WO2019064544A1 - エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 Download PDF

Info

Publication number
WO2019064544A1
WO2019064544A1 PCT/JP2017/035658 JP2017035658W WO2019064544A1 WO 2019064544 A1 WO2019064544 A1 WO 2019064544A1 JP 2017035658 W JP2017035658 W JP 2017035658W WO 2019064544 A1 WO2019064544 A1 WO 2019064544A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
compound
general formula
group
Prior art date
Application number
PCT/JP2017/035658
Other languages
English (en)
French (fr)
Inventor
丸山 直樹
優香 吉田
智子 東内
福田 和真
圭一郎 西村
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201780095357.4A priority Critical patent/CN111133025B/zh
Priority to KR1020207009501A priority patent/KR102408630B1/ko
Priority to JP2019544146A priority patent/JP7003998B2/ja
Priority to PCT/JP2017/035658 priority patent/WO2019064544A1/ja
Priority to US16/651,015 priority patent/US11560476B2/en
Priority to EP17927134.1A priority patent/EP3680269B8/en
Publication of WO2019064544A1 publication Critical patent/WO2019064544A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, an epoxy resin cured product and a composite material.
  • Epoxy resin is widely used as a matrix resin of fiber reinforced plastic (FRP). Recently, epoxy resin is also used as a matrix resin of FRP used in aerospace applications where high levels of various properties such as fracture toughness, elasticity, heat resistance, etc. are required. However, while thermosetting resins such as epoxy resins are superior in heat resistance to thermoplastic resins, they tend to be inferior in fracture toughness.
  • an epoxy resin having a mesogen structure in its molecule (hereinafter, also referred to as a mesogen-containing epoxy resin) is stronger in crystallinity and higher in viscosity than other epoxy resins. For this reason, sufficient fluidity may not be obtained at the time of operation.
  • the mesogen-containing epoxy resin described in Patent Document 1 achieves a decrease in the softening point, but is still strongly crystalline, and coating is difficult with no solvent because the viscosity is high under the temperature conditions at the time of operation There is room for improvement from the viewpoint of handleability.
  • the viscosity reduction can be achieved under the temperature conditions at the time of operation, the viscosity rises due to other factors (for example, orientation of molecules by shear flow of resin as reported in Non-Patent Document 1) It is also necessary to consider the possibility of This invention makes it a subject to provide the epoxy resin hardened
  • Means for solving the above problems include the following embodiments.
  • At least one of the epoxy compound A and the epoxy compound B has a structure in which one of the phenylene group or the biphenyl group is disposed between two of the mesogen structures, ⁇ 1> Epoxy resin described in.
  • the epoxy resin and epoxy resin composition which are excellent in the viscosity stability at the time of work, and the epoxy resin hardened material and composite material obtained using these are provided.
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • epoxy compound means a compound having an epoxy group in the molecule.
  • Epoxy resin is a concept of capturing a plurality of epoxy compounds as an aggregate, and means an uncured state.
  • the epoxy resin of the present disclosure is an epoxy compound B having two or more mesogen structures and one or more phenylene groups, and an epoxy compound B having two or more mesogen structures and one or more biphenyl groups. And.
  • the phenylene group concerned is different from “one or more phenylene groups”.
  • the biphenyl group is different from “one or more biphenyl groups”.
  • the epoxy compound A and the epoxy compound B contained in the epoxy resin may be each alone or in combination of two or more. Moreover, the mesogen structure which the epoxy compound A and the epoxy compound B have may be same or different.
  • an epoxy resin containing an epoxy compound B is an epoxy containing a compound (epoxy compound A) obtained by reacting an epoxy monomer having a mesogenic structure described in Patent Document 1 with a dihydric phenol compound. It was found that the viscosity was apt to decrease at the time of temperature rise and the handling property was superior to that of the resin. That is, the epoxy compound A having a phenylene group in the molecule takes a smectic liquid crystal phase at a working temperature (for example, 100 ° C.
  • the epoxy compound B having a biphenyl group in the molecule is It is a nematic liquid crystal phase or an isotropic phase in all temperature range from normal temperature (25 ° C.) to 150 ° C. as it is.
  • This is considered to be because the biphenyl group in the molecule of the epoxy compound B has a molecular weight larger than that of the phenylene group, so that the molecular orientation is lowered and the smectic liquid crystal phase which is a high order structure is not taken. For this reason, it is considered that the viscosity of the epoxy resin containing the epoxy compound B in the temperature condition at the time of working is lower than that of the epoxy resin containing the epoxy compound A, and the fluidity tends to be excellent.
  • the epoxy resin containing both the epoxy compound A and the epoxy compound B is superior to the epoxy resin containing only the epoxy compound B in viscosity stability under conditions where shear stress is continuously applied. all right.
  • the epoxy compound B having a biphenyl group in the molecule has the property that the molecule is more likely to be oriented in response to a physical stimulus such as shear stress as compared to the epoxy compound A having a phenylene group in the molecule It is thought that it is for. For this reason, for example, when mixing an epoxy resin with a hardening agent, it is thought that viscosity increase is more likely to occur by applying shear stress continuously to the epoxy resin.
  • the epoxy resin of the present disclosure contains both the epoxy compound A and the epoxy compound B, thereby achieving both the reduction in viscosity in the temperature range at the time of working and the viscosity stability in a situation where shear stress is applied continuously. doing.
  • the ratio by mass of epoxy compound A and epoxy compound B in the epoxy resin is not particularly limited.
  • the ratio of epoxy compound A to epoxy compound B (epoxy compound A: epoxy compound) from the viewpoint of achieving both viscosity reduction in the temperature range at the time of operation and viscosity stability under a situation where shear stress is applied continuously B) is preferably 1: 9 to 9: 1, more preferably 3: 7 to 9: 1, still more preferably 4: 6 to 8: 2, 6: 4 to 8: Particularly preferred is 2.
  • the epoxy resin may contain epoxy compounds other than the epoxy compound A and the epoxy compound B.
  • the total content of the epoxy compound A and the epoxy compound B is not particularly limited.
  • the content is preferably 70% by mass to 99% by mass, more preferably 80% by mass to 99% by mass, and still more preferably 90% by mass to 99% by mass of the entire epoxy resin.
  • the epoxy compound A and the epoxy compound B (hereinafter, both are collectively referred to as a specific epoxy compound) have two or more mesogen structures and one or more phenylene groups or bivalent biphenyl groups. , Its structure is not particularly limited. Two or more mesogen structures contained in one molecule of the specific epoxy compound may be different or the same.
  • the mesogen structure which a specific epoxy compound has means the structure where the epoxy resin containing the epoxy compound which has this may express liquid crystallinity. Specifically, biphenyl structure, phenyl benzoate structure, cyclohexyl benzoate structure, azobenzene structure, stilbene structure, terphenyl structure, anthracene structure, derivatives thereof, and structures in which two or more of these mesogenic structures are linked via a linking group Etc.
  • the epoxy resin containing the epoxy compound which has a mesogenic structure forms a high-order structure in hardened
  • the higher order structure means a structure including a higher order structure in which the constituent elements are aligned to form a micro-ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher order structure can be determined by a polarization microscope. That is, in the observation in the cross nicol state, it is possible to distinguish by the fact that interference fringes due to depolarization are observed.
  • the higher order structure is usually present in the form of islands in the cured product of the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the components themselves of this higher order structure are generally formed by covalent bonds.
  • the higher order structure formed in a cured state includes a nematic structure and a smectic structure.
  • the nematic structure and the smectic structure are each a type of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented uniformly and has only an orientational order.
  • the smectic structure is a liquid crystal structure having a layer structure, having a one-dimensional position order in addition to the alignment order. The order is higher in the smectic structure than in the nematic structure. Therefore, from the viewpoint of the thermal conductivity and the fracture toughness of the cured product, it is more preferable to form a higher order structure of the smectic structure.
  • Whether or not a smectic structure is formed in the cured product of the epoxy resin can be determined by X-ray diffraction measurement of the cured product.
  • the X-ray diffraction measurement can be performed using, for example, an X-ray diffractometer manufactured by Rigaku Corporation.
  • the mesogen structure of the specific epoxy compound may be a structure represented by the following general formula (1).
  • X represents a single bond or at least one type of linking group selected from the group (A) consisting of the following divalent groups.
  • Y is each independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group or an acetyl group Indicates Each n independently represents an integer of 0 to 4.
  • Y is each independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, It shows a nitro group or an acetyl group.
  • n each independently represents an integer of 0 to 4, k represents an integer of 0 to 7, m represents an integer of 0 to 8, and l represents an integer of 0 to 12.
  • X is at least one type of linking group selected from the group (A) consisting of the above divalent group, a group (Aa comprising the following divalent group) Or more preferably at least one type of linking group selected from the group (Aa) and more preferably a linking group containing at least one cyclic structure.
  • Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, It shows a nitro group or an acetyl group.
  • n each independently represents an integer of 0 to 4, k represents an integer of 0 to 7, m represents an integer of 0 to 8, and l represents an integer of 0 to 12.
  • At least one is preferably a mesogen structure represented by the following general formula (2), all of which are the following general formula (2) It is more preferable that it is a mesogen structure represented by
  • At least one of the two or more mesogen structures possessed by at least one of the epoxy compound A and the epoxy compound B is a mesogen structure represented by the following general formula (3), all of It is more preferable that it is a mesogen structure represented by 3).
  • R 3 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Each of R 3 to R 6 independently is preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom.
  • one of R 3 to R 6 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 3 and R 6 is preferably an alkyl group having 1 to 3 carbon atoms.
  • * represents a bonding position to an adjacent atom.
  • the adjacent atoms include an oxygen atom and a nitrogen atom.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms.
  • Each m independently represents an integer of 0 to 4.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • M is preferably independently an integer of 0 to 2, more preferably an integer of 0 to 1, and still more preferably 0.
  • a structure represented by the following general formula (5a) is preferable, and among the structures represented by the general formula (5B), it is represented by the following general formula (5b)
  • the structure is preferred.
  • the specific epoxy compound having such a structure tends to have a linear molecular structure. For this reason, it is considered that the stacking properties of the molecules are high and it is easier to form a higher order structure.
