WO2019069625A1 - 超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法 - Google Patents

超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法 Download PDF

Info

Publication number
WO2019069625A1
WO2019069625A1 PCT/JP2018/033349 JP2018033349W WO2019069625A1 WO 2019069625 A1 WO2019069625 A1 WO 2019069625A1 JP 2018033349 W JP2018033349 W JP 2018033349W WO 2019069625 A1 WO2019069625 A1 WO 2019069625A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
analysis channel
masking
channel
sample
Prior art date
Application number
PCT/JP2018/033349
Other languages
English (en)
French (fr)
Inventor
恵子 松本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201880061498.9A priority Critical patent/CN111108376A/zh
Priority to JP2019546590A priority patent/JP6908125B2/ja
Priority to US16/753,011 priority patent/US11435327B2/en
Publication of WO2019069625A1 publication Critical patent/WO2019069625A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Definitions

  • a mobile phase containing carbon dioxide is sent in an analysis channel having an analysis column for separating a sample, and the pressure in the analysis channel is adjusted to a predetermined pressure by a back pressure regulator to perform analysis.
  • the present invention relates to supercritical fluid chromatography analysis in which a sample is injected into a channel to separate and analyze the sample.
  • Supercritical fluid chromatography using a supercritical fluid is known as an analysis method for performing separation analysis of samples (see Patent Document 1).
  • Supercritical fluid chromatography is a chromatography that uses carbon dioxide or the like at a constant temperature and pressure to make a supercritical fluid, and uses the supercritical fluid as a solvent.
  • the supercritical fluid has both liquid and gas properties, and is characterized by having high diffusivity and low viscosity. By using such supercritical fluid as a solvent, analysis at high speed, high separation, and high sensitivity becomes possible.
  • the peak shape of a specific component may be broadened, or a specific component may be detected without elution from the analytical column. There is a phenomenon that it does not happen. This is a problem caused by the adsorption of a substance such as phosphatidic acid having an adsorptive property to metal on the inner surface of the metal pipe forming the analysis channel.
  • the present invention has been made in view of the problems of the conventional supercritical fluid chromatography as described above, so that the supercritical fluid chromatography analysis can be properly performed even on metal adsorbing substances. Purpose.
  • the supercritical fluid chromatograph includes an analysis channel, a mobile phase liquid transfer unit, a masking liquid transfer unit, a sample injection unit, an analysis column, and a back pressure adjustment unit.
  • the mobile phase transport unit transports the mobile phase in the analysis channel.
  • the said masking liquid sending part sends a masking liquid in the said analysis flow path.
  • the said masking liquid is a liquid for making the inner surface of metal piping which makes
  • the sample injection unit injects a sample into the analysis channel.
  • the analysis column is provided on the analysis channel, and is for separating the sample injected into the analysis channel by the sample injection unit.
  • the back pressure adjusting unit is provided at the downstream end of the analysis channel to adjust the pressure in the analysis channel.
  • the supercritical fluid chromatograph comprises a masking liquid feed unit for feeding the masking liquid in the analysis channel, and adsorbs the metal adsorbing substance on the inner surface of the metal pipe forming the analysis channel.
  • a masking process can be performed to have a suppressing action. If such masking treatment is performed before starting the analysis of the sample, the adsorption of the metal adsorbing substance on the inner surface of the analysis channel is suppressed, and the analysis of the metal adsorbing substance in SFC can be normally performed. It becomes possible.
  • the supercritical fluid chromatograph of the present invention is preferably configured to automatically execute the above-mentioned masking process in a time zone where analysis of a sample is not performed. Therefore, in the supercritical fluid chromatograph according to the present invention, the masking liquid is fed by the masking liquid feed unit at a predetermined timing when analysis is not performed, and the masking liquid is fed for a predetermined time to form the analytical flow path.
  • the inner surface of the metal pipe may further include a masking process execution unit configured to execute a masking process having an effect of suppressing adsorption of the metal adsorbing substance.
