作業工程の容易さなどから、上記加飾層は印刷層であるのが好ましい。
 印刷層は、成型体表面に模様および/または文字などの加飾を施すものである。印刷層として、例えば、木目、石目、布目、砂目、幾何学模様、文字、全面ベタ等からなる絵柄が挙げられる。印刷層の材料としては、塩化ビニル/酢酸ビニル系共重合体等のポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキッド樹脂、塩素化ポリオレフィン系樹脂等の樹脂をバインダーとし、適切な色の顔料または染料を着色剤として含有する着色インキを用いるとよい。印刷層に用いられるインキの顔料としては、例えば、次のものが使用できる。通常、顔料として、黄色顔料としてはポリアゾ等のアゾ系顔料、イソインドリノン等の有機顔料またはチタンニッケルアンチモン酸化物等の無機顔料、赤色顔料としてはポリアゾ等のアゾ系顔料、キナクリドン等の有機顔料または弁柄等の無機顔料、青色顔料としてはフタロシアニンブルー等の有機顔料またはコバルトブルー等の無機顔料、黒色顔料としてはアニリンブラック等の有機顔料、白色顔料としては二酸化チタン等の無機顔料が使用できる。
 印刷層に用いられるインキの染料としては、本発明の効果を損なわない範囲で、各種公知の染料を使用することができる。また、インキの印刷方法としては、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷法またはロールコート法、スプレーコート法等の公知のコート法を用いるのがよい。この際、本発明におけるように、低分子量の架橋性化合物を使用するのではなく、ポリマー同士を架橋させる構成の光硬化性樹脂組成物を用いた場合には、表面に粘着性が無く、印刷時のトラブルが少なく、歩留まりが良好である。
 蒸着層は、アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム、スズ、銀、チタニウム、鉛、亜鉛等の群から選ばれる少なくとも一つの金属、またはこれらの合金もしくは化合物を使用して、真空蒸着法またはスパッタリング法、イオンプレーティング法、鍍金法等の方法により形成することができる。
 これら加飾のための印刷層または蒸着層は、所望の成型体の表面外観が得られるよう、成形時の伸張度合いに応じて、通常用いられる方法により適宜その厚みを選択することができる。
ディスプレイ
 上記方法により設けられる防眩ハードコート層を有する透明支持基材は、ディスプレイ部に配置される部材として好適に用いることができる。ディスプレイとして、例えば、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイなどが挙げられる。本発明の光学積層部材をディスプレイ部に配置する場合は、透明支持基材の一方の面上に形成された防眩ハードコート層側を外層とし、透明支持基材の他の一方の面、または、透明支持基材の他の一方の面上に積層された加飾層が、ディスプレイ部の表面と対向するように配置する。これにより、防眩ハードコート層が、ディスプレイの表面側に配置される。
 上記ディスプレイの好適な例として、タッチパネルディスプレイが挙げられる。例えば車載機器タッチパネルディスプレイ用光学積層部材として好適に用いることができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。
表面に凹凸形状を有する鋳型基材の調製
製造例1 不飽和二重結合含有アクリル共重合体Aの調製
 イソボロニルメタクリレート 171.6部、メチルメタクリレート 2.6部、メタクリル酸 9.2部からなる混合物を混合した。この混合液を、攪拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた1000ml反応容器中の、窒素雰囲気下で110℃に加温したメチルイソブチルケトン 330.0部に、ターシャルブチルペルオキシ-2-エチルヘキサノエート 1.8部を含むプロピレングリコールモノメチルエーテル 80.0部溶液と同時に3時間かけて等速で滴下し、その後、110℃で30分間反応させた。その後、ターシャルブチルペルオキシ-2-エチルヘキサノエート 0.2部をプロピレングリコールモノメチルエーテル 17.0部の溶液を滴下してテトラブチルアンモニウムブロマイド 1.4部とハイドロキノン0.1部を含む5.0部のプロピレングリコールモノメチルエーテル溶液を加え、空気バブリングしながら、4-ヒドロキシブチルアクリレートグリシジルエーテル 22.4部とプロピレングリコールモノメチルエーテル 5.0部の溶液を2時間かけて滴下し、その後5時間かけて更に反応させた。重量平均分子量18,000の不飽和二重結合含有アクリル共重合体Aを得た。この樹脂は、SP値:10.0であった。
製造例2 凹凸形状形成コーティング組成物1の製造
 容器にn-ブタノール 37.5部、メチルエチルケトン 24.88部、アロニックスM-402(東亞合成株式会社製、ジペンタエリスリトールペンタ及びヘキサアクリレート、SP値12.1)13.30部、サイクロマー ACA-Z320M(ダイセル株式会社製アクリルアクリレート、SP値11.49)15.52部 、CAP-482-20(EASTMAN CHEMICAL社製セルロースアセテート、SP値8.70)2.66部、OMNIRAD 184(IGM Resins社製光重合開始剤、1‐ヒドロキシシクロヘキシルフェニルケトン)1.42部を加え混合攪拌した。その後攪拌させながら不飽和二重結合含有アクリル共重合体A 4.72部を添加して固形分濃度が25%となるように凹凸形状形成コーティング組成物1を調製した。
製造例3 凹凸形状を有する鋳型基材の調製例1
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物1を、バーコーターを用いて塗布した。65℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量1200mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz22.1%、Rzjis0.51μmの鋳型基材1を得た。
製造例4 凹凸形状を有する鋳型基材の調製例2
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物1を、バーコーターを用いて塗布した。65℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量2400mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz22.4%、Rzjis0.48μmの鋳型基材2を得た
製造例5 凹凸形状を有する鋳型基材の調製例3
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物1を、バーコーターを用いて塗布した。65℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量600mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz21.8%、Rzjis0.49μmの鋳型基材3を得た。
製造例6 凹凸形状を有する鋳型基材の調製例4
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物1を、バーコーターを用いて塗布した。65℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量350mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz23.1%、Rzjis0.49μmの鋳型基材4を得た。
製造例7 凹凸形状形成コーティング組成物2の製造
 容器にメチルイソブチルケトン 2.31部、イソプロピルアルコール 46.75部、アロニックスM-402(東亞合成株式会社製、SP値12.1)11.97部、アロニックスM-305(東亞合成株式会社製、SP値12.7)9.98部、アロニックスM-315(東亞合成株式会社製、SP値12.5)11.97部、アロニックスM-220(東亞合成株式会社製、SP値12.2)5.99部、OMNIRAD 184(IGM Resins社製)2.54部を加え混合攪拌した。その後攪拌させながら不飽和二重結合含有アクリル共重合体A 8.49部を添加して固形分濃度が45%となるように凹凸形状形成コーティング組成物2を調製した。
製造例8 凹凸形状を有する鋳型基材の調製例5
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物2を、バーコーターを用いて塗布した。80℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量1200mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz6.5%、Rzjis0.29μmの鋳型基材5を得た。
製造例9 凹凸形状形成コーティング組成物3の製造
 容器にn-ブタノール 42.5部、メチルエチルケトン 14.94部、サクサンエチル 19.98部、アロニックスM‐402(東亞合成株式会社製、SP値12.1)7.98部、サイクロマー ACA-Z320M(ダイセル株式会社製、SP値11.49)9.32部 、CAP-482-20(EASTMAN CHEMICAL社、SP値8.70)1.60部、OMNIRAD 184(IGM Resins社製)0.85部を加え混合攪拌した。その後攪拌させながら不飽和二重結合含有アクリル共重合体A 2.83部を添加して固形分濃度が15%となるように凹凸形状形成コーティング組成物3を調製した。
製造例10 凹凸形状を有する鋳型基材の調製例6
 100μm PETフィルム(商品名A4300、東洋紡社製)上に、上記凹凸形成組成物3を、バーコーターを用いて塗布した。65℃で1分間乾燥させて溶媒を揮発させた後、N雰囲気下にて積算光量1200mJ/cmの紫外線照射処理により硬化させ、膜厚が2μmの凹凸形状を有する外部Hz34.7%、Rzjis0.80μmの鋳型基材6を得た。
防眩ハードコート層の形成方法
製造例11 不飽和二重結合含有アクリル共重合体Bの調製
 2,3-エポキシプロピルメタクリレート 30.0部、メチルメタクリレート35.8部、イソボロニルメタクリレート34.2部、ターシャルブチルペルオキシ-2-エチルヘキサノエート0.3部からなる混合物を混合した。この混合液を、攪拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた500ml反応容器中の、窒素雰囲気下で110℃に加温したトルエン 70.0部に、撹拌しながら2時間かけて等速で滴下した。滴下終了後、110℃の温度条件下で1時間反応を行った。その後ターシャルブチルペルオキシ-2-エチルヘキサノエート 1.0部をトルエン25.0部の混合溶液を1時間かけて滴下した。その後、145℃まで加熱して、さらに2時間反応させた後、110℃以下に冷却して、トルエンを29.0部添加し前駆体B1を得た。
攪拌羽根、空気導入管、冷却管及び滴下漏斗を備えた500ml反応容器に前駆体B1 225.3部、アクリル酸 15.66部、ハイドロキノンモノメチルエーテル 0.43部、トルエン 56部をそれぞれ仕込み、空気を吹き込んで攪拌しながら、90℃まで加熱した。90℃の温度条件下、トルエン3.0部、テトラブチルアンモニウムブロマイド 0.81部の混合溶液を添加し、1時間反応させた。続いて、105℃まで加熱し、反応液中の固形分の酸価を確認しながら、該酸価が8以下になるまで105℃の温度条件下で反応を行った。なお酸価は、JIS  K5601-2-1に準じて行い、上記反応溶液を0.1Nの水酸化カリウム(KOH)溶液で滴定して、下式 
酸価={(KOH溶液の滴下量[ml])×(KOH溶液のモル濃度[mol/L]}/(固形分の質量[g])
に従って算出した。その後ハイドロキノンモノメチルエーテル 0.43部、トルエン 3.0部の混合溶液を添加し、温度を75℃にしてカレンズMOI(昭和電工製)10.1部、トルエン5.0部、ジブチルチンジラウレート0.043部の混合溶液を添加し、70℃の温度条件下で2時間反応させた後、60℃以下に冷却し、メタノール2.0部、トルエン10.0部の混合溶液を添加し、重量平均分子量350000の不飽和二重結合含有アクリル共重合体Bを得た。
実施例1
ハードコーティング組成物1の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 13.9部、酢酸ブチル 13.9部、KRM-8452(ダイセル株式会社製、重合性不飽和基含有ウレタン(メタ)アクリレートオリゴマーまたはポリマー)27.8部、OMNIRAD 184(IGM Resins社、光重合開始剤、1‐ヒドロキシシクロヘキシルフェニルケトン)0.98部、OMNIRAD TPO(IGM Resins社製、光重合開始剤、2,4,6‐トリメチルベンゾイルジフェニルフォスフィンオキシド)1.31部、MIBK-AC-2140Z(日産化学社製、反応性コロイダルシリカ、不揮発分40質量%のメチルイソブチルケトン分散液)12.27部(溶液分散状態)を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物1を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMA(ポリメチルメタクリレート)およびPC(ポリカーボネート)からなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物1をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼り合わせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例2