  • the specific epoxy compound preferably has a structure in which one phenylene group or divalent biphenyl group is disposed between the structures represented by two general formulas (1).
  • the specific aspect of "a state in which one phenylene group or divalent biphenyl group is disposed between the structures represented by two general formulas (1)" that the specific epoxy compound has is not particularly limited.
  • the epoxy group of the compound having a mesogen structure and an epoxy group may be reacted with the functional group of a compound having a phenylene group or a biphenyl group and a functional group capable of reacting with the epoxy group.
  • the specific epoxy compound may be an epoxy compound having a structure represented by the following general formula (1-A) or general formula (1-B).
  • the definitions and preferred examples of X, Y and n are the same as the definitions and the preferred examples of X, Y and n in the general formula (1).
  • the definition and preferred examples of R 1, R 2 and m are the same as the definitions and preferable examples of R 1, R 2 and m in the general formula (5A) and the general formula (5B).
  • Z each independently represents -O- or -NH-.
  • the benzene ring to which R 1 or R 2 is attached in General Formula (1-A) and General Formula (1-B) preferably has 2 to 4 hydrogen atoms, 3 or 4 It is more preferable to have one hydrogen atom, and it is more preferable to have four hydrogen atoms.
  • the epoxy compound having a structure represented by General Formula (1-A) is preferably an epoxy compound having a structure represented by the following General Formula (2-A),
  • the epoxy compound having a structure represented by the formula (1-B) is preferably an epoxy compound having a structure represented by the following general formula (2-B).
  • the epoxy compound having a structure represented by the general formula (1-A) includes at least one structure selected from the group consisting of the following general formula (3-A-1) and the general formula (3-A-2) The epoxy compound which has is mentioned.
  • the epoxy compound having a structure represented by the general formula (1-B) includes at least one structure selected from the group consisting of the following general formula (3-B-1) and the general formula (3-B-2) The epoxy compound which has is mentioned.
  • R 3 to R 6 examples are similar to the definitions and preferred examples of R 3 to R 6 in the general formula (3). Further, the definition and preferred examples of R 1, R 2, m and Z, as well as definitions and preferred examples of R 1, R 2, m and Z of formula (1-A) and formula (1-B) It is.
  • the number of structures represented by General Formula (1) in the specific epoxy compound is not particularly limited as long as it is 2 or more. From the viewpoint of lowering the viscosity at the time of operation, it is preferable that at least a part of the specific epoxy compound is a compound (dimer compound) containing two structures represented by the general formula (1).
  • Examples of the structure where the specific epoxy compound is a dimer compound include compounds represented by the following general formula (4-A-1) or the following general formula (4-B-1).
  • the definition and preferable examples of X, Y, n, m, R 1 , R 2 and Z are a general formula (1-A) And the same as the definitions and preferred examples of X, Y, n, m, R 1 , R 2 and Z in the general formula (1-B).
  • the epoxy compound having a structure represented by General Formula (4-A-1) is an epoxy compound having a structure represented by the following General Formula (5-A-1)
  • the epoxy compound having a structure represented by the general formula (5-B-1) is preferably an epoxy compound having a structure represented by the following general formula (5-B-1) .
  • Specific examples of the epoxy compound having a structure represented by General Formula (4-A-1) include epoxy having a structure represented by the following General Formulas (6-A-1) to (6-A-3) Compounds are mentioned.
  • Specific examples of the epoxy compound having a structure represented by General Formula (4-B-1) include epoxy having a structure represented by the following General Formulas (6-B-1) to (6-B-3) Compounds are mentioned.
  • R 3 to R 6 In the general formulas (6-A-1) to (6-A-3) and the general formulas (6-B-1) to (6-B-3), R 3 to R 6 , R 1 , R 2 , m And preferred examples of R 3 to R 6 in the general formulas (3-A-1), (3-A-2), (3-B-1) or the general formula (3-B-2) , R 1 , R 2 , m and Z are as defined and preferred examples.
  • the method for synthesizing the specific epoxy compound is not particularly limited. For example, it may be obtained by reacting a compound having a mesogenic structure and an epoxy group (hereinafter also referred to as a mesogenic epoxy monomer) with an aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer.
  • the mesogen epoxy monomer may be a compound having a structure represented by the following general formula (1-m).
  • the mesogenic epoxy monomer represented by the general formula (1-m) is preferably a mesogenic epoxy monomer having a structure represented by the following general formula (2-m).
  • the mesogenic epoxy monomer represented by the general formula (1-m) is more preferably a mesogenic epoxy monomer having a structure represented by the following general formula (3-m).
  • R 3 ⁇ R 6 definition and preferred examples of R 3 ⁇ R 6 are the same as the definitions and preferable examples of R 3 ⁇ R 6 in the general formula (3).
  • the solvent can dissolve the mesogenic epoxy monomer and the aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer, and can be heated to a temperature necessary for the reaction of both compounds.
  • cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methyl pyrrolidone, methyl cellosolve, ethyl cellosolve, propylene glycol monopropyl ether and the like can be mentioned.
  • the amount of the solvent is not particularly limited as long as it can dissolve the mesogenic epoxy monomer, the aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer, and the reaction catalyst optionally used .
  • the solubility varies depending on the type of raw material before reaction, the type of solvent, etc., for example, the viscosity of the solution after reaction will be in a preferable range if it is an amount such that the charged solid concentration becomes 20 mass% to 60 mass%. There is a tendency.
  • the type of aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer is not particularly limited. From the viewpoint of forming a smectic structure in a cured product, a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, a diaminobenzene compound having a structure in which two amino groups are bonded to one benzene ring, A dihydroxybiphenyl compound having a structure in which one hydroxyl group is bonded to two benzene rings forming a biphenyl structure and a diaminobiphenyl compound having a structure in which one amino group is bonded to two benzene rings forming a biphenyl structure It is preferably at least one selected from the group (hereinafter, also referred to as a specific aromatic compound).
  • dihydroxybenzene compounds include catechol, resorcinol, hydroquinone, and derivatives thereof.
  • diaminobenzene compounds include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, derivatives thereof and the like.
  • dihydroxybiphenyl compounds examples include 2,2'-dihydroxybiphenyl, 2,3'-dihydroxybiphenyl, 2,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, 4,4 ' Dihydroxybiphenyl, derivatives thereof and the like.
  • diaminobiphenyl compounds 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 2,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4 ' Diaminobiphenyl, derivatives thereof and the like.
  • the derivative of the specific aromatic compound includes a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of the specific aromatic compound.
  • a substituent such as an alkyl group having 1 to 8 carbon atoms
  • the specific aromatic compounds one type may be used alone, or two or more types may be used in combination.
  • the type of reaction catalyst is not particularly limited, and an appropriate catalyst can be selected from the viewpoint of reaction rate, reaction temperature, storage stability and the like. Specifically, imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like can be mentioned.
  • the reaction catalyst may be used alone or in combination of two or more.
  • an organic phosphorus compound is preferable as the reaction catalyst.
  • the organic phosphorus compound include organic phosphine compounds, compounds having an intramolecular polarization formed by addition of compounds having a ⁇ bond such as maleic anhydride, quinone compounds, diazophenylmethane and phenol resin to organic phosphine compounds, organic A complex of a phosphine compound and an organic boron compound can be mentioned.
  • organic phosphine compounds include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkyl aryl phosphine, alkyl diaryl Phosphine etc. are mentioned.
  • quinone compounds include 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Examples thereof include 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone and phenyl-1,4-benzoquinone.
  • organoboron compound examples include tetraphenyl borate, tetra-p-tolyl borate, tetra-n-butyl borate and the like.
  • the amount of reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, 0.1 parts by mass to 1 part by mass with respect to 100 parts by mass of the total of the mesogen epoxy monomer and the aromatic compound having a functional group capable of reacting with the epoxy group of the mesogen epoxy monomer. It is preferably 5 parts by mass, more preferably 0.2 parts by mass to 1 part by mass.
  • the synthesis of the specific epoxy compound can be carried out using a reaction vessel such as a flask for a small scale and a synthesis pot for a large scale.
  • the specific synthesis method is, for example, as follows. First, a mesogen epoxy monomer is charged into a reaction vessel, a solvent is charged if necessary, and the temperature is raised to the reaction temperature with an oil bath or a heat medium to dissolve the mesogen epoxy monomer. An aromatic compound having a functional group capable of reacting with the epoxy group of the mesogen epoxy monomer is charged therein, and then, if necessary, a reaction catalyst is charged to initiate the reaction. Next, if necessary, the solvent is distilled off under reduced pressure to obtain a specific epoxy compound.
  • the reaction temperature is not particularly limited as long as the reaction between the epoxy group of the mesogenic epoxy monomer and the functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer proceeds, for example, in the range of 100 ° C. to 180 ° C. C. is preferable, and the range of 100.degree. C. to 150.degree. C. is more preferable.
  • the reaction temperature By setting the reaction temperature to 100 ° C. or more, it tends to be possible to shorten the time until the reaction is completed. On the other hand, when the reaction temperature is 180 ° C. or lower, the possibility of gelation tends to be reduced.
  • the compounding ratio of the mesogen epoxy monomer and the aromatic compound having a functional group capable of reacting with the epoxy group of the mesogen epoxy monomer is not particularly limited.
  • the compounding ratio in which the ratio (A: B) of the number of equivalents of epoxy group (A) to the number of equivalents of functional group capable of reacting with epoxy group (B) (A: B) is in the range of 10:10 to 10: 0.01 It may be From the viewpoint of fracture toughness and heat resistance of the cured product, a compounding ratio in which A: B is in the range of 10: 5 to 10: 0.1 is preferable.
  • the ratio (A: B) of the number of equivalents of the epoxy group (A) to the number of equivalents of the functional group capable of reacting with the epoxy group (B) is 10: 1.6 to 10
  • a compounding ratio in the range of 3.0 is preferable, a compounding ratio in the range of 10: 1.8 to 10: 2.9 is more preferable, and a compound in the range of 10: 2.0 to 10: 2.8 Ratios are more preferred.
  • the structure of the specific epoxy compound is, for example, the molecular weight of the specific epoxy compound presumed to be obtained by the reaction of the mesogenic epoxy monomer used in the synthesis with an aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer. And the molecular weight of the target compound determined by liquid chromatography performed using a liquid chromatograph equipped with a UV and mass spectrum detector.
