WO2019053823A1 - 誘電体フィルタ - Google Patents

誘電体フィルタ Download PDF

Info

Publication number
WO2019053823A1
WO2019053823A1 PCT/JP2017/033097 JP2017033097W WO2019053823A1 WO 2019053823 A1 WO2019053823 A1 WO 2019053823A1 JP 2017033097 W JP2017033097 W JP 2017033097W WO 2019053823 A1 WO2019053823 A1 WO 2019053823A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
waveguide
conductor layer
dielectric substrate
multilayer
Prior art date
Application number
PCT/JP2017/033097
Other languages
English (en)
French (fr)
Inventor
秀浩 吉岡
明道 廣田
健 湯浅
倫一 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018504307A priority Critical patent/JP6345371B1/ja
Priority to PCT/JP2017/033097 priority patent/WO2019053823A1/ja
Priority to EP18855754.0A priority patent/EP3667811B1/en
Priority to US16/629,691 priority patent/US11394095B2/en
Priority to JP2019541652A priority patent/JP6633261B2/ja
Priority to CN201880058015.XA priority patent/CN111095671B/zh
Priority to PCT/JP2018/021853 priority patent/WO2019053972A1/ja
Publication of WO2019053823A1 publication Critical patent/WO2019053823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/211Waffle-iron filters; Corrugated structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/087Transitions to a dielectric waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the present invention relates to a dielectric filter mainly composed of a waveguide structure used as a high frequency component of microwave band and millimeter wave band.
  • a band pass filter configured using a dielectric waveguide integrated in a dielectric substrate.
  • BPF band pass filter
  • Such a BPF has two conductor layers provided to sandwich the dielectric layer in the dielectric substrate, and conductor posts (vias provided through the dielectric layer to connect the two conductor layers). And). Then, two conductor layers forming a dielectric waveguide with respect to a dielectric waveguide (SIW: Substrate Integrated Waveguide) formed and arranged along the planar direction of the dielectric substrate as a wall surface of the BPF Among them, a structure has been proposed in which a via is inserted in a tube as a signal input / output probe from a notch provided in one of the conductor layers (see, for example, Patent Document 1).
  • the conductor pattern provided at the tip of the via inserted as a signal input / output probe in the dielectric waveguide formed in the planar direction of the substrate is larger than the notch provided for inserting the via in the conductor layer.
  • the dielectric filters described in Patent Document 1 and Patent Document 2 form a dielectric waveguide along the planar direction of the substrate. Therefore, the area of the dielectric filter occupied in the planar direction of the substrate is increased.
  • an array antenna apparatus having a plurality of element antennas and a plurality of high frequency components, it is necessary to provide a filter for each path connecting one element antenna and one high frequency component.
  • the dielectric filter described in Patent Document 1 and Patent Document 2 when configuring an array antenna device using a dielectric substrate, the antenna aperture area in which a plurality of element antennas are arranged, and a plurality of antenna The area occupied by the plurality of dielectric filters in the planar direction of the substrate is larger than the area where the high frequency component is mounted on the substrate. Therefore, the dielectric filter has a large device size depending on the size in the planar direction of the substrate, and high density wiring becomes difficult. For this reason, there is a problem that each path connecting the element antenna and the high frequency component becomes long, and the conversion loss of the signal increases.
  • a via inserted as a signal input / output probe in a dielectric waveguide and a conductor layer to be a waveguide wall facing this via are provided.
  • the gap (gap) depends on the layer configuration of the dielectric substrate in substrate manufacturing.
  • the conductor pattern size provided at the tip of the via inserted in the dielectric waveguide as a signal input / output probe is about twice the diameter of the via in terms of substrate manufacture. The above is necessary. For this reason, the dielectric filters described in Patent Document 1 and Patent Document 2 have a reduced degree of freedom in design.
  • the dielectric filters described in Patent Document 1 and Patent Document 2 have a problem that the conversion loss of the signal increases because the matching at the signal input / output probe portion becomes difficult.
  • the present invention has been made to solve the above problems, and can be miniaturized in the planar direction of the dielectric substrate and is suitable for a laminated structure, and has a high degree of freedom in design, and is suitable for signal conversion.
  • the object is to obtain a low loss dielectric filter.
  • a multilayer dielectric substrate having a plurality of conductive layers formed separately from one another in the stacking direction, and extending in a planar direction to conductive layers separated from one another in the stacking direction.
  • a conductor extending in the stacking direction between the first strip line and the second strip line in the stacking direction of the multilayer dielectric substrate and the strip line and the second strip line;
  • a transmission line conversion is performed between the dielectric waveguide formed of a column and the dielectric waveguide formed on the upper side in the stacking direction of the first strip line and the first strip line.
  • Transmission line conversion between the first stripline-waveguide converter and the dielectric waveguide formed on the lower side in the stacking direction of the second stripline and the second stripline Do the second strip line - in the dielectric filter or the like having a waveguide converter, a.
  • a dielectric waveguide formed of conductor patterns and vias in the stacking direction in the multilayer dielectric substrate, two strip lines formed in the planar direction of the multilayer dielectric substrate, and the dielectric waveguide The area occupied in the planar direction of the multilayer dielectric substrate can be suppressed by using two strip line-waveguide transducers that perform transmission line conversion between a chip and each strip line, and the design conversion is high, and signal conversion is high. Can provide a low-loss dielectric filter.
  • a dielectric waveguide formed of conductor patterns and vias in the stacking direction in the multilayer dielectric substrate, two strip lines formed in the planar direction of the multilayer dielectric substrate, and the dielectric waveguide It is possible to provide a dielectric filter in which the area occupied in the planar direction of the multilayer dielectric substrate is reduced by using two waveguide-strip line converters that perform transmission line conversion between the two strip lines. Furthermore, in the waveguide-strip line converter, in order to insert a conductor pattern into the dielectric waveguide as a signal input / output probe, the shape of the signal input / output probe portion and the waveguide opposite to this probe Since the design freedom can be improved in the gap with the wall conductor layer, a low loss dielectric filter can be provided.
  • FIG. 1 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • A) of FIG. 2 is a longitudinal sectional view taken along the line AA of FIG.
  • B) of FIG. 2 is a longitudinal sectional view taken along the line BB ′ of (a) of FIG.
  • FIG. 2 (c) is a longitudinal sectional view taken along the line CC 'of FIG. 2 (a).
  • a dielectric waveguide 9101 mainly formed of a conductor pattern including conductor layers 2001-2008 and vias 3018, 3024, and 3057 including conductor columns in the stacking direction of the multilayer dielectric substrate 1001;
  • Two strip lines 6003 and 6006 formed in the planar direction of the multilayer dielectric substrate 1001 and two strip lines for performing transmission line conversion between the dielectric waveguide 9101 and the respective strip lines 6003 and 6006-a waveguide
  • a dielectric filter consisting of a converter 9001 will be described.
  • the multilayer dielectric substrate 1001 includes a conductor layer 2001, a conductor layer 2002, a conductor layer 2003, a conductor layer 2004, a conductor layer 2005, a conductor layer 2006, a conductor layer 2007, a conductor layer 2008, vias 3018, A via 3024, a via 3057, a strip line 6003, a strip line 6006, a probe 5003, and a probe 5006 are provided.
  • the conductor layer 2001 is disposed on the surface layer of the multilayer dielectric substrate 1001.
  • the conductor layer 2002 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2001.
  • the conductor layer 2003 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2002 having the conductor layer 2001 on the back side.
  • the conductor layer 2004 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2003 having the conductor layer 2002 on the back side.
  • the conductor layer 2005 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2004 having the conductor layer 2003 on the back side.
  • the conductor layer 2006 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2005 having the conductor layer 2004 on the back side.
  • the conductor layer 2007 is disposed in the inner layer of the multilayer dielectric substrate 1001 so as to face the conductor layer 2006 having the conductor layer 2005 on the back side.
  • the conductor layer 2008 faces the conductor layer 2007 having the conductor layer 2006 on the back side, and is disposed on the surface layer of the multilayer dielectric substrate 1001 opposite to the side on which the conductor layer 2001 is disposed.
  • the conductor layer 2002 to the conductor layer 2007 are provided with an opening 4002 to an opening 4007.
  • the openings 4002 to 4007 are disposed to face each other. That is, the openings 4002 to 4007 are at positions overlapping in the stacking direction.
  • the inner side of each of the openings 4002 to 4007 is not a hollow cavity, and for example, the same dielectric as the multilayer dielectric substrate 1001 outside the vias 3018 on both sides of FIG. Yes, this state is indicated by a dot pattern (same below).
  • the strip line 6003 is arranged with a part of the conductor layer 2003 removed.
  • the strip line 6006 is arranged with a part of the conductor layer 2006 removed.
  • the probe 5003 is connected to the strip line 6003, and the other end is disposed in the opening 4003.
  • the probe 5006 has one end connected to the strip line 6006 and the other end disposed in the opening 4006.
  • the vias 3018 surround the openings 4002 to 4007 except for the portions corresponding to the strip line 6003 and the strip line 6006, and from the conductor layer 2001 to the conductor layer 2008, the multilayer dielectric substrate 1001, and the conductor layer 2002 to the conductor layer.
  • a plurality is arranged through 2007.
  • a plurality of vias 3024 are arranged along both side surfaces along the laminating direction in the longitudinal direction of the strip line 6003 and through the multilayer dielectric substrate 1001 and the conductor layer 2003 from the conductor layer 2002 to the conductor layer 2004.
  • a plurality of vias 3057 are arranged along both side surfaces along the laminating direction in the longitudinal direction of strip line 6006, through conductor layer 2005 to conductor layer 2007, through multi-layer dielectric substrate 1001 and conductor layer 2006. .
  • a conductor layer 2001, a conductor layer 2002, a conductor layer 2003, a via 3018, a probe 5003, an opening 4002, an opening 4003 and a strip line-waveguide converter 9001 are formed from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction.
  • a conductor layer 2006, a conductor layer 2007, a conductor layer 2008, a via 3018, a probe 5006, an opening 4006, an opening 4007, and a strip line-waveguide converter 9002 are formed from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction.
  • a dielectric waveguide 9101 is formed from the conductor layer 2004, the conductor layer 2005, the via 3018, the opening 4004, and the opening 4005 in the stacking direction of the multilayer dielectric substrate 1001.
  • the stripline-waveguide converter 9001 and the stripline-waveguide converter 9002 make an electromagnetic connection via a dielectric waveguide 9101.
  • FIG. 3 shows simulation results of pass characteristics and reflection characteristics of the dielectric filter according to the first embodiment shown in FIGS. 1 and 2.
  • the simulation is the result of calculation of high frequency signals propagating from the strip line 6003 to the strip line 6006 in the dielectric filter according to the first embodiment.
  • the dielectric filter according to the first embodiment operates as a band pass filter (band pass filter).
  • the stripline-waveguide converter 9001 and the stripline-waveguide converter 9002 are connected via the dielectric waveguide 9101.
  • the stripline-waveguide converter 9002 the coupling with the fundamental mode (TE 10 : Transverse Electric Wave) in the dielectric waveguide 9101 is mainly, and with the higher-order mode propagating at a higher frequency band than the fundamental mode. Binding is suppressed.
  • TE 10 Transverse Electric Wave
  • Example 2 In the example of FIG. 1 according to the first embodiment, the widths of the probes 5003 and 5006 are shown for a dielectric filter having the same dimensions as the widths of the strip line 6003 and the strip line 6006.
  • the present invention is not limited to such a configuration, and a dielectric filter may be provided in which the width of the probe 5003 or the probe 5006 is different from the width of the strip line 6003 or the strip line 6006.
  • FIGS. 4 and 5 are diagrams showing a dielectric filter according to the first embodiment of the present invention in which the widths of the probes 5103 and 5106 are wider than the widths of the strip line 6003 and the strip line 6006.
  • FIG. 4 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • A) of FIG. 5 is a longitudinal sectional view taken along line AA of FIG.
  • B) of FIG. 5 is a longitudinal sectional view taken along the line BB 'of
  • FIG. 5C is a longitudinal sectional view taken along the line CC ′ of FIG. 5A.
  • the stripline-waveguide converter 9011 and the stripline-waveguide converter 9012 are electromagnetically connected via the dielectric waveguide 9111. .
  • the widths of the probes 5103 and 5106 are made wider than the widths of the strip lines 6003 and 6006. This allows the passband bandwidth to be adjusted and extended. Also, the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • Example 3 In the example of FIGS. 1 and 2 according to the first embodiment of the first embodiment, the probe 5003 and the probe 5006 are disposed in the tube axial direction from the same wall side of the tube wall of the dielectric waveguide 9101 Is shown about the dielectric filter.
  • the present invention is not limited to such a configuration, and the dielectric in which the probe 5003 and the probe 5006 are arranged in the direction of the tube axis from the different wall side of the tube walls of the dielectric waveguide 9101 It may be a body filter.
  • FIGS. 6 and 7 show the dielectric filter according to the first embodiment of the present invention in which two probes are provided in the axial direction from the opposite wall side of the tube wall of the dielectric waveguide.
  • FIG. 6 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • A) of FIG. 7 is a longitudinal sectional view taken along the line AA of FIG.
  • B) of FIG. 7 is a longitudinal sectional view taken along the line BB 'of
  • FIG. 7C is a longitudinal sectional view taken along the line CC ′ of FIG. 7A.
  • the strip line 6006 is arranged such that a part of the conductor layer 2006 is removed at a position not at the same height as the strip line 6003 in the stacking direction.
  • one end of the probe 5206 is connected to the strip line 6006, and the other end is disposed in the opening 4006.
  • Via 3118 surrounds opening 4002 through opening 4007 except for portions corresponding to strip line 6003 and strip line 6006, and from conductor layer 2001 to conductor layer 2008, multilayer dielectric substrate 1001 and conductor layer 2002 from conductor layer 2007.
  • a plurality is arranged through the The via 3124 is a multilayer dielectric substrate extending from the conductor layer 2002 to the conductor layer 2004 along both side surfaces along the longitudinal stacking direction of the strip line 6003 and at a part of the edge of the opening 4002, the opening 4003 and the opening 4004.
  • a plurality of through holes 1001 and conductor layers 2003 are disposed.
  • the via 3157 is a multilayer dielectric substrate extending from the conductor layer 2005 to the conductor layer 2007 along part of the edge of the opening 4005, the opening 4006, and the opening 4007 along both side surfaces along the longitudinal stacking direction of the strip line 6006.
  • a plurality of through holes 1001 and conductor layers 2006 are disposed.
  • a dielectric waveguide 9121 is formed from the conductor layer 2004, the conductor layer 2005, the via 3118, the opening 4004, and the opening 4005 in the stacking direction of the multilayer dielectric substrate 1001.
  • the stripline-waveguide converter 9021 and the stripline-waveguide converter 9022 make an electromagnetic connection via a dielectric waveguide 9121.
  • the probe 5003 and the probe 5206 are respectively provided in the tube axial direction from the opposing wall side of the tube walls of the dielectric waveguide 9121. ing.
  • the passing phase can be made to be opposite phase, and the design freedom can be improved. Also, the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • Example 4 In the examples of FIGS. 1 and 2 according to the first example of the first embodiment, the dielectric filter in which the openings 4002 to 4007 are provided with the same opening diameter is shown.
  • the present invention is not limited to this, and may be a dielectric filter in which the respective openings are provided with different opening diameters.
  • 8 and 9 show that the dielectric waveguide portion from the probe to the short-circuiting surface in the stripline-waveguide converter, that is, the aperture diameter of the conductor layer in the backshort waveguide is the conductor in the dielectric waveguide It is a figure which shows the dielectric material filter by Embodiment 1 of this invention provided so that it might become smaller than the aperture diameter of a layer.
  • FIG. 8 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • (A) of FIG. 9 is a longitudinal sectional view taken along line AA of FIG.
  • (B) of FIG. 9 is a longitudinal sectional view taken along the line BB 'of (a) of FIG.
  • FIG. 9C is a longitudinal sectional view taken along the line CC ′ of FIG. 9A.
  • the opening 4102 is provided by removing a part of the conductor layer 2002 with a dimension smaller than the openings 4004 and 4005. Further, the opening 4107 is provided by removing a part of the conductor layer 2007 with a size smaller than the openings 4004 and 4005.
  • a conductor layer 2001, a conductor layer 2002, a conductor layer 2003, a via 3018, a probe 5003, an opening 4102, and a stripline-waveguide converter 9031 are formed from the opening 4003 from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction.