ハードコーティング組成物2の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 7.94部、酢酸ブチル 7.95部、アートレジン UN-905(根上工業株式会社製、重合性不飽和基含有ウレタン(メタ)アクリレートオリゴマーまたはポリマー)39.72部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物2を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物2をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例3
ハードコーティング組成物3の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 11.12部、酢酸ブチル 11.12部、KRM-8452(ダイセル株式会社製)22.24部、ユニディック V-6850(DIC株式会社製、重合性不飽和基含有アクリル(メタ)アクリレートオリゴマーまたはポリマー) 11.12部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物3を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例4
ハードコーティング組成物4の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 9.73部、酢酸ブチル 9.73部、KRM-8452(ダイセル株式会社製)19.46部、ユニディック V-6850(DIC株式会社製) 16.68部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物4を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物4をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例5
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例2の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例6
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例3の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例7
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例4の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例8
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.006MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例9
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により2.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例10
ハードコーティング組成物5の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 11.1部、酢酸ブチル 11.1部、ユニディック V-6850(DIC株式会社製)11.12部、アロニックス M-402(東亞合成株式会社製) 22.24部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物5を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物5をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例11
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調整例5の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例12
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調整例6の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
実施例13
機能層組成物1の製造方法
 容器にプロピレングリコールモノメチルエーテル912.7部、アロニックス M-402(東亞合成株式会社製) 5.36部、アートレジン UN-906S(根上工業社製ウレタンアクリレート) 8.04部、OMNIRAD 127(IGM Resins社製)1.88部、オプツールDAC-HP(ダイキン工業株式会社性、フッ素系添加剤) 6.70部を加え混合攪拌した。攪拌しながらスルーリア4320(日揮触媒化成社製)65.33部を加え固形分濃度が3%となるように機能層組成物1を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量120mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させ、表面に凹凸形成を有する防眩ハードコート層を得た。
 得られた、防眩ハードコート層の凹凸形成面上に、上記の機能層組成物1をバーコーターにより乾燥膜厚が80nmになるよう塗布し、65℃で1分間乾燥させて溶媒を揮発させた。
 その後N雰囲気下にて積算光量1500mJ/cmの紫外線照射処理により硬化させ、機能層が積層された防眩ハードコート層を得た。
実施例14
ハードコーティング組成物6の製造方法
 容器にメチルイソブチルケト 7.36部、プロピレングリコールモノメチルエーテル 29.84部、酢酸エチル 10.70部、酢酸ブチル 10.71部、KRM-8452(ダイセル株式会社製)25.57部、ユニディック V-6850(DIC株式会社製) 12.79部、OMNIRAD 184(IGM Resins社製)0.95部、OMNIRAD TPO(IGM Resins社製)1.28部、テクポリマー SSX-302ABE(積水化成品工業株式会社製 屈折率1.595)0.80部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物6を調製した。バインダー樹脂のみの硬化膜の屈折率は1.51であった。
 ハードコーティング組成物中に含まれる層形成樹脂成分膜の屈折率の測定はJIS  K0062に準拠した方法により、アッベ式屈折率計を用いて行った。
 透光性微粒子の測定はハードコーティング組成物中に含まれる層形成樹脂成中に透光性微粒子の添加量の異なる3点を用意し、それぞれの硬化膜を作製後、各屈折率を、アッベ式屈折率計を用いて測定した。検量線より透光性微粒子の屈折率を算出した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物6をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
比較例1
ハードコーティング組成物7の製造方法
 容器にプロピレングリコールモノメチルエーテル 23.66部、不飽和二重結合含有アクリル共重合体B 61.79部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物7を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物7をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
比較例2
ハードコーティング組成物8の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 13.9部、酢酸ブチル 13.9部、アロニックス M-305(東亞合成株式会社製ペンタエリスリトールトリ及びテトラアクリレート) 27.8部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物8を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物8をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
比較例3
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.0005MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることにより防眩ハードコート層を得た。
比較例4
ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物3をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させ、窒素雰囲気下において積算光量1100mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることによりハードコート層を得た。
比較例5
ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、凹凸形成組成物1をバーコーターにより乾燥膜厚が2μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させ、窒素雰囲気下において積算光量1200mJ/cmの紫外線照射処理により硬化させ、鋳型基材面を剥離させることによりハードコート層を得た。
比較例6
 防眩ハードコート層の製造において、ハードコーティング組成物3を塗布し乾燥させた後、鋳型基材1の凹凸面を貼り合わせた後、紫外線照射することなく鋳型基材を剥離し、剥離後に紫外線照射を行ったこと以外は、実施例3と同様の手順により、ハードコート層を得た。
比較例7
ハードコーティング組成物9の製造方法
 容器にプロピレングリコールモノメチルエーテル29.84部、酢酸エチル 13.9部、酢酸ブチル 13.9部、アロニックス M-315(東亞合成株式会社製イソシアヌル酸EO変性ジ及びトリアクリレート)27.8部、OMNIRAD 184(IGM Resins社製)0.98部、OMNIRAD TPO(IGM Resins社製)1.31部、MIBK-AC-2140Z(日産化学社製)12.27部を加え混合攪拌し、固形分濃度が35%となるようにハードコーティング組成物9を調製した。
防眩ハードコート層の製造方法
 厚さ1.0mmである、PMMAおよびPCからなる3層(PMMA/PC/PMMA)シート(商品名:MT3LTR、クラレ株式会社製)の一方の面に、ハードコーティング組成物9をバーコーターにより乾燥膜厚が6μmになるよう塗布し、65℃で4分間乾燥させて溶媒を揮発させた。その後ハードコーティング面と前記凹凸形状を有する鋳型基材である調製例1の鋳型基材の凹凸面とをラミネート機により0.5MPaの押圧にて貼りあわせ、鋳型基材面側から積算光量1100mJ/cmの紫外線照射処理により硬化させた。その後、鋳型基材面を剥離することを試みたが、剥離することができず、防眩ハードコート層を得ることができなかった。
 上記実施例および比較例より得られた防眩ハードコート層を用いて、下記評価試験を行った。評価結果を下記表に示す。
膜厚の算出
 膜厚の測定は、以下のようにして行った。
 試験サンプルを10mm×10mmに切り出し、ミクロト-ム(LEICA RM2265)にて塗膜の断面を析出させた。析出させた断面をレーザー顕微鏡(VK8700 KEYENCE製)にて観察し、凹部10点および凸部10点の膜厚を測定し、その平均値を算出することによって、膜厚を求めた。
面接触時の押圧の圧力測定方法
 透明支持基材上にプレスケール(富士フィルム株式会社製)を配置させ、ラミネート機の押圧を測定した。
硬化前・硬化後剥離強度の測定
 鋳型基材と透明支持基材および防眩ハードコート層を、幅25mm、長さ200mmに切りとり、23℃・50RH%の雰囲気下で、鋳型基材の一端を300mm/minの一定速度で180度剥離するときの強度を測定した。
目視外観評価
 防眩ハードコート層の試験サンプルを蛍光灯の下に置き防眩ハードコート層の表層を目視で確認した。
 貼り合わせ後外観の評価基準は以下の通りである。
○:貼り合わせ後のフィルムにうき、凹み、段差、塗膜のはみだしが視認されなかった。
×:貼り合わせ後のフィルムにうき、凹み、段差、塗膜のはみだしが視認された。