  • Liquid chromatography uses, for example, “LaChrom II C18” manufactured by Hitachi, Ltd. as a column for analysis, and using a gradient method, the mixing ratio (by volume) of the eluent is acetonitrile / tetrahydrofuran / 10 mmol / l acetic acid
  • the flow rate is 1.0 ml / min.
  • the UV spectrum detector detects the absorbance at a wavelength of 280 nm
  • the mass spectrum detector detects the ionization voltage as 2700 V.
  • the weight average molecular weight (Mw) of the epoxy resin is not particularly limited. From the viewpoint of lowering the viscosity, the weight average molecular weight (Mw) of the epoxy resin is preferably selected from the range of 800 to 1300.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the epoxy resin are values obtained by liquid chromatography.
  • Liquid chromatography is performed at a sample concentration of 0.5% by mass, using tetrahydrofuran as a mobile phase, and a flow rate of 1.0 ml / min.
  • Standard curves are prepared using polystyrene standard samples, and Mn and Mw are measured using polystyrene standard values.
  • the measurement can be performed, for example, using a high-performance liquid chromatograph "L6000" manufactured by Hitachi, Ltd. and a data analysis apparatus "C-R4A” manufactured by Shimadzu Corporation.
  • As the column for example, “G2000HXL” and “G3000HXL” which are GPC columns manufactured by Tosoh Corporation can be used.
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of achieving both the fluidity of the epoxy resin and the thermal conductivity of the cured product, it is preferably 245 g / eq to 360 g / eq, more preferably 250 g / eq to 355 g / eq, and 260 g / eq to More preferably, it is 350 g / eq. If the epoxy equivalent of the epoxy resin is 245 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the fluidity of the epoxy resin tends to be unlikely to decrease.
  • the epoxy equivalent of the epoxy resin is 360 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, so the thermal conductivity of the molded article tends to be high.
  • the epoxy equivalent of the epoxy resin is measured by perchloric acid titration method.
  • the epoxy resin of the present disclosure preferably contains both a specific epoxy compound and a mesogenic epoxy monomer.
  • the specific epoxy compound and the mesogenic epoxy monomer are present in an appropriate ratio in the epoxy resin, the crosslink density upon curing can be made higher, and the cured epoxy resin tends to be obtained which is more excellent in heat resistance. It is in.
  • the ratio of the specific epoxy compound to the mesogenic epoxy monomer present in the epoxy resin is controlled by the mixing ratio of the mesogenic epoxy monomer and the aromatic compound having a functional group capable of reacting with the epoxy group of the mesogenic epoxy monomer, and other reaction conditions Can.
  • Epoxy resin composition contains the above-described epoxy resin and a curing agent.
  • the curing agent is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin.
  • Specific examples of the curing agent include amine curing agents, phenol curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
  • the curing agent may be used alone or in combination of two or more.
  • an amine curing agent or a phenol curing agent is preferable, an amine curing agent is more preferable, and an amino directly bonded to an aromatic ring More preferably, it is a compound having two or more groups.
  • amine curing agent 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diamino- 3,3'-Dimethoxybiphenyl, 4,4'-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, 1,3-diamino Examples thereof include benzene, 1,4-diaminobenzene, 4,4′-diaminobenzanilide, trimethylene-bis-4-aminobenzoate and the like.
  • 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 1,3-diaminobenzene, 1,4-diaminobenzene, 4 , 4'-diaminobenzanilide, 1,5-diaminonaphthalene, 4,4'-diaminodiphenylmethane and trimethylene-bis-4-aminobenzoate are preferable, and from the viewpoint of obtaining a cured product having low water absorption and high fracture toughness, More preferred is 3,3'-diaminodiphenyl sulfone.
  • phenol curing agent examples include low molecular weight phenol compounds and phenol novolac resins in which low molecular weight phenol compounds are linked by a methylene chain or the like to form novolak resins.
  • low molecular weight phenolic compounds monofunctional phenolic compounds such as phenol, o-cresol, m-cresol, p-cresol, bifunctional phenolic compounds such as catechol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1 And trifunctional phenol compounds such as 2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • the content of the curing agent in the epoxy resin composition is not particularly limited. From the viewpoint of the efficiency of the curing reaction, the ratio of the number of equivalents of the functional group of the curing agent contained in the epoxy resin composition to the number of equivalents of the epoxy group of the epoxy resin (number of equivalents of functional group / number of equivalents of epoxy group) Is preferably in an amount of 0.3 to 3.0, and more preferably in an amount of 0.5 to 2.0.
  • the epoxy resin composition may optionally contain other components other than the epoxy resin and the curing agent.
  • a curing catalyst, a filler, etc. may be included.
  • Specific examples of the curing catalyst include compounds exemplified as reaction catalysts which can be used for synthesis of multimers.
  • the epoxy resin composition of the present disclosure is used in a processing method (eg, aircraft, spacecraft, etc.) that is desired to omit or reduce the addition of a solvent for viscosity reduction from the viewpoint of suppressing the generation of voids in a cured product. It can also be suitably used in the production of FRP.
  • a processing method eg, aircraft, spacecraft, etc.
  • the epoxy resin cured product of the present disclosure is obtained by curing the epoxy resin composition of the present disclosure.
  • the composite material of the present disclosure includes the epoxy resin cured product of the present disclosure and a reinforcing material.
  • the material of the reinforcing material contained in the composite material is not particularly limited, and can be selected according to the application of the composite material.
  • Specific examples of the reinforcing material include carbon materials, glass, aromatic polyamide resins (for example, Kevlar (registered trademark)), ultrahigh molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, silicon and the like.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous and particulate (filler). From the viewpoint of the strength of the composite material, the reinforcing material is preferably a carbon material, and more preferably carbon fibers.
  • the reinforcing material contained in the composite material may be one kind or two or more kinds.
  • Example 1 35.0 g of epoxy resin 1 and 15.0 g of epoxy resin 2 were weighed in a plastic container, charged into a thermostat, and heated to 90 ° C. Thereafter, 9.5 g of 3,3-diaminodiphenyl sulfone was added and stirred with a spatula for 1 minute. Subsequently, it stirred on conditions of 1600 rotation / min (rpm) and 30 minutes using the rotation and revolution mixer, and the epoxy resin composition was obtained. The obtained epoxy resin composition was transferred to a stainless steel petri dish whose inner wall was subjected to a release treatment, placed in a thermostat and heated at 150 ° C. for 4 hours to cure the epoxy resin composition.
  • the epoxy resin cured product was taken out from the stainless steel petri dish, and cut into a 3.75 mm ⁇ 7.5 mm ⁇ 33 mm rectangular solid to prepare a test piece for fracture toughness evaluation. Furthermore, the epoxy resin cured product was cut into a strip of 2 mm ⁇ 0.5 mm ⁇ 40 mm to prepare a test piece for glass transition temperature evaluation.
  • Example 2 An epoxy resin composition and an epoxy resin cured product are prepared in the same manner as in Example 1 except that 25.0 g of epoxy resin 1, 25.0 g of epoxy resin 2, and 9.6 g of 3,3-diaminodiphenyl sulfone are weighed out. Obtained. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • Example 3 An epoxy resin composition was prepared in the same manner as in Example 1 except that 35.0 g of epoxy resin 1 and 15.0 g of epoxy resin 3 were substituted for epoxy resin 2 and 9.7 g of 3,3-diaminodiphenyl sulfone was removed. And cured epoxy resin. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • Example 4 An epoxy resin composition and an epoxy resin cured product are prepared in the same manner as in Example 1 except that 45.0 g of epoxy resin 1, 5.0 g of epoxy resin 2, and 9.5 g of 3,3-diaminodiphenyl sulfone are weighed out. Obtained. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • Example 5 An epoxy resin composition and an epoxy resin cured product are prepared in the same manner as in Example 1 except that 16.7 g of epoxy resin 1, 33.3 g of epoxy resin 2, and 9.7 g of 3,3-diaminodiphenyl sulfone are weighed out. Obtained. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • Comparative Example 1 An epoxy resin composition and an epoxy resin cured product were obtained in the same manner as in Example 1 except that 50.0 g of epoxy resin 1 and 9.4 g of 3,3-diaminodiphenyl sulfone were weighed in a stainless steel Petri dish. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • Comparative Example 2 An epoxy resin composition and an epoxy resin cured product were obtained in the same manner as in Example 1 except that 50.0 g of epoxy resin 2 and 9.8 g of 3,3-diaminodiphenyl sulfone were weighed in a stainless steel Petri dish. Using the obtained cured epoxy resin, a sample for evaluation of fracture toughness and glass transition temperature was produced in the same manner as in Example 1.
  • the dynamic shear viscosity (Pa ⁇ s) under high shear was used as an index of viscosity stability of the epoxy resin composition.
  • the dynamic shear viscosity of the epoxy resin composition was measured by a parallel plate vibrational rheometer. The measurement conditions were a frequency of 1 Hz and a strain of 1000%.
  • MCR-301 Alpha-1 (Anton Pearl) was used as an evaluation apparatus.
  • the fracture toughness value (MPa ⁇ m 1/2 ) was used as an index of fracture toughness of the cured epoxy resin.
  • the fracture toughness value of the test piece was calculated by three-point bending measurement based on ASTM D5045. Instron 5948 (Instron) was used as an evaluation apparatus.
  • the glass transition temperature (Tg) was used as an index of the heat resistance of the epoxy resin cured product.
  • the glass transition temperature of the test piece was calculated by performing dynamic viscoelasticity measurement in a tensile mode. The measurement conditions were a frequency of 10 Hz, a temperature rising rate of 5 ° C./min, and a strain of 0.1%. In the obtained temperature-tan ⁇ relationship diagram, the temperature at which tan ⁇ was maximum was regarded as the glass transition temperature.
  • RSA-G2 (TA Instruments Inc.) was used as an evaluation apparatus.
  • the initial viscosity at 90 ° C., the viscosity after 2 hours, and the thickening rate of the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1. Furthermore, the fracture toughness value, the glass transition temperature (Tg) and the presence or absence of the smectic structure of the cured epoxy resin products of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1.
  • the epoxy resin compositions of Examples 1 to 5 containing both epoxy compound A (epoxy resin 2) and epoxy compound B (epoxy resin 1) as the epoxy resin have an initial viscosity when given a large shear strain of 1000%. Was sufficiently low, and the increase in viscosity after 2 hours was also suppressed, showing good viscosity stability. Furthermore, the epoxy resin cured product obtained from these epoxy resin compositions showed excellent fracture toughness and heat resistance.
  • the epoxy resin composition of Comparative Example 1 in which the epoxy resin contains the epoxy compound B but does not contain the epoxy compound A the initial viscosity is low, but the viscosity increases 16 times or more two hours after the start of the measurement and no solvent The film thickness could not be controlled at the time of coating, and the coating was at a difficult level.
  • the epoxy resin composition of Comparative Example 2 of Comparative Example 2 in which the epoxy resin contains the epoxy compound A but does not contain the epoxy compound B similarly increases in viscosity significantly after 2 hours from the measurement, and is solventless from the viewpoint of film thickness control and fluidity. Coating was difficult.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

