WO2019050008A1 - シリカ含有絶縁性組成物 - Google Patents

シリカ含有絶縁性組成物 Download PDF

Info

Publication number
WO2019050008A1
WO2019050008A1 PCT/JP2018/033283 JP2018033283W WO2019050008A1 WO 2019050008 A1 WO2019050008 A1 WO 2019050008A1 JP 2018033283 W JP2018033283 W JP 2018033283W WO 2019050008 A1 WO2019050008 A1 WO 2019050008A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silica particles
silica
sol
insulating composition
Prior art date
Application number
PCT/JP2018/033283
Other languages
English (en)
French (fr)
Inventor
尚彦 末村
雅敏 杉澤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020207007578A priority Critical patent/KR102563150B1/ko
Priority to JP2019541031A priority patent/JP7231886B2/ja
Priority to CN201880057067.5A priority patent/CN111095440B/zh
Priority to US16/645,750 priority patent/US11961636B2/en
Priority to EP18853127.1A priority patent/EP3680918B1/en
Priority to RS20240061A priority patent/RS65075B1/sr
Publication of WO2019050008A1 publication Critical patent/WO2019050008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1415Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water
    • C01B33/1417Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water an aqueous dispersion being obtained
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • C01B33/1435Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates using ion exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to an insulating composition containing silica particles and an insulator using the same.
  • a content of sodium ions contained in the silica particles includes a polyimide paint containing a polyimide precursor and an organic solvent, silica particles, and an organosilica sol containing a dispersion medium for dispersing the silica particles in the polyimide paint.
  • a partial discharge resistant coating is disclosed that is less than or equal to 5 ⁇ 10 ⁇ 3 wt% based on the weight of the silica particles.
  • an insulating composition containing silica particles, a resin and a curing agent in an insulating composition containing silica particles, a resin and a curing agent, the elution of Na ions from the silica particles is suppressed or reduced, and an insulating composition with little change with time of the insulating property is provided.
  • the present invention provides, as a first aspect, An insulating composition comprising silica particles (A), a resin (B) and a curing agent (C),
  • the silica particle (A) is a silica particle having an eluted Na ion content of 40 ppm / SiO 2 or less when the aqueous solution having a SiO 2 concentration of 3.8% by mass is heated at 121 ° C. for 20 hours.
  • the present invention relates to an insulating composition.
  • the silica particles (A) are silica particles in which the amount of eluted Na ions after the heating is 5 to 38 ppm / SiO 2 .
  • the present invention relates to the insulating composition described in the first aspect.
  • the silica particles (A) are Containing polyvalent metal M of polyvalent metal oxide in a ratio of 0.001 to 0.02 as M / Si molar ratio, Silica particles having a mass ratio of Na 2 O / SiO 2 in the particles of 700 to 1300 ppm, wherein It is a silica particle having an average particle diameter of 5 to 40 nm, in which a layer having a thickness of 0.1 to 1.5 nm having a Na 2 O / SiO 2 mass ratio of 10 to 400 ppm is formed on the particle surface.
  • the present invention relates to the insulating composition described in the first aspect.
  • a method of producing an insulating composition as described in any one of the first to third aspects, wherein Preparing an aqueous sol of silica particles (A), A step (1) of replacing the aqueous medium of the aqueous solution of the silica particles (A) with an organic medium to produce an organic medium sol of silica particles (A), Step (2) of mixing the silica particle (A) organic medium sol obtained in the step (1), the resin (B), and the curing agent (C), Relating to the manufacturing method, including
  • the aqueous sol of the silica particles (A) is Obtaining a silica particle (a) dispersed aqueous solution by heating a silica solution obtained by cation exchange of an alkali silicate aqueous solution; Silica particle aqueous sol obtained through the following steps (I) and (II):
  • the present invention relates to a method for producing the insulating composition described in the fourth aspect.
  • the pH 1 in the step (Ii) is Adjustment of ⁇ 4 is made by adding an acid to the silica particles (a) dispersed aqueous solution,
  • the present invention relates to a method for producing the insulating composition described in the fifth aspect.
  • the aqueous sol of the silica particles (A) is Obtaining a silica particle (a) dispersed aqueous solution by heating a silica solution obtained by cation exchange of an alkali silicate aqueous solution;
  • the silica particles (a) dispersed aqueous solution formula (1):
  • R represents an alkyl group having 1 to 10 carbon atoms, an epoxy group, an epoxy group-containing organic group, a phenyl group, a phenyl group-containing organic group, or a combination thereof, and by a Si-C bond A is a group bonded to a silicon atom, and a is an integer of 0 to 3.
  • X represents an alkoxy group, an acyloxy group, or a halogen group.
  • the present invention relates to a method for producing the insulating composition described in the seventh aspect.
  • the present invention relates to a method for producing the insulating composition described in the seventh aspect.
  • the ratio of the silica particles (a) to the hydrolyzate or hydrolytic condensate of the silane compound represented by the formula (1) is 100: 2 to 100: 100 in their mass ratio
  • the present invention relates to a method for producing the insulating composition described in the seventh aspect.