 剥離後外観の評価基準は以下の通りである。
○:凹凸外観が前面に均一に付与されており、段差、塗膜のはみだしが視認されなかった。
×:凹凸転写がされていないクリヤー部や、段差、塗膜のはみだしが視認された。
防眩ハードコート層表面の十点平均粗さRz JIS の測定
 防眩ハードコート層の試験サンプルを50mm×50mmに切り出し、接眼レンズの倍率20倍、対物レンズの倍率50倍を備えたレーザー顕微鏡(VK8700 KEYECE製)にてJIS B0601;2001に準拠して測定し、Rzjis値を得た。
凹凸形状転写率
 防眩ハードコート層の試験サンプルにおける凹凸形状転写率を、以下の手順で求めた。
 先に鋳型基材のRzJIS(A)値を、上記と同様の手順により測定した。この鋳型基材の凹凸形状面を、未硬化のハードコート層面に対して、押圧の圧力が0.001~5MPaの範囲で押圧することによって面接触させ、鋳型基材が面接触した状態で、紫外線線を積算光量1100mJ/cmで照射して、未硬化のハードコート層を硬化させた。得られたハードコート層から鋳型基材を剥離し、形成された凹凸形状面のRzJIS(B)を測定した。鋳型基材のRzJIS(A)と、形成された凹凸形状面のRzJIS(B)を用いて、下記式(B)/(A)×100(%)より、凹凸形状転写率を求めた。
防眩ハードコート層のヘイズ値の測定
 防眩ハードコート層のヘイズ値(全ヘイズ値)を、ヘイズメーター(日本電色製 NDH2000)を用いて、JIS K7136に準拠した方法により、防眩ハードコート層のヘイズ値Haを測定した。
防眩ハードコート層の全光線透過率の測定
 防眩ハードコート層の全光線透過率(Tt(%))を、防眩ハードコート層に対する入射光強度(T0)と防眩ハードコート層を透過した全透過光強度(T1)とを測定し、下記式により算出した。

