WO2018146826A1 - 超臨界流体装置 - Google Patents

超臨界流体装置 Download PDF

Info

Publication number
WO2018146826A1
WO2018146826A1 PCT/JP2017/010937 JP2017010937W WO2018146826A1 WO 2018146826 A1 WO2018146826 A1 WO 2018146826A1 JP 2017010937 W JP2017010937 W JP 2017010937W WO 2018146826 A1 WO2018146826 A1 WO 2018146826A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
flow path
sample
supercritical fluid
channel
Prior art date
Application number
PCT/JP2017/010937
Other languages
English (en)
French (fr)
Inventor
由佳 藤戸
泰郎 小倉
健一朗 田中
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2018566739A priority Critical patent/JP6828755B2/ja
Priority to CN201780086418.0A priority patent/CN110291392B/zh
Priority to US16/485,006 priority patent/US11243193B2/en
Publication of WO2018146826A1 publication Critical patent/WO2018146826A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/22Injection in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/201Injection using a sampling valve multiport valves, i.e. having more than two ports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/207Injection using a sampling valve with metering cavity, e.g. sample loop

Definitions

  • the present invention relates to a supercritical fluid apparatus such as a supercritical fluid chromatograph (SFC) or an online supercritical fluid extraction (SFE) -SFC system.
  • a supercritical fluid apparatus such as a supercritical fluid chromatograph (SFC) or an online supercritical fluid extraction (SFE) -SFC system.
  • a sample is injected into an analysis flow channel through which the supercritical fluid flows, and the sample is separated by an analysis column and analyzed, and the sample is accommodated.
  • Supercritical fluid extraction (hereinafter referred to as SFE) in which components are extracted by introducing a supercritical fluid into the extracted container is known.
  • sample components extracted in SFE can be introduced into an SFC analysis column online, and the sample components can be separated and analyzed.
  • a sample introduction apparatus for introducing a sample into an analysis flow path through which a supercritical fluid flows.
  • a sample introduction apparatus includes a sample holding unit such as a sample loop that temporarily holds an injected sample, and determines whether or not the sample holding unit is interposed in the middle of an analysis flow path.
  • the switching valve is configured to be switched.
  • the sample is introduced into the analysis channel by interposing the sample holding unit holding the sample in the middle of the analysis channel.
  • the pressure in the analysis flow path is controlled to be constant by a back pressure control unit (BPR) provided downstream of the analysis column.
  • BPR back pressure control unit
  • an object of the present invention is to alleviate the influence of pressure fluctuations when switching the switching valve of the sample introduction device.
  • the supercritical fluid device includes an analysis channel, a liquid feeding part for feeding a mobile phase constituting the supercritical fluid in the analysis channel, and the mobile phase in the analysis channel is in a supercritical state.
  • a back pressure control unit that controls the pressure in the analysis channel, a sample holding unit that holds a sample, and a state in which the sample holding unit is introduced into the analysis channel and a state in which the sample holding unit is not introduced
  • a sample introduction device having a switching valve for switching, and a bypass channel having one end connected to a position upstream of the sample introduction device and the other end connected to a position downstream of the sample introduction device in the analysis channel
  • An analysis column that is provided downstream of the other end of the bypass channel on the analysis channel and that separates the sample introduced by the sample introduction device.
  • the present invention can also be applied to the SFE-SFC system. That is, the supercritical fluid device of the present invention is a supercritical extraction device that extracts a sample component by a mobile phase from the liquid feeding unit upstream of a position where the one end of the bypass channel is connected on the analysis channel. A part may be provided.
  • the bypass flow path is provided so that a part of the mobile phase from the liquid feeding part is led to the analysis column side without going through the sample introduction device, the standard sample is transferred to the analysis flow path.
  • the pressure fluctuation in the analysis flow path due to the switching of the switching valve of the sample introduction apparatus during introduction is alleviated, and the influence on the analysis result is suppressed.
  • the supercritical fluid device of the present invention branches from the analysis flow path at a position downstream of the analysis flow path and upstream of the analysis column from the position where the other end of the bypass flow path is connected. It is preferable to further include a split channel. Then, the extraction speed in the supercritical fluid section and the separation performance in the analytical column can be realized at a high level.