  • a strip line-waveguide converter 9032 is formed from the conductor layer 2006, the conductor layer 2007, the conductor layer 2008, the via 3018, the probe 5006, the opening 4006, and the opening 4107 from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction. There is.
  • the stripline-waveguide converter 9031 and the stripline-waveguide converter 9032 make an electromagnetic connection via a dielectric waveguide 9101.
  • the diameters of the openings 4102 and 4107 are smaller than the diameters of the openings 4003, 4004, 4005 and 4006.
  • FIGS. 1 and 2 can be obtained.
  • the in-tube wavelength of the dielectric waveguide portion from the probe 5003 to the conductor layer 2001 to be a short circuit (back short) in the strip line-waveguide converter 9031 and the probe 5006 in the strip line-waveguide converter 9032 Since the in-tube wavelength of the dielectric waveguide portion from the point 5003) to the conductor layer 2008 which becomes the short circuit surface (back short) can be shortened, design freedom can be improved. Also, the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • Example 5 10 and 11 show that the aperture diameter in the dielectric waveguide is greater than the aperture diameter of the dielectric waveguide portion from the probe to the shorting plane in the stripline-waveguide converter, that is, the back short waveguide. It is a figure which shows the dielectric material filter by Embodiment 1 of this invention provided so that it might become small.
  • FIG. 10 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • (A) of FIG. 11 is a longitudinal sectional view taken along line AA of FIG.
  • (B) of FIG. 11 is a longitudinal sectional view taken along the line BB ′ of (a) of FIG.
  • FIG. 11C is a longitudinal sectional view taken along the line CC ′ in FIG. 11A.
  • the opening 4104 is provided by removing a part of the conductor layer 2004 with dimensions smaller than the openings 4002, 4003, 4006, and 4007. Further, in the example of FIGS. 10 and 11, the opening 4105 is provided by removing a part of the conductor layer 2005 with dimensions smaller than the openings 4002, 4003, 4006, and 4007.
  • a dielectric waveguide 9141 is formed from the conductor layer 2004, the conductor layer 2005, the via 3018, the opening 4104, and the opening 4105 in the stacking direction of the multilayer dielectric substrate 1001.
  • the stripline-waveguide converter 9001 and the stripline-waveguide converter 9002 make an electromagnetic connection via a dielectric waveguide 9141.
  • the diameters of the openings 4104 and 4105 are made smaller than the diameters of the openings 4002, 4003, 4006 and 4007.
  • the dielectric waveguide 9141 has a comb-like structure (corrugated) greatly narrowed by the conductor layer 2004 and the conductor layer 2005, and the distance between the conductor layer 2004 and the conductor layer 2005 and the comb tooth length in the corrugate.
  • Example 6 In the examples of FIGS. 1 and 2 according to the first example of the first embodiment, the dielectric filters in which the openings 4002 to 4007 are provided in the same shape are shown.
  • the present invention is not limited to this, and may be a dielectric filter in which the respective openings are provided in different opening shapes.
  • 12 and 13 show an embodiment of the present invention in which the opening shape of the conductor layer in the dielectric waveguide portion (back short) from the probe to the shorting surface in the stripline-waveguide converter is provided in a dumbbell shape.
  • FIG. 2 is a view showing a dielectric filter according to mode 1;
  • FIG. 12 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like. (A) of FIG.
  • FIG. 13 is a longitudinal sectional view taken along the line AA of FIG. (B) of FIG. 13 is a longitudinal sectional view taken along the line BB ′ of (a) of FIG.
  • FIG. 13 (c) is a longitudinal sectional view taken along the line CC 'of FIG. 13 (a).
  • dumbbell shape means a shape in which the width of the central portion in the longitudinal direction of the elongated opening 4202 is narrowed as shown by the recesses 7002 a and 7002 b as shown in FIG. 12.
  • a conductor layer 2001, a conductor layer 2002, a conductor layer 2003, a via 3018, a probe 5003, an opening 4202, an opening 4003 and a strip line-waveguide converter 9051 are formed from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction. There is.
  • the stripline-waveguide converter 9051 and the stripline-waveguide converter 9002 are connected electromagnetically via a dielectric waveguide 9101.
  • the opening 4202 is provided in the shape of a dumbbell.
  • the tube of the dielectric waveguide portion from the probe 5003 to the conductor layer 2001 serving as the short circuit surface in the stripline-waveguide converter 9051 is more than the example of FIGS. 1 and 2 according to the first embodiment. Since the wavelength can be shortened, design freedom can be improved. Also, the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • FIGS. 14 and 15 show the first embodiment of the present invention in which the opening shape of the conductor layer in the dielectric waveguide portion (back short) from the probe to the shorting surface in the stripline-waveguide converter is H-shaped.
  • FIG. 6 is a diagram showing a dielectric filter according to FIG.
  • FIG. 14 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • (A) of FIG. 15 is a longitudinal sectional view taken along the line AA of FIG.
  • (B) of FIG. 15 is a longitudinal sectional view taken along the line BB 'of (a) of FIG.
  • C) of FIG. 15 is a longitudinal sectional view taken along the line CC 'of (a) of FIG.
  • the H-shape means a shape in which the width of the central part in the widthwise direction of the elongated opening 4302 is narrowed as shown by the recesses 7102 a and 7102 b.
  • a conductor layer 2001, a conductor layer 2002, a conductor layer 2003, a via 3018, a probe 5003, an opening 4302, an opening 4003 and a stripline-waveguide converter 9061 are formed from the planar direction of the multilayer dielectric substrate 1001 to the laminating direction. There is.
  • the stripline-waveguide converter 9061 and the stripline-waveguide converter 9002 make an electromagnetic connection via a dielectric waveguide 9101.
  • the opening 4302 is provided in the shape of an H-shaped opening.
  • the in-tube wavelength of the dielectric waveguide portion from the probe 5003 to the conductor layer 2001 serving as the short circuit surface in the stripline-waveguide converter 9061 is more than in the example of FIGS. 1 and 2 according to the first embodiment. Can increase the degree of freedom in design. Also, the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • FIGS. 16 and 17 are diagrams showing a dielectric filter according to Embodiment 1 of the present invention in which the respective openings are provided in an elliptical shape.
  • FIG. 16 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, openings and the like.
  • FIG. 17 (a) is a longitudinal sectional view taken along the line AA of FIG. (B) of FIG. 17 is a longitudinal sectional view taken along the line BB ′ of (a) of FIG.
  • FIG. 17 (c) is a longitudinal sectional view taken along the line CC 'of FIG. 17 (a).
  • the openings 4002 to 4007 are provided in an elliptical shape.
  • design freedom can be improved, and the same effect as in the example of FIGS. 1 and 2 can be obtained.
  • FIGS. 18 and 19 are diagrams showing a dielectric filter according to a second embodiment of the present invention in which a resonant conductor is added as a resonator to a probe of a strip line-waveguide converter.
  • FIG. 18 (a) is an exploded perspective view showing the arrangement of a conductor layer, a strip line, a probe, a resonant conductor, a via, an opening, etc.
  • FIG. 18 (b) is an enlarged view of the probe.
  • (A) of FIG. 19 is a longitudinal sectional view taken along line AA of FIG.
  • FIG. 19 (b) is a longitudinal sectional view taken along the line BB ′ of FIG. 19 (a);
  • FIG. 19 (c) is a longitudinal sectional view taken along the line CC 'of FIG. 19 (a).
  • one end of the probe 5303 is connected to the strip line 6003 and the other end is connected to the resonant conductor 5403 disposed in the opening 4003 as shown in FIG. 18B.
  • One end of the probe 5306 is connected to the strip line 6006, and the other end is connected to a resonant conductor 5406 disposed in the opening 4006 as shown in (b) of FIG.
  • the resonant conductor 5403 is provided such that the length from one end connected to the probe 5303 to the open end of each of the two branched ends is 1/4 wavelength with respect to the frequency at which it is desired to block the propagation of the high frequency signal There is.
  • the resonant conductor 5406 is provided such that the length from one end connected to the probe 5306 to each open end of the two branched ends is 1/4 wavelength with respect to the frequency at which it is desired to block the propagation of the high frequency signal There is.
  • a resonant conductor 5403 is provided for the probe 5303 in the strip line-waveguide converter 9001 and the probe in the strip line-waveguide converter 9002
  • a resonant conductor 5406 is provided for 5306.
  • Example 2 In the examples of FIGS. 18 and 19 according to Example 1 of the second embodiment, the dielectric filter in which the resonator is added to the probe of the stripline-waveguide converter has been described.
  • the present invention is not limited to this, and a dielectric filter having a structure in which a resonator is added to the dielectric waveguide may be used.
  • FIGS. 20 and 21 are diagrams showing a dielectric filter according to a second embodiment of the present invention in which a portion of the dielectric waveguide is a resonator (resonant space).
  • FIG. 20 is an exploded perspective view showing the arrangement of a conductor layer, a strip line, a probe, a resonator (resonance space), a via, an opening and the like.
  • FIG. 21 is a longitudinal sectional view taken along the line AA of FIG. (B) of FIG. 21 is a longitudinal sectional view taken along the line BB 'of (a) of FIG.
  • FIG. 21C is a longitudinal sectional view taken along the line CC ′ of FIG. 21A.
  • the multilayer dielectric substrate 10010 includes A conductor layer 20010, a conductor layer 20020, a conductor layer 20030, a conductor layer 20040, a conductor layer 20050, a conductor layer 20060, a conductor layer 20070, a conductor layer 20080, a conductor layer 20080, a conductor layer 20100, a conductor layer 20110, Via 31110, via 30240, via 38100, via 30570, A strip line 60030, a strip line 60090, a probe 50030, and a probe 50090 are provided.
  • the conductor layer 20010 is disposed on the surface layer of the multilayer dielectric substrate 10010.
  • the conductor layer 20020 is disposed opposite to the conductor layer 20010 in the inner layer of the multilayer dielectric substrate 10010.
  • the conductor layer 20030 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20020 having the conductor layer 20010 on the back side.
  • the conductor layer 20040 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20030 having the conductor layer 20020 on the back side.
  • the conductor layer 20050 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20040 having the conductor layer 20030 on the back surface side.
  • the conductor layer 20060 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20050 having the conductor layer 20040 on the back side.
  • the conductor layer 20070 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20060 having the conductor layer 20050 on the back surface side.
  • the conductor layer 20080 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20070 having the conductor layer 20060 on the back surface side.
  • the conductor layer 20090 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20080 having the conductor layer 20070 on the back surface side.
  • the conductor layer 20100 is disposed in the inner layer of the multilayer dielectric substrate 10010 so as to face the conductor layer 20070 having the conductor layer 20080 on the back side.
  • the conductor layer 20110 is disposed on the surface layer of the multilayer dielectric substrate 10010 opposite to the side on which the conductor layer 20010 is disposed opposite to the conductor layer 20100 having the conductor layer 20090 on the back side.
  • each of the conductor layer 20020 to the conductor layer 20100 is removed to provide an opening 40100 to an opening 40100.
  • the openings 40020 to 40100 are disposed to face each other. That is, the openings 40020 to 400100 are at positions overlapping in the stacking direction.
  • the inner side of each of the openings 40020 to the openings 40100 is not a cavity, and for example, the same dielectric as the multilayer dielectric substrate 10010 outside the vias 31110 on both sides of FIG. Is indicated by a dot pattern.
  • strip line 60030 a part of the conductor layer 20030 is removed.
  • strip line 60090 a part of the conductor layer 20090 is removed.
  • One end of the probe 50030 is connected to the strip line 60030 and the other end is disposed in the opening 40030.
  • One end of the probe 50090 is connected to the strip line 60090, and the other end is disposed in the opening 40090.
  • the via 31110 surrounds the opening 40020 from the opening 40020 except for the portions corresponding to the strip line 60030 and the strip line 60090, and extends from the conductor layer 20010 to the conductor layer 20110 from the multilayer dielectric substrate 10010 and the conductor layer 20020 to the conductor layer 20100.
  • a plurality is arranged through the A plurality of vias 30240 are arranged along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60030 and through the multilayer dielectric substrate 10010 and the conductor layer 20030 from the conductor layer 20020 to the conductor layer 20040 .
  • a plurality of vias 30570 are arranged through the multilayer dielectric substrate 10010 and the conductor layer 20060 from the conductor layer 20050 to the conductor layer 20070 at a part of the opening 40050, the opening 40060 and the edge of the opening 40070.
  • a plurality of vias 38100 are disposed through the multilayer dielectric substrate 10010 and the conductor layer 20090 from the conductor layer 20080 to the conductor layer 20110 along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60090.
  • a stripline-waveguide converter 90010 is formed from the conductor layer 20010, the conductor layer 20020, the conductor layer 20030, the via 31110, the probe 50030, the opening 40020, and the opening 40030 from the planar direction of the multilayer dielectric substrate 10010 to the laminating direction.
  • Conductor layer 20090, conductor layer 20100, conductor layer 20110, via 31110, probe 50090, opening 40090, stripline to waveguide converter 90020 are formed from opening 40100 from the planar direction of multilayer dielectric substrate 10010 to the laminating direction. There is.
  • the diameter of the openings 40050 and 40070 of the dielectric waveguide 91010 is smaller than the diameter of the opening 40060 so that the conductor layer 20050, the conductor layer 20060, and the conductor layer can be formed on part of the dielectric waveguide 91010.
  • a resonance space 92010 including the 20070, the via 31110, the via 30570, the opening 40050, the opening 40060, and the opening 40070 is provided.
  • the stripline-waveguide converter 90010 and the stripline-waveguide converter 90020 make an electromagnetic connection via a dielectric waveguide 91010.
  • a part of the dielectric waveguide 91010 is used as a resonant space 92010.
  • a band pass filter function can be added to the dielectric waveguide 91010 for propagating a high frequency signal of a frequency according to the size of the resonant space 92010, and FIGS. 1 and 2 of the first embodiment. The same effect as the example can be obtained.
  • Example 3 In the examples of FIGS. 20 and 21 according to Example 2 of the second embodiment, a dielectric filter in which a part of the dielectric waveguide 91010 is a resonant space 92010 is shown.
  • the present invention is not limited to this, and a dielectric filter in which a resonant conductor is added to the dielectric waveguide 91010 may be used.
  • 22 and 23 show a dielectric waveguide according to a second embodiment of the present invention in which a conductor whose one end is short-circuited to provide a 1/4 wavelength to a frequency at which it is desired to block the propagation of a high frequency signal is provided. It is a figure which shows a dielectric material filter.
  • FIG. 22 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, resonant conductors, openings and the like.
  • A) of FIG. 23 is a longitudinal sectional view taken along line AA of FIG.
  • B) of FIG. 23 is a longitudinal sectional view taken along the line BB 'of (a) of FIG.
  • C) of FIG. 23 is a longitudinal sectional view taken along the line CC 'of (a) of FIG.
  • the length from the planar direction of the multilayer dielectric substrate 10010 to the laminating direction is 1 ⁇ 4 wavelength with respect to the frequency at which propagation of the high frequency signal is desired to be blocked.
  • a resonant conductor 31570 which is connected and whose other end is disposed in the conductor layer 20050 is provided.
  • the dielectric waveguide 91010 is provided with a resonant conductor 31570.
  • Example 4 In the examples of FIGS. 22 and 23 according to Example 3 of the second embodiment, a dielectric filter in which a resonant conductor is provided in the stacking direction of the dielectric waveguide 91010 is shown.
  • the present invention is not limited to this, and it may be a dielectric filter in which a conductor pattern is provided only in the planar direction of the dielectric waveguide.
  • FIGS. 24 and 25 are diagrams showing a dielectric filter according to a second embodiment of the present invention in which a conductor pattern is provided only in the planar direction of the dielectric waveguide.
  • FIG. 24 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, conductor patterns, openings and the like. (A) of FIG.
  • FIG. 25 is a longitudinal sectional view taken along the line A-A of FIG. (B) of FIG. 25 is a longitudinal sectional view taken along the line BB ′ of (a) of FIG. (C) of FIG. 25 is a longitudinal cross-sectional view along the line CC 'of (a) of FIG.
  • a conductor pattern 21060 is provided only in the planar direction of the dielectric waveguide.
  • the other parts are the same as in the example of FIGS.
  • a conductor pattern 21060 is provided in the dielectric waveguide 91010.
  • a band elimination type filter function it is possible to add a band elimination type filter function to block the propagation of high frequency signals at the frequency corresponding to the conductor pattern 21060, and the same effect as the example of FIG. 1 and FIG. 2 of the first embodiment is obtained.