Tt(%)=T1/T0 × 100
防眩ハードコート層表面の粗さ曲線要素の平均長さRSmの測定
 防眩ハードコート層表面の粗さ曲線要素の平均長さRSmを、レーザー顕微鏡(VK-8700 KEYENCE製など)を用いて、JIS B0601;2001規定に準拠して測定した。
防眩ハードコート層の写像性評価
 防眩ハードコート層の透過光の光量を、写像性測定器ICM-1T(スガ試験機(株)製)を用いて、透過光の光線軸に直交し、速度10mm/minで移動する幅n(mm)の光学くしを通して測定した。光学くしは、明部と暗部の幅の比が1:1で、その幅n(mm)は、0.125、0.25、0.5、1、2の5種類とし、移動速度は10mm/minとした。
 透過像鮮明度Cn(%)を、透過像鮮明度測定試験において光線軸上に光学くしの透過部分(明部)があるときの透過光量の最高値をMn、光線軸上に光学くしの遮光部分(暗部)があるときの透過光量の最小値をmnとした場合に、下記の式で算出した。
 Cn={(Mn-mn)/(Mn+mn)}×100
 次いで、総和値Tc(%)を求めた。総和値Tc(%)は、光学くしの幅n(mm)が、それぞれ0.125、0.25、0.5、1、2である場合の5つの透過像鮮明度C0.125(%)、C0.25(%)、C0.5(%)、C1(%)、C2(%)の総和値である(取りうる最大値は500%である)。
鉛筆硬度の測定
 JIS K 5600-5-4に準拠して、塗膜の鉛筆硬度を測定した。
具体的には、鉛筆引掻塗膜硬さ試験機(東洋精機製作所製 型式P 加圧荷重100g~1kg)を用いて測定した。
 三菱ユニ製 鉛筆引かき値試験用鉛筆(日本塗料検査協会検査済みのもの)を使用し、芯の先端が平滑で円形の断面になるように研磨紙(3M P-1000)にて調整した。試料を測定台に設置後、引掻角度が45°になるよう鉛筆を固定し、荷重750gの条件で試験を行った。試験毎に、芯を平滑にしながら、試験場所をずらして5回試験を繰り返した。塗膜表面に凹みの発生有無を目視で確認した。
 例えば3Hの鉛筆を用いた試験の場合、傷跡の発生が無い場合、3H以上と判断した。5回の試験中1回の試験において僅かに凹みの発生を視認した場合は、3Hと判断した。そして、5回の試験中において2回以上、凹みの発生がある場合は、3H未満と判断し、1段階下げての評価を同様に実施した。
 鉛筆硬度が3H未満である場合は、硬度・耐擦傷性が劣っていると判断することができる。
耐擦傷性試験
 防眩ハードコート層の表面を、2cm当たり2Nもしくは4Nの荷重にて、スチールウール#0000を10往復させ、耐擦傷試験を行った。
 耐擦傷試験後のサンプル表面を、倍率100倍の顕微鏡(株式会社キーエンス製、デジタルマイクロスコープ VHX-2000、レンズZ2100)を用いて観察し、顕微鏡の視野範囲において、以下の基準に基づき判定した。