  • an aqueous sol of silica particles (A) Preparing an aqueous sol of silica particles (A), A step (1) of replacing the aqueous medium of the silica particle (A) aqueous sol with an organic medium to produce a silica particle (A) organic medium sol, Step (2) of mixing the silica particle (A) organic medium sol obtained in the step (1), the resin (B), and the curing agent (C), Including
  • the aqueous sol of the silica particles (A) is Subsequent to the step of obtaining an aqueous solution of dispersed silica particles (a) by heating a silicic acid solution obtained by cation exchange of an aqueous solution of alkali silicate,
  • the silica particle (a) dispersed aqueous solution is After being subjected to the (I) step and the (II) step described in the fifth aspect or the sixth aspect, Obtained through the step of covering the surface of the silic
  • silica silica particles
  • silica is prepared by heating a silicic acid solution obtained by cation exchange of an aqueous alkali silicate solution to produce a silica sol, and the sol of this sol is subjected to solvent substitution from water to an organic solvent, and then added to a resin.
  • the method of making it contain in resin is adopted after improving the compatibility of.
  • the silica particles in the silica sol obtained by the above-mentioned production method contain alkali metal ions in the particles even after cation exchange, the alkali metal ions (particularly sodium ions) eluted later from the silica particles The adsorption of moisture in the air may reduce the insulation.
  • the pH of the aqueous sol is kept acidic by the addition of an acid.
  • the sodium ions present on the surface of the silica particle or in the surface layer of the silica particle and capable of being eluted are removed from the surface or the surface of the silica particle, and sodium ions are removed from the system by the subsequent cation exchange.
  • the silica particles used in the present invention remove and reduce sodium ions, the substrate coated with the insulating composition using them has sodium ions and air formed thereon.
  • the silica particles used in the present invention are those in which the elution of sodium ions from the surface is reduced and suppressed, and the insulating composition of the present invention using these silica particles has insulation in its cured product. It can be difficult to reduce the sex.
  • FIG. 1 shows the dielectric breakdown lifetime at an applied voltage of 20 kV, 15 kV and 10 kV and an estimated dielectric breakdown lifetime of 5 kV in a cured product prepared using an epoxy resin composition containing only silica particles (epoxy resin and curing agent only)
  • FIG. 2 shows dielectric breakdown lifetimes at applied voltages of 20 kV, 15 kV and 10 kV in a cured product prepared from the epoxy resin composition (silica particles, epoxy resin and curing agent) using the silica sol 1A prepared in Example 1. It is a figure which shows the presumed dielectric breakdown life of 5 kV.
  • FIG. 1 shows the dielectric breakdown lifetime at an applied voltage of 20 kV, 15 kV and 10 kV and an estimated dielectric breakdown lifetime of 5 kV in a cured product prepared using an epoxy resin composition containing only silica particles (epoxy resin and curing agent only)
  • FIG. 2 shows dielectric breakdown lifetimes at applied voltages of 20 kV, 15 kV and
  • FIG. 3 shows dielectric breakdown lifetimes at applied voltages of 20 kV, 15 kV and 10 kV in a cured product prepared from the epoxy resin composition (silica particles, epoxy resin and curing agent) using the silica sol 2A prepared in Example 2. It is a figure which shows the presumed dielectric breakdown life of 5 kV.
  • FIG. 4 shows dielectric breakdown lifetimes at applied voltages of 20 kV, 15 kV and 10 kV in a cured product prepared from the epoxy resin composition (silica particles, epoxy resin and curing agent) using the silica sol 3A prepared in Example 3. It is a figure which shows the presumed dielectric breakdown life of 5 kV.
  • FIG. 4 shows dielectric breakdown lifetimes at applied voltages of 20 kV, 15 kV and 10 kV in a cured product prepared from the epoxy resin composition (silica particles, epoxy resin and curing agent) using the silica sol 3A prepared in Example 3. It is a figure which shows the presumed dielectric breakdown life of 5 k
  • the present invention is an insulating composition comprising a silica particle (A), a resin (B) and a curing agent (C), wherein the silica particle (A) is an aqueous solution having a SiO 2 concentration of 3.8% by mass.
  • the present invention is directed to an insulating composition which is a silica particle having an eluted Na ion of 40 ppm / SiO 2 or less when heated at 121 ° C. for 20 hours.
  • the silica particles (A) eluted Na ion content after the heating is at 40 ppm / SiO 2 or less is practically preferable to be 5 ⁇ 38ppm / SiO 2.
  • the above-mentioned silica particles (A) contain polyvalent metal M of polyvalent metal oxide in a ratio of 0.001 to 0.02 as M / Si molar ratio, and Na 2 O / SiO 2 mass ratio in the particles
  • the polyvalent metal oxide is based on alkali silicate used as a raw material of silica particles.
  • the silica particle which can be used by this invention can be prepared from the aqueous silica sol (silica particle dispersion aqueous solution) obtained by the well-known method similarly to the former.
  • aqueous silica sol can be obtained by heating a silicic acid solution obtained by cation exchange of an aqueous solution of an alkali silicate (particularly sodium silicate).
  • the present invention in the aqueous solution of silica particles dispersed as the aqueous silica sol, it is possible to use one obtained by performing surface treatment of the silica particles, substitution of the medium (dispersion medium) and the like.
  • the polyvalent metals are contained in the raw material alkali silicate, and the polyvalent metals form the above-mentioned polyvalent metal oxides.
  • the polyvalent metal include iron, aluminum, zinc, zirconium, titanium, tin and lead.
  • the silica particles (A) are silica particles based on silica sol.
  • the average particle size of the silica particles (A) can be 5 to 40 nm.