  • the “predetermined timing at which analysis is not performed” is, for example, a timing previously scheduled by the user. For example, the user sets the analysis of the metal adsorptive substance at SFC by setting the masking process to be performed in a time zone such as between analysis and analysis in continuous analysis or at night time when analysis is not performed. It can be done with high efficiency.
  • the apparatus further comprises a cleaning stroke execution unit configured to execute the cleaning stroke. Then, after the masking process ends, a process of removing the masking liquid is automatically performed, and the influence of the masking liquid on the analysis can be suppressed.
  • a mobile phase containing carbon dioxide is transported in an analysis channel having an analysis column for separating a sample, and the pressure in the analysis channel is a back pressure.
  • the pressure is adjusted to a predetermined pressure by the adjustment unit, and the sample is injected into the analysis channel to perform the separation analysis of the sample, which includes the following steps.
  • a masking process for supplying a masking solution for suppressing adsorption of the metal adsorbing substance on the inner surface of the metal pipe forming the analysis channel for a predetermined time in the analysis channel, and the masking process
  • the supercritical fluid chromatography analysis method according to the present invention may further include the following steps. After the masking process is completed, before the analysis step is started, a liquid other than the masking liquid is sent in the analysis channel for a predetermined time in the analysis channel, and the liquid in the analysis channel is sent. Washing process to remove the masking liquid.
  • the supercritical fluid chromatograph according to the present invention can perform the masking process for suppressing the adsorption of the metal adsorbing substance on the inner surface of the metal pipe forming the analysis channel, the analysis by the metal adsorbing substance can be performed.
  • the adsorption on the inner surface of the flow path can be suppressed, and the analysis of the sample containing the metal adsorbing substance can be performed normally.
  • the supercritical fluid chromatography analysis method has the function of suppressing the adsorption of the metal adsorptive substance on the inner surface of the metal pipe forming the analysis channel before the analysis of the sample containing the metal adsorptive substance. Since the masking process is performed, the metal adsorption substance can be analyzed normally by suppressing the adsorption of the metal adsorption substance on the inner surface of the analysis channel.
  • FIG. 1 shows an embodiment of a supercritical fluid chromatograph.
  • the supercritical fluid chromatograph of this embodiment includes an analysis channel 2, a mobile phase transport unit 4, a masking liquid delivery unit 6, a sample injection unit 8, an analysis column 10, a detector 12, a back pressure control unit 14, and A control unit 28 is provided.
  • the mobile phase transfer unit 4 includes a pump 16a for sending carbon dioxide sealed in a carbon dioxide cylinder 18, a pump 16b for sending a modifier contained in the modifier container 20, and a pump 16a.
  • a mixer 14 is provided to mix the carbon dioxide to be sent and the modifier to be sent by the pump 16b.
  • the mixed fluid of carbon dioxide and modifier mixed in the mixer 14 is supplied to the analysis channel 2 as a mobile phase.
  • the sample injection unit 8 is an autosampler configured to inject a sample into the analysis channel 2 in which the mobile phase from the mobile phase delivery unit 4 flows.
  • the analysis column 10 is provided downstream of the sample injection unit 8 on the analysis channel 2.
  • the analysis column 10 is for separating the sample injected by the sample injection unit 8.
  • the detector 12 is provided downstream of the analysis column 10 on the analysis channel 2.
  • the sample components separated in the analysis column 10 are introduced into the detector 12 and detected.
  • the back pressure control unit 14 is provided at the downstream end of the analysis channel 2 and is configured to adjust the pressure in the analysis channel 2 to a predetermined pressure.
  • the masking liquid delivery part 6 includes a delivery pump 22 for delivering the masking liquid contained in the masking liquid container 24.
  • the masking liquid supply section 6 is configured to supply the masking liquid to the analysis flow path 2 through the masking liquid supply flow path 26 connected to a position upstream of the sample injection section 8 of the analysis flow path 2.