  • the flow rate of the mobile phase that flows to the analytical column side and the mobile phase that flows to the split flow path side can be improved in order to improve the reproducibility of the analysis results. It is necessary to stabilize the flow rate ratio, that is, the split ratio.
  • the split ratio is greatly affected by pressure fluctuations in the analysis flow path, in the present invention, since a bypass flow path is provided to alleviate pressure fluctuations due to switching of the switching valve of the sample introduction device, the split ratio is disturbed. Can be suppressed, and a decrease in reproducibility of analysis results can be suppressed.
  • the split ratio varies due to the difference in fluid viscosity, and the flow rate of the mobile phase varies. There is a concern that it will end.
  • the standard sample introduced by the sample introduction device moves from the bypass channel. It is diluted by the phase, and the standard sample becomes more spread in the analysis channel.
  • the supercritical fluid device of the present invention includes a bypass flow path having one end connected to a position upstream of the sample introduction apparatus and the other end connected to a position downstream of the sample introduction apparatus in the analysis flow path.
  • the pressure fluctuation in the analysis channel due to the switching of the switching valve of the sample introduction device is alleviated, the flow rate of the mobile phase flowing through the analysis channel is stabilized, and the reproducibility of the analysis result is improved.
  • the supercritical fluid apparatus includes a supercritical fluid extraction (SFE) that extracts a sample component by a supercritical fluid, and a supercritical fluid chromatograph that separates and analyzes a sample for each component in an analysis column using the supercritical fluid.
  • SFE supercritical fluid extraction
  • SFC supercritical fluid chromatograph
  • the supercritical fluid device mainly includes a liquid feeding unit 2 for feeding a mobile phase in the analysis flow path 4, a supercritical fluid extraction unit 6, a sample injection device 8, an analysis column 10, a back pressure control unit ( BPR) 12 and detector 14.
  • the liquid feeding unit 2 includes a liquid feeding pump 16 for feeding liquid carbon dioxide and a liquid feeding pump 18 for feeding a modifier such as methanol.
  • the liquid feeding section 2 feeds carbon dioxide and a modifier as a mobile phase at a predetermined ratio or while changing the ratio.
  • the carbon dioxide in the mobile phase fed by the liquid feeding section 2 becomes a supercritical state when the pressure in the analysis flow path 4 is controlled to a predetermined pressure by the BPR 12, and flows through the analysis flow path 4 as a supercritical fluid. .
  • a supercritical fluid extraction unit 6 is provided downstream of the liquid feeding unit 2 on the analysis flow path 4. Although not shown in FIG. 1, the supercritical fluid extraction unit 6 introduces a mobile phase from the liquid feeding unit 2 into an extraction container 44 (see FIG. 2) containing a sample, and extracts components to be analyzed. Is. Although the configuration of the supercritical fluid extraction unit 6 is simply illustrated in FIG. 1, the configuration may be the same as that of the SFE unit disclosed in Patent Document 1, for example. Sample components extracted from the extraction container 44 are introduced into the analysis column 10 and separated.
  • a sample introduction device 8 is provided downstream of the supercritical fluid extraction unit 6 on the analysis flow path 4.
  • the sample introduction device 4 temporarily holds the needle 20 that sucks and discharges the sample, the injection port 22 that inserts the needle 20 and injects the sample from the needle 20, and the sample injected through the injection port 22.
  • a sample loop 24 (sample holding unit) to be switched, and a switching valve 26 that switches between a state in which the sample loop 24 is introduced as a part of the analysis flow path 4 and a state in which the sample loop 24 is disconnected from the analysis flow path 4. .
  • bypass channel 28 is connected to a position 30 between the supercritical fluid extraction unit 6 and the sample introduction device 8 in the analysis channel 4.
  • the other end of the bypass channel 28 is connected to a position 32 downstream of the sample introduction device 8 in the analysis channel 4.
  • the bypass channel 28 is a channel that allows a part of the mobile phase from the liquid feeding unit 2 that has passed through the supercritical fluid extraction unit 6 to flow to the downstream side of the sample introduction device 8 without passing through the sample introduction device 8.
  • the flow path resistance of the bypass flow path 28 is such that the ratio of the mobile phase flow rate flowing through the sample introduction device 8 and the mobile phase flow rate flowing through the bypass flow path 28, that is, the split ratio at the position 30 of the analysis flow path 4 is 1: 3. It is preferably designed to be ⁇ 1: 10.
  • the analysis column 10 is provided on the analysis flow path 4 downstream of the sample introduction device 8, and the BPR 12 is provided further downstream than the analysis column 10.
  • a detector 14 is provided further downstream of the BPR 12.
  • the analytical column 10 is accommodated in a column oven 11 and is maintained at a constant temperature.