  • Example 5 In the example of FIGS. 22 and 23 according to the third embodiment of the second embodiment, one end is short-circuited to the dielectric waveguide 91010 so that the length is 1/4 wavelength with respect to the frequency at which propagation of the high frequency signal is desired to be blocked. It showed about the dielectric material filter which provided the resonant conductor 31570. FIG. However, the present invention is not limited to this, and it is also possible to use a dielectric filter in which a resonant conductor having a half-wavelength length is added to the dielectric waveguide 91010 for the frequency at which both ends are open and propagation of high frequency signals is blocked. Good. FIGS.
  • FIG. 26 and 27 are diagrams showing a dielectric filter according to a second embodiment of the present invention in which a dielectric waveguide is provided with a conductor of 1 ⁇ 4 wavelength open at both ends.
  • FIG. 26 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, resonant conductors, openings and the like.
  • (A) of FIG. 27 is a longitudinal sectional view taken along the line AA of FIG.
  • (B) of FIG. 27 is a longitudinal sectional view taken along the line BB 'of (a) of FIG.
  • C) of FIG. 27 is a longitudinal sectional view taken along the line CC 'of (a) of FIG.
  • the dielectric waveguide 91010 has a half-wavelength length with respect to the frequency at which propagation of the high frequency signal is desired to be prevented in the stacking direction of the multilayer dielectric substrate 10010, one end is disposed in the conductor layer 20070, and the other end is the conductor layer.
  • a resonant conductor 32570 which is a half-wave conductor disposed in 20050, is provided.
  • the dielectric waveguide 91010 is provided with a resonant conductor 32570.
  • a band elimination type filter function to block the propagation of a high frequency signal at a frequency corresponding to the length of the resonant conductor 32570, and it is similar to the example of FIG. 1 and FIG. An effect is obtained.
  • Example 6 In the examples of FIGS. 20 and 21 according to Example 2 of the second embodiment, a dielectric filter in which a part of the dielectric waveguide is a resonant space is shown.
  • the present invention is not limited to this, and may be a dielectric filter in which a choke structure is added to the side of the dielectric waveguide.
  • FIGS. 28 and 29 show a dielectric filter according to a second embodiment of the present invention in which a space having a half-wavelength length with respect to a frequency for propagating a high frequency signal as a choke structure is provided on the side of a dielectric waveguide.
  • FIG. FIG. 28 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, choke structures, openings and the like.
  • FIG. 29 is a longitudinal sectional view taken along the line AA of FIG. (B) of FIG. 29 is a longitudinal sectional view taken along the line BB 'of (a) of FIG. (C) of FIG. 29 is a longitudinal sectional view taken along the line CC ′ of (a) of FIG.
  • the multilayer dielectric substrate 10011 includes a conductor layer 20011, a conductor layer 20021, a conductor layer 20031, a conductor layer 20041, a conductor layer 20051, a conductor layer 20061, a conductor layer 20071, a conductor layer 20081, a conductor layer 20091.
  • the conductor layer 20011 is disposed on the surface of the multilayer dielectric substrate 10011.
  • the conductor layer 20021 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20011.
  • the conductor layer 20031 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20021 having the conductor layer 20011 on the back side.
  • the conductor layer 20041 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20031 having the conductor layer 20021 on the back side.
  • the conductor layer 20051 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20041 having the conductor layer 20031 on the back side.
  • the conductor layer 20061 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20051 having the conductor layer 20041 on the back side.
  • the conductor layer 20071 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20061 having the conductor layer 20051 on the back side.
  • the conductor layer 20081 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20071 having the conductor layer 20061 on the back side.
  • the conductor layer 20091 is disposed in the inner layer of the multilayer dielectric substrate 10011 so as to face the conductor layer 20081 having the conductor layer 20071 on the back side.
  • the conductor layer 20101 is disposed on the surface of the multilayer dielectric substrate 10011 opposite to the side on which the conductor layer 20011 is disposed opposite to the conductor layer 20091 having the conductor layer 20081 on the back side.
  • a part of each of the conductor layer 20021 to the conductor layer 20091 is removed to provide an opening 40091 from the opening 40021.
  • the openings 40021 to 40091 are disposed to face each other. That is, the openings 40021 to 40091 are at positions overlapping in the stacking direction.
  • strip line 60031 a part of the conductor layer 20031 is removed.
  • strip line 60081 a part of the conductor layer 20081 is removed.
  • One end of the probe 50031 is connected to the strip line 60031, and the other end is disposed in the opening 40031.
  • One end of the probe 50081 is connected to the strip line 60081, and the other end is disposed in the opening 40081.
  • the via 30151 surrounds the opening 40021, the opening 40031, the opening 40041 and the opening 40051 except for the portion corresponding to the strip line 60031, and extends from the conductor layer 20011 to the conductor layer 20051 to form the multilayer dielectric substrate 10011 and the conductor layer 20021.
  • a plurality of conductor layers 20031 and conductor layers 20041 are disposed to pass through.
  • the via 36101 surrounds the opening 40061, the opening 40071, the opening 40081, and the opening 40091 except for a portion corresponding to the strip line 60081, and extends from the conductor layer 20061 to the conductor layer 20101 to form the multilayer dielectric substrate 10011, the conductor layer 20071,
  • a plurality of conductor layers 20081 and conductor layers 20091 are disposed to pass through.
  • a plurality of vias 30241 are arranged along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60031 and through the multilayer dielectric substrate 10011 and the conductor layer 20031 from the conductor layer 20021 to the conductor layer 20041. .
  • a plurality of vias 30791 are arranged through the multilayer dielectric substrate 10011 and the conductor layer 20081 from the conductor layer 20071 to the conductor layer 20091 along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60081 .
  • a conductor layer 20011, a conductor layer 20021, a conductor layer 20031, a via 30151, a probe 50031, an opening 40021, and a stripline-waveguide converter 90011 are formed from the opening 40031 There is.
  • the strip line-waveguide converter 90021 is formed from the conductor layer 20081, the conductor layer 20091, the conductor layer 20101, the via 36101, the probe 50081, the opening 40081, and the opening 40091 There is.
  • the conductor layer 20061 at a position separated from the end of the long side at the opening 40061 by about ⁇ e / 4 ( ⁇ e: effective wavelength of the signal wave propagating in the plane direction in the space filled with the dielectric of the multilayer dielectric substrate)
  • the part is removed, and a notch 41061 a and a notch 41061 b are provided.
  • the notch 41061 a and the notch 41061 b face each other with the opening 40061 interposed therebetween.
  • the via 86101a made of a conductor connects the conductor layer 20061 and the conductor layer 20101 to the vicinity of the via 36101 along the edge of the notch 41061a opposite to the side where the dielectric waveguide 91011 is located.
  • a plurality of are arranged in.
  • the via 86101 b made of a conductor connects the conductor layer 20061 and the conductor layer 20101 to the vicinity of the via 36101 along the edge of the notch 41061 b opposite to the side where the dielectric waveguide 91011 is located.
  • a plurality of are arranged in.
  • the choke path 70061a is a space from the end of the opening 40061 to the notch 41061a in the space sandwiched by the conductor layer 20051 and the conductor layer 20061.
  • the choke path 70061b is a space from the end of the opening 40061 to the notch 41061b in the space sandwiched by the conductor layer 20051 and the conductor layer 20061.
  • the choke path 70071a is a space surrounded by the via 86101a and the via 36101 in a space sandwiched by the conductor layer 20061 and the conductor layer 20071.
  • the choke path 70071 b is a space surrounded by the via 86101 b and the via 36101 in a space sandwiched by the conductor layer 20061 and the conductor layer 20071.
  • the via 86101a described above is provided so as to surround a portion including the notch 41061a, the choke path 70061a and the choke path 70071a in a C shape from the outside.
  • the via 86101 b described above is provided so as to surround a portion consisting of the notch 41061 b, the choke path 70061 b and the choke path 70071 b in a C shape from the outside.
  • a choke structure consisting of choke path 70061a and choke path 70071a, choke path 70061b and choke path 70071b on the side of dielectric waveguide 91011 has a half-wavelength space for the frequency at which high frequency signals are propagated. It is attached.
  • the stripline-waveguide converter 90011 and the stripline-waveguide converter 90021 make an electromagnetic connection via a dielectric waveguide 91011.
  • the high frequency radio wave is formed as a choke structure including choke path 70061a and choke path 70071a, choke path 70061b and choke path 70071b on the side of dielectric waveguide 91011.
  • a space of half a wavelength is provided for the frequency at which the signal propagates.
  • a band pass filter function can be added to the dielectric waveguide 91010 for propagating a high frequency signal of a frequency according to the length of the choke structure, and the structure shown in FIGS. The same effect as the example can be obtained.
  • the dielectric filter comprised from one multilayer dielectric substrate was demonstrated. However, it may be a dielectric filter composed of two or more multilayer dielectric substrates.
  • FIGS. 30 and 31 are diagrams showing a dielectric filter according to a third embodiment of the present invention, which is formed of two multilayer dielectric substrates, and one substrate is provided with a choke structure.
  • FIG. 30 is an exploded perspective view showing the arrangement of conductor layers, strip lines, probes, vias, choke structures, openings and the like.
  • 31 (a) is a longitudinal sectional view taken along the line AA of FIG. (B) of FIG. 31 is a longitudinal sectional view taken along the line BB 'of (a) of FIG. (C) of FIG. 31 is a longitudinal sectional view taken along the line CC 'of (a) of FIG.
  • a multilayer dielectric substrate 10012 is provided with a conductor layer 20012, a conductor layer 20022, a conductor layer 20032, a conductor layer 20042, a conductor layer 20052, a via 30152, a via 30242, a strip line 60032, and a probe 50032.
  • a multilayer dielectric substrate 10022 is provided with a conductor layer 20062, a conductor layer 20072, a conductor layer 20082, a conductor layer 20092, a conductor layer 20102, a via 36102, a via 30792, a via 86102a, a via 86102b, a strip line 60082, and a probe 50082 There is.
  • the conductor layer 20012 is disposed on the surface of the multilayer dielectric substrate 10012.
  • the conductor layer 20022 is disposed in the inner layer of the multilayer dielectric substrate 10012 so as to face the conductor layer 20012.
  • the conductor layer 20032 is disposed in the inner layer of the multilayer dielectric substrate 10012 so as to face the conductor layer 20022 having the conductor layer 20012 on the back side.
  • the conductor layer 20042 is disposed in the inner layer of the multilayer dielectric substrate 10012 so as to face the conductor layer 20032 having the conductor layer 20022 on the back side.
  • the conductor layer 20052 is disposed on the surface layer of the multilayer dielectric substrate 10012 opposite to the side on which the conductor layer 20012 is disposed opposite to the conductor layer 20042 having the conductor layer 20032 on the back surface side.
  • the conductor layer 20062 is disposed on the surface of the multilayer dielectric substrate 10022 so as to face the conductor layer 20052 of the multilayer dielectric substrate 10012.
  • the conductor layer 20072 is disposed in the inner layer of the multilayer dielectric substrate 10022 so as to face the conductor layer 20062.
  • the conductor layer 20082 is disposed in the inner layer of the multilayer dielectric substrate 10022 so as to face the conductor layer 20072 having the conductor layer 20062 on the back side.
  • the conductor layer 20092 is disposed in the inner layer of the multilayer dielectric substrate 10022 so as to face the conductor layer 20082 having the conductor layer 20072 on the back side.
  • the conductor layer 20102 is disposed on the surface of the multilayer dielectric substrate 10022 opposite to the side on which the conductor layer 20062 is disposed so as to face the conductor layer 20092 having the conductor layer 20082 on the back side.
  • a part of each of the conductor layer 20022 to the conductor layer 20092 is removed and an opening 40092 is provided from the opening 40022.
  • the openings 40022 to 40092 are disposed to face each other. That is, the openings 40022 to 40092 are at positions overlapping in the stacking direction.
  • strip line 60032 a part of the conductor layer 20032 is removed. In the strip line 60082, a part of the conductor layer 20082 is removed.
  • One end of the probe 50032 is connected to the strip line 60032, and the other end is disposed in the opening 40032.
  • One end of the probe 50082 is connected to the strip line 60082, and the other end is disposed in the opening 40082.
  • the via 30152 surrounds the opening 40022 from the opening 40052 except for the portion corresponding to the strip line 60032, from the conductor layer 20012 to the conductor layer 20052, and from the multilayer dielectric substrate 10012 and the conductor layer 20022 to the conductor layer 20042. A plurality is arranged.
  • the via 36102 surrounds the opening 40062 from the opening 40092 except the portion corresponding to the strip line 60082, and from the conductor layer 20062 to the conductor layer 20102 and the multilayer dielectric substrate 10022 and the conductor layer 20072 to the conductor layer 20092 A plurality is arranged.
  • a plurality of vias 30242 are arranged along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60032 and through the multilayer dielectric substrate 10012 and the conductor layer 20032 from the conductor layer 20022 to the conductor layer 20042 .
  • a plurality of vias 30792 are arranged along both side surfaces along the laminating direction in the longitudinal direction of the strip line 60082 and through the multilayer dielectric substrate 10022 and the conductor layer 20082 from the conductor layer 20072 to the conductor layer 20092 .
  • a conductor layer 20012, a conductor layer 20022, a conductor layer 20032, a via 30152, a probe 50032, an opening 40022, an opening 40032 and a stripline-waveguide converter 90012 are formed.
  • Conductor layer 20082, conductor layer 20092, conductor layer 20102, via 36102, probe 50082, opening 40082, strip line-waveguide converter 90022 is formed from opening 40092 from the planar direction of multilayer dielectric substrate 10022 to the laminating direction. There is.
  • a dielectric waveguide 91012 is formed from the conductor layer 20042, the conductor layer 20052, the via 30152, the opening 40042, and the opening 40052 in the stacking direction of the multilayer dielectric substrate 10012.
  • a dielectric waveguide 91022 is formed from the conductor layer 20062, the conductor layer 20072, the via 36102, the opening 40062, and the opening 40072 in the stacking direction of the multilayer dielectric substrate 10022.
  • the conductor layer 20062 at a position separated by ⁇ / 4 ( ⁇ : free space wavelength of the signal wave) from the end of the long side at the opening 40062 is partially removed to provide a notch 41062a and a notch 41062b.
  • the notch 41062 a and the notch 41062 b face each other with the opening 40062 interposed therebetween.
  • the via 86102a made of a conductor connects the conductor layer 20062 and the conductor layer 20102 to the vicinity of the via 36102 along the edge of the notch 41062a opposite to the side where the dielectric waveguide 91012 is located.
  • a plurality of are arranged in.
  • the via 86102b made of a conductor connects the conductor layer 20062 and the conductor layer 20102 to the vicinity of the via 36102 along the edge of the notch 41062b opposite to the side where the dielectric waveguide 91012 is located.
  • a plurality of are arranged in.
  • the choke path 70062a is a space from the end of the opening 40062 to the notch 41062a in the space sandwiched by the conductor layer 20052 and the conductor layer 20062.
  • the choke path 70062 b is a space from the end of the opening 40062 to the notch 41062 b in the space sandwiched by the conductor layer 20052 and the conductor layer 20062.
  • the choke path 70072a is a space surrounded by the via 86102a and the via 36102 in a space sandwiched by the conductor layer 20062 and the conductor layer 20072.
  • the choke path 70072b is a space surrounded by the via 86102b and the via 36102 in a space sandwiched by the conductor layer 20062 and the conductor layer 20072.
  • the via 86102a described above is provided so as to surround a portion including the notch 41062a, the choke path 70062a and the choke path 70072a in a C shape from the outside.
  • the via 86102b described above is provided so as to surround a portion formed of the notch 41062b, the choke path 70062b and the choke path 70072b in a C shape from the outside.
  • the dielectric waveguide 91012 and the dielectric waveguide 91022 have a choke structure consisting of a choke path 70061a and a choke path 70071a, a choke path 70061b and a choke path 70071b, and have a half-wave length with respect to the frequency at which high frequency signals are propagated
  • the electromagnetic connection is made by the space of.
  • the stripline-waveguide converter 90012 and the stripline-waveguide converter 90022 make an electromagnetic connection via the dielectric waveguide 91012 and the dielectric waveguide 91022.
  • dielectric waveguide 91012 in multilayer dielectric substrate 10012 and dielectric waveguide 91022 in multilayer dielectric substrate 10022 are separated by choke path 70062 a and choke.
  • a choke structure including a path 70072a, a choke path 70062b and a choke path 70072b electrical connection is made via a space having a half wavelength length to a frequency for propagating a high frequency signal.
  • a band pass filter function can be added to propagate a high frequency signal of a frequency according to the length of the choke structure, and the same effect as the example of FIGS. 1 and 2 of the first embodiment is obtained.
  • the conductor layers may be two conductor layers of the short-circuited surface on both sides and four or more conductor layers of the two conductor layers on which the strip line is formed.
  • deformation of each of the two strip line-waveguide transducers, two probes, etc. in each of the above embodiments may be performed in at least one of the two.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