  • the masking liquid is a liquid that forms a film that suppresses the adsorption of a compound such as phosphatidic acid having an adsorptivity to metal on the inner surface of the metal pipe that constitutes the analysis channel 2.
  • phosphatidic acid phosphatidic acid, phosphatidyl serine, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, fumonisin and the like can be mentioned.
  • a masking liquid methanol containing a phosphate is mentioned, for example.
  • a masking solution methanol containing a phosphate is mentioned, for example.
  • a masking solution By sending such a masking solution in the analysis channel 2 for a fixed time (for example, several hours), a thin film made of a metal salt is formed on the inner surface of the metal pipe forming the analysis channel 2.
  • the inner surface of the metal has the function of suppressing the adsorption of the metal adsorbing substance.
  • a process of sending a masking solution in the analysis channel 2 for a fixed time to exert an effect of suppressing adsorption of the adsorptive substance on the inner surface of the analysis channel 2 is called a masking process.
  • phosphoric acid aqueous solution, citric acid aqueous solution, ETDA (ethylenediaminetetraacetic acid), acetylacetone etc. can also be used.
  • the control unit 28 controls at least the operations of the mobile phase transfer unit 4 and the masking liquid transfer unit 6, and includes a masking process execution unit 30 and a cleaning process execution unit 32.
  • the masking process execution unit 30 is configured to execute the above masking process at a predetermined timing at which analysis of a sample is not performed.
  • the timing at which the masking process is performed is a timing preset by the user, for example, between analysis in continuous analysis and a time zone such as nighttime during which analysis is not performed.
  • the cleaning process execution unit 32 sends a liquid other than the masking liquid, for example, methanol prepared as a modifier, in the analysis channel 2 for a predetermined time, and the analysis channel 2 It is comprised so that the masking liquid components, such as phosphate which remain inside, may be removed.
  • a liquid other than the masking liquid for example, methanol prepared as a modifier
  • the control unit 28 is realized by a dedicated computer or a general-purpose personal computer, and the masking process execution unit 30 and the cleaning process execution unit 32 execute predetermined programs in the computer forming the control unit 28 using arithmetic elements. Is a function realized by
  • a mass spectrometer may be connected to the downstream side of the back pressure control unit 14.
  • a switching valve is provided between the back pressure control unit 14 and the mass spectrometer, and the switching valve is switched so that the masking liquid containing non-volatile salt does not flow into the mass spectrometer during the above masking process. Let's do it.
  • the masking process is for enabling the normal analysis of the sample containing the metal adsorbing substance. Therefore, the masking process is performed at a predetermined timing before analysis of the sample containing the metal adsorbing substance is performed. That is, when a sample containing a metal adsorbing substance is analyzed, as shown in FIG. 2, after the masking step (step S1) and the cleaning step (step S2) are sequentially performed, The analysis is started (step S3).
  • the effect of suppressing adsorption of the metal adsorbing substance to the inner surface of the analysis channel 2 is maintained for a certain period, so it is not necessary to execute the masking process and the cleaning process for each analysis. . It is preferable to periodically execute the masking process and the cleaning process at a predetermined timing before the effect of the masking process disappears.
  • FIG. 3A is a peak waveform in the case where analysis of lysophosphatidic acid is performed without applying a masking process to the analysis channel 2.
  • the analysis channel 2 is not subjected to any treatment, lysophosphatidic acid having metal adsorptivity diffuses in the channel direction by adsorption to the inner surface of the pipe in the analysis channel 2, and the peak shape becomes broad. , And separation of other components is difficult.
  • the masking process is performed in the analysis channel 2 as shown in FIG. 3B, the adsorption in the analysis channel 2 is suppressed, the peak shape becomes sharp, and the separation becomes possible. From this, it can be understood that by performing the masking process, it is possible to properly analyze the sample containing the metal adsorbing substance.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