2つ以上のメソゲン構造と1つ以上のフェニレン基とを有するエポキシ化合物Aと、2つ以上のメソゲン構造と1つ以上の2価のビフェニル基とを有するエポキシ化合物Bと、を含むエポキシ樹脂。

Description

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
 本発明は、エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料に関する。
 エポキシ樹脂は、繊維強化プラスチック(FRP)のマトリックス樹脂として広く利用されている。最近では、破壊靭性、弾性、耐熱性等の諸物性に高い水準が要求される航空宇宙用途で使用するFRPのマトリックス樹脂としてもエポキシ樹脂が使用されている。しかしながら、エポキシ樹脂等の熱硬化性樹脂は、熱可塑性樹脂に比べて耐熱性に優れる一方、破壊靱性に劣る傾向にある。
 エポキシ樹脂の破壊靱性を向上させる手法としては、例えば、分子中にメソゲン構造を導入して硬化物中における分子の配向性を高めることが知られている。
 分子中にメソゲン構造を有するエポキシ樹脂(以下、メソゲン含有エポキシ樹脂とも称する)は、一般に他のエポキシ樹脂に比べて結晶性が強く、粘度が高い。このため、作業時に充分な流動性が得られない場合がある。そこで、メソゲン含有エポキシ樹脂の流動性を向上する方法として、メソゲン構造を有するエポキシモノマーと2価フェノール化合物とを反応させて、特定範囲の分子量のエポキシ化合物の状態にする技術が提案されている(例えば、特許文献1参照)。
 一方、液晶性ポリエステルを液晶状態で射出成形すると、金型内でのせん断流動により分子が一定の方向に配向することが報告されている(例えば、非特許文献1参照)。
国際公開第2016-104772号
Yoshihara et al., Polymer Preprints, Japan, 61(1), 625(2012)
 特許文献1に記載されたメソゲン含有エポキシ樹脂は、軟化点の低下が達成されているが、依然として結晶性が強く、作業時の温度条件下での粘度が高いために無溶剤では塗工が困難であるなど、取り扱い性の観点から改善の余地がある。
 また、作業時の温度条件下での低粘度化が達成できたとしても、他の要因(例えば、非特許文献1に報告されているような樹脂のせん断流動による分子の配向)によって粘度が上昇する可能性も考慮する必要がある。
 本発明は上記状況に鑑み、作業時の粘度安定性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>2つ以上のメソゲン構造と1つ以上のフェニレン基とを有するエポキシ化合物Aと、2つ以上のメソゲン構造と1つ以上の2価のビフェニル基とを有するエポキシ化合物Bと、を含むエポキシ樹脂。
<2>前記エポキシ化合物A及び前記エポキシ化合物Bの少なくとも一方は、2つの前記メソゲン構造の間に1つの前記フェニレン基又は前記2価のビフェニル基が配置された状態の構造を有する、<1>に記載のエポキシ樹脂。
<3>前記エポキシ化合物A及び前記エポキシ化合物Bの少なくとも一方が有する2つ以上の前記メソゲン構造のうち、少なくとも1つが下記一般式(3)で表されるメソゲン構造である、<1>又は<2>に記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000002