小形かつ積層構造に適した誘電体フィルタを得ることを目的とする。多層誘電体基板内の積層方向に導体パターンとヴィアとから形成した誘電体導波管、当該多層誘電体基板の平面方向に形成された2本のストリップ線路、および誘電体導波管と各ストリップ線路間の伝送線路変換を行う2つのストリップ線路-導波管変換器を用いて誘電体フィルタを構成する。これにより、多層誘電体基板の平面方向に占める面積を抑制した誘電体フィルタを提供できる。

Description

誘電体フィルタ
 この発明は、主としてマイクロ波帯およびミリ波帯の高周波部品として用いられる導波管構造から成る誘電体フィルタに関するものである。
 従来、誘電体基板内に集積した誘電体導波管を用いて構成された帯域通過型フィルタ(BPF:Band Pass Filter)が知られている。このようなBPFは、誘電体基板において誘電体層を挟み込むよう設けられた2枚の導体層と、これらの2枚の導体層間を接続するよう誘電体層を貫いて設けられた導体ポスト(ヴィア)とを含む。そして、BPFの壁面として、誘電体基板の平面方向に沿って配列して形成した誘電体導波管(SIW:Substrate Integrated Waveguide)に対して、誘電体導波管を形成する2枚の導体層のうち、どちらか一方の導体層に設けた切り欠きから、信号入出力用プローブとしてヴィアを管内に挿入した構造が提案されている(例えば、特許文献1参照)。
 また、従来、基板平面方向に形成した誘電体導波管内に信号入出力用プローブとして挿入したヴィアの先端に設けた導体パターンを、ヴィアを導体層に挿入するために設けた切り欠きよりも大きくすることで、従来よりも低損失な構造を有する誘電体フィルタが提案されている(例えば、特許文献2参照)。
特公平7-105645号公報 特許第3,996,879号明細書
 しかしながら、従来技術には、以下のような課題がある。特許文献1および特許文献2に記載の誘電体フィルタは、基板平面方向に沿って誘電体導波管を形成する。このため、基板平面方向に占める誘電体フィルタの面積が大きくなる。複数の素子アンテナと複数の高周波部品とを有するようなアレーアンテナ装置は、1つの素子アンテナと1つの高周波部品とを結ぶ経路毎に、フィルタを設ける必要がある。そのため、誘電体基板を用いてアレーアンテナ装置を構成する際に、特許文献1および特許文献2に記載の誘電体フィルタを適用すると、複数の素子アンテナが配列されてなるアンテナ開口面積、および複数の高周波部品が基板上に実装された面積よりも、複数の誘電体フィルタが基板平面方向に占める面積が大きくなる。従って、誘電体フィルタが基板平面方向サイズに依存して装置サイズが大きくなるとともに、高密度配線が困難になる。このため、素子アンテナと高周波部品とを結ぶ各経路が長くなり、信号の変換損失が増加する問題がある。
 また、特許文献1および特許文献2に記載の誘電体フィルタでは、信号入出力用プローブとして誘電体導波管に挿入したヴィアと、このヴィアと相対向する導波管壁となる導体層との間隙(ギャップ)は、基板製造上、誘電体基板の層構成に依存する。さらに、特許文献2に記載の誘電体フィルタでは、信号入出力用プローブとして誘電体導波管に挿入したヴィアの先端に設けた導体パターンサイズは、基板製造上、当該ヴィアの径の約2倍以上必要となる。このため、特許文献1および特許文献2に記載の誘電体フィルタは、設計自由度が低下する。さらに、特許文献1および特許文献2に記載の誘電体フィルタは、信号入出力用プローブ部での整合が困難となることから、信号の変換損失が増加する問題がある。
 この発明は、上記のような課題を解決するためになされたもので、誘電体基板の平面方向に対して小形化が可能でかつ積層構造に適するとともに、設計自由度が高く、信号の変換において低損失な誘電体フィルタを得ることを目的とする。
 この発明は、積層方向に互いに離間して形成された複数の導電層を有し高周波信号を伝搬する多層誘電体基板と、積層方向に互いに離間した導電層に平面方向に延びて形成された第1のストリップ線路と第2のストリップ線路と、前記多層誘電体基板の積層方向の前記第1のストリップ線路と前記第2のストリップ線路の間に平面方向の前記導電層と積層方向に延びた導体柱とから形成された誘電体導波管と、前記第1のストリップ線路の積層方向の上側に形成された前記誘電体導波管と前記第1のストリップ線路との間の伝送線路変換を行う第1のストリップ線路-導波管変換器と、前記第2のストリップ線路の積層方向の下側に形成された前記誘電体導波管と前記第2のストリップ線路との間の伝送線路変換を行う第2のストリップ線路-導波管変換器と、を備えた誘電体フィルタ等にある。
 この発明では、多層誘電体基板内の積層方向に導体パターンとヴィアとから形成した誘電体導波管、多層誘電体基板の平面方向に形成された2本のストリップ線路、および誘電体導波管と各ストリップ線路間の伝送線路変換を行う2つのストリップ線路-導波管変換器を用いることによって、多層誘電体基板の平面方向に占める面積を抑制し、また設計自由度が高く、信号の変換において低損失な誘電体フィルタを提供できる。
この発明の実施の形態1の実施例1による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例1による誘電体フィルタの縦断面図である。 この発明の実施の形態1の誘電体フィルタに関する通過特性および反射特性のシミュレーション結果を示す説明図である。 この発明の実施の形態1の実施例2による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例2による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例3による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例3による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例4による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例4による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例5による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例5による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例6による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例6による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例7による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例7による誘電体フィルタの縦断面図である。 この発明の実施の形態1の実施例8による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態1の実施例8による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例1による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例1による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例2による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例2による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例3による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例3による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例4による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例4による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例5による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例5による誘電体フィルタの縦断面図である。 この発明の実施の形態2の実施例6による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態2の実施例6による誘電体フィルタの縦断面図である。 この発明の実施の形態3による誘電体フィルタの各部の配列を示す分解斜視図である。 この発明の実施の形態3による誘電体フィルタの縦断面図である。
 この発明では、多層誘電体基板内の積層方向に導体パターンとヴィアとから形成した誘電体導波管、多層誘電体基板の平面方向に形成された2本のストリップ線路、および誘電体導波管と各ストリップ線路間の伝送線路変換を行う2つの導波管-ストリップ線路変換器を用いることによって、多層誘電体基板の平面方向に占める面積を抑制した誘電体フィルタを提供できる。
 さらに、導波管-ストリップ線路変換器においては信号入出力用プローブとして誘電体導波管に導体パターンを挿入するため、信号入出力用プローブ部の形状、およびこのプローブと相対向する導波管壁となる導体層との間隙において設計自由度の向上が図れることから、低損失な誘電体フィルタを提供できる。
 以下、この発明による誘電体フィルタを各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、また重複する説明は省略する。
 実施の形態1.
 実施例1.
 図1および図2は、この発明の実施の形態1に係る誘電体フィルタを示す図である。
 図1は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図2の(a)は図1のA-Aに沿った縦断面図、
 図2の(b)は図2の(a)のB-B’線に沿った縦断面図、
 図2の(c)は図2の(a)のC-C’線に沿った縦断面図である。
 この実施の形態1では、主に多層誘電体基板1001の積層方向に導体層2001-2008からなる導体パターンと導体柱からなるヴィア3018,3024,3057とから形成した誘電体導波管9101と、多層誘電体基板1001の平面方向に形成された2本のストリップ線路6003,6006と、誘電体導波管9101と各ストリップ線路6003,6006間の伝送線路変換を行う2つのストリップ線路-導波管変換器9001と、から成る誘電体フィルタについて説明する。
 図1および図2において、多層誘電体基板1001には、導体層2001、導体層2002、導体層2003、導体層2004、導体層2005、導体層2006、導体層2007、導体層2008、ヴィア3018、ヴィア3024、ヴィア3057、ストリップ線路6003、ストリップ線路6006、プローブ5003、プローブ5006が設けられている。
 導体層2001は、多層誘電体基板1001の表層に配置されている。
 導体層2002は、導体層2001と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2003は、背面側に導体層2001がある導体層2002と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2004は、背面側に導体層2002がある導体層2003と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2005は、背面側に導体層2003がある導体層2004と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2006は、背面側に導体層2004がある導体層2005と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2007は、背面側に導体層2005がある導体層2006と相対向して、多層誘電体基板1001の内層に配置されている。
 導体層2008は、背面側に導体層2006がある導体層2007と相対向して、導体層2001が配置された側とは反対側の多層誘電体基板1001の表層に配置されている。
 導体層2002から導体層2007には、開口4002から開口4007が設けられている。
 開口4002から開口4007は、対向して配置されている。すなわち、開口4002から開口4007は、積層方向に重なる位置にある。
 なお、開口4002から開口4007のそれぞれの内側は、中空の空洞ではなく、例えば、図2(a)の両側のヴィア3018の外側の多層誘電体基板1001と同様の誘電体が詰まっている状態にあり、この状態をドット柄で示している(以下同様)。
 ストリップ線路6003は、導体層2003の一部が削除されて配置されている。
 ストリップ線路6006は、導体層2006の一部が削除されて配置されている。
 プローブ5003は、一端がストリップ線路6003に接続され、他端が開口4003の中に配置されている。
 プローブ5006は、一端がストリップ線路6006に接続され、他端が開口4006の中に配置されている。
 ヴィア3018は、開口4002から開口4007を、ストリップ線路6003およびストリップ線路6006に相当する部分を除いて取り囲むとともに、導体層2001から導体層2008にかけて、多層誘電体基板1001、および導体層2002から導体層2007までを貫いて複数個配置されている。
 ヴィア3024は、ストリップ線路6003の長手方向の積層方向に沿った両側面に沿うとともに、導体層2002から導体層2004にかけて、多層誘電体基板1001および導体層2003とを貫いて複数個配置されている。
 ヴィア3057は、ストリップ線路6006の長手方向の積層方向に沿った両側面に沿うとともに、導体層2005から導体層2007にかけて、多層誘電体基板1001および導体層2006とを貫いて複数個配置されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3018、プローブ5003、開口4002、開口4003からストリップ線路-導波管変換器9001が形成されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2006、導体層2007、導体層2008、ヴィア3018、プローブ5006、開口4006、開口4007からストリップ線路-導波管変換器9002が形成されている。
 多層誘電体基板1001の積層方向にかけて、導体層2004、導体層2005、ヴィア3018、開口4004、開口4005から誘電体導波管9101が形成されている。
 ストリップ線路-導波管変換器9001とストリップ線路-導波管変換器9002とは、誘電体導波管9101を介して電磁気的な接続を行っている。
 図3は、図1および図2に示した実施の形態1による誘電体フィルタに関する通過特性および反射特性のシミュレーション結果を示す。
 なお、このシミュレーションは、実施の形態1による誘電体フィルタにおいて、ストリップ線路6003からストリップ線路6006までを伝搬する高周波信号について計算した結果である。ここでは、図3に実線Aで示す通過特性、破線Bで示す反射特性に関して、比帯域幅120%の範囲で示している。
 図3において、例えば、横軸に示す規格化周波数(Normalized Frequency)が1であるところの通過特性Aに着目すると、実施の形態1による誘電体フィルタに係わるシミュレーション結果は、-29dB前後の値となっていることが分かる。
 また、反射特性Bに着目すると、通過域端減衰量-3dBとなる通過域比帯域幅は0.4、阻止域端減衰量-10dBとなる阻止域比帯域幅は0.9となっていることが分かる。
 すなわち、実施の形態1による誘電体フィルタは、帯域通過型フィルタ(バンドパスフィルタ)として動作していることが分かる。
 以上で明らかなように、この実施の形態1における誘電体フィルタによれば、ストリップ線路-導波管変換器9001とストリップ線路-導波管変換器9002とは、誘電体導波管9101を介して電磁気的な接続を成すことで、誘電体導波管9101においては導波管カットオフ周波数以下の周波数帯域での高周波信号の伝搬を阻止することができ、ストリップ線路-導波管変換器9001およびストリップ線路-導波管変換器9002においては誘電体導波管9101における基本モード(TE10:Transverse Electric Wave)との結合が主となり、基本モードよりも高周波帯で伝搬する高次モードとの結合は抑制される。
 よって、多層誘電体基板1001の平面方向に対して小形な帯域通過型の誘電体フィルタを得ることができる効果を奏する。