超臨界流体クロマトグラフは、分析流路、移動相送液部、マスキング液送液部、試料注入部、分析カラム、及び背圧調整部を備えている。前記移動相送液部は、移動相を前記分析流路中において送液する。前記マスキング液送液部は、マスキング液を前記分析流路中において送液する。前記マスキング液とは、前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるための液である。前記試料注入部は、前記分析流路中に試料を注入する。前記分析カラムは、前記分析流路上に設けられ、前記試料注入部により前記分析流路中に注入された試料を分離するためのものである。前記背圧調整部は、前記分析流路の下流端に設けられ、前記分析流路内の圧力を調節する。

Description

超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法
 本発明は、試料を分離するための分析カラムを有する分析流路中で二酸化炭素を含む移動相を送液するとともに分析流路内の圧力を背圧調整部により所定の圧力に調節し、分析流路中に試料を注入して試料の分離分析を行なう超臨界流体クロマトグラフィー分析に関するものである。
 試料の分離分析を行なう分析手法として、超臨界流体を用いた超臨界流体クロマトグラフィーが知られている(特許文献1参照。)。超臨界流体クロマトグラフィーは、二酸化炭素などに一定の温度と圧力をかけて超臨界流体とし、その超臨界流体を溶媒として用いるクロマトグラフィーである。超臨界流体は液体と気体の両方の性質をもち、液体よりも拡散性が高く粘性が低いという特徴を有する。このような超臨界流体を溶媒として用いることで、高速・高分離・高感度での分析が可能となる。
国際公開第2014/083639号
 フォスファチジン酸などのりん酸基を有する化合物を含む試料を超臨界流体クロマトグラフィーで分析しようとすると、特定の成分のピーク形状がブロードになったり、分析カラムから特定成分が溶出せずに検出されなかったりするという現象が見られる。これは、金属に対して吸着性をもつフォスファチジン酸などの物質が分析流路をなす金属配管の内面に吸着することによって起こる問題である。
 分析流路を非金属の配管で構成すればこのような問題は起こらないが、超臨界流体クロマトグラフィーでは分析流路内が高圧状態(例えば10MPa)となるため、分析流路を高耐圧な金属製の配管を用いて構成する必要がある。そのため、分析流路を樹脂製など非金属の配管で構成することはできない。したがって、従来の超臨界流体クロマトグラフィーでは、金属に対して吸着性をもつフォスファチジン酸のような金属吸着性物質を含む試料について正常に分析を行なうことが困難であった。
 本発明は、上記のような従来の超臨界流体クロマトグラフィーの問題点に鑑みてなされたものであり、金属吸着性物質についても超臨界流体クロマトグラフィー分析を正常に行なうことができるようにすることを目的とするものである。
 本発明に係る超臨界流体クロマトグラフは、分析流路、移動相送液部、マスキング液送液部、試料注入部、分析カラム、及び背圧調整部を備えている。前記移動相送液部は、移動相を前記分析流路中において送液する。前記マスキング液送液部は、マスキング液を前記分析流路中において送液する。前記マスキング液とは、前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるための液である。前記試料注入部は、前記分析流路中に試料を注入する。前記分析カラムは、前記分析流路上に設けられ、前記試料注入部により前記分析流路中に注入された試料を分離するためのものである。前記背圧調整部は、前記分析流路の下流端に設けられ、前記分析流路内の圧力を調節する。
 すなわち、本発明に係る超臨界流体クロマトグラフは、マスキング液を前記分析流路中において送液するマスキング液送液部を備え、分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるためのマスキング処理を行なうことができる。試料の分析を開始する前にこのようなマスキング処理を行なっておけば、金属吸着性物質による分析流路の内面への吸着が抑制され、SFCにおいて金属吸着性物質の分析を正常に行なうことが可能となる。