  • a makeup channel for feeding makeup solution by a makeup pump 42 is connected to a position 40 between the analysis column 10 and the BPR 12 in the analysis channel 4.
  • the analysis flow path 4 branches into a flow path on the analysis column 10 side and a split flow path 36 at a position 34 downstream of the position 32 where the other end of the bypass flow path 28 is connected and upstream of the analysis column 10. ing.
  • a BPR 38 for adjusting the split ratio in the branch portion 34 is provided on the split flow path 36 branched from the analysis flow path 4.
  • the ratio (split ratio) between the flow rate of the mobile phase flowing to the analysis column 10 side and the flow rate of the mobile phase flowing to the split flow path 36 side (split ratio) is adjusted by the BPR 38 to, for example, 1:99.
  • an extraction container 44 containing a sample is installed in the supercritical fluid extraction unit 6 and heated to a predetermined temperature.
  • the inlet of the extraction container 44 is connected to the liquid feeding unit 2 and the outlet is not connected to the analysis flow path 4, and the mobile phase (supercritical fluid is transferred from the liquid feeding unit 2. )
  • the extraction container 44 is filled with a supercritical fluid, and the sample components are statically extracted.
  • the outlet of the extraction container 44 is connected to the analysis channel 4 to perform dynamic extraction of the sample components.
  • the switching valve 26 of the sample introduction device 8 is in a state where the sample loop 24 is disconnected from the analysis flow path 4.
  • the sample component extracted from the extraction container 44 flows through the analysis flow path 4 and the bypass flow path 28 by the mobile phase from the liquid feeding unit 2 and reaches the branch portion 34.
  • the mobile phase containing the sample component is split at a predetermined ratio in the branch portion 34, a part is introduced into the analysis column 10, and the remaining part is discarded via the split flow path 36.
  • the sample components introduced into the analysis column 10 are further separated for each component and then introduced into the detector 14 via the BPR 12 and detected.
  • a standard sample is introduced into the analysis channel 4.
  • the standard sample is contained in a vial (not shown), and the needle 20 draws the standard sample from the vial, and the standard is supplied from the needle 20 to the sample loop 24 via the injection port 22 as shown in FIG. Inject the sample.
  • the standard sample injected through the injection port 22 stays in the sample loop 24.
  • the switching valve 26 After injecting the standard sample into the sample loop 24, the switching valve 26 is switched as shown in FIG. 6 so that the sample loop 24 is introduced as a part of the analysis flow path 4.
  • bypass flow path 28 since the bypass flow path 28 is provided, a part of the mobile phase from the liquid feeding unit 2 flows through the bypass flow path 28 and is positioned downstream of the sample introduction apparatus 8 by the sample introduction apparatus 8. Merge with the mobile phase containing the introduced standard sample. As a result, the standard sample introduced by the sample introduction device 8 is diluted by the mobile phase from the bypass flow path 28 that joins at the position 32, and becomes wider in the analysis flow path 4. Then, the mobile phase containing the standard sample diluted at the position 32 passes through the branch portion 34.
  • the split ratio at the branch portion 34 may change due to the influence of the change in the viscosity of the liquid passing through the branch portion 34. Since the standard sample is diluted by the mobile phase from the bypass flow path 28 at the position 32 upstream of the portion 34, fluctuations in the split ratio at the branch portion 34 are suppressed.
  • the sample components and the standard sample are introduced into the analytical column 10 by the dynamic extraction of the sample components and the introduction of the standard sample shown in FIGS. Thereafter, as shown in FIG. 7, the extraction container 44 is disconnected from the analysis flow path 4 to complete the extraction of the sample component, and the sample component is separated in the analysis column 10 and detected by the detector 14.
  • the BPR 38 is closed to make the flow rate of the split flow path 36 zero, and the flow rate of the mobile phase flowing through the analysis column 10 is increased.
  • the present inventors verified the reproducibility of the peak area of the chromatogram of the detection signal of the detector 14 with and without the bypass channel 28.
  • the peak area reproducibility (peak area% RSD) without the bypass channel 28 was 8.8 to 17.6, whereas the peak surface with the bypass channel 28 provided.
  • the reproducibility was 2.6 to 3.8. That is, in this verification, it was confirmed that the peak area reproducibility can be improved by 2.5 times to 6.5 times by providing the bypass channel 28.
  • the ratio of the mobile phase flow rate flowing to the sample introduction device 8 side and the mobile phase flow rate flowing to the bypass flow channel 28 side, that is, the split ratio at the position 30 of the analysis flow channel 4 is about 1: 3 to 1:10. Designed to be