  • D (nm) a specific surface area diameter
  • an aqueous sol of silica particles (A) is prepared, the aqueous medium of the aqueous sol of silica particles (A) is replaced with an organic medium (organic solvent), and silica particles (A) organic medium
  • Step (1) of producing a sol hereinafter also referred to as organic solvent-dispersed silica sol
  • the insulating composition of the present invention contains 2 to 50% by mass of the silica particles (A), 20 to 90% by mass of the resin (B), and 0.1 to 60% by mass of the curing agent (C). be able to.
  • the insulating composition may further optionally contain a curing accelerator (reaction accelerator), a reactive diluent and the like.
  • said ratio is a value when the sum total (solid content) of a silica particle (A), resin (B), a hardening
  • the solid content can be 10 to 100% by mass.
  • the solid content is the portion of the insulating composition from which the solvent has been removed. Therefore, the remainder excluding the solid content is a solvent, which corresponds to, for example, the organic solvent of the silica particle (A) organic medium sol.
  • a composition from which the organic solvent is removed can be obtained. In this case, the composition can have a solid content close to 100% by mass, and curing shrinkage can be reduced.
  • organic solvent of the organic solvent-dispersed silica sol examples include organic solvents such as alcohols, ethers, ketones, esters, amides, hydrocarbons, and nitriles.
  • organic solvents such as alcohols, ethers, ketones, esters, amides, hydrocarbons, and nitriles.
  • alcohols methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 2-butanol, ethylene glycol, glycerin, pripyrene glycol, triethylene glycol, polyethylene glycol, benzyl alcohol, 1,5 -Pentanediol, diacetone alcohol and the like.
  • ethers diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, etc.
  • ketones include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, methyl isobutyl ketone, 2-heptanone, cyclohexanone and the like.
  • the esters include ethyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate and the like.
  • the amides include acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the hydrocarbons include n-hexane, cyclohexane, benzene, toluene, xylene, solvent naphtha, styrene and the like, and the halogenated hydrocarbons further include dichloromethane, trichloroethylene and the like.
  • nitriles include acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, benzonitrile and the like.
  • Other organic solvents include dimethylsulfoxide.
  • the organic solvent-dispersed silica sol has a SiO 2 concentration of 5 to 70% by mass, preferably 15 to 60% by mass.
  • the aqueous sol of silica particles (A) used in the present invention comprises the steps of: obtaining an aqueous dispersion of silica particles (a) by heating a silicic acid solution obtained by cation exchange of an aqueous solution of alkali silicate; And (II) can be obtained.
  • step of maintaining at room temperature to 50 ° C., pH 1-4 acidic condition (I-ii) step of heating at 100 to 200 ° C.
  • step of sequentially performing cation exchange and anion exchange II-ii) step of sequentially performing cation exchange, anion exchange and cation exchange
  • Step (I) Process The step of maintaining the reaction solution at room temperature to 50 ° C. under acidic conditions of pH 1 to 4 is the surface of silica particles (a) in the aqueous solution of silica particles (a) In this step, sodium ions are removed from the surface layer using an acid to form a silica particle (A) in which a layer reduced in sodium ions is formed. Adjustment of pH 1 to 4 is carried out by adding sulfuric acid, nitric acid, hydrochloric acid or the like to the aqueous solution of silica particles (a).
  • step (I) comprises using sodium chloride ions from the surface or surface layer of the silica particles (a) in the aqueous solution of the silica particles (a) dispersion. It is the process of removing and forming the silica particle (A) in which the layer in which the sodium ion was reduced was formed.
  • step (Ii) and the step (I-ii) can be used in combination (step (I-iii)). In this case, the order of these steps is not particularly limited. For example, after performing step (I-ii), step (Ii) can be performed.
  • the silica particle (A) aqueous sol is obtained through the step (II) after the step (I).
  • the step is either (II-i) a step of sequentially performing cation exchange and anion exchange, or (II-ii) a step of sequentially performing cation exchange, anion exchange, and cation exchange It is a process.
  • an aqueous sol of silica particles (A) in which the residual ions are further reduced can be obtained.
  • a silica particle (a) is obtained by heating a silica solution obtained by cation exchange of an aqueous solution of an alkali silicate with a silica particle (A), thereby obtaining an aqueous dispersion of silica particles (a); a) The silane compound represented by the formula (1) is added to the dispersed aqueous solution, and the surface of the silica particles (a) is coated with the hydrolyzate or hydrolytic condensate of the silane compound represented by the formula (1) And the following method.
  • the group R is a group bonded to a silicon atom by a Si—C bond.
  • the alkyl group having 1 to 10 carbon atoms in the group R include linear or branched alkyl groups having 1 to 10 carbon atoms, and examples thereof include methyl, ethyl, n-propyl and i- Propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl- n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n-propyl, n-hexyl 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-n-
  • a cyclic alkyl group can also be used as the above alkyl group, and examples of the cyclic alkyl group having 1 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group and a 2-methyl-cyclopropyl group.
  • Cyclopentyl group 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclo group Propyl, 2-ethyl-cyclopropyl, cyclohexyl, 1-methyl-cyclopentyl, 2-methyl-cyclopentyl, 3-methyl-cyclopentyl, 1-ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3 -Ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1, -Dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-
  • the alkylene group include organic groups in which one hydrogen atom has been removed from each of the groups listed as the alkyl group, and examples include ethylene group and propylene group.