 
(一般式(3)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。)
<4><1>~<3>のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
<5>硬化させた場合にスメクチック構造を形成可能である、<4>に記載のエポキシ樹脂組成物。
<6><4>又は<5>に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
<7><6>に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
 本発明によれば、作業時の粘度安定性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「エポキシ化合物」とは、分子中にエポキシ基を有する化合物を意味する。「エポキシ樹脂」とは、複数のエポキシ化合物を集合体として捉える概念であって硬化していない状態のものを意味する。
<エポキシ樹脂>
 本開示のエポキシ樹脂は、2つ以上のメソゲン構造と1つ以上のフェニレン基とを有するエポキシ化合物Aと、2つ以上のメソゲン構造と1つ以上の2価のビフェニル基とを有するエポキシ化合物Bと、を含む。
 本開示において、エポキシ化合物Aが有する2つ以上のメソゲン構造がフェニレン基を含む場合、当該フェニレン基は「1つ以上のフェニレン基」とは異なるものとする。エポキシ化合物Bが有する2つ以上のメソゲン構造が2価のビフェニル基を含む場合、当該2価のビフェニル基は「1つ以上の2価のビフェニル基」とは異なるものとする。
 エポキシ樹脂に含まれるエポキシ化合物A及びエポキシ化合物Bは、それぞれ1種のみでも2種以上であってもよい。また、エポキシ化合物A及びエポキシ化合物Bが有するメソゲン構造は同じであっても異なっていてもよい。
 本発明者らの検討により、エポキシ化合物Bを含むエポキシ樹脂は、特許文献1に記載のメソゲン構造を有するエポキシモノマーと2価フェノール化合物とを反応させて得られる化合物(エポキシ化合物A)を含むエポキシ樹脂よりも、昇温時に粘度が低下しやすく取り扱い性に優れていることがわかった。すなわち、分子中にフェニレン基を有するエポキシ化合物Aは、それ単体では作業時(例えば、100℃以下)の温度でスメクチック液晶相をとるのに対し、分子中にビフェニル基を有するエポキシ化合物Bは、それ単体では常温(25℃)から150℃までのすべての温度域においてネマチック液晶相であるか、等方相である。これは、エポキシ化合物Bの分子中のビフェニル基はフェニレン基に比べて分子量が大きいため、分子の配向性が低下し、高次な構造であるスメクチック液晶相を取らないためと考えられる。このため、エポキシ化合物Bを含むエポキシ樹脂の方がエポキシ化合物Aを含むエポキシ樹脂よりも作業時の温度条件での粘度が低く、流動性に優れる傾向にあると考えられる。
 さらに、エポキシ化合物Aとエポキシ化合物Bの両方を含むエポキシ樹脂は、エポキシ化合物Bのみを含むエポキシ樹脂に比べてせん断応力が連続的に印加される状況下での粘度安定性に優れていることがわかった。これは、分子中にビフェニル基を有するエポキシ化合物Bは、分子中にフェニレン基を有するエポキシ化合物Aに比べ、せん断応力等の物理的な刺激をきっかけにして分子が配向しやすい性質を持っているためと考えられる。このため、例えば、エポキシ樹脂を硬化剤と混合する際に、エポキシ樹脂にせん断応力が連続的に印加されることで粘度上昇がより生じやすくなっていると考えられる。
 本開示のエポキシ樹脂は、エポキシ化合物Aとエポキシ化合物Bの両方を含むことで、作業時の温度域における低粘度化と、せん断応力が連続的に印加される状況下での粘度安定性を両立している。
 エポキシ樹脂中のエポキシ化合物Aとエポキシ化合物Bの質量基準の比率は、特に制限されない。作業時の温度域における低粘度化と、せん断応力が連続的に印加される状況下での粘度安定性を両立する観点からは、エポキシ化合物Aとエポキシ化合物Bの比率(エポキシ化合物A:エポキシ化合物B)は1:9~9:1であることが好ましく、3:7~9:1であることがより好ましく、4:6~8:2であることがさらに好ましく、6:4~8:2であることが特に好ましい。
 エポキシ樹脂は、エポキシ化合物A及びエポキシ化合物B以外のエポキシ化合物を含んでいてもよい。例えば、後述するメソゲンエポキシモノマーを含んでいてもよい。
 エポキシ樹脂がエポキシ化合物A及びエポキシ化合物B以外のエポキシ化合物を含む場合、エポキシ化合物Aとエポキシ化合物Bの合計含有率は、特に制限されない。例えば、エポキシ樹脂全体の70質量%~99質量%であることが好ましく、80質量%~99質量%であることがより好ましく、90質量%~99質量%であることがさらに好ましい。
(特定エポキシ化合物)
 エポキシ化合物A及びエポキシ化合物B(以下、両者をあわせて特定エポキシ化合物とも称する)は、2つ以上のメソゲン構造と、1つ以上のフェニレン基又は2価のビフェニル基と、を有するものであれば、その構造は特に制限されない。
 特定エポキシ化合物の1分子中に含まれる2つ以上のメソゲン構造は、異なっていても同じであってもよい。
 特定エポキシ化合物が有するメソゲン構造とは、これを有するエポキシ化合物を含むエポキシ樹脂が液晶性を発現する可能性のある構造を意味する。具体的には、ビフェニル構造、フェニルベンゾエート構造、シクロヘキシルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、これらのメソゲン構造の2つ以上が結合基を介して結合した構造等が挙げられる。
 メソゲン構造を有するエポキシ化合物を含むエポキシ樹脂は、硬化物中に高次構造を形成する。ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡によって判断することができる。すなわち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。この高次構造体は、通常はエポキシ樹脂組成物の硬化物中に島状に存在してドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
 硬化した状態で形成される高次構造としては、ネマチック構造とスメクチック構造とが挙げられる。ネマチック構造とスメクチック構造は、それぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみをもつ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。従って、硬化物の熱伝導性及び破壊靭性の観点からは、スメクチック構造の高次構造を形成することがより好ましい。
 エポキシ樹脂の硬化物中にスメクチック構造が形成されているか否かは、硬化物のX線回折測定により判断できる。X線回折測定は、例えば、株式会社リガク製のX線回折装置を用いて行うことができる。CuKα1線を用い、管電圧40kV、管電流20mA、2θ=2°~30°の範囲で測定すると、スメクチック構造を有している硬化物であれば、2θ=2°~10°の範囲に回折ピークが現れる。
 特定エポキシ化合物が有するメソゲン構造は、下記一般式(1)で表される構造であってもよい。
Figure JPOXMLDOC01-appb-C000003

 
 一般式(1)中、Xは単結合又は下記2価の基からなる群(A)より選択される少なくとも1種の連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。
Figure JPOXMLDOC01-appb-C000004

 
 群(A)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示し、kは0~7の整数を示し、mは0~8の整数を示し、lは0~12の整数を示す。
 一般式(1)で表されるメソゲン構造において、Xが上記2価の基からなる群(A)より選択される少なくとも1種の連結基である場合、下記2価の基からなる群(Aa)より選択される少なくとも1種の連結基であることが好ましく、群(Aa)より選択される少なくとも1種の連結基であって少なくとも1つの環状構造を含む連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000005

 
 群(Aa)中、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示し、kは0~7の整数を示し、mは0~8の整数を示し、lは0~12の整数を示す。
 エポキシ化合物A及びエポキシ化合物Bの少なくとも一方が有する2つ以上のメソゲン構造のうち、少なくとも1つが下記一般式(2)で表されるメソゲン構造であることが好ましく、全部が下記一般式(2)で表されるメソゲン構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006

 
 一般式(2)において、X、Y、nの定義及び好ましい例は、一般式(1)のX、Y、nの定義及び好ましい例と同様である。
 さらに、エポキシ化合物A及びエポキシ化合物Bの少なくとも一方が有する2つ以上のメソゲン構造のうち、少なくとも1つが下記一般式(3)で表されるメソゲン構造であることが好ましく、全部が下記一般式(3)で表されるメソゲン構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007

 
 一般式(3)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。
 R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 特定エポキシ化合物がエポキシ化合物Aである場合、エポキシ化合物Aが有するフェニレン基としては下記一般式(5A)で表される構造が挙げられる。
 特定エポキシ化合物がエポキシ化合物Bである場合、エポキシ化合物Bが有する2価のビフェニル基としては下記一般式(5B)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000008

 
 一般式(5A)及び一般式(5B)において、*は隣接する原子との結合位置を表す。隣接する原子としては酸素原子及び窒素原子が挙げられる。R及びRはそれぞれ独立に、炭素数1~8のアルキル基を表す。mはそれぞれ独立に、0~4の整数を表す。
 R及びRはそれぞれ独立に炭素数1~8のアルキル基を表し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 mはそれぞれ独立に、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。
 一般式(5A)で表される構造の中でも、下記一般式(5a)で表される構造が好ましく、一般式(5B)で表される構造の中でも、下記一般式(5b)で表される構造が好ましい。このような構造を有する特定エポキシ化合物は、分子構造が直線的になりやすい。このため、分子のスタッキング性が高く、高次構造をより形成し易いと考えられる。
Figure JPOXMLDOC01-appb-C000009

 
 一般式(5a)及び一般式(5b)において、*、R、R及びmの定義及び好ましい例は、一般式(5A)及び一般式(5B)の*、R、R及びmの定義及び好ましい例と同様である。
 特定エポキシ化合物は、2つの一般式(1)で表される構造の間に1つのフェニレン基又は2価のビフェニル基が配置された状態の構造を有することが好ましい。
 特定エポキシ化合物が有する「2つの一般式(1)で表される構造の間に1つのフェニレン基又は2価のビフェニル基が配置された状態」の具体的な態様は、特に制限されない。例えば、メソゲン構造及びエポキシ基を有する化合物のエポキシ基と、フェニレン基又はビフェニル基及びエポキシ基と反応しうる官能基を有する化合物の官能基とが反応した状態であってもよい。
 特定エポキシ化合物は、下記一般式(1-A)又は一般式(1-B)で表される構造を有するエポキシ化合物であってもよい。
Figure JPOXMLDOC01-appb-C000010

 
 一般式(1-A)及び一般式(1-B)において、X、Y及びnの定義及び好ましい例は、一般式(1)のX、Y及びnの定義及び好ましい例と同様である。また、R、R及びmの定義及び好ましい例は、一般式(5A)及び一般式(5B)のR、R及びmの定義及び好ましい例と同様である。Zはそれぞれ独立に、-O-又は-NH-を表す。
 つまり、一般式(1-A)及び一般式(1-B)においてR又はRを付されたベンゼン環は、2個~4個の水素原子を有することが好ましく、3個又は4個の水素原子を有することがより好ましく、4個の水素原子を有することがさらに好ましい。
 高次構造形成の観点からは、一般式(1-A)で表される構造を有するエポキシ化合物は、下記一般式(2-A)表される構造を有するエポキシ化合物であることが好ましく、一般式(1-B)で表される構造を有するエポキシ化合物は、下記一般式(2-B)で表される構造を有するエポキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(2-A)及び一般式(2-B)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(1-A)及び一般式(1-B)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。
 一般式(1-A)で表される構造を有するエポキシ化合物としては、下記一般式(3-A-1)及び一般式(3-A-2)からなる群より選択される少なくとも一つの構造を有するエポキシ化合物が挙げられる。
 一般式(1-B)で表される構造を有するエポキシ化合物としては、下記一般式(3-B-1)及び一般式(3-B-2)からなる群より選択される少なくとも一つの構造を有するエポキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