◎:2cm当たり4Nの荷重で500μm以上の長さを有する傷が、全く視認されなかった
○:2cm当たり2Nの荷重で500μm以上の長さを有する傷が、全く視認されなかった。
△:2cm当たり2Nの荷重で500μm以上の長さを有する傷が、少なくとも1~5本視認された。
×:2cm当たり2Nの荷重で500μm以上の長さを有する傷が、多数視認された。
ギラツキ性評価
 防眩ハードコート層の試験サンプルを、画素密度326ppiのディスプレイを使用し、以下の評価基準に基づいて目視により評価を実施した。

◎:ギラツキがほとんど認識されず良好であった。
○:ギラツキが少し認識されるが良好であった。
△:ギラツキが認識され不良であった。
×:ギラツキがはっきり認識され不良であった。
防眩性評価
 黒色PETフィルム(パナック社製、商品名:ゲルポリGPH100E82A04)と防眩コーティング層の試験サンプルを貼り合わせ、試験片を作製した。
 試験片を蛍光灯の下に置き、蛍光灯の映り込みの程度を目視で確認した。評価基準は以下の通りである。

○:映り込んだ蛍光灯の輪郭が歪んでいた。
△:映り込んだ蛍光灯の輪郭がわずかに歪んでいた。
×:映り込んだ蛍光灯の輪郭が認識された。
 なお、鋳型基材の外部ヘイズ値(外部Hz)は、以下の手順により測定した。
 鋳型基材のヘイズ値(全ヘイズ値)を、ヘイズメーター(日本電色製 NDH2000)を用いて、JIS K7136に準拠した方法により鋳型基材の全ヘイズ値Haを測定した。
 鋳型基材の試験サンプルを、50mm×50mmに切り出した。試験サンプルの塗膜凹凸面に、グリセリン(特級試薬 キシダ化学株式会社製)0.01mlを滴下し、次いでガラスプレート(18mm×18mm マツナミガラス株式会社製)を乗せて、表面凹凸を潰した試験片を作成した。前記ヘイズメーターを使用し、JIS K7136に準拠した方法により、鋳型基材の内部ヘイズ値Hiを測定した。
 外部ヘイズ値Hは下記計算式により測定した。
     外部ヘイズ値H=Ha-Hi
 また、機能層を設けた実施例13の防眩ハードコート層の評価項目において、「RzJIS」および「凹凸形状転写率」の項目は、機能層を設ける前の状態で評価を行った項目であり、その他の項目は機能層を設けた後の状態で評価を行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例において形成した防眩ハードコート層は、いずれも、凹凸形状転写率が高く、良好な防眩性能を有していることが確認された。そしてこれらの防眩ハードコート層はさらに、高い硬度を有し、かつ、透過像鮮明度の総和値(%)の数値が高いことが確認された。
 比較例1は、ハードコーティング組成物中に含まれる重合性不飽和基含有ポリマーの重量平均分子量が、請求項1の範囲を超える例である。この例では、鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度(硬化前剥離強度)が小さくなり、凹凸形状を良好に転写することができなかった。
 比較例2は、ハードコーティング組成物中に、重合性不飽和基含有オリゴマーまたはポリマーが含まれない例である。この例では、鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度(硬化前剥離強度)が小さく、端部より塗膜がはみ出し膜厚の不均一化となり、凹凸形状を良好に転写することができなかった。
 比較例3は、面接触時の押圧の圧力が、0.001MPa未満である例である。この例では、鋳型基材と防眩ハードコート層との間に空隙が生じ、空隙部分には凹凸形状の転写が確認できず、凹凸形状を良好に転写することができなかった。
 比較例4は、鋳型基材による面接触工程を行わない例である。この例では、凹凸形状を有しないハードコート層が形成された。
 比較例5は、鋳型基材を用いることなく形成した例であって、鋳型基材の形成に用いる凹凸形状形成コーティング組成物1を、ハードコーティング組成物に代えて用いた例である。この例では、ハードコート層の硬度が3H未満となった。
 比較例6は、鋳型基材を未硬化のハードコート層に面接触させた後、紫外線照射することなく鋳型基材を剥離し、剥離後に紫外線照射を行った例である。この例では、鋳型基材の剥離時に防眩ハードコーティング層の一部がフィルムに付着するなき別れ現象があり、凹凸形状を良好に転写することができなかった。
 比較例7は、ハードコーティング組成物中に、重合性不飽和基含有オリゴマーまたはポリマーが含まれない例であって、重合性不飽和基含有モノマーとして粘度が高いものを用いた例である。この例では、紫外線照射後に鋳型基材を剥離することができず、紫外線照射後における鋳型基材剥離強度が測定不可能となった。
 本発明の形成方法によれば、良好な防眩性能を発揮する表面凹凸形状を有し、かつ、耐擦傷性に優れた防眩ハードコート層を形成することができる。本発明によって形成される防眩ハードコート層は、例えば高詳細ディスプレイなどに好適に設けることができる。