 実施例2.
 実施例1に係わる図1の例では、プローブ5003およびプローブ5006の幅が、ストリップ線路6003およびストリップ線路6006の幅と同じ寸法の誘電体フィルタについて示した。しかし、この発明は、このような構成に限るものではなく、プローブ5003またはプローブ5006の幅が、ストリップ線路6003またはストリップ線路6006の幅と異なる寸法で設けられている誘電体フィルタとしてもよい。
 図4および図5は、プローブ5103およびプローブ5106の幅が、ストリップ線路6003およびストリップ線路6006の幅よりも広い寸法で設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図4は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図5の(a)は図4のA-Aに沿った縦断面図、
 図5の(b)は図5の(a)のB-B’線に沿った縦断面図、
 図5の(c)は図5の(a)のC-C’線に沿った縦断面図である。
 図4および図5の例では、多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3018、プローブ5103、開口4002、開口4003からストリップ線路-導波管変換器9011が形成されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2006、導体層2007、導体層2008、ヴィア3018、プローブ5106、開口4006、開口4007からストリップ線路-導波管変換器9012が形成されている。
 また、図4および図5の例では、ストリップ線路-導波管変換器9011とストリップ線路-導波管変換器9012とは、誘電体導波管9111を介して電磁気的な接続を行っている。
 実施の形態1の実施例2に係わる図4,図5の例では、プローブ5103およびプローブ5106の幅を、ストリップ線路6003およびストリップ線路6006の幅よりも広い寸法にしている。これにより、通過域帯域幅を調整および拡張することができる。また、図1および図2の例と同様の効果が得られる。
 実施例3.
 実施の形態1の実施例1に係わる図1および図2の例では、プローブ5003とプローブ5006が、誘電体導波管9101の管壁のうち同じ壁面側から管軸方向に向けて配置されている誘電体フィルタについて示した。
 しかし、この発明は、このような構成に限るものではなく、プローブ5003とプローブ5006が、誘電体導波管9101の管壁のうちの異なる壁面側から管軸方向に向けて配置されている誘電体フィルタとしてもよい。
 図6および図7は、2つのプローブが、誘電体導波管の管壁のうち、対向する壁面側からそれぞれ管軸方向に向けて設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図6は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図7の(a)は図6のA-Aに沿った縦断面図、
 図7の(b)は図7の(a)のB-B’線に沿った縦断面図、
 図7の(c)は図7の(a)のC-C’線に沿った縦断面図である。
 図6および図7の例では、ストリップ線路6006が、ストリップ線路6003と積層方向の同じ高さにならない位置で、導体層2006の一部が削除されて配置されている。
 また、プローブ5206は、一端がストリップ線路6006に接続され、他端が開口4006の中に配置されている。
 ヴィア3118は、開口4002から開口4007を、ストリップ線路6003およびストリップ線路6006に相当する部分を除いて取り囲むとともに、導体層2001から導体層2008にかけて、多層誘電体基板1001および導体層2002から導体層2007までを貫いて複数個配置されている。
 ヴィア3124は、ストリップ線路6003の長手方向の積層方向に沿った両側面に沿うとともに、開口4002と開口4003と開口4004の縁の一部において、導体層2002から導体層2004にかけて、多層誘電体基板1001および導体層2003とを貫いて複数個配置されている。
 ヴィア3157は、ストリップ線路6006の長手方向の積層方向に沿った両側面に沿うとともに、開口4005と開口4006と開口4007の縁の一部において、導体層2005から導体層2007にかけて、多層誘電体基板1001、導体層2006とを貫いて複数個配置されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3118、ヴィア3124、プローブ5003、開口4002、開口4003からストリップ線路-導波管変換器9021が形成されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2006、導体層2007、導体層2008、ヴィア3018、ヴィア3157、プローブ5206、開口4006、開口4007からストリップ線路-導波管変換器9022が形成されている。
 多層誘電体基板1001の積層方向にかけて、導体層2004、導体層2005、ヴィア3118、開口4004、開口4005から誘電体導波管9121が形成されている。
 ストリップ線路-導波管変換器9021とストリップ線路-導波管変換器9022とは、誘電体導波管9121を介して電磁気的な接続を行っている。
 実施の形態1の実施例3に係わる図6の例では、プローブ5003とプローブ5206とが、誘電体導波管9121の管壁のうち、対向する壁面側からそれぞれ管軸方向に向けて設けられている。これにより、実施の形態1の実施例1に係わる図1および図2の例に対し通過位相を逆相にできることから設計自由度の向上が図れる。また、図1および図2の例と同様の効果が得られる。
 実施例4.
 実施の形態1の実施例1に係わる図1および図2の例では、開口4002から開口4007が、同じ開口径で設けられている誘電体フィルタについて示した。しかし、これに限るものではなく、各開口を異なる開口径で設けている誘電体フィルタとしてもよい。
 図8および図9は、ストリップ線路-導波管変換器におけるプローブから短絡面までの誘電体導波管部分、すなわちバックショート導波管における導体層の開口径が、誘電体導波管における導体層の開口径よりも小さくなるよう設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。広義には、バックショート導波管は、管軸と直交する断面での管内形状が誘電体導波管と異なる。
 図8は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図9の(a)は図8のA-Aに沿った縦断面図、
 図9の(b)は図9の(a)のB-B’線に沿った縦断面図、
 図9の(c)は図9の(a)のC-C’線に沿った縦断面図である。
 図8および図9の例では、開口4102は、開口4004および開口4005よりも小さい寸法で、導体層2002の一部が削除されることで設けられている。
 また、開口4107は、開口4004および開口4005よりも小さい寸法で、導体層2007の一部が削除されることで設けられている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3018、プローブ5003、開口4102、開口4003からストリップ線路-導波管変換器9031が形成されている。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2006、導体層2007、導体層2008、ヴィア3018、プローブ5006、開口4006、開口4107からストリップ線路-導波管変換器9032が形成されている。
 ストリップ線路-導波管変換器9031とストリップ線路-導波管変換器9032とは、誘電体導波管9101を介して電磁気的な接続を行っている。
 実施の形態1の実施例4に係わる図8および図9の例では、開口4003と開口4004と開口4005と開口4006の開口径よりも、開口4102および開口4107の開口径を小さくしている。これにより、この実施の形態1の実施例1に係わる図1および図2の例よりも、
 ストリップ線路-導波管変換器9031におけるプローブ5003から短絡面(バックショート)となる導体層2001までの誘電体導波管部分の管内波長、および
 ストリップ線路-導波管変換器9032におけるプローブ5006(5003)から短絡面となる導体層2008までの誘電体導波管部分の管内波長、を長くできることから、設計自由度の向上が図れる。また、図1および図2の例と同様の効果が得られる。
 なお、開口4003と開口4004と開口4005と開口4006の開口径よりも、開口4102および開口4107の開口径を大きくすることで、図1および図2の例よりも、
 ストリップ線路-導波管変換器9031におけるプローブ5003から短絡面(バックショート)となる導体層2001までの誘電体導波管部分の管内波長、および
 ストリップ線路-導波管変換器9032におけるプローブ5006(5003)から短絡面(バックショート)となる導体層2008までの誘電体導波管部分の管内波長、を短くできることから設計自由度の向上が図れる。また、図1および図2の例と同様の効果が得られる。
 実施例5.
 図10および図11は、誘電体導波管における開口径が、ストリップ線路-導波管変換器におけるプローブから短絡面までの誘電体導波管部分、すなわちバックショート導波管の開口径よりも小さくなるよう設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図10は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図11の(a)は図10のA-Aに沿った縦断面図、
 図11の(b)は図11の(a)のB-B’線に沿った縦断面図、
 図11の(c)は図11の(a)のC-C’線に沿った縦断面図である。
 図10および図11の例では、開口4104は、開口4002と開口4003と開口4006と開口4007よりも小さい寸法で、導体層2004の一部が削除されることで設けられている。
 また、図10および図11の例では、開口4105は、開口4002と開口4003と開口4006と開口4007よりも小さい寸法で、導体層2005の一部が削除されることで設けられている。
 多層誘電体基板1001の積層方向にかけて、導体層2004、導体層2005、ヴィア3018、開口4104、開口4105から誘電体導波管9141が形成されている。
 ストリップ線路-導波管変換器9001とストリップ線路-導波管変換器9002とは、誘電体導波管9141を介して電磁気的な接続を行っている。
 実施の形態1の実施例5に係わる図10および図11の例では、開口4002と開口4003と開口4006と開口4007の開口径よりも、開口4104および開口4105の開口径を小さくする。これにより、誘電体導波管9141は、導体層2004および導体層2005により大きく絞られた櫛歯状構造(コルゲート)を有し、導体層2004と導体層2005の間隔とコルゲートにおける櫛歯長を選定することで、誘電体導波管9141を伝搬する高周波信号の通過帯域における通過位相の調整、および誘電体導波管9141を伝搬する高周波信号の通過帯域幅の調整が図れる。また、図1および図2の例と同様の効果が得られる。
 実施例6.
 実施の形態1の実施例1に係わる図1および図2の例では、開口4002から開口4007が、同じ開口形状で設けられている誘電体フィルタについて示した。しかし、これに限るものではなく、各開口を異なる開口形状で設けている誘電体フィルタとしてもよい。
 図12および図13は、ストリップ線路-導波管変換器におけるプローブから短絡面までの誘電体導波管部分(バックショート)における導体層の開口形状がダンベル状に設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図12は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視 図である。
 図13の(a)は図12のA-Aに沿った縦断面図、
 図13の(b)は図13の(a)のB-B’線に沿った縦断面図、
 図13の(c)は図13の(a)のC-C’線に沿った縦断面図である。
 図12および図13の例では、導体層2002の一部が、ダンベル状に削除されて開口4202が設けられている。
 ここでダンベル状とは、図12に示すように細長い形状の開口4202の長手方向の中央部の幅を凹部7002a,7002bで示した部分のように狭くした形状を意味する。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3018、プローブ5003、開口4202、開口4003からストリップ線路-導波管変換器9051が形成されている。
 ストリップ線路-導波管変換器9051とストリップ線路-導波管変換器9002とは、誘電体導波管9101を介して電磁気的な接続を行っている。
 実施の形態1の実施例6に係わる図12および図13の例では、開口4202がダンベル状の開口形状で設けられている。これにより、この実施の形態1に係わる図1および図2の例よりも、ストリップ線路-導波管変換器9051におけるプローブ5003から短絡面となる導体層2001までの誘電体導波管部分の管内波長を短くできることから設計自由度の向上が図れる。また、図1および図2の例と同様の効果が得られる。
 実施例7.
 図14および図15は、ストリップ線路-導波管変換器におけるプローブから短絡面までの誘電体導波管部分(バックショート)における導体層の開口形状をH形にしたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図14は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図15の(a)は図14のA-Aに沿った縦断面図、
 図15の(b)は図15の(a)のB-B’線に沿った縦断面図、
 図15の(c)は図15の(a)のC-C’線に沿った縦断面図である。
 図14および図15の例では、導体層2002の一部が、H形に削除されて開口4302が設けられている。
 ここでH形とは、図14に示すように細長い形状の開口4302の短手方向の中央部の幅を凹部7102a,7102bで示した部分のように狭くした形状を意味する。
 多層誘電体基板1001の平面方向から積層方向にかけて、導体層2001、導体層2002、導体層2003、ヴィア3018、プローブ5003、開口4302、開口4003からストリップ線路-導波管変換器9061が形成されている。
 ストリップ線路-導波管変換器9061とストリップ線路-導波管変換器9002とは、誘電体導波管9101を介して電磁気的な接続を行っている。
 この発明の実施の形態1に係わる図14および図15の例では、開口4302がH形の開口形状で設けられる。これにより、実施の形態1に係わる図1および図2の例よりも、ストリップ線路-導波管変換器9061におけるプローブ5003から短絡面となる導体層2001までの誘電体導波管部分の管内波長を長くできることから設計自由度の向上が図れる。また、図1および図2の例と同様の効果が得られる。
 実施例8.
 実施の形態1の実施例1に係わる図1および図2の例では、開口4002から開口4007を矩形の開口形状で設けている誘電体フィルタについて示した。しかし、これに限るものではなく、任意の開口径状で設けている誘電体フィルタとしてもよい。
 図16および図17は各開口が楕円形状で設けられたこの発明の実施の形態1による誘電体フィルタを示す図である。
 図16は導体層、ストリップ線路、プローブ、ヴィア、開口等の配列を示した分解斜視図である。
 図17の(a)は図16のA-Aに沿った縦断面図、
 図17の(b)は図17の(a)のB-B’線に沿った縦断面図、
 図17の(c)は図17の(a)のC-C’線に沿った縦断面図である。
 実施の形態1の実施例8に係わる図16および図17の例では、開口4002から開口4007が楕円形状で設けられる。これにより、設計自由度の向上が図れるとともに、図1および図2の例と同様の効果が得られる。
 実施の形態2.
 実施例1.
 上記実施の形態1では、2つのストリップ線路-導波管変換器と誘電体導波管から構成された誘電体フィルタについて説明した。しかし、これに限るものではなく、ストリップ線路-導波管変換器または誘電体導波管にフィルタ機能を追加した構造の誘電体フィルタとしてもよい。
 図18および図19は、ストリップ線路-導波管変換器のプローブに共振器として共振導体を付加したこの発明の実施の形態2による誘電体フィルタを示す図である。