  • the alkylene group include organic groups in which one hydrogen atom has been removed from each of the groups listed as the alkyl group, and examples include ethylene group and propylene group.
  • the alkoxy group in the group X includes an alkoxy group having a linear, branched or cyclic alkyl moiety having 1 to 20 carbon atoms.
  • a linear or branched alkoxy group a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, an s-butoxy group, an s-butoxy group, an n-butoxy group, n -Pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n group -Propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-p
  • a cyclic alkoxy group a cyclopropoxy group, a cyclobutoxy group, a 1-methyl-cyclopropoxy group, a 2-methyl-cyclopropoxy group, a cyclopentyloxy group, a 1-methyl-cyclobutoxy group, a 2-methyl-cyclobutoxy group , 3-methyl-cyclobutoxy group, 1,2-dimethyl-cyclopropoxy group, 2,3-dimethyl-cyclopropoxy group, 1-ethyl-cyclopropoxy group, 2-ethyl-cyclopropoxy group, cyclohexyloxy group, 1 -Methyl-cyclopentyloxy group, 2-methyl-cyclopentyloxy group, 3-methyl-cyclopentyloxy group, 1-ethyl-cyclobutoxy group, 2-ethyl-cyclobutoxy group, 3-ethyl-cyclobutoxy group, 1,2 -Dimethyl-cyclobutoxy group, 1,3-dimethyl-sic
  • the acyloxy group in the group X includes an acyloxy group having 2 to 20 carbon atoms, and examples thereof include a methyl carbonyloxy group, an ethyl carbonyloxy group, an n-propyl carbonyloxy group, an i-propyl carbonyloxy group, and an n-butyl carbonyl group.
  • the halogen group in the group X includes fluorine, chlorine, bromine, iodine and the like.
  • the first coating with a hydrolyzate or hydrolytic condensate of a silane compound where a 0 in the silane compound represented by the formula (1) is tetraethoxysilane or a hydrolyzate or hydrolytic condensate of tetramethoxysilane Coating by is preferred.
  • water used for these hydrolysis the water in a silica particle (a) dispersion aqueous solution can be used.
  • the reaction temperature for hydrolysis and condensation of the silane compound represented by the formula (1) is usually 20 to 80.degree.
  • the hydrolysis may be either complete hydrolysis or partial hydrolysis. That is, the hydrolyzate or monomer may remain in the hydrolyzate.
  • a catalyst can be used when performing said hydrolysis and condensation.
  • the hydrolysis catalyst can be used at 0.001 to 10 moles, preferably 0.001 to 1 mole, per mole of the hydrolyzable group.
  • Examples of the hydrolysis catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases and inorganic bases.
  • hydrolysis and condensation it is possible to obtain a hydrolytic condensate (polyorganosiloxane) of a hydrolyzable silane having a weight average molecular weight of 1,000 to 1,000,000, or 1,000 to 100,000. .
  • a partial hydrolyzate whose hydrolysis is not completely completed when obtaining a hydrolysis condensate, or a silane compound may be mixed with the hydrolysis condensate to use the mixture.
  • the condensate is a polymer having a polysiloxane structure.
  • the ratio of the silica particles (a) to the hydrolyzate or hydrolytic condensate of the silane compound represented by the formula (1) can be 100: 2 to 100: 100 in terms of their mass ratio.
  • the amount of the hydrolyzate or hydrolytic condensate (coating of the particle surface) of the silane compound represented by the above formula (1) can be understood as the addition amount of the silane compound. That is, the addition amount of the silane compound represented by the formula (1) with respect to the silica particles (a) in the solution is 100 as the mass ratio of the silica particles (a) and the silane compound represented by the formula (1). It can be grasped as: 2 to 100: 100.
  • the silica particle (A) aqueous sol is produced by combining the above-mentioned ⁇ Method of producing aqueous sol of silica particle (A) (1)> and ⁇ Method of producing aqueous sol of silica particle (A) (2)>
  • a silica particle (A) aqueous sol can be obtained through the step of coating the surface of the silica particle (a) with the hydrolyzate or hydrolysis condens
  • an aqueous sol of silica particles (A) (1) sodium ions are removed from the surface or the surface layer of silica particles (a) to form a layer having sodium ions reduced on the surface.
  • a silica particle with a hydrolyzate or a hydrolytic condensate of a silane compound hardly containing sodium ions by ⁇ Production method (2) of aqueous sol of silica particle (A)>. Elution of sodium ions from the surface of the silane particles is further suppressed / reduced.
  • the silica particle (a) is already sodium ion of the surface or the surface thereof It can be considered that a layer having a reduced concentration is formed, so to speak, "a silica particle (A)", but in this production method 3, the particle is referred to as "a silica particle (a)" described in production method 2. Catch.
  • the resin (B) a polymerizable compound having an ethylenically unsaturated bond, a polymerizable compound having an epoxy ring, a polymerizable compound having an oxetane ring, a polymerizable compound such as a polymerizable compound having a vinyl ether structure
  • a resin obtained by polymerizing these polymerizable compounds can be used. That is, in the present invention, both a polymerizable compound which can be said to be a so-called monomer and its polymer (resin in a narrow sense) are treated as a resin (B).
  • the resin obtained by polymerizing the above-mentioned polymerizable compound has a polymerizable functional group at an end or a side chain, so that it can be further polymerized utilizing these.
  • Examples of the polymerizable compound having an ethylenically unsaturated bond include unsaturated carboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid and phthalic acid.