 本発明の超臨界流体クロマトグラフは、上記のマスキング処理を、試料の分析を行わない時間帯に自動的に実行するように構成されていることが好ましい。そこで、本発明の超臨界流体クロマトグラフに、分析が行われない所定のタイミングで前記マスキング液送液部により前記分析流路中において前記マスキング液を所定時間送液し、前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるマスキング処理行程を実行するように構成されたマスキング処理行程実行部をさらに具備させてもよい。「分析が行われない所定のタイミング」とは、例えば、ユーザによって予めスケジュールされたタイミングである。ユーザは、例えば連続分析における分析と分析の間や分析を行なわない夜間などの時間帯に上記のマスキング処理行程が実行されるように設定しておくことで、金属吸着性物質の分析をSFCにおいて高効率に行なうことができる。
 上記の場合、前記マスキング処理行程が終了した後、前記分析流路中において前記マスキング液以外の液を前記分析流路中において所定時間送液し、前記分析流路内の前記マスキング液を除去する洗浄行程を実行するように構成された洗浄行程実行部をさらに備えていることが好ましい。そうすれば、マスキング処理工程が終了した後、マスキング液を除去する行程が自動的になされ、マスキング液による分析への影響を抑制することができる。
 本発明に係る超臨界流体クロマトグラフィー分析方法は、試料を分離するための分析カラムを有する分析流路中で二酸化炭素を含む移動相を送液するとともに、前記分析流路内の圧力を背圧調整部により所定の圧力に調節し、分析流路中に試料を注入して試料の分離分析を行なうものであって、以下の行程を含んでいる。
 前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるためのマスキング液を、所定時間、前記分析流路中において送液するマスキング処理行程、及び
 前記マスキング処理行程を完了した後で、前記分析流路中において前記移動相を送液するとともに金属吸着性物質を含む試料を前記分析流路中に注入して試料の分離分析を行なう分析行程。
 本発明に係る超臨界流体クロマトグラフィー分析方法は、以下の行程をさらに含んでいてもよい。
 前記マスキング処理行程を完了した後で前記分析工程を開始する前に、前記分析流路中において前記マスキング液以外の液を前記分析流路中において所定時間送液し、前記分析流路内の前記マスキング液を除去する洗浄行程。
 本発明に係る超臨界流体クロマトグラフは、分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるためのマスキング処理を行なうことができるので、金属吸着性物質による分析流路の内面への吸着を抑制して金属吸着性物質を含む試料の分析を正常に行なうことができる。
 本発明に係る超臨界流体クロマトグラフィー分析方法は、金属吸着性物質を含む試料の分析を行なう前に、分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるためのマスキング処理を行なうので、金属吸着性物質による分析流路の内面への吸着を抑制して金属吸着性物質の分析を正常に行なうことができる。
超臨界流体クロマトグラフの一実施例を示す概略構成図である。 同実施例における超臨界流体クロマトグラフィー分析の動作の一例を示すフローチャートである。 マスキング処理を実施しなかった場合のピーク波形の一例である。 マスキング処理を実施した場合のピーク波形の一例である。
 以下、超臨界流体クロマトグラフの一実施例、及び超臨界流体クロマトグラフィー分析方法の一実施例について、図面を参照しながら説明する。
 図1に超臨界流体クロマトグラフの一実施例を示す。
 この実施例の超臨界流体クロマトグラフは、分析流路2、移動相送液部4、マスキング液送液部6、試料注入部8、分析カラム10、検出器12、背圧制御部14、及び制御部28を備えている。
 移動相送液部4は、二酸化炭素ボンベ18に封入された二酸化炭素を送液するためのポンプ16a、モディファイア容器20に収容されたモディファイアを送液するためのポンプ16b、及びポンプ16aによって送液される二酸化炭素とポンプ16bによって送液されるモディファイアを混合するためのミキサ14を備えている。試料の分析を行なう際は、ミキサ14において混合された二酸化炭素とモディファイアの混合流体が移動相として分析流路2へ供給される。
 試料注入部8は、移動相送液部4からの移動相が流れる分析流路2中に試料を注入するように構成されたオートサンプラである。分析カラム10は、分析流路2上における試料注入部8よりも下流に設けられている。分析カラム10は試料注入部8により注入された試料を分離するためのものである。検出器12は、分析流路2上における分析カラム10よりも下流に設けられている。分析カラム10で分離された試料成分は検出器12に導入されて検出される。背圧制御部14は分析流路2の下流端に設けられ、分析流路2内の圧力を所定の圧力に調節するように構成されている。