 図18の(a)は導体層、ストリップ線路、プローブ、共振導体、ヴィア、開口等の配列を示した分解斜視図、図18の(b)はプローブの拡大図である。
  図19の(a)は図18のA-Aに沿った縦断面図、
 図19の(b)は図19の(a)のB-B’線に沿った縦断面図、
  図19の(c)は図19の(a)のC-C’線に沿った縦断面図である。
 図18および図19において、プローブ5303は、一端がストリップ線路6003に接続され、他端が図18の(b)に示すように開口4003の中に配置された共振導体5403に接続されている。
 プローブ5306は、一端がストリップ線路6006に接続され、他端が図18の(b)に示すように開口4006の中に配置された共振導体5406に接続されている。
 共振導体5403は、プローブ5303に接続された一端から、2分岐された先の各開放端までの長さが、高周波信号の伝搬を阻止したい周波数に対して1/4波長となるよう設けられている。
 共振導体5406は、プローブ5306に接続された一端から、2分岐された先の各開放端までの長さが、高周波信号の伝搬を阻止したい周波数に対して1/4波長となるよう設けられている。
 実施の形態2の実施例1に係わる図18および図19の例では、ストリップ線路-導波管変換器9001におけるプローブ5303に対し共振導体5403を設け、ストリップ線路-導波管変換器9002におけるプローブ5306に対し共振導体5406を設ける。これにより、共振導体5403および共振導体5406の長さに対応した周波数における高周波信号の伝搬を阻止する帯域阻止型フィルタ機能を付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施例2.
 実施の形態2の実施例1に係わる図18および図19の例では、ストリップ線路-導波管変換器のプローブに共振器を付加した誘電体フィルタについて説明した。しかし、これに限るものではなく、誘電体導波管に共振器を加えた構造の誘電体フィルタとしてもよい。
 図20および図21は、誘電体導波管の一部を共振器(共振空間)としたこの発明の実施の形態2による誘電体フィルタを示す図である。
 図20は導体層、ストリップ線路、プローブ、共振器(共振空間)、ヴィア、開口等の配列を示した分解斜視図である。
 図21の(a)は図20のA-Aに沿った縦断面図、
 図21の(b)は図21の(a)のB-B’線に沿った縦断面図、
 図21の(c)は図21の(a)のC-C’線に沿った縦断面図である。
 図20および図21において、多層誘電体基板10010には、
 導体層20010、導体層20020、導体層20030、導体層20040、導体層20050、導体層20060、導体層20070、導体層20080、導体層20090、導体層20100、導体層20110、
 ヴィア31110、ヴィア30240、ヴィア38100、ヴィア30570、
 ストリップ線路60030、ストリップ線路60090、プローブ50030、プローブ50090が設けられている。
 導体層20010は、多層誘電体基板10010の表層に配置されている。
 導体層20020は、導体層20010と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20030は、背面側に導体層20010がある導体層20020と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20040は、背面側に導体層20020がある導体層20030と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20050は、背面側に導体層20030がある導体層20040と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20060は、背面側に導体層20040がある導体層20050と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20070は、背面側に導体層20050がある導体層20060と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20080は、背面側に導体層20060がある導体層20070と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20090は、背面側に導体層20070がある導体層20080と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20100は、背面側に導体層20080がある導体層20090と相対向して、多層誘電体基板10010の内層に配置されている。
 導体層20110は、背面側に導体層20090がある導体層20100と相対向して、導体層20010が配置された側とは反対側の多層誘電体基板10010の表層に配置されている。
 導体層20020から導体層20100には、それぞれ一部が削除されて開口40020から開口40100が設けられている。
 開口40020から開口40100は、対向して配置されている。すなわち開口40020から開口400100は、積層方向に重なる位置にある。
 なお、開口40020から開口40100のそれぞれの内側は空洞ではなく、例えば図21(a)の両側のヴィア31110の外側の多層誘電体基板10010と同様の誘電体が詰まっている状態にあり、この状態をドット柄で示している。
 ストリップ線路60030は、導体層20030の一部が削除されて配置されている。
 ストリップ線路60090は、導体層20090の一部が削除されて配置されている。
 プローブ50030は、一端がストリップ線路60030に接続され、他端が開口40030の中に配置されている。
 プローブ50090は、一端がストリップ線路60090に接続され、他端が開口40090の中に配置されている。
 ヴィア31110は、開口40020から開口40010を、ストリップ線路60030およびストリップ線路60090に相当する部分を除いて取り囲むとともに、導体層20010から導体層20110にかけて、多層誘電体基板10010および導体層20020から導体層20100までを貫いて複数個配置されている。
 ヴィア30240は、ストリップ線路60030の長手方向の積層方向に沿った両側面に沿うとともに、導体層20020から導体層20040にかけて、多層誘電体基板10010、導体層20030とを貫いて複数個配置されている。
 ヴィア30570は、開口40050と開口40060と開口40070の縁の一部において、導体層20050から導体層20070にかけて、多層誘電体基板10010、導体層20060とを貫いて複数個配置されている。
 ヴィア38100は、ストリップ線路60090の長手方向の積層方向に沿った両側面に沿うとともに、導体層20080から導体層20110にかけて、多層誘電体基板10010、導体層20090を貫いて複数個配置されている。
 多層誘電体基板10010の平面方向から積層方向にかけて、導体層20010、導体層20020、導体層20030、ヴィア31110、プローブ50030、開口40020、開口40030からストリップ線路-導波管変換器90010が形成されている。
 多層誘電体基板10010の平面方向から積層方向にかけて、導体層20090、導体層20100、導体層20110、ヴィア31110、プローブ50090、開口40090、開口40100からストリップ線路-導波管変換器90020が形成されている。
 多層誘電体基板10010の積層方向にかけて、導体層20040、導体層20050、導体層20060、導体層20070、導体層20080、ヴィア31110、ヴィア30570、開口40040、開口40050、開口40060、開口40070、開口40080から誘電体導波管91010が形成されている。
 誘電体導波管91010の開口40050および開口40070の開口径が開口40060の開口径よりも小さくなることで、誘電体導波管91010の一部には、導体層20050、導体層20060、導体層20070、ヴィア31110、ヴィア30570、開口40050、開口40060、開口40070からなる共振空間92010が設けられている。
 ストリップ線路-導波管変換器90010とストリップ線路-導波管変換器90020とは、誘電体導波管91010を介して電磁気的な接続を行っている。
 この実施の形態2に係わる図20および図21の例では、誘電体導波管91010の一部を共振空間92010とする。これにより、共振空間92010のサイズに応じた周波数の高周波信号を伝搬する帯域通過型フィルタ機能を誘電体導波管91010に付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施例3.
 実施の形態2の実施例2に係わる図20および図21の例では、誘電体導波管91010の一部を共振空間92010とした誘電体フィルタについて示した。しかし、これに限るものではなく、誘電体導波管91010に共振導体を付加している誘電体フィルタとしてもよい。
 図22および図23は、誘電体導波管に一端が短絡されて高周波信号の伝搬を阻止したい周波数に対し1/4波長の長さとなる導体を設けている、この発明の実施の形態2による誘電体フィルタを示す図である。
 図22は導体層、ストリップ線路、プローブ、ヴィア、共振導体、開口等の配列を示した分解斜視図である。
 図23の(a)は図22のA-Aに沿った縦断面図、
 図23の(b)は図23の(a)のB-B’線に沿った縦断面図、
 図23の(c)は図23の(a)のC-C’線に沿った縦断面図である。
 誘電体導波管91010において、多層誘電体基板10010の平面方向から積層方向にかけての長さが、高周波信号の伝搬を阻止したい周波数に対して1/4波長となるとともに、一端が導体層20070に接続され、他端が導体層20050に配置された共振導体31570が設けられている。
 実施の形態2の実施例3に係わる図22および図23の例では、誘電体導波管91010に共振導体31570を設ける。これにより、共振導体31570の長さに対応した周波数における高周波信号の伝搬を阻止する帯域阻止型フィルタ機能を付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施例4.
 実施の形態2の実施例3に係わる図22および図23の例では、誘電体導波管91010の積層方向にかけて共振導体を設けた誘電体フィルタについて示した。しかし、これに限るものではなく、誘電体導波管の平面方向のみにかけて導体パターンを設けた誘電体フィルタとしてもよい。
 図24および図25は、誘電体導波管の平面方向のみにかけて導体パターンを設けているこの発明の実施の形態2による誘電体フィルタを示す図である。
 図24は導体層、ストリップ線路、プローブ、ヴィア、導体パターン、開口等の配列を示した分解斜視図である。
 図25の(a)は図24のA-Aに沿った縦断面図、
 図25の(b)は図24の(a)のB-B’線に沿った縦断面図、
 図25の(c)は図24の(a)のC-C’線に沿った縦断面図である。
 誘電体導波管91010において、誘電体導波管の平面方向のみにかけて導体パターン21060が設けられている。その他の部分は図22および図23の例と同じである。
 実施の形態2の実施例4に係わる図24および図25の例では、誘電体導波管91010に導体パターン21060を設ける。これにより、導体パターン21060に対応した周波数における高周波信号の伝搬を阻止する帯域阻止型フィルタ機能を付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施例5.
 実施の形態2の実施例3に係わる図22および図23の例では、誘電体導波管91010に一端が短絡されて、高周波信号の伝搬を阻止したい周波数に対し1/4波長の長さとなる共振導体31570を設けた誘電体フィルタについて示した。しかし、これに限るものではなく、誘電体導波管91010に両端が開放されて高周波信号の伝搬を阻止したい周波数に対し、半波長の長さとなる共振導体を付加している誘電体フィルタとしてもよい。
 図26および図27は、誘電体導波管に両端が開放された1/4波長の導体を設けているこの発明の実施の形態2による誘電体フィルタを示す図である。
 図26は導体層、ストリップ線路、プローブ、ヴィア、共振導体、開口等の配列を示した分解斜視図である。
 図27の(a)は図26のA-Aに沿った縦断面図、
 図27の(b)は図27の(a)のB-B’線に沿った縦断面図、
 図27の(c)は図27の(a)のC-C’線に沿った縦断面図である。
 誘電体導波管91010において、多層誘電体基板10010積層方向にかけて高周波信号の伝搬を阻止したい周波数に対して、半波長の長さとなるとともに、一端が導体層20070に配置され、他端が導体層20050に配置された半波長導体である共振導体32570が設けられている。
 実施の形態2の実施例5に係わる図26および図27の例では、誘電体導波管91010に共振導体32570を設ける。これにより、共振導体32570の長さに対応した周波数における高周波信号の伝搬を阻止する帯域阻止型フィルタ機能を付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施例6.
 実施の形態2の実施例2に係わる図20および図21の例では、誘電体導波管の一部を共振空間とした誘電体フィルタについて示した。しかし、これに限るものではなく、誘電体導波管の側部にチョーク構造を付加している誘電体フィルタとしてもよい。
 図28および図29は、誘電体導波管の側部にチョーク構造として高周波信号を伝搬させる周波数に対し半波長の長さとなる空間を設けているこの発明の実施の形態2による誘電体フィルタを示す図である。
 図28は導体層、ストリップ線路、プローブ、ヴィア、チョーク構造、開口等の配列を示した分解斜視図である。
 図29の(a)は図28のA-Aに沿った縦断面図、
 図29の(b)は図29の(a)のB-B’線に沿った縦断面図、
 図29の(c)は図29の(a)のC-C’線に沿った縦断面図である。
 図28および図29において、多層誘電体基板10011には、導体層20011、導体層20021、導体層20031、導体層20041、導体層20051、導体層20061、導体層20071、導体層20081、導体層20091、導体層20101、
 ヴィア30151、ヴィア36101、ヴィア30241、ヴィア30791、ヴィア86101a、ヴィア86101b、
 ストリップ線路60031、ストリップ線路60081、
 プローブ50031、プローブ50081が設けられている。
 導体層20011は、多層誘電体基板10011の表層に配置されている。
 導体層20021は、導体層20011と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20031は、背面側に導体層20011がある導体層20021と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20041は、背面側に導体層20021がある導体層20031と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20051は、背面側に導体層20031がある導体層20041と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20061は、背面側に導体層20041がある導体層20051と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20071は、背面側に導体層20051がある導体層20061と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20081は、背面側に導体層20061がある導体層20071と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20091は、背面側に導体層20071がある導体層20081と相対向して、多層誘電体基板10011の内層に配置されている。
 導体層20101は、背面側に導体層20081がある導体層20091と相対向して、導体層20011が配置された側とは反対側の多層誘電体基板10011の表層に配置されている。
 導体層20021から導体層20091には、それぞれの一部が削除されて開口40021から開口40091が設けられている。
 開口40021から開口40091は、対向して配置されている。すなわち開口40021から開口40091は、積層方向に重なる位置にある。
 ストリップ線路60031は、導体層20031の一部が削除されて配置されている。
 ストリップ線路60081は、導体層20081の一部が削除されて配置されている。