 
 一般式(3-A-1)、一般式(3-A-2)、一般式(3-B-1)及び一般式(3-B-2)において、R~Rの定義及び好ましい例は、一般式(3)のR~Rの定義及び好ましい例と同様である。また、R、R、m及びZの定義及び好ましい例は、一般式(1-A)及び一般式(1-B)のR、R、m及びZの定義及び好ましい例と同様である。
 特定エポキシ化合物における一般式(1)で表される構造の数は、2以上であれば特に制限されない。作業時の低粘度化の観点からは、特定エポキシ化合物の少なくとも一部が一般式(1)で表される構造を2つ含む化合物(二量体化合物)であることが好ましい。
 特定エポキシ化合物が二量体化合物である場合の構造としては、下記一般式(4-A-1)又は下記一般式(4-B-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014

 
 一般式(4-A-1)又は一般式(4-B-1)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(1-A)及び一般式(1-B)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。
 高次構造形成の観点からは、一般式(4-A-1)で表される構造を有するエポキシ化合物は、下記一般式(5-A-1)で表される構造を有するエポキシ化合物であることが好ましく、一般式(5-B-1)で表される構造を有するエポキシ化合物は、下記一般式一般式(5-B-1)で表される構造を有するエポキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(5-A-1)及び一般式(5-B-1)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(4-A-1)及び一般式(4-B-1)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。
 一般式(4-A-1)で表される構造を有するエポキシ化合物の具体例としては、下記一般式(6-A-1)~(6-A-3)で表される構造を有するエポキシ化合物が挙げられる。
 一般式(4-B-1)で表される構造を有するエポキシ化合物の具体例としては、下記一般式(6-B-1)~(6-B-3)で表される構造を有するエポキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

 
 一般式(6-A-1)~(6-A-3)及び一般式(6-B-1)~(6-B-3)において、R~R、R、R、m及びZの定義及び好ましい例は、一般式(3-A-1)、(3-A-2)、(3-B-1)又は一般式(3-B-2)のR~R、R、R、m及びZの定義及び好ましい例と同様である。
(特定エポキシ化合物の合成方法)
 特定エポキシ化合物を合成する方法は、特に制限されない。例えば、メソゲン構造とエポキシ基とを有する化合物(以下、メソゲンエポキシモノマーとも称する)と、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物とを反応させて得てもよい。
 メソゲンエポキシモノマーは、下記一般式(1-m)で表される構造を有する化合物であってもよい。
Figure JPOXMLDOC01-appb-C000018

 
 一般式(1-m)において、X、Y及びnの定義及び好ましい例は、上述した一般式(1)におけるX、Y及びnの定義及び好ましい例と同様である。
 高次構造形成の観点からは、一般式(1-m)で表されるメソゲンエポキシモノマーは、下記一般式(2-m)で表される構造を有するメソゲンエポキシモノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000019

 
 一般式(2-m)において、X、Y及びnの定義及び好ましい例は、一般式(1-m)におけるX、Y及びnの定義及び好ましい例と同様である。
 一般式(1-m)で表されるメソゲンエポキシモノマーは、下記一般式(3-m)で表される構造を有するメソゲンエポキシモノマーであることがより好ましい。
Figure JPOXMLDOC01-appb-C000020