 マスキング液送液部6は、マスキング液容器24に収容されたマスキング液を送液するための送液ポンプ22を備えている。マスキング液送液部6は、分析流路2の試料注入部8よりも上流の位置に接続されたマスキング液供給流路26を通じて、分析流路2へマスキング液を供給するように構成されている。マスキング液とは、分析流路2を構成する金属配管の内面に、金属に対して吸着性をもつフォスファチジン酸などの化合物が吸着することを抑制する被膜を形成する液である。金属吸着性物質としては、フォスファチジン酸のほかリぞフォスファチジン酸、フォスファチジルセリン、アデノシン一リン酸、アデノシンニリン酸、アデノシン三リン酸、フモニシンなどが挙げられる。
 マスキング液としては、例えば、リン酸塩を含むメタノールが挙げられる。このようなマスキング液を分析流路2中で一定時間(例えば数時間)送液することにより、分析流路2をなす金属配管の内面に金属塩からなる薄い被膜が形成され、分析流路2の内面に金属吸着性物質の吸着を抑制する作用をもたせることができる。マスキング液を分析流路2中で一定時間送液して分析流路2の内面に吸着性物質の吸着を抑制する作用をもたせる処理をマスキング処理と称する。なお、マスキング液としては、りん酸水溶液、クエン酸水溶液、ETDA(エチレンジアミン四酢酸)、アセチルアセトンなども用いることができる。
 制御部28は、少なくとも移動相送液部4とマスキング液送液部6の動作を制御するものであり、マスキング処理行程実行部30と洗浄行程実行部32を備えている。
 マスキング処理行程実行部30は、試料の分析が行われない所定のタイミングで上記のマスキング処理を実行するように構成されている。マスキング処理行程が実行されるタイミングは、ユーザにより予め設定されたタイミングであり、例えば連続分析における分析と分析の間や分析が実施されない夜間といった時間帯である。
 洗浄行程実行部32は、上記のマスキング処理行程が終了した後で、マスキング液以外の液、例えばモディファイアとして用意されているメタノールを分析流路2中で所定時間送液し、分析流路2内に残存するリン酸塩等のマスキング液成分を除去するように構成されている。
 制御部28は専用のコンピュータ又は汎用のパーソナルコンピュータによって実現されるものであり、マスキング処理行程実行部30及び洗浄行程実行部32は制御部28をなすコンピュータにおいて所定のプログラムが演算素子により実行されることで実現される機能である。
 なお、図1では示されていないが、背圧制御部14の下流側に質量分析計が接続される場合がある。その場合は、背圧制御部14と質量分析計との間に切替バルブを設け、上記のマスキング処理の際に不揮発性の塩を含むマスキング液が質量分析計に流入しないように切替バルブを切り替えるようにする。
 マスキング処理行程は、金属吸着性物質を含む試料を正常に分析することができるようにするためのものである。そのため、マスキング処理行程は、金属吸着性物質を含む試料の分析が実施される前の所定のタイミングで実行する。すなわち、金属吸着性物質を含む試料の分析を行なう際には、図2に示されているように、マスキング処理行程(ステップS1)及び洗浄行程(ステップS2)を順に実行した後で、試料の分析を開始する(ステップS3)。
 なお、一度マスキング処理を実施すると、一定期間中は金属吸着性物質による分析流路2の内面への吸着抑制効果が持続するため、一分析ごとにマスキング処理行程と洗浄行程を実行する必要はない。マスキング処理の効果が切れる前の所定のタイミングで定期的にマスキング処理行程及び洗浄行程を実行することが好ましい。
 図3Aは分析流路2にマスキング処理を施すことなくリゾフォスファチジン酸の分析を行なった場合のピーク波形である。分析流路2に何らの処理を施さない場合、金属吸着性をもつリゾフォスファチジン酸は、分析流路2内において配管内面への吸着によって流路方向へ拡散し、ピーク形状がブロードになり、他の成分との分離が困難な状態となる。これに対し、図3Bに示されているように分析流路2内にマスキング処理を施すと、分析流路2内における吸着が抑制され、ピーク形状がシャープになり、分離可能になる。このことから、マスキング処理を施すことによって金属吸着性物質を含む試料の分析を正常に行なうことが可能になることがわかる。
   2   分析流路
   4   移動相送液部
   6   マスキング液送液部
   8   試料注入部
   10   分析カラム
   12   検出器
   14   背圧調整部
   16a,16b,22   ポンプ
   18   二酸化炭素ボンベ
   20   モディファイア容器
   24   マスキング液容器
   26   マスキング液供給流路
   28   制御部
   30   マスキング処理行程実行部
   32   洗浄行程実行部