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

超臨界流体装置は、分析流路と、超臨界流体を構成する移動相を前記分析流路中で送液する送液部と、前記分析流路内の移動相が超臨界状態となるように前記分析流路内の圧力を制御する背圧制御部と、試料を保持する試料保持部、及び前記試料保持部を前記分析流路に導入した状態と導入しない状態との間で切り替える切替バルブを有する試料導入装置と、一端が前記試料導入装置よりも上流の位置に接続され、他端が前記分析流路における前記試料導入装置よりも下流の位置に接続されたバイパス流路と、前記分析流路上における前記バイパス流路の前記他端が接続されている位置よりも下流に設けられ、前記試料導入装置により導入された試料を分離する分析カラムと、を備えている。

Description

超臨界流体装置
 本発明は、超臨界流体クロマトグラフ(SFC)やオンライン超臨界流体抽出(SFE)-SFCシステムなどの超臨界流体装置に関するものである。
 超臨界流体を利用する装置として、超臨界流体の流れる分析流路中に試料を注入し、その試料を分析カラムで分離して分析する超臨界流体クロマトグラフ(以下、SFC)や、試料が収容された抽出容器に超臨界流体を導入して成分を抽出する超臨界流体抽出(以下、SFE)が知られている。
 さらには、SFCとSFEとを一体化させたSFE-SFCシステムが提案され、実施もなされている(特許文献1参照。)。SFE-SFCシステムでは、SFEにおいて抽出された試料成分をオンラインでSFCの分析カラムへ導入し、その試料成分の分離分析を行なうことができる。
国際公開第2016/031008号明細書
 上記のSFCやSFE-SFCシステムには、超臨界流体が流れる分析流路中に試料を導入するための試料導入装置が設けられている。一般的に、試料導入装置は、注入された試料を一時的に保持するサンプルループなどの試料保持部を備え、その試料保持部を分析流路の途中に介在させるか否かを6方バルブなどの切替バルブによって切り替えるように構成されている。試料を保持した試料保持部を分析流路の途中に介在させることで、試料が分析流路中に導入される。
 SFCやSFE-SFCシステムでは、分析流路内の圧力を分析カラムの下流に設けられた背圧制御部(BPR)によって一定に制御している。しかし、試料導入装置の切替バルブの切替え時、特に、分析流路中へ試料を導入する際の切替バルブの切替え時に、分析流路内の圧力が変動し、移動相流量の安定性が一時的に低下するという問題がある。
 そこで、本発明は、試料導入装置の切替バルブの切替え時の圧力変動による影響を緩和することを目的とするものである。
 本発明に係る超臨界流体装置は、分析流路と、超臨界流体を構成する移動相を前記分析流路中で送液する送液部と、前記分析流路内の移動相が超臨界状態となるように前記分析流路内の圧力を制御する背圧制御部と、試料を保持する試料保持部、及び前記試料保持部を前記分析流路に導入した状態と導入しない状態との間で切り替える切替バルブを有する試料導入装置と、一端が前記試料導入装置よりも上流の位置に接続され、他端が前記分析流路における前記試料導入装置よりも下流の位置に接続されたバイパス流路と、前記分析流路上における前記バイパス流路の前記他端が接続されている位置よりも下流に設けられ、前記試料導入装置により導入された試料を分離する分析カラムと、を備えたものである。
 本発明は、SFE-SFCシステムに対しても適用することができる。すなわち、本発明の超臨界流体装置は、分析流路上における前記バイパス流路の前記一端が接続されている位置よりも上流に、前記送液部からの移動相によって試料成分を抽出する超臨界抽出部が設けられていてもよい。
 SFE-SFCシステムでは、SFEにおいて試料成分の抽出をした後のタイミングで、試料導入装置によって標準試料を分析流路中に導入し、分析を行なうことがある。この場合、標準試料を分析流路中に導入する際の試料導入装置の切替バルブの切替えにより、分析流路内の圧力が変動し、分析結果に影響を与えることが懸念される。
 これに対し、本発明では、送液部からの移動相の一部が試料導入装置を介さないで分析カラム側へ導かれるようにバイパス流路が設けられているので、標準試料を分析流路中に導入する際の試料導入装置の切替バルブの切替えによる分析流路内の圧力変動が緩和され、分析結果への影響が抑制される。
 特許文献1の[0027]にも記載されているように、SFEでは抽出の速度を優先させるため、超臨界流体(移動相)の流量を多くすることが望ましい一方で、SFCでは分析カラムによる分離を優先させるため、分析カラム内の流量を小さくすることが望ましいことから、流量について、SFEとSFCはトレードオフの関係にある。したがって、単純にSFEとSFCをオンラインにすると、SFEの抽出速度とSFCの分離のいずれかを犠牲にする必要がある。
 この問題を解決するために、特許文献1にも開示されているように、SFE-SFCシステムにおける分析カラムの上流で分析流路を分岐させ、SFEを経た移動相をスプリットすることが提案され、実施もなされている。分析カラムの上流で移動相をスプリットすることで、分析カラムに流入する移動相の流量を小さくすることができ、SFEでの高い抽出速度とSFCでの高い分離性能の両立を図ることができる。
 そこで、本発明の超臨界流体装置は、前記分析流路における前記バイパス流路の前記他端が接続されている位置よりも下流で前記分析カラムよりも上流の位置で前記分析流路から分岐したスプリット流路をさらに備えていることが好ましい。そうすれば、超臨界流体部での抽出速度と分析カラムでの分離性能を高いレベルで実現することができる。