  • unsaturated carboxylic acid ester compounds or unsaturated carboxylic acid amide compounds derived from these unsaturated carboxylic acid compounds and alcohol compounds or amine compounds can also be mentioned, for example, acrylic acid ester compounds, methacrylic acid Ester compounds, itaconic acid ester compounds, crotonic acid ester compounds, maleic acid ester compounds, phthalic acid ester compounds, acrylic acid amide compounds, methacrylic acid amide compounds, itaconic acid amide compounds, crotonic acid amide compounds, maleic acid amide compounds and phthalic acid An amide compound etc.
  • the alcohol compound is not particularly limited, and is, for example, 2 to 6 hydroxy groups such as ethylene glycol, triethylene glycol, tetraethylene glycol, tris (2-hydroxyethyl) isocyanuric acid, triethanolamine, pentaerythritol and the like.
  • the polyol compound which has these is mentioned.
  • the amine compound is not particularly limited, but ethylenediamine, diaminocyclohexane, diaminonaphthalene, 1,4-bis (aminomethyl) cyclohexane, 3,3 ′, 4,4′-tetraaminobiphenyl, tris (2-aminoethyl) 2.
  • a polyamine compound such as an amine having, for example, 2 to 6 primary or secondary amino groups is mentioned.
  • polymerizable compound having an ethylenically unsaturated bond examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and nona Ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, nonapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 3-phenoxy-2-propanoyl (meth) acrylate, 1,6-bis ( -(Meth) acryloxy-2-hydroxypropyl) -hexyl ether, trimethylolpropane tri (me
  • a urethane compound which can be obtained by the reaction of a polyvalent isocyanate compound and a hydroxyalkyl unsaturated carboxylic acid ester compound, a polyvalent epoxy compound and a hydroxyalkyl unsaturated carboxylic acid ester Mention may also be made of compounds obtainable by reaction with compounds, diallyl ester compounds such as diallyl phthalate and divinyl compounds such as divinyl phthalate.
  • the polymerizable compound having an epoxy ring a compound having 1 to 6 epoxy rings can be used.
  • the polymerizable compound having 1 to 6 epoxy rings is, for example, a compound having two or more hydroxy groups or carboxy groups such as a diol compound, a triol compound, a dicarboxylic acid compound, a tricarboxylic acid compound and a glycidyl compound such as epichlorohydrin Mention may be made of compounds having two or more glycidyl ether structures or glycidyl ester structures which can be produced.
  • polymerizable compound having an epoxy ring examples include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, glycerol triglycidyl ether, diethylene glycol diglycidyl ether, 2, 6 -Diglycidyl phenyl glycidyl ether, 1,1,3-tris [p- (2,3-epoxypropoxy) phenyl] propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4'-methylenebis (N, N -Diglycidylaniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, trimethylolethane triglycidyl ether, triglycidyl-p-aminophenol, tetraglycidyl metaxylene diamine
  • the polymerizable compound having an epoxy ring is represented by the following formula (2) (R 1 and R 2 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, a heterocyclic group, or a halogenated, aminated, or nitrated derivative thereof.) It is possible to use an ester-modified epoxy compound containing a compound (i) having a functional group represented in the molecule in its molecule and a compound (ii) having a glycidyl group in the molecule.
  • polymerizable compound having an oxetane ring compounds having 1 to 6 oxetane rings can be used.
  • a compound having a vinyl ether structure of 1 to 6 can be used as the polymerizable compound having a vinyl ether structure.
  • the curing agent (C) functions as a curing agent for the resin (B).
  • a radical polymerization initiator can be used as the curing agent (C).
  • the radical polymerization initiator include azo compounds such as azobisisobutyronitrile, and organic peroxides such as di-tert-butyl peroxide and tert-butyl hydroperoxide.
  • an acid anhydride, an amine, a diamine (polyamine) or the like can be used as the curing agent (C).
  • the acid anhydride include aliphatic and aromatic tetracarboxylic acid dianhydrides.
  • aliphatic tetracarboxylic dianhydrides include methyl tetrahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride and methyl hexahydrophthalic anhydride.
  • aromatic tetracarboxylic acid dianhydride examples include pyromellitic acid dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride, 3,3 ′, 4,4′- Biphenyl sulfone tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene tetracarboxylic acid dianhydride, 2,3,6,7-naphthalene tetracarboxylic acid dianhydride, 3,3 ', 4,4' -Biphenyl ether tetracarboxylic acid dianhydride, 3,3 ', 4,4'-dimethyldiphenylsilanetetracarboxylic acid dianhydride, 3,3', 4,4'-tetraphenylsilane tetracarboxylic acid dianhydride, 1,2,3,4-furan tetracarboxylic acid dianhydride, 4,4'-
  • amines include primary, secondary and tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, nitrogen-containing compounds having a sulfonyl group.
  • Compounds, nitrogen-containing compounds having a hydroxy group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amides, imides, carbamates, ammonia, ammonium salts and the like can be mentioned.
  • Primary aliphatic amines such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert-amylamine, cyclopentylamine, hexylamine And cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
  • mixed amines for example, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine and the like are exemplified.
  • aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methyl aniline, N-ethyl aniline, N-propyl aniline, N, N-dimethyl aniline, 2-methyl aniline, 3-methyl aniline, 3-methyl aniline, 3-methyl aniline, 3-methyl aniline) Methyl aniline, 4-methyl aniline, ethyl aniline, propyl aniline, trimethyl aniline, 2-nitro aniline, 3- nitro aniline, 4- nitro aniline, 2,4- dinitro aniline, 2, 6- dinitro aniline, 3,5- Dinitroaniline, N, N-dimethyl toluidine, etc.), diphenyl (p-tolyl) amine, methyl diphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-di Tylpyrrol
  • nitrogen-containing compound having a carboxy group for example, aminobenzoic acid, indolecarboxylic acid, amino acid derivative (eg nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine) Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like.
  • aminobenzoic acid indolecarboxylic acid
  • amino acid derivative eg nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine
  • Phenylalanine, threonine, lysine 3-aminopyrazine
  • nitrogen-containing compounds having a sulfonyl group examples include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate and the like.
  • amides examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, 1-cyclohexylpyrrolidone and the like.
  • imides examples include phthalimide, succinimide and maleimide.
  • carbamates examples include N-tert-butoxycarbonyl-N, N-dicyclohexylamine, N-tert-butoxycarbonylbenzimidazole, oxazolidinone and the like.
  • ammonium cation ammonia, primary, secondary, tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, sulfonyl group And ammonium cations protonated to a nitrogen atom such as nitrogen-containing compounds having hydroxy group, nitrogen-containing compounds having hydroxy group, nitrogen-containing compounds having hydroxyphenyl group, alcoholic nitrogen-containing compounds, and quaternary ammonium cations.
  • quaternary ammonium cations include tetraethylammonium and benzyltriethylammonium.
  • aromatic diamine compounds include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-bis (triol) Fluoromethyl) biphenyl, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy ) Benzene
  • the present invention comprises the steps of coating a substrate with the above-mentioned insulating composition (insulating composition containing silica particles (A), resin (B) and curing agent (C)), and heating the substrate.
  • insulating composition containing silica particles (A), resin (B) and curing agent (C)
  • the method is also targeted.
  • a substrate used here a metal such as aluminum, copper, stainless steel, silicon or the like, a glass, plastic, a glass cloth or the like can be used.
  • the coating of the insulating composition on the substrate can be performed using a coating method such as spin coating, bar coating, potting, casting, and impregnation.
  • the film thickness of the coated film can be 100 nm to 5 mm.
  • the applied coating can be heated at 50-500.degree.
  • the insulating composition of the present invention includes insulating resins for electronic materials such as semiconductor sealing materials, adhesives for electronic materials, printed wiring board materials, interlayer insulating film materials, sealing materials for power modules, generator coils, transformers It can be suitably used as an insulating resin used for high voltage devices such as coils and gas insulated switchgear.
  • Average content of polyvalent metal element M measurement of M / Si molar ratio
  • a solution in which the target silica sol was decomposed with hydrofluoric acid was prepared, and the content of iron, aluminum, zinc, zirconium and titanium in the silica sol was measured using ICP emission spectroscopy (ICP-AES). From these measured values, the average content ratio of the polyvalent metal element M contained in the silica sol: M / Si molar ratio was calculated.
  • the silica sol was charged in a Teflon (registered trademark) container, diluted with pure water so that the SiO 2 concentration was 3.8% by mass, and then heated in an autoclave container at 121 ° C. for 20 hours.
  • the obtained sol is charged in a centrifugal separation type disposable ultrafiltration device (trade name: CENTRICUT, manufactured by Kurashiki Spinning Co., Ltd., molecular weight cut off 10,000), centrifuged at 3000 rpm for 30 minutes, and the Na content in the obtained filtrate was measured by atomic absorption method. From the obtained values, the amount of eluted Na ions from the particles (unit: ppm / SiO 2 ) was calculated.
  • the obtained aqueous solution is passed through a column packed with 24 L of hydrogen type strongly acidic cation exchange resin (Amberlite (registered trademark) IR-120B, manufactured by Organo Corporation) to obtain an active silicic acid solution (SiO 2 concentration 3. 70.0 kg of 7% by mass, pH 2.8) were obtained.
  • 0.31 kg of the sodium silicate solution and 9.1 kg of pure water were charged in a 100 L stainless steel container equipped with a reflux condenser, a stirrer, a heating unit and one injection port, and this was heated to 90 ° C. Heal liquid. While maintaining the heel solution at 90 ° C., 69.6 kg of the active silicic acid solution was added thereto at a constant flow rate over 6 hours from a pouring port.
  • the mixture is maintained at 90 ° C. for 4 hours, concentrated by ultrafiltration, and alkaline silica sol 1 (average primary particle size (nitrogen adsorption method particle size) 11.3 nm, SiO 2 concentration 28.5 mass%) pH 9.8) 9.0 kg was obtained.
  • alkaline silica sol 1 average primary particle size (nitrogen adsorption method particle size) 11.3 nm, SiO 2 concentration 28.5 mass%) pH 9.8) 9.0 kg was obtained.
  • Example 1 Using a 3 L stainless steel autoclave container, 2000 g of the acidic silica sol 1a obtained in Reference Example 1 was subjected to a heat treatment at 120 ° C. for 6 hours. The obtained sol was collected in a 3 L polyethylene wide-mouthed bottle, 50 g of 8 mass% sulfuric acid was added while stirring at 1000 rpm using a disper, and then stirred for 10 minutes. The pH of the obtained silica sol was 1.6. The sol is allowed to stand at 23 ° C.