 プローブ50031は、一端がストリップ線路60031に接続され、他端が開口40031の中に配置されている。
 プローブ50081は、一端がストリップ線路60081に接続され、他端が開口40081の中に配置されている。
 ヴィア30151は、開口40021と開口40031と開口40041と開口40051とを、ストリップ線路60031に相当する部分を除いて取り囲むとともに、導体層20011から導体層20051にかけて、多層誘電体基板10011、導体層20021、導体層20031、導体層20041とを貫いて複数個配置されている。
 ヴィア36101は、開口40061と開口40071と開口40081と開口40091とを、ストリップ線路60081に相当する部分を除いて取り囲むとともに、導体層20061から導体層20101にかけて、多層誘電体基板10011、導体層20071、導体層20081、導体層20091とを貫いて複数個配置されている。
 ヴィア30241は、ストリップ線路60031の長手方向の積層方向に沿った両側面に沿うとともに、導体層20021から導体層20041にかけて、多層誘電体基板10011、導体層20031とを貫いて複数個配置されている。
 ヴィア30791は、ストリップ線路60081の長手方向の積層方向に沿った両側面に沿うとともに、導体層20071から導体層20091にかけて、多層誘電体基板10011、導体層20081とを貫いて複数個配置されている。
 多層誘電体基板10011の平面方向から積層方向にかけて、導体層20011、導体層20021、導体層20031、ヴィア30151、プローブ50031、開口40021、開口40031からストリップ線路-導波管変換器90011が形成されている。
 多層誘電体基板10011の平面方向から積層方向にかけて、導体層20081、導体層20091、導体層20101、ヴィア36101、プローブ50081、開口40081、開口40091からストリップ線路-導波管変換器90021が形成されている。
 多層誘電体基板10011の積層方向にかけて、導体層20041、導体層20051、導体層20061、導体層20071、ヴィア30151、ヴィア36101、開口40041、開口40051、開口40061、開口40071から誘電体導波管91011が形成されている。
 開口40061における長辺の端部からλe/4(λe:多層誘電体基板の誘電体が充填された空間において平面方向に伝搬する信号波の実効的波長)程度離れた位置の導体層20061が一部削除されて、切り欠き41061a、切り欠き41061bが設けられている。切り欠き41061aと切り欠き41061bとは、開口40061を挟んで対向している。
 導体からなるヴィア86101aは、切り欠き41061aの縁のうち誘電体導波管91011が位置する側とは反対側の縁に沿ってヴィア36101近傍まで、導体層20061と導体層20101とを接続するように複数個配置されている。
 導体からなるヴィア86101bは、切り欠き41061bの縁のうち誘電体導波管91011が位置する側とは反対側の縁に沿ってヴィア36101近傍まで、導体層20061と導体層20101とを接続するように複数個配置されている。
 チョーク路70061aは、導体層20051と導体層20061で挟まれた空間における開口40061の端部から切り欠き41061aまでの空間である。
 チョーク路70061bは、導体層20051と導体層20061で挟まれた空間における開口40061の端部から切り欠き41061bまでの空間である。
 チョーク路70071aは、導体層20061と導体層20071で挟まれた空間におけるヴィア86101aとヴィア36101とで囲まれた空間である。
 チョーク路70071bは、導体層20061と導体層20071で挟まれた空間におけるヴィア86101bとヴィア36101とで囲まれた空間である。
 なお、これらの空間は中空の空洞ではなく誘電体が詰まっている。
 また上述のヴィア86101aは、切り欠き41061a、チョーク路70061aおよびチョーク路70071aからなる部分を、外側からC字形に囲むように設けられる。また上述のヴィア86101bは、切り欠き41061b、チョーク路70061bおよびチョーク路70071bからなる部分を、外側からC字形に囲むように設けられる。
 誘電体導波管91011の側部には、チョーク路70061aとチョーク路70071a、チョーク路70061bとチョーク路70071b、から成るチョーク構造として、高周波信号を伝搬させる周波数に対し半波長の長さの空間が付加されている。
 ストリップ線路-導波管変換器90011とストリップ線路-導波管変換器90021とは、誘電体導波管91011を介して電磁気的な接続を行っている。
 実施の形態2の実施例6に係わる図28および図29の例では、誘電体導波管91011の側部にチョーク路70061aとチョーク路70071a、チョーク路70061bとチョーク路70071bからなるチョーク構造として高周波信号を伝搬させる周波数に対し、半波長の長さの空間を設ける。これにより、チョーク構造の長さに応じた周波数の高周波信号を伝搬する帯域通過型フィルタ機能を誘電体導波管91010に付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 実施の形態3.
 上記実施の形態1および実施の形態2では、1枚の多層誘電体基板から構成された誘電体フィルタについて説明した。しかしながら、2枚以上の多層誘電体基板から構成された誘電体フィルタとしてもよい。
 図30および図31は、2枚の多層誘電体基板から構成され、一方の基板にチョーク構造を設けているこの発明の実施の形態3による誘電体フィルタを示す図である。
 図30は導体層、ストリップ線路、プローブ、ヴィア、チョーク構造、開口等の配列を示した分解斜視図である。
 図31の(a)は図30のA-Aに沿った縦断面図、
 図31の(b)は図31の(a)のB-B’線に沿った縦断面図、
 図31の(c)は図31の(a)のC-C’線に沿った縦断面図である。
 図30および図31において、多層誘電体基板10012には、導体層20012、導体層20022、導体層20032、導体層20042、導体層20052、ヴィア30152、ヴィア30242、ストリップ線路60032、プローブ50032が設けられている。
 多層誘電体基板10022には、導体層20062、導体層20072、導体層20082、導体層20092、導体層20102、ヴィア36102、ヴィア30792、ヴィア86102a、ヴィア86102b、ストリップ線路60082、プローブ50082が設けられている。
 導体層20012は、多層誘電体基板10012の表層に配置されている。
 導体層20022は、導体層20012と相対向して、多層誘電体基板10012の内層に配置されている。
 導体層20032は、背面側に導体層20012がある導体層20022と相対向して、多層誘電体基板10012の内層に配置されている。
 導体層20042は、背面側に導体層20022がある導体層20032と相対向して、多層誘電体基板10012の内層に配置されている。
 導体層20052は、背面側に導体層20032がある導体層20042と相対向して、導体層20012が配置された側とは反対側の多層誘電体基板10012の表層に配置されている。
 導体層20062は、多層誘電体基板10012の導体層20052と相対向して、多層誘電体基板10022の表層に配置されている。
 導体層20072は、導体層20062と相対向して、多層誘電体基板10022の内層に配置されている。
 導体層20082は、背面側に導体層20062がある導体層20072と相対向して、多層誘電体基板10022の内層に配置されている。
 導体層20092は、背面側に導体層20072がある導体層20082と相対向して、多層誘電体基板10022の内層に配置されている。
 導体層20102は、背面側に導体層20082がある導体層20092と相対向して、導体層20062が配置された側とは反対側の多層誘電体基板10022の表層に配置されている。
 導体層20022から導体層20092には、それぞれの一部が削除されて開口40022から開口40092が設けられている。
 開口40022から開口40092は、対向して配置されている。すなわち開口40022から開口40092は、積層方向に重なる位置にある。
 ストリップ線路60032は、導体層20032の一部が削除されて配置されている。
 ストリップ線路60082は、導体層20082の一部が削除されて配置されている。
 プローブ50032は、一端がストリップ線路60032に接続され、他端が開口40032の中に配置されている。
 プローブ50082は、一端がストリップ線路60082に接続され、他端が開口40082の中に配置されている。
 ヴィア30152は、開口40022から開口40052を、ストリップ線路60032に相当する部分を除いて取り囲むとともに、導体層20012から導体層20052にかけて、多層誘電体基板10012および導体層20022から導体層20042までを貫いて複数個配置されている。
 ヴィア36102は、開口40062から開口40092を、ストリップ線路60082に相当する部分を除いて取り囲むとともに、導体層20062から導体層20102にかけて、多層誘電体基板10022および導体層20072から導体層20092までを貫いて複数個配置されている。
 ヴィア30242は、ストリップ線路60032の長手方向の積層方向に沿った両側面に沿うとともに、導体層20022から導体層20042にかけて、多層誘電体基板10012、導体層20032とを貫いて複数個配置されている。
 ヴィア30792は、ストリップ線路60082の長手方向の積層方向に沿った両側面に沿うとともに、導体層20072から導体層20092にかけて、多層誘電体基板10022、導体層20082とを貫いて複数個配置されている。
 多層誘電体基板10012の平面方向から積層方向にかけて、導体層20012、導体層20022、導体層20032、ヴィア30152、プローブ50032、開口40022、開口40032からストリップ線路-導波管変換器90012が形成されている。
 多層誘電体基板10022の平面方向から積層方向にかけて、導体層20082、導体層20092、導体層20102、ヴィア36102、プローブ50082、開口40082、開口40092からストリップ線路-導波管変換器90022が形成されている。
 多層誘電体基板10012の積層方向にかけて、導体層20042、導体層20052、ヴィア30152、開口40042、開口40052から誘電体導波管91012が形成されている。
 多層誘電体基板10022の積層方向にかけて、導体層20062、導体層20072、ヴィア36102、開口40062、開口40072から誘電体導波管91022が形成されている。
 開口40062における長辺の端部からλ/4(λ:信号波の自由空間波長)離れた位置の導体層20062が一部削除されて、切り欠き41062a、切り欠き41062bが設けられており、切り欠き41062aと切り欠き41062bとは、開口40062を挟んで対向している。
 導体からなるヴィア86102aは、切り欠き41062aの縁のうち誘電体導波管91012が位置する側とは反対側の縁に沿ってヴィア36102近傍まで、導体層20062と導体層20102とを接続するように複数個配置されている。
 導体からなるヴィア86102bは、切り欠き41062bの縁のうち誘電体導波管91012が位置する側とは反対側の縁に沿ってヴィア36102近傍まで、導体層20062と導体層20102とを接続するように複数個配置されている。
 チョーク路70062aは、導体層20052と導体層20062で挟まれた空間における開口40062の端部から切り欠き41062aまでの空間である。
 チョーク路70062bは、導体層20052と導体層20062で挟まれた空間における開口40062の端部から切り欠き41062bまでの空間である。
 チョーク路70072aは、導体層20062と導体層20072で挟まれた空間におけるヴィア86102aとヴィア36102とで囲まれた空間である。
 チョーク路70072bは、導体層20062と導体層20072で挟まれた空間におけるヴィア86102bとヴィア36102とで囲まれた空間である。
 なお、これらの空間は中空の空洞ではなく誘電体が詰まっている。
 また上述のヴィア86102aは、切り欠き41062a、チョーク路70062aおよびチョーク路70072aからなる部分を外側からC字形に囲むように設けられる。また上述のヴィア86102bは、切り欠き41062b、チョーク路70062bおよびチョーク路70072bからなる部分を外側からC字形に囲むように設けられる。
 誘電体導波管91012と誘電体導波管91022とは、チョーク路70061aとチョーク路70071a、チョーク路70061bとチョーク路70071bから成るチョーク構造として、高周波信号を伝搬させる周波数に対し半波長の長さの空間により電磁気的な接続を行っている。
 ストリップ線路-導波管変換器90012とストリップ線路-導波管変換器90022とは、誘電体導波管91012と誘電体導波管91022とを介して電磁気的な接続を行っている。
 この実施の形態3に係わる図30および図31の例では、多層誘電体基板10012における誘電体導波管91012と、多層誘電体基板10022における誘電体導波管91022とを、チョーク路70062aとチョーク路70072a、チョーク路70062bとチョーク路70072bからなるチョーク構造として高周波信号を伝搬させる周波数に対し半波長の長さの空間を介して電気的な接続をとる。これにより、チョーク構造の長さに応じた周波数の高周波信号を伝搬する帯域通過型フィルタ機能を付加することができるとともに、上記実施の形態1の図1および図2の例と同様の効果が得られる。
 なお、この発明は各実施の形態に限定されるものではなく、各実施の形態の可能な組み合わせ、各実施の形態の任意の構成要素の可能な変形、および各実施の形態において任意の構成要素の可能な省略、を含む。
 また、この発明による誘電体フィルタでは導体層は両側の短絡面の2つの導体層と、ストリップ線路が形成される2つの導体層の4枚以上の導体層があればよい。
 例えば上記各実施の形態での2つのストリップ線路-導波管変換器、2つのプローブ等でのそれぞれの変形は、2つのうちの少なくとも一方で行なわれればよい。
 1001,10010,10011,10012,10022 多層誘電体基板、2001,2002,2003,2004,2005,2006,2007,2008,20010,20020,20030,20040,20050,20060,20070,20080,20090,20100,20110,20011,20021,20031,20041,20051,20061,20071,20081,20091,20101,20012,20022,20032,20042,20052,20062,20072,20082,20092,20102 導体層、21060 導体パターン、3018,3024,3057,3118,3124,3157,31110,30240,30570,38100,30151,30241,36101,30791,86101a,86101b,30152,30242,36102,30792,86102a,86102b ヴィア、4002,4003,4004,4005,4006,4007,4102,4107,4104,4105,4202,4302,40020,40030,40040,40050,40060,40070,40080,40090,40100,40021,40031,40041,40051,40061,40071,40081,40091,40022,40032,40042,40052,40062,40072,40082,40092 開口、5003,5006,5103,5106,5206,5303,5306,50030,50090,50031,50081,50032,50082 プローブ、6003,6006,60030,60090,60031,60081,60032,60082 ストリップ線路、70061a,70061b,70071a,70071b,70062a,70062b,70072a,70072b チョーク路、9001,9002,9011,9012,9021,9022,9031,9032,9051,9061,90010,90020,90011,90021,90012,90022 ストリップ線路-導波管変換器、9101,9111,9121,9141,91010,91011,91021,91022 誘電体導波管、5403,5406,31570,32570 共振導体、92010 共振空間。