 ここで、分析カラムの上流で移動相をスプリットするスプリット流路を備えている場合、分析結果の再現性を高めるためには、分析カラム側へ流れる移動相の流量とスプリット流路側へ流れる移動相の流量の比率、すなわちスプリット比を安定させる必要がある。このスプリット比は分析流路内の圧力変動による影響を大きく受けるが、本発明では、試料導入装置の切替バルブの切替えによる圧力変動を緩和するバイパス流路が設けられているので、スプリット比の乱れが抑制され、分析結果の再現性の低下を抑制することができる。
 また、試料導入装置により導入された標準試料が分析流路のスプリット流路との分岐部分を通過する際に、流体の粘性の違い等によってスプリット比が変動し、移動相の流量が変動してしまうという懸念がある。しかし、本発明では、バイパス流路の他端が分析流路のスプリット流路との分岐部分よりも上流に接続されているため、試料導入装置により導入された標準試料がバイパス流路からの移動相によって希釈され、分析流路中において標準試料がより広がった状態となる。これにより、試料導入装置により導入された標準試料が分析流路のスプリット流路との分岐部分を通過する際のスプリット比の変動が抑制され、移動相の流量の変動が抑制される。
 本発明の超臨界流体装置では、一端が試料導入装置よりも上流の位置に接続され、他端が分析流路における試料導入装置よりも下流の位置に接続されたバイパス流路を備えているので、試料導入装置の切替バルブの切替えによる分析流路内の圧力変動が緩和され、分析流路を流れる移動相の流量が安定し、分析結果の再現性が向上する。
超臨界流体装置の一実施例を示す概略構成図である。 同実施例の抽出準備時の状態を示す概略構成図である。 同実施例の静的抽出時の状態を示す概略構成図である。 同実施例の動的抽出時の状態を示す概略構成図である。 同実施例の標準試料注入準備時の状態を示す概略構成図である。 同実施例の標準試料注入時の状態を示す概略構成図である。 同実施例の分析時の状態を示す概略構成図である。
 以下に、本発明に係る超臨界流体装置の一実施例について、図面を用いて説明する。
 まず、図1を用いて一実施例の超臨界流体装置の構成について説明する。この実施例の超臨界流体装置は、超臨界流体によって試料成分を抽出する超臨界流体抽出(SFE)と、超臨界流体を用いて試料を分析カラムにおいて成分ごとに分離し分析する超臨界流体クロマトグラフ(SFC)とが一体化してなるSFE-SFCシステムである。
 この実施例の超臨界流体装置は、主として、分析流路4中で移動相を送液する送液部2、超臨界流体抽出部6、試料注入装置8、分析カラム10、背圧制御部(BPR)12及び検出器14を備えている。
 送液部2は、液体状態の二酸化炭素を送液するための送液ポンプ16とメタノールなどのモディファイアを送液する送液ポンプ18を備えている。送液部2は、移動相として、二酸化炭素とモディファイアを所定の比率で又はその比率を変化させながら送液するものである。送液部2により送液される移動相中の二酸化炭素は、BPR12によって分析流路4内の圧力が所定圧力に制御されることによって超臨界状態となり、超臨界流体として分析流路4を流れる。
 分析流路4上における送液部2の下流に超臨界流体抽出部6が設けられている。超臨界流体抽出部6は、図1においては示されていないが、試料を収容した抽出容器44(図2参照)に送液部2からの移動相を導入し、分析対象の成分を抽出するものである。図1において超臨界流体抽出部6の構成が簡略的に示されているが、その構成は例えば特許文献1に開示されたSFEユニットと同様の構成でよい。抽出容器44から抽出された試料成分は分析カラム10へ導入されて分離される。
 分析流路4上における超臨界流体抽出部6の下流に試料導入装置8が設けられている。試料導入装置4は、試料の吸入と吐出を行なうニードル20、そのニードル20を挿入してニードル20からの試料注入を行なう注入ポート22、注入ポート22を介して注入された試料を一時的に保持するサンプルループ24(試料保持部)、及びそのサンプルループ24を分析流路4の一部として導入した状態と分析流路4から切り離した状態のいずれかの状態に切り替える切替バルブ26を備えている。
 分析流路4における超臨界流体抽出部6と試料導入装置8との間の位置30に、バイパス流路28の一端が接続されている。バイパス流路28の他端は、分析流路4における試料導入装置8の下流の位置32に接続されている。バイパス流路28は超臨界流体抽出部6を経た送液部2からの移動相の一部を、試料導入装置8を介さずに試料導入装置8の下流側へ流す流路である。バイパス流路28の流路抵抗は、試料導入装置8側を流れる移動相流量とバイパス流路28を流れる移動相流量との比率、すなわち分析流路4の位置30でのスプリット比が1:3~1:10となるように設計されることが好ましい。
 分析流路4上における試料導入装置8の下流に分析カラム10が設けられ、分析カラム10よりもさらに下流にBPR12が設けられている。BPR12のさらに下流に検出器14が設けられている。分析カラム10はカラムオーブン11内に収容されており、一定温度に維持されている。分析流路4における分析カラム10とBPR12との間の位置40に、メイクアップポンプ42によってメイクアップ液を送液するメイクアップ流路が接続されている。
 分析流路4は、バイパス流路28の他端が接続されている位置32よりも下流で分析カラム10よりも上流の位置34で、分析カラム10側の流路とスプリット流路36に分岐している。分析流路4から分岐したスプリット流路36上には、分岐部分34におけるスプリット比を調節するためのBPR38が設けられている。BPR38により、分析カラム10側へ流れる移動相の流量とスプリット流路36側へ流れる移動相の流量との比率(スプリット比)が、例えば1:99になるように調節される。