 
 一般式(3-m)において、R~Rの定義及び好ましい例は、一般式(3)のR~Rの定義及び好ましい例と同様である。
 メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物とを反応させて特定エポキシ化合物を合成する方法は、特に制限されない。具体的には、例えば、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物と、必要に応じて用いる反応触媒とを溶媒中に溶解し、加熱しながら撹拌することで、特定エポキシ化合物を合成することができる。
 あるいは、例えば、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物を、必要に応じて用いる反応触媒と溶媒を用いずに混合し、加熱しながら撹拌することで、特定エポキシ化合物を合成することができる。
 溶媒は、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物とを溶解でき、かつ両化合物が反応するのに必要な温度にまで加温できる溶媒であれば、特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノプロピルエーテル等が挙げられる。
 溶媒の量は、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物と、必要に応じて用いる反応触媒とを反応温度において溶解できる量であれば特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、例えば、仕込み固形分濃度が20質量%~60質量%となる量であれば、反応後の溶液の粘度が好ましい範囲となる傾向にある。
 メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物の種類は、特に制限されない。硬化物中にスメクチック構造を形成する観点からは、1つのベンゼン環に2つの水酸基が結合した構造を有するジヒドロキシベンゼン化合物、1つのベンゼン環に2つのアミノ基が結合した構造を有するジアミノベンゼン化合物、ビフェニル構造を形成する2つのベンゼン環にそれぞれ1つの水酸基が結合した構造を有するジヒドロキシビフェニル化合物及びビフェニル構造を形成する2つのベンゼン環にそれぞれ1つのアミノ基が結合した構造を有するジアミノビフェニル化合物からなる群より選択される少なくとも1種(以下、特定芳香族化合物とも称する)であることが好ましい。
 ジヒドロキシベンゼン化合物としては、カテコール、レゾルシノール、ヒドロキノン、これらの誘導体等が挙げられる。
 ジアミノベンゼン化合物としては、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、これらの誘導体等が挙げられる。
 ジヒドロキシビフェニル化合物としては、2,2’-ジヒドロキシビフェニル、2,3’-ジヒドロキシビフェニル、2,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、これらの誘導体等が挙げられる。
 ジアミノビフェニル化合物としては、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、2,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、これらの誘導体等が挙げられる。
 特定芳香族化合物の誘導体としては、特定芳香族化合物のベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。特定芳香族化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化物の耐熱性の観点からは、反応触媒としては有機リン化合物が好ましい。
 有機リン化合物の好ましい例としては、有機ホスフィン化合物、有機ホスフィン化合物に無水マレイン酸、キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、有機ホスフィン化合物と有機ボロン化合物との錯体などが挙げられる。
 有機ホスフィン化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 キノン化合物として具体的には、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等が挙げられる。
 有機ボロン化合物として具体的には、テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等が挙げられる。
 反応触媒の量は、特に制限されない。反応速度及び貯蔵安定性の観点からは、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物との合計質量100質量部に対し、0.1質量部~1.5質量部であることが好ましく、0.2質量部~1質量部であることがより好ましい。
 メソゲンエポキシモノマーを用いて特定エポキシ化合物を合成する場合、メソゲンエポキシモノマーのすべてが反応して特定エポキシ化合物の状態になっていても、メソゲンエポキシモノマーの一部が反応せずにモノマーの状態で残存していてもよいが、後述の耐熱性の観点からメソゲンエポキシモノマーの一部が反応せずにモノマーの状態で残存しているほうが好ましい。
 特定エポキシ化合物の合成は、少量スケールであればフラスコ、大量スケールであれば合成釜等の反応容器を使用して行うことができる。具体的な合成方法は、例えば以下の通りである。
 まず、メソゲンエポキシモノマーを反応容器に投入し、必要に応じて溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、メソゲンエポキシモノマーを溶解する。そこにメソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物を投入し、次いで必要に応じて反応触媒を投入し、反応を開始させる。次いで、必要に応じて減圧下で溶媒を留去することで、特定エポキシ化合物が得られる。
 反応温度は、メソゲンエポキシモノマーのエポキシ基と、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基との反応が進行する温度であれば特に制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~150℃の範囲であることがより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物の配合比は、特に制限されない。例えば、エポキシ基の当量数(A)と、エポキシ基と反応しうる官能基の当量数(B)との比(A:B)が10:10~10:0.01の範囲となる配合比としてもよい。硬化物の破壊靭性及び耐熱性の観点からは、A:Bが10:5~10:0.1の範囲となる配合比が好ましい。
 エポキシ樹脂の取り扱い性の観点からは、エポキシ基の当量数(A)と、エポキシ基と反応しうる官能基の当量数(B)との比(A:B)が10:1.6~10:3.0の範囲となる配合比が好ましく、10:1.8~10:2.9の範囲となる配合比がより好ましく、10:2.0~10:2.8の範囲となる配合比がさらに好ましい。
 特定エポキシ化合物の構造は、例えば、合成に使用したメソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物との反応より得られると推定される特定エポキシ化合物の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 液体クロマトグラフィーは、例えば、株式会社日立製作所製の「LaChrom II C18」を分析用カラムとして使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/10mmol/l酢酸アンモニウム水溶液=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)と連続的に変化させて測定を行う。また、流速を1.0ml/minとして行う。UVスペクトル検出器では280nmの波長における吸光度を検出し、マススペクトル検出器ではイオン化電圧を2700Vとして検出する。
 エポキシ樹脂の重量平均分子量(Mw)は、特に制限されない。低粘度化の観点からは、エポキシ樹脂の重量平均分子量(Mw)は800~1300の範囲から選択されることが好ましい。
 本開示において、エポキシ樹脂の数平均分子量(Mn)と重量平均分子量(Mw)は液体クロマトグラフィーにより得られる値とする。
 液体クロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。検量線はポリスチレン標準サンプルを用いて作成し、それを用いてポリスチレン換算値でMn及びMwを測定する。
 測定は、例えば、株式会社日立製作所製の高速液体クロマトグラフ「L6000」と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行うことができる。カラムとしては、例えば、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を用いることができる。
 エポキシ樹脂のエポキシ当量は、特に制限されない。エポキシ樹脂の流動性と硬化物の熱伝導率を両立する観点からは、245g/eq~360g/eqであることが好ましく、250g/eq~355g/eqであることがより好ましく、260g/eq~350g/eqであることがさらに好ましい。エポキシ樹脂のエポキシ当量が245g/eq以上であれば、エポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂の流動性が低下しにくい傾向にある。一方、エポキシ樹脂のエポキシ当量が360g/eq以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、成形物の熱伝導率が高くなる傾向にある。本開示において、エポキシ樹脂のエポキシ当量は、過塩素酸滴定法により測定する。
 本開示のエポキシ樹脂は、特定エポキシ化合物と、メソゲンエポキシモノマーの両方を含んでいることが好ましい。エポキシ樹脂中に特定エポキシ化合物とメソゲンエポキシモノマーが適切な割合で存在していると、硬化する際の架橋密度をより高い状態にすることができ、耐熱性により優れるエポキシ樹脂硬化物が得られる傾向にある。エポキシ樹脂中に存在する特定エポキシ化合物とメソゲンエポキシモノマーの割合は、メソゲンエポキシモノマーと、メソゲンエポキシモノマーのエポキシ基と反応しうる官能基を有する芳香族化合物の配合比その他の反応条件によって調節することができる。
<エポキシ樹脂組成物>
 本開示のエポキシ樹脂組成物は、上述したエポキシ樹脂と、硬化剤と、を含む。
(硬化剤)
 硬化剤は、エポキシ樹脂と硬化反応を生じることができる化合物であれば、特に制限されない。硬化剤の具体例としては、アミン硬化剤、フェノール硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、1種を単独で用いても2種以上を併用してもよい。
 エポキシ樹脂組成物の硬化物中に高次構造を形成する観点からは、硬化剤としては、アミン硬化剤又はフェノール硬化剤が好ましく、アミン硬化剤がより好ましく、芳香環に直接結合しているアミノ基を2つ以上有する化合物であることがさらに好ましい。
 アミン硬化剤として具体的には、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート等が挙げられる。
 エポキシ樹脂組成物の硬化物中にスメクチック構造を形成する観点からは3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルメタン及びトリメチレン-ビス-4-アミノベンゾアートが好ましく、低吸水率及び高破壊靭性の硬化物を得る観点からは3,3’-ジアミノジフェニルスルホンがより好ましい。
 フェノール硬化剤としては、低分子フェノール化合物、及び低分子フェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂が挙げられる。低分子フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能フェノール化合物などが挙げられる。
 エポキシ樹脂組成物における硬化剤の含有量は特に制限されない。硬化反応の効率性の観点からは、エポキシ樹脂組成物に含まれる硬化剤の官能基の当量数と、エポキシ樹脂のエポキシ基の当量数との比(官能基の当量数/エポキシ基の当量数)が0.3~3.0となる量であることが好ましく、0.5~2.0となる量であることがより好ましい。
(その他の成分)
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂と硬化剤以外のその他の成分を含んでもよい。例えば、硬化触媒、フィラー等を含んでもよい。硬化触媒の具体例としては、多量体の合成に使用しうる反応触媒として例示した化合物が挙げられる。
(用途)
 エポキシ樹脂組成物の用途は特に制限されないが、粘度が低く、流動性に優れていることが要求される加工方法にも好適に用いることができる。例えば、繊維間の空隙にエポキシ樹脂組成物を加温しながら含浸する工程を伴うFRPの製造、エポキシ樹脂組成物を加温しながらスキージ等で広げる工程を伴うシート状物の製造などにも好適に用いることができる。
 本開示のエポキシ樹脂組成物は、硬化物中のボイドの発生を抑制する観点から粘度低下のための溶剤の添加を省略又は低減することが望まれる加工方法(例えば、航空機、宇宙船等に用いるFRPの製造)にも好適に用いることができる。
<エポキシ樹脂硬化物及び複合材料>
 本開示のエポキシ樹脂硬化物は、本開示のエポキシ樹脂組成物を硬化して得られる。本開示の複合材料は、本開示のエポキシ樹脂硬化物と、強化材と、を含む。
 複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、炭素材料、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリコン等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料の強度の観点からは、強化材は炭素材料であることが好ましく、炭素繊維であることがより好ましい。複合材料に含まれる強化材は、1種でも2種以上であってもよい。
 以下、実施例にもとづいて上記実施形態をさらに具体的に説明するが、上記実施形態はこれらに限定されるものではない。なお、特に断りのない限り、「部」および「%」は質量基準である。
(エポキシ樹脂1の合成)
 500mlの三口フラスコに、メソゲンエポキシモノマーとして(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、下記構造)を50g量り取り、そこにプロピレングリコールモノメチルエーテルを80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように攪拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。エポキシモノマーが溶解し、透明な溶液になったことを確認した後、特定芳香族化合物として4,4-ビフェノールを5.2g、反応触媒としてトリフェニルホスフィンを0.5g添加し、120℃のオイルバス温度で加熱を継続した。3時間加熱を継続した後に、反応溶液からプロピレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、メソゲンエポキシモノマーの一部が特定芳香族化合物と反応してエポキシ化合物Bの状態になったエポキシ樹脂1を得た。
Figure JPOXMLDOC01-appb-C000021