Claims (12)

  1.  積層方向に互いに離間して形成された複数の導電層を有し高周波信号を伝搬する多層誘電体基板と、
     積層方向に互いに離間した導電層に平面方向に延びて形成された第1のストリップ線路と第2のストリップ線路と、
     前記多層誘電体基板の積層方向の前記第1のストリップ線路と前記第2のストリップ線路の間に平面方向の前記導電層と積層方向に延びた導体柱とから形成された誘電体導波管と、
     前記第1のストリップ線路の積層方向の上側に形成された前記誘電体導波管と前記第1のストリップ線路との間の伝送線路変換を行う第1のストリップ線路-導波管変換器と、
     前記第2のストリップ線路の積層方向の下側に形成された前記誘電体導波管と前記第2のストリップ線路との間の伝送線路変換を行う第2のストリップ線路-導波管変換器と、
     を備えた誘電体フィルタ。
  2.  前記第1のストリップ線路-導波管変換器は、一端が前記第1のストリップ線路に接続され、他端が前記誘電体導波管に対向して配置された第1のプローブと、一端が短絡され、他端が前記誘電体導波管に対向して接続された第1のバックショート導波管を含み、
     前記第2のストリップ線路-導波管変換器は、一端が前記第2のストリップ線路に接続され、他端が前記誘電体導波管に対向して配置された第2のプローブと、一端が短絡され、他端が前記誘電体導波管に対向して接続された第2のバックショート導波管を含む、
     請求項1に記載の誘電体フィルタ。
  3.  前記第1のプローブは、誘電体導波管に対向して配置された端部が前記第1のストリップ線路の幅よりも広い、請求項2に記載の誘電体フィルタ。
  4.  前記第2のプローブは、誘電体導波管に対向して配置された端部が前記第2のストリップ線路の幅よりも広い、請求項2または3に記載の誘電体フィルタ。
  5.  前記第1のバックショート導波管および前記第2のバックショート導波管の少なくとも一方は、管軸と直交する断面での管内形状が前記誘電体導波管の管内形状と異なる、
     請求項2から4までのいずれか1項に記載の誘電体フィルタ。
  6.  前記第1のバックショート導波管および前記第2のバックショート導波管の少なくとも一方は、管軸と直交する断面での管内形状が、長手方向の中央部の幅を狭くした形状である、
     請求項2から5までのいずれか1項に記載の誘電体フィルタ。
  7.  前記第1のプローブおよび前記第2のプローブの少なくとも一方は、前記誘電体導波管に対向して配置された端部に、先端開放された高周波信号の伝搬を阻止したい周波数に対して1/4波長となる第1の1/4波長導体が接続されている、
     請求項2から6までのいずれか1項に記載の誘電体フィルタ。
  8.  前記誘電体導波管における管壁の一部に開口径を小さくした絞りが設けられて成る共振空間を備える、
     請求項2から7までのいずれか1項に記載の誘電体フィルタ。
  9.  前記誘電体導波管は、一端が管壁に接続され、他端が管内に配置された高周波信号の伝搬を阻止したい周波数に対して1/4波長となる第2の1/4波長導体を備える、
     請求項2から8までのいずれか1項に記載の誘電体フィルタ。
  10.  前記誘電体導波管は、その管内に両端が開放された高周波信号の伝搬を阻止したい周波数に対して半波長となる第1の半波長導体を備える、
     請求項2から9までのいずれか1項に記載の誘電体フィルタ。
  11.  前記誘電体導波管の側部には、チョーク構造が配置されており、
     前記チョーク構造は、前記多層誘電体基板内に設けられた第1のチョーク路と第2のチョーク路を含み、
     前記第1のチョーク路は、前記誘電体導波管の管壁からλe/4(λe:信号波の多層誘電体基板における実効的波長)離れた位置に設けられた切り欠きまでの空間で形成されており、
     前記第2のチョーク路は、前記切り欠きからλe/4離れた位置に設けられた導体柱までの空間で形成されている、
     請求項2から10までのいずれか1項に記載の誘電体フィルタ。
  12.  積層方向に互いに離間して形成された複数の導電層を有し高周波信号を伝搬する第1の多層誘電体基板と、
     前記第1の多層誘電体基板の積層方向に重ねて設けられた、積層方向に互いに離間して形成された複数の導電層を有し高周波信号を伝搬する第2の多層誘電体基板と、
     を備え、
     高周波信号を伝搬する接続構造において、
     前記第1の多層誘電体基板は、
     前記第1の多層誘電体基板の平面方向に形成された第1のストリップ線路と、
     前記第1の多層誘電体基板の積層方向に形成した第1の誘電体導波管と、
     前記第1のストリップ線路と前記第1の誘電体導波管との間の伝送線路変換を行う第1のストリップ線路-導波管変換器と、を含み、
     前記第2の多層誘電体基板は、
     前記第2の多層誘電体基板の平面方向に形成された第2のストリップ線路と、
     前記第2の多層誘電体基板の積層方向に形成した第2の誘電体導波管と、
     前記第2のストリップ線路と前記第2の誘電体導波管との間の伝送線路変換を行う第2のストリップ線路-導波管変換器と、を含み、
     前記第1の誘電体導波管は、前記第1の多層誘電体基板の前記第2の多層誘電体基板と対向する側に設けられた第1の開口から、前記第1の多層誘電体基板と前記前記第2の多層誘電体基板との間の第1の空間、および前記第2の多層誘電体基板の前記第1の多層誘電体基板と対向する側に設けられた第2の開口を介して、前記第2の誘電体導波管に接続され、
     前記第1の空間を挟む多層誘電体基板のうち、少なくとも一方の多層誘電体基板の前記第1および第2の開口の周囲に、チョーク構造が配置され、
     前記チョーク構造は、前記第1の空間と、前記多層誘電体基板内に設けられた第2の空間から成り、
     前記第2の空間は、前記多層誘電体基板の表層に切り欠きを有しており、
     前記第1および第2の開口の端から、前記第1の空間を含む前記第2の空間の端部までがλ/2(λ:信号波の自由空間波長)となる、
     誘電体フィルタ。
PCT/JP2017/033097 2017-09-13 2017-09-13 誘電体フィルタ WO2019053823A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018504307A JP6345371B1 (ja) 2017-09-13 2017-09-13 誘電体フィルタ
PCT/JP2017/033097 WO2019053823A1 (ja) 2017-09-13 2017-09-13 誘電体フィルタ
EP18855754.0A EP3667811B1 (en) 2017-09-13 2018-06-07 Dielectric filter, array antenna device
US16/629,691 US11394095B2 (en) 2017-09-13 2018-06-07 Dielectric filter, array antenna device
JP2019541652A JP6633261B2 (ja) 2017-09-13 2018-06-07 誘電体フィルタ、アレーアンテナ装置
CN201880058015.XA CN111095671B (zh) 2017-09-13 2018-06-07 电介质滤波器、阵列天线装置
PCT/JP2018/021853 WO2019053972A1 (ja) 2017-09-13 2018-06-07 誘電体フィルタ、アレーアンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033097 WO2019053823A1 (ja) 2017-09-13 2017-09-13 誘電体フィルタ

Publications (1)

Publication Number Publication Date
WO2019053823A1 true WO2019053823A1 (ja) 2019-03-21

Family

ID=62635783

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/033097 WO2019053823A1 (ja) 2017-09-13 2017-09-13 誘電体フィルタ
PCT/JP2018/021853 WO2019053972A1 (ja) 2017-09-13 2018-06-07 誘電体フィルタ、アレーアンテナ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021853 WO2019053972A1 (ja) 2017-09-13 2018-06-07 誘電体フィルタ、アレーアンテナ装置

Country Status (5)

Country Link
US (1) US11394095B2 (ja)
EP (1) EP3667811B1 (ja)
JP (2) JP6345371B1 (ja)
CN (1) CN111095671B (ja)
WO (2) WO2019053823A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828976B (zh) * 2018-08-14 2021-10-22 华为技术有限公司 天线系统和基站
JP7138675B2 (ja) * 2020-06-17 2022-09-16 Tdk株式会社 アンテナ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004275A1 (ja) * 2003-07-08 2005-01-13 Tdk Corporation 高周波モジュール
JP2006101286A (ja) * 2004-09-30 2006-04-13 Japan Radio Co Ltd マイクロストリップ線路結合器
JP2011109431A (ja) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp 導波管−マイクロストリップ線路変換器および導波管−マイクロストリップ線路変換器の製造方法
WO2011111605A1 (ja) * 2010-03-09 2011-09-15 日立化成工業株式会社 電磁結合構造、多層伝送線路板、電磁結合構造の製造方法、及び多層伝送線路板の製造方法
US20110309899A1 (en) * 2010-06-20 2011-12-22 Siklu Communication ltd. Accurate millimeter-wave antennas and related structures
WO2013190442A1 (en) * 2012-06-20 2013-12-27 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
JP2015171004A (ja) * 2014-03-07 2015-09-28 古河電気工業株式会社 高周波モジュール

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105645B2 (ja) 1989-08-19 1995-11-13 富士通株式会社 誘電体フィルタ
JPH07105645A (ja) 1993-10-06 1995-04-21 Sanyo Electric Co Ltd ディスク記録再生装置
JP2001177312A (ja) * 1999-12-15 2001-06-29 Hitachi Kokusai Electric Inc 高周波接続モジュール
JP2001339207A (ja) * 2000-05-26 2001-12-07 Kyocera Corp アンテナ給電線路およびそれを用いたアンテナモジュール
US7102458B2 (en) * 2002-05-23 2006-09-05 Kyocera Corporation High-frequency line-waveguide converter having the HF line terminated within an opening portion
US7064633B2 (en) * 2002-07-13 2006-06-20 The Chinese University Of Hong Kong Waveguide to laminated waveguide transition and methodology
JP3975978B2 (ja) * 2002-08-27 2007-09-12 株式会社村田製作所 線路変換器、高周波モジュールおよび通信装置
JP3996879B2 (ja) 2003-07-29 2007-10-24 京セラ株式会社 誘電体導波管とマイクロストリップ線路の結合構造およびこの結合構造を具備するフィルタ基板
JP4375310B2 (ja) * 2005-09-07 2009-12-02 株式会社デンソー 導波管・ストリップ線路変換器
US8970440B2 (en) * 2009-01-19 2015-03-03 Nec Corporation Waveguide/planar line converter
JP5349196B2 (ja) 2009-08-06 2013-11-20 三菱電機株式会社 誘電体導波管の接続構造
US8912859B2 (en) * 2009-09-08 2014-12-16 Siklu Communication ltd. Transition between a laminated PCB and a waveguide including a lamina with a printed conductive surface functioning as a waveguide-backshort
KR101119267B1 (ko) 2010-04-13 2012-03-16 고려대학교 산학협력단 매칭 기판을 이용한 유전체 공진기 안테나
KR101255947B1 (ko) 2011-10-05 2013-04-23 삼성전기주식회사 대역폭 조절 가능한 유전체 공진기 안테나
CN104254945B (zh) * 2012-04-25 2016-08-24 日本电气株式会社 连接高频电路和波导管的连接结构及其制造方法
WO2014169419A1 (zh) * 2013-04-15 2014-10-23 华为技术有限公司 波导滤波器
JP2016015690A (ja) * 2014-07-03 2016-01-28 富士通株式会社 積層導波路基板、無線通信モジュール、及びレーダシステム
JP6520281B2 (ja) * 2015-03-24 2019-05-29 富士通株式会社 電子機器筐体
CN105958167B (zh) * 2016-07-01 2019-03-05 北京交通大学 垂直基片集成波导及包括该波导的垂直连接结构
CN106410336B (zh) * 2016-09-29 2019-04-09 上海航天测控通信研究所 一种堆叠式三阶基片集成波导滤波器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004275A1 (ja) * 2003-07-08 2005-01-13 Tdk Corporation 高周波モジュール
JP2006101286A (ja) * 2004-09-30 2006-04-13 Japan Radio Co Ltd マイクロストリップ線路結合器
JP2011109431A (ja) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp 導波管−マイクロストリップ線路変換器および導波管−マイクロストリップ線路変換器の製造方法
WO2011111605A1 (ja) * 2010-03-09 2011-09-15 日立化成工業株式会社 電磁結合構造、多層伝送線路板、電磁結合構造の製造方法、及び多層伝送線路板の製造方法
US20110309899A1 (en) * 2010-06-20 2011-12-22 Siklu Communication ltd. Accurate millimeter-wave antennas and related structures
WO2013190442A1 (en) * 2012-06-20 2013-12-27 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
JP2015171004A (ja) * 2014-03-07 2015-09-28 古河電気工業株式会社 高周波モジュール

Also Published As

Publication number Publication date
EP3667811A1 (en) 2020-06-17
JP6633261B2 (ja) 2020-01-22
US11394095B2 (en) 2022-07-19
CN111095671A (zh) 2020-05-01
JPWO2019053823A1 (ja) 2019-11-07
EP3667811A4 (en) 2020-11-25
US20210083353A1 (en) 2021-03-18
WO2019053972A1 (ja) 2019-03-21
JPWO2019053972A1 (ja) 2019-12-26
EP3667811B1 (en) 2024-02-28
JP6345371B1 (ja) 2018-06-20
CN111095671B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
JP5172481B2 (ja) ポスト壁導波路によるショートスロット方向性結合器とこれを用いたバトラーマトリクス及び車載レーダアンテナ
JP3891918B2 (ja) 高周波モジュール
JP5566169B2 (ja) アンテナ装置
CN109314300B (zh) 功率分配/合成器
JP2013513274A (ja) マイクロストリップ線路と矩形導波管との間のマイクロ波遷移装置
KR20100135163A (ko) 고주파 필터 장치
US11121695B2 (en) Diplexer and multiplexer
JP6177952B1 (ja) フィルタ及びそのフィルタの設計方法
JP4598024B2 (ja) 帯域阻止フィルタ
JPH11284409A (ja) 導波管型帯域通過フィルタ
JP2005260570A (ja) マイクロストリップ線路導波管変換器
JP6345371B1 (ja) 誘電体フィルタ
JP4532433B2 (ja) 導波管電力分配器
CN110832696A (zh) 功率分配合成器
JP3891996B2 (ja) 導波管型導波路および高周波モジュール
JP6570788B2 (ja) 誘電体導波管の接続構造
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
US7403085B2 (en) RF module
JP7360764B2 (ja) 帯域通過フィルタ及びそれを備える高周波装置
JP4251974B2 (ja) 高周波フィルタ
WO2022044405A1 (ja) フィルタ装置
JP7320681B2 (ja) フィルタ装置
Tomassoni et al. Stacked Substrate Integrated Waveguide Filter with Air-Holed Cavities
WO2024009339A1 (ja) マイクロストリップ線路-導波管変換器
WO2023127304A1 (en) High-frequency circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504307

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924850

Country of ref document: EP

Kind code of ref document: A1