Claims (12)

  1.  透明支持基材の少なくとも一方の面上に、表面に凹凸形状を有する防眩ハードコート層を設ける、防眩ハードコート層の形成方法であって、下記工程、
     表面に凹凸形状を有する鋳型基材を作成する、鋳型基材作成工程、
     透明支持基材の一方の面上にハードコーティング組成物を塗装し、未硬化のハードコート層を形成する、塗装工程、
     前記鋳型基材の凹凸形状面と、前記未硬化のハードコート層の面とが対向する方向で、両基材を面接触させる、面接触工程、
     活性エネルギー線を照射して、未硬化のハードコート層を硬化させる、硬化工程、
     硬化したハードコート層から、鋳型基材を剥離する、剥離工程、
    を包含し、
     前記ハードコーティング組成物は、重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマーを含み、
     前記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触部分の剥離強度は、0.01~2N/25mmの範囲内であり、
     活性エネルギー線照射後における、前記鋳型基材の凹凸形状面およびハードコート層の面接触部分の剥離強度は、0.005~1.5N/25mmの範囲内であり、および、
     前記鋳型基材の凹凸形状面および未硬化のハードコート層面の面接触工程における、押圧の圧力が0.001~5MPaであり、および、押圧の圧力が前記範囲である場合の凹凸形状転写率が75~100%である、
    防眩ハードコート層の形成方法。
  2.  前記鋳型基材の表面の凹凸形状は、第1成分および第2成分を含む凹凸形状形成コーティング組成物を塗装し、第1成分および第2成分を相分離させることによって形成された凹凸形状である、
    請求項1記載の防眩ハードコート層の形成方法。
  3.  前記ハードコーティング組成物は、
    前記重量平均分子量が1000~200000の範囲内である、重合性不飽和基含有オリゴマーまたはポリマー、および
    重合性不飽和基当量が90~500g/eqである、重合性不飽和基含有モノマー、
    を含み、
    前記ハードコーティング組成物中に含まれる層形成樹脂成分の固形分100質量部に対して、前記重合性不飽和基含有オリゴマーまたはポリマーの量が15~85質量部であり、前記重合性不飽和基含有モノマーの量が85~15質量部である、
    請求項1または2記載の防眩ハードコート層の形成方法。
  4.  前記重合性不飽和基含有ポリマーが有する重合性不飽和基は、アクリロイル基およびメタクリロイル基からなる群から選択される1種またはそれ以上である、請求項1~3いずれかに記載の防眩ハートコート層の形成方法。
  5.  前記防眩ハードコート層の硬度は、鉛筆硬度2Hまたはそれ以上である、請求項1~4いずれかに記載の防眩ハードコート層の形成方法。
  6.  前記表面に凹凸形状を有する防眩ハードコート層は、
    十点平均粗さRzJISが0.2~1.0 μmであり、
    粗さ曲線要素の平均長さRSmが5~100μmである、
    表面凹凸形状を有する、
    請求項1~5いずれかに記載の防眩ハードコート層の形成方法。
  7.  前記ハードコーティング組成物は、平均粒子径が0.5~10μmである透光性微粒子をさらに含み、
     前記透光性微粒子の屈折率(Rf1)、および、前記ハードコーティング組成物中に含まれる層形成樹脂成分の屈折率(Rf2)が、下記関係
    0.01≦|Rf1―Rf2|≦0.23
    を満たす、
    請求項1~6いずれかに記載の防眩ハードコート層の形成方法。
  8.  前記表面に凹凸形状を有する防眩ハードコート層は、
    0.125mm、0.25mm、0.5mm、1.0mmおよび2.0mmの5種類の幅の光学くしに対する透過像鮮明度(%)の総和値(%)が300~480の範囲内である、
    表面凹凸形状を有する、
    請求項1~7いずれかに記載の防眩ハードコート層の形成方法。
  9.  前記剥離工程後にさらに、
     得られた防眩ハードコート層の凹凸形状面の上に、高屈折率層、低屈折率層および防汚層からなる群から選択される1種またはそれ以上の機能層を形成する工程、
    を包含する、
    請求項1~8いずれかに記載の防眩ハードコート層の形成方法。
  10.  前記透明支持基材の他の一方の面上に、加飾層を形成する、加飾層形成工程、
    をさらに包含する、
    請求項1~9いずれかに記載の防眩ハードコート層の形成方法。
  11.  請求項1~10いずれかに記載の方法によって得られた防眩ハードコート層を、ディスプレイの表面に配置する工程、
    を包含する、防眩ハードコート層を有するディスプレイの製造方法。
  12.  前記ディスプレイが、タッチパネルディスプレイである、請求項11記載の防眩ハードコート層を有するディスプレイの製造方法。
PCT/JP2018/037463 2017-10-06 2018-10-05 防眩ハードコート層の形成方法 WO2019070073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880064959.8A CN111183375B (zh) 2017-10-06 2018-10-05 防眩硬涂层的形成方法
KR1020207011589A KR102387661B1 (ko) 2017-10-06 2018-10-05 방현 하드 코팅층의 형성 방법
EP18865033.7A EP3693769A4 (en) 2017-10-06 2018-10-05 ANTI-REFLECTIVE HARD COATING LAYER FORMING PROCESS
US16/652,117 US20200316826A1 (en) 2017-10-06 2018-10-05 Method for forming anti-glare hard coat layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017196277A JP6393384B1 (ja) 2017-10-06 2017-10-06 防眩ハードコート層の形成方法
JP2017-196277 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019070073A1 true WO2019070073A1 (ja) 2019-04-11