 図2から図7を用いて、この実施例の超臨界流体装置の動作の一例について説明する。
 まず、図2に示されているように、超臨界流体抽出部6で試料抽出を行なうために、試料を収容した抽出容器44を超臨界流体抽出部6に設置し、所定温度に加温する。その後、図3に示されているように、抽出容器44の入口を送液部2に接続するとともに出口を分析流路4に接続しない状態にして、送液部2から移動相(超臨界流体)を送液して抽出容器44に超臨界流体を充てんし、試料成分の静的抽出を行なう。
 試料成分の静的抽出が終了した後、図4に示されているように、抽出容器44の出口を分析流路4に接続して、試料成分の動的抽出を行なう。このとき、試料導入装置8の切替バルブ26は、サンプルループ24を分析流路4から切り離した状態となる。試料成分の動的抽出では、抽出容器44から抽出された試料成分が送液部2からの移動相によって分析流路4及びバイパス流路28を流れ、分岐部分34に到達する。分岐部分34において試料成分を含む移動相は所定の比率でスプリットされ、一部が分析カラム10に導入され、残りの部分がスプリット流路36を介して廃棄される。分析カラム10に導入された試料成分はさらに成分ごとに分離された後、BPR12を経て検出器14に導入され、検出される。
 上記の動的抽出中に、分析流路4に標準試料を導入する。標準試料は図示されていないバイアルに収容されており、ニードル20がそのバイアルから標準試料を吸入し、図5に示されているように、ニードル20から注入ポート22を介してサンプルループ24に標準試料を注入する。注入ポート22を介して注入された標準試料は、サンプルループ24内に滞留する。
 サンプルループ24に標準試料を注入した後、図6に示されているように、切替バルブ26を切り替えて、サンプルループ24が分析流路4の一部として導入された状態にする。
 このとき、分析流路4に導入される前のサンプルループ24内と分析流路4内には圧力差があるため、切替バルブ26を切り替えたときに、分析流路4内で圧力変動が生じる。分析流路4内で圧力変動が生じると、分析流路4内の圧力を所定圧力に維持するようにBPR12が動作するため、分岐部分34でのスプリット比が変動し、分析カラム10側へ流れる移動相の流量が変動する。
 しかし、送液部2からの移動相の一部は試料導入装置8を介さずにバイパス流路28を流れるため、切替バルブ26の切替え時の圧力変動はバイパス流路28が設けられていない場合よりも小さいものとなる。これにより、分析流路4の分岐部分34におけるスプリット比の変動幅もより小さく抑制され、分析カラム10側へ流れる移動相の流量変動が抑制される。これにより、検出器14で得られるクロマトグラムのピーク面積の再現性が向上する。
 また、バイパス流路28が設けられていることにより、送液部2からの移動相の一部が、バイパス流路28を流れて試料導入装置8の下流の位置32で、試料導入装置8によって導入された標準試料を含む移動相と合流する。これにより、試料導入装置8によって導入された標準試料が位置32で合流するバイパス流路28からの移動相によって希釈され、分析流路4内においてより広がりをもったものとなる。そして、位置32で希釈された標準試料を含む移動相が分岐部分34を通過することになる。
 移動相中における標準試料の濃度が高い場合、分岐部分34を通過する液の粘性の変化等の影響により分岐部分34でのスプリット比が変化することが懸念されるが、この実施例では、分岐部分34の上流の位置32において標準試料がバイパス流路28からの移動相によって希釈されるため、分岐部分34でのスプリット比の変動が抑制される。
 図4から図6に示した試料成分の動的抽出と標準試料の導入により、試料成分と標準試料が分析カラム10に導入される。その後、図7に示されているように、抽出容器44を分析流路4から切り離し、試料成分の抽出を完了し、分析カラム10での試料成分の分離と検出器14による検出を行なう。分析カラム10から溶出速度を向上させる場合には、BPR38を閉じてスプリット流路36の流量をゼロにし、分析カラム10を流れる移動相の流量を高める。
 本発明者らは、バイパス流路28を設けた場合と設けなかった場合について、検出器14の検出信号のクロマトグラムのピーク面積の再現性について検証を行なった。その結果、バイパス流路28を設けなかった場合のピーク面積再現性(ピーク面積の%RSD)は8.8~17.6であったのに対し、バイパス流路28を設けた場合のピーク面性再現性は2.6~3.8であった。すなわち、この検証では、バイパス流路28を設けることによってピーク面積再現性を2.5倍~6.5倍改善することができることを確認した。なお、この検証では、試料導入装置8側へ流れる移動相流量とバイパス流路28側へ流れる移動相流量の比率、すなわち分析流路4の位置30におけるスプリット比が1:3~1:10程度になるように設計した。
   2   送液部
   4   分析流路
   6   超臨界流体抽出部
   8   試料導入装置
   10   分析カラム
   11   カラムオーブン
   12,38   背圧制御部(BPR)
   14   検出器
   16,18   送液ポンプ
   20   ニードル
   22   注入ポート
   24   サンプルループ(試料保持部)
   26   切替バルブ
   28   バイパス流路
   34   分岐部分
   36   スプリット流路
   42   メイクアップポンプ
   44   抽出容器