  • methanol-dispersed silica sol 1A 300 g is collected in a 500 mL eggplant type flask, and 18.5 g of phenyltrimethoxysilane (trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.) is added while stirring with a magnetic stirrer. Was kept at 60.degree. C. for 2 hours. After adding 0.225 g of triamyl amine (Tokyo Chemical Industry Co., Ltd. reagent), a surface-treated methanol-dispersed silica sol 1A was obtained.
  • phenyltrimethoxysilane trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • methyl ethyl ketone and 123.2 g of bisphenol F-type epoxy resin (trade name: YDF-8170C, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.) were added to 294.9 g of the obtained surface-treated methanol-dispersed silica sol 1A and stirred until uniform . Thereafter, methanol and methyl ethyl ketone are removed with a rotary evaporator under conditions of 200 to 10 Torr and a bath temperature of 90 ° C.
  • bisphenol F-type epoxy resin-dispersed silica sol 1A (SiO 2 concentration: 30.5 mass%, B-type viscosity (25 ° C): 7000 mPa ⁇ s, epoxy equivalent weight: 250 g / eq) was obtained.
  • Example 2 Acidic silica sol 1a obtained in Reference Example 1 (average primary particle diameter: 11.3 nm, SiO 2 concentration: 25.0 mass%, pH: 2.8, average content of the polyvalent metal element M: M / Si A 2L glass separable flask container was charged with 652 g of a molar ratio of 0.0028, and after adding 978 g of pure water, 11.0 g of a 10% aqueous solution of sodium hydroxide was added and stirred. The internal temperature was heated to 85 ° C., and 172 g of tetraethoxysilane was dropped over 3 hours. Thereafter, heating was performed at 85 ° C.
  • Acidic silica sol 2A (average primary particle diameter: 12.0 nm, SiO) was passed through a column packed with 300 mL of hydrogen type strongly acidic cation exchange resin (Amberlite IR-120B) over 850 g of the obtained sol for 1 hour.
  • the displacement was completed when the volume of the distillate became 5 L, and 430 g of methanol-dispersed silica sol 2A was obtained.
  • the obtained methanol-dispersed silica sol 2A had a SiO 2 concentration of 25.0% by mass, a water content of 0.6% by mass, and a viscosity of 2 mPa ⁇ s.
  • Example 2A surface treatment with phenyltrimethoxysilane, addition of bisphenol F-type epoxy resin
  • 2A is used instead of the methanol-dispersed silica sol 1A of Example 1
  • a bisphenol F-type epoxy resin Dispersion silica sol 2A (SiO 2 concentration: 30.5 mass%, B-type viscosity (25 ° C.): 4300 mPa ⁇ s, epoxy equivalent weight: 243 g / eq) was obtained.
  • Example 3 Acidic silica sol 1a obtained in Reference Example 1 (average primary particle diameter: 11.3 nm, SiO 2 concentration: 25.0 mass%, pH: 2.8, average content of polyvalent metal element M: M / Si mol Ratio: 0.0028) 652 g of 2 L glass separable flask containers were charged, and after adding 978 g of pure water, 23.9 g of 10% aqueous sodium hydroxide solution was added and stirred. The internal temperature was heated to 85 ° C., and 374 g of tetraethoxysilane was dropped over 3 hours. Thereafter, heating was performed at 85 ° C. for 1 hour, and concentration was performed by a rotary evaporator until the SiO 2 concentration became 23%.
  • Example 2 The same procedure as in Example 1 (methanol substitution, surface treatment with phenyltrimethoxysilane, addition of bisphenol F-type epoxy resin) is carried out except that acidic silica sol 3A is used instead of acidic silica sol 2A of Example 2, and bisphenol is F-type epoxy resin-dispersed silica sol 3A (SiO 2 : concentration 30.5 mass%, B-type viscosity (25 ° C.): 5380 mPa ⁇ s, epoxy equivalent weight: 243 g / eq) was obtained.
  • acidic silica sol 3A is used instead of acidic silica sol 2A of Example 2
  • bisphenol is F-type epoxy resin-dispersed silica sol 3A (SiO 2 : concentration 30.5 mass%, B-type viscosity (25 ° C.): 5380 mPa ⁇ s, epoxy equivalent weight: 243 g / eq) was obtained.
  • Example 1 The same operation as in Example 1 except that 1900 g of the acidic silica sol 1a obtained in Reference Example 1 was used instead of 2000 g of the acidic silica sol 1A of Example 1 (methanol substitution, surface treatment with phenyltrimethoxysilane, bisphenol F Type epoxy resin was added to obtain bisphenol F type epoxy resin dispersed silica sol 1a (SiO 2 concentration: 30.5 mass%, B type viscosity (25 ° C.): 4800 mPa ⁇ s, epoxy equivalent: 247 g / eq) .
  • an epoxy resin bisphenol F-type epoxy resin, trade name: YDF-8170C, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.
  • a curing agent As an acid anhydride Roshid MH-700, Shin Nippon Rika Co., Ltd. product
  • reaction accelerator Dimethyl benzyl amine, Tokyo Chemical Industry Co., Ltd.
  • the obtained epoxy resin curing composition is poured into a casting plate (fluorinated release agent: product name: OPTOOL DSX, manufactured by Daikin Industries, Ltd., 3 mm thick) and treated at 70 ° C. for 2 hours. Subsequently, heat treatment was performed under the curing conditions of 90 ° C. for 2 hours and further at 150 ° C. for 8 hours to obtain a cured epoxy resin body.