Claims (5)

  1.  分析流路と、
     移動相を前記分析流路中において送液するための移動相送液部と、
     前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるマスキング液を前記分析流路中において送液するためのマスキング液送液部と、
     前記分析流路中に試料を注入するための試料注入部と、
     前記分析流路上に設けられ、前記試料注入部により前記分析流路中に注入された試料を分離するための分析カラムと、
     前記分析流路の下流端に設けられ、前記分析流路内の圧力を調節する背圧調整部と、を備えた超臨界流体クロマトグラフ。
  2.  分析が行われない所定のタイミングで前記マスキング液送液部により前記分析流路中において前記マスキング液を所定時間送液し、前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるマスキング処理行程を実行するように構成されたマスキング処理行程実行部をさらに備えている、請求項1に記載の超臨界流体クロマトグラフ。
  3.  前記マスキング処理行程が終了した後、前記分析流路中において前記マスキング液以外の液を前記分析流路中において所定時間送液し、前記分析流路内の前記マスキング液を除去する洗浄行程を実行するように構成された洗浄行程実行部をさらに備えている、請求項2に記載の超臨界流体クロマトグラフ。
  4.  試料を分離するための分析カラムを有する分析流路中で二酸化炭素を含む移動相を送液するとともに、前記分析流路内の圧力を背圧調整部により所定の圧力に調節し、分析流路中に試料を注入して試料の分離分析を行なう超臨界流体クロマトグラフィー分析方法であって、
     前記分析流路をなす金属配管の内面に金属吸着性物質の吸着を抑制する作用をもたせるためのマスキング液を、所定時間、前記分析流路中において送液するマスキング処理行程と、
     前記マスキング処理行程を完了した後で、前記分析流路中において前記移動相を送液するとともに金属吸着性物質を含む試料を前記分析流路中に注入して試料の分離分析を行なう分析行程と、を備えた超臨界流体クロマトグラフィー分析方法。
  5.  前記マスキング処理行程を完了した後で前記分析工程を開始する前に、前記分析流路中において前記マスキング液以外の液を前記分析流路中において所定時間送液し、前記分析流路内の前記マスキング液を除去する洗浄行程をさらに備えた、請求項4に記載の超臨界流体クロマトグラフィー分析方法。
PCT/JP2018/033349 2017-10-05 2018-09-10 超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法 WO2019069625A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880061498.9A CN111108376A (zh) 2017-10-05 2018-09-10 超临界流体色谱仪及超临界流体色谱分析方法
JP2019546590A JP6908125B2 (ja) 2017-10-05 2018-09-10 超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法
US16/753,011 US11435327B2 (en) 2017-10-05 2018-09-10 Supercritical fluid chromatograph and supercritical fluid chromatography analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194830 2017-10-05
JP2017194830 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069625A1 true WO2019069625A1 (ja) 2019-04-11

Family

ID=65994548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033349 WO2019069625A1 (ja) 2017-10-05 2018-09-10 超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法

Country Status (4)

Country Link
US (1) US11435327B2 (ja)
JP (1) JP6908125B2 (ja)
CN (1) CN111108376A (ja)
WO (1) WO2019069625A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114787622A (zh) * 2019-12-05 2022-07-22 沃特世科技公司 用于提高回收率并将系统损失减到最小的聚膦酸