Claims (3)

  1.  分析流路と、
     超臨界流体を構成する移動相を前記分析流路中で送液する送液部と、
     前記分析流路内の移動相が超臨界状態となるように前記分析流路内の圧力を制御する背圧制御部と、
     試料を保持する試料保持部、及び前記試料保持部を前記分析流路に導入した状態と導入しない状態との間で切り替える切替バルブを有する試料導入装置と、
     一端が前記試料導入装置よりも上流の位置に接続され、他端が前記分析流路における前記試料導入装置よりも下流の位置に接続されたバイパス流路と、
     前記分析流路上における前記バイパス流路の前記他端が接続されている位置よりも下流に設けられ、前記試料導入装置により導入された試料を分離する分析カラムと、を備えた超臨界流体装置。
  2.  前記分析流路上における前記バイパス流路の前記一端が接続されている位置よりも上流に、前記送液部からの移動相によって試料成分を抽出する超臨界抽出部が設けられている請求項1に記載の超臨界流体装置。
  3.  前記分析流路における前記バイパス流路の前記他端が接続されている位置よりも下流で前記分析カラムよりも上流の位置で前記分析流路から分岐したスプリット流路をさらに備えている請求項2に記載の超臨界流体装置。
PCT/JP2017/010937 2017-02-13 2017-03-17 超臨界流体装置 WO2018146826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566739A JP6828755B2 (ja) 2017-02-13 2017-03-17 超臨界流体装置
CN201780086418.0A CN110291392B (zh) 2017-02-13 2017-03-17 超临界流体装置
US16/485,006 US11243193B2 (en) 2017-02-13 2017-03-17 Supercritical fluid device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762458107P 2017-02-13 2017-02-13
US62/458107 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146826A1 true WO2018146826A1 (ja) 2018-08-16

Family

ID=63108072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010937 WO2018146826A1 (ja) 2017-02-13 2017-03-17 超臨界流体装置

Country Status (4)