 
(エポキシ樹脂2の合成)
 4,4-ビフェノール5.2gに替えてヒドロキノン3.1gを添加した以外はエポキシ樹脂1と同様にして、メソゲンエポキシモノマーの一部が特定芳香族化合物と反応してエポキシ化合物Aの状態になったエポキシ樹脂2を得た。
(エポキシ樹脂3の合成)
 4,4-ビフェノール5.2gに替えてレゾルシノール3.1gを添加した以外はエポキシ樹脂1と同様にして、メソゲンエポキシモノマーの一部が特定芳香族化合物と反応してエポキシ化合物Aの状態になったエポキシ樹脂3を得た。
(硬化剤の前処理)
 3,3-ジアミノジフェニルスルホン(和光純薬工業株式会社)160gを、株式会社アイシンナノテクノロジー製ナノジェットマイザーNJ-50-B型を用いて、圧力0.15MPa、処理量240g/hrで粉砕し、平均粒径8μmの微粉体を155g得た。得られた微粉体を以下の実施例及び比較例で使用した。
<実施例1>
 エポキシ樹脂1を35.0g、エポキシ樹脂2を15.0gプラスチック容器に量り取り、恒温槽に投入して90℃に加温した。その後、3,3-ジアミノジフェニルスルホンを9.5g添加し、1分間スパチュラで撹拌した。次いで、自転・公転ミキサーを用いて、1600回転/分(rpm)、30minの条件で撹拌し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、内壁に離型処理を施したステンレスシャーレに移し、恒温槽に投入して150℃で4時間加熱して、エポキシ樹脂組成物を硬化させた。常温(25℃)に冷却した後にステンレスシャーレからエポキシ樹脂硬化物を取り出し、3.75mm×7.5mm×33mmの直方体に切り出し、破壊靭性評価用の試験片を作製した。さらに、エポキシ樹脂硬化物を2mm×0.5mm×40mmの短冊状に切り出し、ガラス転移温度評価用の試験片を作製した。
<実施例2>
 エポキシ樹脂1を25.0g、エポキシ樹脂2を25.0g、3,3-ジアミノジフェニルスルホンを9.6g量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
<実施例3>
 エポキシ樹脂1を35.0g、エポキシ樹脂2に代えてエポキシ樹脂3を15.0g、3,3-ジアミノジフェニルスルホンを9.7g量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
<実施例4>
 エポキシ樹脂1を45.0g、エポキシ樹脂2を5.0g、3,3-ジアミノジフェニルスルホンを9.5g量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
<実施例5>
 エポキシ樹脂1を16.7g、エポキシ樹脂2を33.3g、3,3-ジアミノジフェニルスルホンを9.7g量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
<比較例1>
 エポキシ樹脂1を50.0g、3,3-ジアミノジフェニルスルホンを9.4gステンレスシャーレに量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
<比較例2>
 エポキシ樹脂2を50.0g、3,3-ジアミノジフェニルスルホンを9.8gステンレスシャーレに量り取った以外は実施例1と同様にして、エポキシ樹脂組成物とエポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物を用いて、実施例1と同様にして破壊靭性及びガラス転移温度の評価用試料を作製した。
[動的せん断粘度の測定]
 エポキシ樹脂組成物の粘度安定性の指標として、高せん断下の動的せん断粘度(Pa・s)を用いた。エポキシ樹脂組成物の動的せん断粘度は、平行平板振動レオメータにより測定した。測定条件は、周波数1Hz、ひずみ1000%とした。評価装置には、MCR-301(アントンパール社)を用いた。
 測定では、エポキシ樹脂組成物を90℃に加温したステージ上で3分以上放置して溶融させた後、直径12mmのパラレルプレートをギャップ0.2mmとなるように降下させた。次いで、装置ステージ温度を80℃に降温し、測定を開始した。最初の5分間で温度を90℃まで上昇させた後、90℃に温度を保った。測定開始10分後(90℃保持で5分後)の粘度(初期粘度)と、測定開始から2時間後(90℃保持で1時間55分後)の粘度を測定した。また、下記式で定義する増粘率を求めた。
 増粘率=2h後の粘度/初期粘度
[破壊靭性値の測定]
 エポキシ樹脂硬化物の破壊靭性の指標として、破壊靭性値(MPa・m1/2)を用いた。試験片の破壊靭性値は、ASTM D5045に基づいて3点曲げ測定を行って算出した。評価装置には、インストロン5948(インストロン社)を用いた。
[動的粘弾性の評価]
 エポキシ樹脂硬化物の耐熱性の指標として、ガラス転移温度(Tg)を用いた。試験片のガラス転移温度は、引張りモードによる動的粘弾性測定を行って算出した。測定条件は、周波数10Hz、昇温速度5℃/分、ひずみ0.1%とした。得られた温度‐tanδ関係図において、tanδが最大となる温度を、ガラス転移温度とみなした。評価装置には、RSA-G2(ティー・エイ・インスツルメント社)を用いた。
[X線回折測定]
 エポキシ樹脂硬化物中の高次構造(スメクチック構造)の形成の有無を確認するために、X線回折測定を行った。測定条件は、CuKα線を用い、管電圧50kV、管電流300mA、走査速度を1°/分、測定角度を2θ=2°~30°とした。評価装置には、株式会社リガク製のX線回折装置を用いた。2θ=2°~10°の範囲においてピークが検出された場合はスメクチック構造が形成されていると判断した。
 実施例1~5、比較例1、2のエポキシ樹脂組成物の90℃における初期粘度、2時間後の粘度及び増粘率を表1に示す。さらに、実施例1~5、比較例1、2のエポキシ樹脂硬化物の破壊靭性値、ガラス転移温度(Tg)及びスメクチック構造の有無を表1に示す。
Figure JPOXMLDOC01-appb-T000022
 表1に示すように。エポキシ樹脂としてエポキシ化合物A(エポキシ樹脂2)と、エポキシ化合物B(エポキシ樹脂1)の両方を含む実施例1~5のエポキシ樹脂組成物は、1000%の大きなせん断ひずみを与えた際の初期粘度が十分低く、かつ2時間後の粘度増大も抑制され、良好な粘度安定性を示した。さらに、これらのエポキシ樹脂組成物から得られるエポキシ樹脂硬化物は優れた破壊靭性と耐熱性を示した。
 エポキシ樹脂がエポキシ化合物Bを含むがエポキシ化合物Aを含まない比較例1のエポキシ樹脂組成物は、初期粘度が低いものの、測定開始から2時間後には粘度が16倍以上に増大し、無溶剤での塗工に際して膜厚が制御できず塗工困難なレベルであった。
 エポキシ樹脂がエポキシ化合物Aを含むがエポキシ化合物Bを含まない比較例2のエポキシ樹脂組成物も同様に測定から2時間後には粘度が著しく増大し、膜厚制御,流動性の点から無溶剤での塗工が困難なレベルであった。

Claims (7)

  1.  2つ以上のメソゲン構造と1つ以上のフェニレン基とを有するエポキシ化合物Aと、2つ以上のメソゲン構造と1つ以上の2価のビフェニル基とを有するエポキシ化合物Bと、を含むエポキシ樹脂。
  2.  前記エポキシ化合物A及び前記エポキシ化合物Bの少なくとも一方は、2つの前記メソゲン構造の間に1つの前記フェニレン基又は前記2価のビフェニル基が配置された状態の構造を有する、請求項1に記載のエポキシ樹脂。
  3.  前記エポキシ化合物A及び前記エポキシ化合物Bの少なくとも一方が有する2つ以上の前記メソゲン構造のうち、少なくとも1つが下記一般式(3)で表されるメソゲン構造である、請求項1又は請求項2に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(3)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。)
  4.  請求項1~請求項3のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
  5.  硬化させた場合にスメクチック構造を形成可能である、請求項4に記載のエポキシ樹脂組成物。
  6.  請求項4又は請求項5に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
  7.  請求項6に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
PCT/JP2017/035658 2017-09-29 2017-09-29 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 WO2019064544A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780095357.4A CN111133025B (zh) 2017-09-29 2017-09-29 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料
KR1020207009501A KR102408630B1 (ko) 2017-09-29 2017-09-29 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
JP2019544146A JP7003998B2 (ja) 2017-09-29 2017-09-29 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
PCT/JP2017/035658 WO2019064544A1 (ja) 2017-09-29 2017-09-29 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US16/651,015 US11560476B2 (en) 2017-09-29 2017-09-29 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
EP17927134.1A EP3680269B8 (en) 2017-09-29 2017-09-29 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035658 WO2019064544A1 (ja) 2017-09-29 2017-09-29 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Publications (1)

Publication Number Publication Date
WO2019064544A1 true WO2019064544A1 (ja) 2019-04-04

Family

ID=65902371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035658 WO2019064544A1 (ja) 2017-09-29 2017-09-29 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Country Status (6)

Country Link
US (1) US11560476B2 (ja)
EP (1) EP3680269B8 (ja)
JP (1) JP7003998B2 (ja)
KR (1) KR102408630B1 (ja)
CN (1) CN111133025B (ja)
WO (1) WO2019064544A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001427A (ja) * 2008-06-23 2010-01-07 Nippon Kayaku Co Ltd エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2011057921A (ja) * 2009-09-14 2011-03-24 Nippon Steel Chem Co Ltd 封止用エポキシ樹脂組成物および硬化物
JP2015203086A (ja) * 2014-04-16 2015-11-16 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物および硬化物
WO2016104772A1 (ja) 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物
WO2017145411A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69033670T2 (de) * 1989-01-17 2001-06-28 Dow Chemical Co Mesogene Epoxydverbindungen
US5391651A (en) * 1990-08-03 1995-02-21 The Dow Chemical Company Curable mixtures of mesogenic epoxy resins and mesogenic polyamines and cured compositions
JP2004010762A (ja) * 2002-06-07 2004-01-15 Hitachi Ltd エポキシ樹脂,エポキシ樹脂組成物,エポキシ樹脂硬化物及びそれらの製造方法
JP5320384B2 (ja) * 2008-03-03 2013-10-23 新日鉄住金化学株式会社 変性エポキシ樹脂、エポキシ樹脂組成物及び硬化物
WO2016098709A1 (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、エポキシ樹脂組成物の製造方法、及び硬化体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001427A (ja) * 2008-06-23 2010-01-07 Nippon Kayaku Co Ltd エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2011057921A (ja) * 2009-09-14 2011-03-24 Nippon Steel Chem Co Ltd 封止用エポキシ樹脂組成物および硬化物
JP2015203086A (ja) * 2014-04-16 2015-11-16 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物および硬化物
WO2016104772A1 (ja) 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物
WO2017145411A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRUGGEMAN, A. ET AL.: "Synthesis, Thermal, and Mechanical Characterization of Liquid-Crystalline Polyhydroxyethers", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 66, 1997, pages 1971 - 1978, XP000831313, DOI: doi:10.1002/(SICI)1097-4628(19971205)66:10<1971::AID-APP13>3.0.CO;2-Y *
See also references of EP3680269A4
YOSHIHARA ET AL., POLYMER PREPRINTS, vol. 61, no. 1, 2012, pages 625

Also Published As

Publication number Publication date
EP3680269B1 (en) 2022-02-16
JP7003998B2 (ja) 2022-01-21
US20200270447A1 (en) 2020-08-27
EP3680269A4 (en) 2021-02-17
KR102408630B1 (ko) 2022-06-13
CN111133025A (zh) 2020-05-08
US11560476B2 (en) 2023-01-24
EP3680269A1 (en) 2020-07-15
JPWO2019064544A1 (ja) 2020-11-19
EP3680269B8 (en) 2022-04-27
CN111133025B (zh) 2022-10-28
KR20200055002A (ko) 2020-05-20

Similar Documents

Publication Publication Date Title
JP7160058B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
TWI751299B (zh) 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
JP6775737B2 (ja) エポキシ樹脂組成物、硬化物及び複合材料
JPWO2018070535A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020054137A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019064546A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019043843A1 (ja) エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6835292B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7119801B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243092B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020132717A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019198158A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2019065126A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020053937A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009501

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017927134

Country of ref document: EP

Effective date: 20200406