Family

ID=63579970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037463 WO2019070073A1 (ja) 2017-10-06 2018-10-05 防眩ハードコート層の形成方法

Country Status (7)

Country Link
US (1) US20200316826A1 (ja)
EP (1) EP3693769A4 (ja)
JP (1) JP6393384B1 (ja)
KR (1) KR102387661B1 (ja)
CN (1) CN111183375B (ja)
TW (1) TWI786200B (ja)
WO (1) WO2019070073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303078A (zh) * 2019-12-20 2022-04-08 株式会社Lg化学

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667303B (zh) * 2018-08-02 2019-08-01 明基材料股份有限公司 硬塗層光學膜、具有此硬塗層光學膜的偏光板、及含此硬塗層光學膜及/或偏光板的影像顯示裝置
JPWO2020085413A1 (ja) * 2018-10-25 2021-09-09 積水化学工業株式会社 光反応性組成物
JP6818186B2 (ja) * 2018-12-06 2021-01-20 日本ペイント・オートモーティブコーティングス株式会社 加飾用積層部材及び加飾成形体の製造方法
WO2020165945A1 (ja) * 2019-02-12 2020-08-20 株式会社ダイセル ペン入力デバイス用表面材
JP7229833B2 (ja) * 2019-03-29 2023-02-28 株式会社きもと 成型用積層フィルム
JP2020090084A (ja) * 2019-06-27 2020-06-11 日本ペイント・オートモーティブコーティングス株式会社 加飾用積層部材及び加飾成形体の製造方法
JP7374304B2 (ja) * 2019-12-20 2023-11-06 エルジー・ケム・リミテッド フィルム
KR20220039919A (ko) * 2020-09-21 2022-03-30 삼성디스플레이 주식회사 커버 윈도우, 이의 제조 방법, 및 이를 포함하는 표시 장치
CN114231158A (zh) * 2021-12-24 2022-03-25 惠州合益创光学材料有限公司 一种用于高精细防眩涂层的组合物及其高精细防眩膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
JP2007160603A (ja) * 2005-12-12 2007-06-28 Nitto Denko Corp 光学部材成形用金型の製造方法
JP2007183653A (ja) 2007-01-11 2007-07-19 Toppan Printing Co Ltd 防眩性ハードコートフィルムの製造方法
JP2009075248A (ja) * 2007-09-19 2009-04-09 Lintec Corp 防眩性ハードコートフィルム及びその製造方法
JP2010191370A (ja) * 2009-02-20 2010-09-02 Nippon Bee Chemical Co Ltd 防眩性コーティング組成物、防眩フィルムおよびその製造方法
JP2011069913A (ja) 2009-09-24 2011-04-07 Fujifilm Corp 防眩フィルム、偏光板、及び画像表示装置
JP2011088340A (ja) * 2009-10-22 2011-05-06 Toshiba Corp テンプレート及びパターン形成方法
JP2011107297A (ja) * 2009-11-16 2011-06-02 Sony Corp 防眩性フィルムおよび表示装置
JP2011165821A (ja) * 2010-02-08 2011-08-25 Asahi Kasei Corp 微細エッチングマスクの製造方法及び露光処理装置
JP2015161899A (ja) * 2014-02-28 2015-09-07 ソマール株式会社 ハードコート膜用コーティング組成物及びハードコート膜
JP2016161834A (ja) * 2015-03-03 2016-09-05 大日本印刷株式会社 画像表示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074927B2 (ja) * 2005-04-01 2012-11-14 ダイキン工業株式会社 表面改質剤およびその用途
CN100582818C (zh) * 2006-04-26 2010-01-20 日东电工株式会社 防眩性硬涂薄膜及其制造方法、偏振片和图像显示装置
CN101196584A (zh) * 2006-12-08 2008-06-11 鸿富锦精密工业(深圳)有限公司 光学板
JP5401824B2 (ja) * 2007-04-09 2014-01-29 デクセリアルズ株式会社 画像表示装置
US20090136713A1 (en) * 2007-08-22 2009-05-28 Tomoegawa Co., Ltd. Optical layered product
JP5101343B2 (ja) * 2008-03-03 2012-12-19 株式会社ダイセル 微細構造物の製造方法
JP5402292B2 (ja) * 2008-06-20 2014-01-29 荒川化学工業株式会社 活性エネルギー線硬化型賦型用樹脂組成物、賦型層が表面に設けられた成形体、表面に微細凹凸形状が設けられた成形体および光学部品
JP5522720B2 (ja) * 2009-10-07 2014-06-18 日東電工株式会社 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置、ならびに防眩性ハードコートフィルムの製造方法
JP2011081219A (ja) * 2009-10-07 2011-04-21 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP5608385B2 (ja) * 2010-02-08 2014-10-15 デクセリアルズ株式会社 光学体およびその製造方法、窓材、建具、ならびに日射遮蔽装置
JP2011248289A (ja) * 2010-05-31 2011-12-08 Sumitomo Chemical Co Ltd 防眩性フィルム、防眩性偏光板及び画像表示装置
CN103282394B (zh) * 2011-01-12 2015-07-01 三菱丽阳株式会社 活性能量线固化性树脂组合物、微细凹凸结构体及微细凹凸结构体的制造方法
KR20140106704A (ko) * 2012-04-26 2014-09-03 제이엑스 닛코닛세키 에네루기 가부시키가이샤 미세 패턴 전사용 몰드의 제조 방법 및 이것을 사용한 요철 구조를 가지는 기판의 제조 방법, 및 상기 요철 구조를 가지는 기판을 가지는 유기 el 소자의 제조 방법
JP5977582B2 (ja) * 2012-05-25 2016-08-24 藤森工業株式会社 表面保護フィルム、及びそれが貼合された光学部品
JP6044544B2 (ja) * 2012-06-20 2016-12-14 三菱レイヨン株式会社 積層体の製造方法
US9891368B2 (en) * 2013-04-11 2018-02-13 Nippon Carbide Industries Co., Inc. Multilayer sheet
WO2016010041A1 (ja) * 2014-07-15 2016-01-21 Jnc株式会社 積層体、表面保護物品、積層体の製造方法
JP6826803B2 (ja) * 2014-08-26 2021-02-10 中国塗料株式会社 光硬化性樹脂組成物、該組成物から形成される硬化被膜および防眩フィルム、画像表示装置、並びに硬化被膜および防眩フィルムの製造方法
JP6360764B2 (ja) * 2014-09-30 2018-07-18 富士フイルム株式会社 反射防止フィルム、反射防止フィルムの製造方法、反射防止フィルムと清掃用布を含むキット
US20170199309A1 (en) * 2016-01-12 2017-07-13 Optivision Technology Inc. Optical device and diffusion film
EP3437858B1 (en) * 2016-03-30 2022-07-27 Nippon Paint Automotive Coatings Co., Ltd. Laminate film for molded decoration
JP6352575B1 (ja) * 2016-10-07 2018-07-04 日本ペイント・オートモーティブコーティングス株式会社 光学積層部材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
JP2007160603A (ja) * 2005-12-12 2007-06-28 Nitto Denko Corp 光学部材成形用金型の製造方法
JP2007183653A (ja) 2007-01-11 2007-07-19 Toppan Printing Co Ltd 防眩性ハードコートフィルムの製造方法
JP2009075248A (ja) * 2007-09-19 2009-04-09 Lintec Corp 防眩性ハードコートフィルム及びその製造方法
JP2010191370A (ja) * 2009-02-20 2010-09-02 Nippon Bee Chemical Co Ltd 防眩性コーティング組成物、防眩フィルムおよびその製造方法
JP2011069913A (ja) 2009-09-24 2011-04-07 Fujifilm Corp 防眩フィルム、偏光板、及び画像表示装置
JP2011088340A (ja) * 2009-10-22 2011-05-06 Toshiba Corp テンプレート及びパターン形成方法
JP2011107297A (ja) * 2009-11-16 2011-06-02 Sony Corp 防眩性フィルムおよび表示装置
JP2011165821A (ja) * 2010-02-08 2011-08-25 Asahi Kasei Corp 微細エッチングマスクの製造方法及び露光処理装置
JP2015161899A (ja) * 2014-02-28 2015-09-07 ソマール株式会社 ハードコート膜用コーティング組成物及びハードコート膜
JP2016161834A (ja) * 2015-03-03 2016-09-05 大日本印刷株式会社 画像表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3693769A4
SUH, CLARKE, J.P.S.A-1, vol. 5, 1967, pages 1671 - 1681