Country Link
US (1) US11243193B2 (ja)
JP (1) JP6828755B2 (ja)
CN (1) CN110291392B (ja)
WO (1) WO2018146826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657163A1 (en) * 2018-11-22 2020-05-27 Shimadzu Corporation Analysis assistance method, analysis assistance device, analysis assistance program and analysis system
US20220026403A1 (en) * 2020-07-27 2022-01-27 Shimadzu Corporation Analysis assistance device, analysis assistance method, non-transitory computer readable medium storing analysis assistance program and analysis system
JP2022097535A (ja) * 2018-11-22 2022-06-30 株式会社島津製作所 分析支援方法および分析支援装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896634A (zh) * 2019-05-05 2020-11-06 株式会社岛津制作所 番茄红素在线分析方法
US20230003631A1 (en) * 2019-12-25 2023-01-05 Shimadzu Corporation Analysis system
CN111721883B (zh) * 2020-06-24 2021-10-08 华南理工大学 超临界选择性脱水萃取-变压聚焦超临界流体色谱在线分析系统及分析方法
CN117031055A (zh) * 2023-08-25 2023-11-10 北京宝德仪器有限公司 一种气泡间隔连续流动和流动注射可切换的流动分析系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101875A (ja) * 2008-09-29 2010-05-06 Jasco Corp 超臨界流体クロマトグラフィーにおける試料注入装置及び方法
WO2015183290A1 (en) * 2014-05-29 2015-12-03 Agilent Technologies, Inc. Apparatus and method for introducing a sample into a separation unit of a chromatography system
WO2016031008A1 (ja) * 2014-08-28 2016-03-03 株式会社島津製作所 分析装置
US20160187304A1 (en) * 2014-12-30 2016-06-30 Agilent Technologies, Inc. Apparatus and method for introducing sample into a separation unit of a chromatography system without disrupting a mobile phase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632353B2 (en) * 2000-06-26 2003-10-14 Berger Instruments, Inc. Rapid sample collection in supercritical fluid chromatography
CN1936572A (zh) * 2005-09-23 2007-03-28 中国科学院大连化学物理研究所 一种超临界流体萃取-高效液相色谱联用系统
CN103249462B (zh) * 2010-09-20 2017-03-29 安捷伦科技有限公司 用于气体‑液体分离器的主动排出的系统和操作
GB2491168B (en) * 2011-05-26 2014-09-10 Thermo Electron Mfg Ltd Method and apparatus for improved resolution chromatography
CN102445503B (zh) * 2011-09-22 2014-08-06 中国海洋大学 一种亚临界流体萃取-液相色谱联用分析装置
JP6141234B2 (ja) * 2014-03-26 2017-06-07 フロンティア・ラボ株式会社 気相成分分析装置
JP6458504B2 (ja) * 2015-01-14 2019-01-30 株式会社島津製作所 超臨界流体−液体クロマトグラフとその分析方法
JP6428410B2 (ja) * 2015-03-18 2018-11-28 株式会社島津製作所 液化二酸化炭素送液ポンプとそれを備えた超臨界流体クロマトグラフ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101875A (ja) * 2008-09-29 2010-05-06 Jasco Corp 超臨界流体クロマトグラフィーにおける試料注入装置及び方法
WO2015183290A1 (en) * 2014-05-29 2015-12-03 Agilent Technologies, Inc. Apparatus and method for introducing a sample into a separation unit of a chromatography system
WO2016031008A1 (ja) * 2014-08-28 2016-03-03 株式会社島津製作所 分析装置
US20160187304A1 (en) * 2014-12-30 2016-06-30 Agilent Technologies, Inc. Apparatus and method for introducing sample into a separation unit of a chromatography system without disrupting a mobile phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657163A1 (en) * 2018-11-22 2020-05-27 Shimadzu Corporation Analysis assistance method, analysis assistance device, analysis assistance program and analysis system
JP2022097535A (ja) * 2018-11-22 2022-06-30 株式会社島津製作所 分析支援方法および分析支援装置
US11519887B2 (en) 2018-11-22 2022-12-06 Shimadzu Corporation Analysis assistance method, analysis assistance device, non-transitory computer readable medium and analysis system
JP7310968B2 (ja) 2018-11-22 2023-07-19 株式会社島津製作所 分析支援方法および分析支援装置
US20220026403A1 (en) * 2020-07-27 2022-01-27 Shimadzu Corporation Analysis assistance device, analysis assistance method, non-transitory computer readable medium storing analysis assistance program and analysis system

Also Published As

Publication number Publication date
US11243193B2 (en) 2022-02-08
US20200025725A1 (en) 2020-01-23
JP6828755B2 (ja) 2021-02-10
CN110291392A (zh) 2019-09-27
JPWO2018146826A1 (ja) 2019-11-07
CN110291392B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2018146826A1 (ja) 超臨界流体装置
US10722816B2 (en) Method for adjusting a gradient delay volume
US9694301B2 (en) Two-dimensional fluid separation with controlled pressure
US8794052B2 (en) Liquid chromatograph
US20220170892A1 (en) Analyzing device
CN108956788B (zh) 用于多维液体分析的阀和分流系统
US20090050568A1 (en) Time delay for sample collection in chromatography systems
US20160238571A1 (en) Apparatus for Field-Flow Fractionation
WO2012175111A1 (en) Two-dimensional fluid separation with first separation unit feeding to high-pressure end of second separation unit
US9782692B2 (en) Prevention of phase separation upon proportioning and mixing fluids
CN107407663B (zh) 因样品分离设备中流体容纳体积的不同特性所产生的假象补偿
US10613061B2 (en) Systems, methods and devices addressing sample extraction and injection problems in chromatography
US11630090B2 (en) Sample dispatching with fluidic sample retaining
JPH05249094A (ja) 分析分離装置および化学試料の分析方法
JP7136276B2 (ja) 超臨界流体クロマトグラフ
WO2017149620A1 (ja) 分取装置
US10969368B2 (en) Liquid chromatograph
JP4403638B2 (ja) 液体クロマトグラフ
JP2017161335A (ja) 流体クロマトグラフ
EP3532837B1 (en) Gas liquid separator and associated systems and methods
US20210223216A1 (en) Multidimensional sample separation with pressure adjustment
JP3202225U (ja) ガスクロマトグラフ
CN112672799B (zh) 具有推挽调制的二维流体分离

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895673

Country of ref document: EP

Kind code of ref document: A1