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166762A (ja) * 1990-10-30 1992-06-12 Yokogawa Electric Corp 吸着性ガスの測定方法
US5612489A (en) * 1996-02-14 1997-03-18 Air Products And Chemicals, Inc. Enhanced sensitivity for oxygen and other interactive gases in sample gases using gas chromatography
JP2001124751A (ja) * 1999-10-28 2001-05-11 Nippon Sanso Corp ガス中の不純物の分析方法及び装置
JP2011099686A (ja) * 2009-11-04 2011-05-19 Yokogawa Electric Corp ガスクロマトグラフ装置
JP3211870U (ja) * 2017-05-22 2017-08-10 株式会社島津製作所 超臨界流体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511659A (en) * 1983-03-04 1985-04-16 Esa, Inc. Liquid chromatograph with electrochemical detector and method
JP3234662B2 (ja) * 1992-12-04 2001-12-04 忠弘 大見 ガスクロマトグラフの流路
JP4075404B2 (ja) * 2001-02-26 2008-04-16 住友金属工業株式会社 表面処理鋼材とその製造方法と化成処理液
CN104813163B (zh) * 2012-11-28 2019-05-14 株式会社岛津制作所 超临界流体处理装置
CN103698423B (zh) * 2013-12-13 2015-11-18 清华大学 一种分析水中溶解性有机物极性的方法
US9927408B2 (en) * 2015-12-29 2018-03-27 Waters Technologies Corporation Methods for increasing sensitivity of detection and/or quantification of negatively charged analytes
CN108885196B (zh) * 2016-03-23 2021-03-30 株式会社大赛璐 色谱用的固定相
CN105964606B (zh) * 2016-04-22 2018-07-10 内蒙古蒙牛乳业(集团)股份有限公司 延长色谱柱使用寿命的清洗方法
JP6809316B2 (ja) * 2017-03-15 2021-01-06 株式会社島津製作所 ループ注入機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166762A (ja) * 1990-10-30 1992-06-12 Yokogawa Electric Corp 吸着性ガスの測定方法
US5612489A (en) * 1996-02-14 1997-03-18 Air Products And Chemicals, Inc. Enhanced sensitivity for oxygen and other interactive gases in sample gases using gas chromatography
JP2001124751A (ja) * 1999-10-28 2001-05-11 Nippon Sanso Corp ガス中の不純物の分析方法及び装置
JP2011099686A (ja) * 2009-11-04 2011-05-19 Yokogawa Electric Corp ガスクロマトグラフ装置
JP3211870U (ja) * 2017-05-22 2017-08-10 株式会社島津製作所 超臨界流体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114787622A (zh) * 2019-12-05 2022-07-22 沃特世科技公司 用于提高回收率并将系统损失减到最小的聚膦酸

Also Published As

Publication number Publication date
CN111108376A (zh) 2020-05-05
US11435327B2 (en) 2022-09-06
JP6908125B2 (ja) 2021-07-21
US20200232952A1 (en) 2020-07-23
JPWO2019069625A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6458504B2 (ja) 超臨界流体−液体クロマトグラフとその分析方法
US20220170892A1 (en) Analyzing device
US8877051B2 (en) Time delay for sample collection in chromatography systems
WO2019069625A1 (ja) 超臨界流体クロマトグラフ、及び超臨界流体クロマトグラフィー分析方法
JP6385103B2 (ja) 順相・逆相カラムを備えた超臨界流体クロマトグラフとそれを用いた分析方法
US20150040648A1 (en) Liquid chromatography device, liquid chromatography analysis process, and non-transitory computer-readable medium
WO2018146826A1 (ja) 超臨界流体装置
JP5054439B2 (ja) イオン交換および順相カラムによる2次元液体クロマトグラフ
US10613061B2 (en) Systems, methods and devices addressing sample extraction and injection problems in chromatography
WO2017070154A2 (en) Systems, methods and devices for cross-stream injection chromatography
JPH05281222A (ja) ヘモグロビン類の分析方法,分析装置およびそれに用いるカラム劣化抑制液
US11519885B2 (en) Sample injector with conduit tip penetrating into needle opening
Kamarei et al. Accurate measurements of frontal analysis for the determination of adsorption isotherms in supercritical fluid chromatography
US20130319088A1 (en) Liquid chromatography apparatus, liquid chromatography analysis method, and liquid chromatography analysis program
CN111896633A (zh) 分析系统
JP4573471B2 (ja) 高速液体クロマトグラフ
US20200166487A1 (en) Methods for preparing liquid mixtures
US11630090B2 (en) Sample dispatching with fluidic sample retaining
JP2010085146A (ja) グラジエント送液装置,グラジエント送液システム、および液体クロマトグラフ
WO2003087756A3 (en) Chemical analysis of samples
JP4735289B2 (ja) 標的化合物と結合する反応化合物を特定するスクリーニング方法及び装置
JP2007024781A (ja) ガスクロマトグラフ装置
JP2022099307A (ja) 超臨界流体クロマトグラフの移動相中の添加剤濃度を制御するシステム
JP2004245620A (ja) 遊離型薬物測定方法及び装置
JP2003149216A (ja) 血清・血漿直接注入可能な高速液体クロマトグラフ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865286

Country of ref document: EP

Kind code of ref document: A1