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303078A (zh) * 2019-12-20 2022-04-08 株式会社Lg化学

Also Published As

Publication number Publication date
JP2019070718A (ja) 2019-05-09
KR20200057743A (ko) 2020-05-26
US20200316826A1 (en) 2020-10-08
KR102387661B1 (ko) 2022-04-15
CN111183375B (zh) 2022-07-19
TW201923385A (zh) 2019-06-16
CN111183375A (zh) 2020-05-19
JP6393384B1 (ja) 2018-09-19
TWI786200B (zh) 2022-12-11
EP3693769A1 (en) 2020-08-12
EP3693769A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6393384B1 (ja) 防眩ハードコート層の形成方法
KR101388321B1 (ko) 광학 필름 및 터치 패널
TWI488747B (zh) Optical laminates and optical laminates
TWI534002B (zh) 光學積層體及光學積層體之製造方法
KR102279536B1 (ko) 방현 코팅 조성물, 그것을 이용한 광학 적층 부재, 및 방현 하드 코팅층의 형성 방법
US9201171B2 (en) Optical layered body, polarizer, and image display device
US20130115469A1 (en) Curable resin composition for hard coat layer, method for producing hard coat film, hard coat film, polarizing plate and display panel
KR20090047529A (ko) 광학 적층체, 편광판 및 화상 표시 장치
KR20080047466A (ko) 대전 방지 방현 필름
KR102241216B1 (ko) 광학 적층 부재
JP7297156B2 (ja) 積層フィルムおよび成形体、ならびにこれらの製造方法
KR101224241B1 (ko) 광학 적층체
KR101432987B1 (ko) 투과도가 우수한 내지문성 방현코팅액 조성물 및 상기 조성물을 이용하여 제조된 내지문성 방현필름
JP5899663B2 (ja) ハードコート層用組成物、ハードコートフィルム、偏光板及び画像表示装置
CN108473826B (zh) 光学粘合剂
US20220186046A1 (en) Laminate and surface coating agent exhibiting low gloss appearance
JP4003849B2 (ja) 液晶表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011589

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018865033

Country of ref document: EP

Effective date: 20200506