  • a casting plate fluorinated release agent: product name: OPTOOL DSX, manufactured by Daikin Industries, Ltd., 3 mm thick
  • heat treatment was performed under the curing conditions of 90 ° C. for 2 hours and further at 150 ° C. for 8 hours to obtain a cured epoxy resin body.
  • the example numbers of the bisphenol F-type epoxy resin-dispersed silica sols of the above-described Examples and Comparative Examples are also treated as the example numbers of the epoxy resin curing composition and the cured product thereof.
  • Each cured product is a sample of 140 mm ⁇ 140 mm in length and 1 mm in thickness (t), and this is used as a dielectric breakdown tester made by Yamayo Test Instruments Co., Ltd., model: YST-243 WS.
  • Test temperature 110 ° C. (in air)
  • Test voltage The dielectric breakdown life was measured at an applied voltage of 20 kV, 15 kV, and 10 kV.
  • the estimated fracture life (h: hours) at 5 kV was calculated by extrapolation of the Vt plot.
  • a cured product was prepared from an epoxy resin composition containing only a silica-free epoxy resin and a curing agent as a blank, and used for measurement of dielectric breakdown life and calculation of estimated fracture life.
  • the obtained Vt plots are estimated at 5 kV in FIG. 1 (blank), FIG. 2 (example 1), FIG. 3 (example 2), FIG. 4 (example 3), and FIG. 5 (comparative example 1).
  • the fracture life is shown in Table 2 respectively.
  • the composition of the present invention is a composition of a blank (FIG. 1) and Comparative Example 1 (FIG. 5).
  • the applied voltage test voltage
  • the dielectric breakdown life at 10 kV was long, and the decrease in the dielectric breakdown life with the increase of the applied voltage (test voltage) became moderate.
  • the composition of the present invention can be considered to have a withstand voltage for a long time as compared with the composition of the blank and Comparative Example 1 became.
  • the insulating composition containing silica particles, a resin and a curing agent it is possible to provide an insulating composition which reduces the elution of Na ions from the silica particles and does not cause a time-dependent change in insulating properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

【課題】シリカ粒子と樹脂と硬化剤とを含み、シリカ粒子からのNaイオンの溶出を抑制・低減し、絶縁性の経時変化が少ない絶縁性組成物を提供する。 【解決手段】シリカ粒子(A)と樹脂(B)と硬化剤(C)とを含む絶縁性組成物であって、前記シリカ粒子(A)は、SiO濃度3.8質量%の該水溶液を121℃、20時間加熱したときの溶出Naイオン量が40ppm/SiO以下であるシリカ粒子である。シリカ粒子(A)は特に加熱後の溶出Naイオン量が5~38ppm/SiOであるシリカ粒子であり、また、多価金属酸化物の多価金属MをM/Siモル比として0.001~0.02の割合にて含み、粒子中のNaO/SiO質量比が700~1300ppmであるシリカ粒子であって、前記粒子表面に、NaO/SiO質量比が10~400ppmである0.1~1.5nmの層が形成された、5~40nmの平均粒子径を有するシリカ粒子である。

Description

シリカ含有絶縁性組成物
 本発明はシリカ粒子を含有する絶縁性組成物及びそれを用いた絶縁物に関する。
 これまで、機械的強度、耐薬品性及び電気的特性等を向上させた多くの樹脂が、電気、電子部品、自動車部品その他の機械部品等に広く用いられている。さらに、最近の電子機器の小型化の趨勢から、部品自体も小型化・薄肉化されており、その結果、絶縁距離はより一層小さいものとなり、成形品の耐絶縁破壊性、ひいては絶縁樹脂における絶縁性のさらなる向上が望まれている。これらの絶縁樹脂等は、電気的特性に加え他の特性改良を目的として、ガラス繊維やある種の着色剤、その他の添加剤を配合したり、難燃性を付与するために難燃剤を添加することが行なわれる。しかし絶縁樹脂におけるこうしたその他添加剤等の配合は、耐絶縁破壊性や耐トラッキング性といった電気的特性の低下が知られており、電気、電子部品への利用が制限されていた。
 このような要求を満たすために、配合する成分が個々に有する絶縁特性を改良することが行われてきた。
 例えば、ポリイミド前駆体および有機溶媒を含むポリイミド塗料と、シリカ粒子、および当該シリカ粒子を前記ポリイミド塗料に分散させる分散媒を含むオルガノシリカゾルとを含み、前記シリカ粒子に含まれるナトリウムイオンの含有量がシリカ粒子の重量に対して5×10-3wt%以下である、耐部分放電性塗料が開示されている。(特許文献1、2参照)
特開2017-095547号公報 特開2016-079195号公報
 本発明により、シリカ粒子と樹脂と硬化剤とを含む絶縁性組成物において、シリカ粒子からのNaイオンの溶出を抑制・低減し、絶縁性の経時変化が少ない絶縁性組成物を提供する。
 本発明は、第1観点として、
シリカ粒子(A)と樹脂(B)と硬化剤(C)とを含む絶縁性組成物であって、
前記シリカ粒子(A)は、SiO濃度3.8質量%の該水溶液を121℃、20時間加熱したときの溶出Naイオン量が40ppm/SiO以下であるシリカ粒子である、
絶縁性組成物に関する。
 第2観点として、前記シリカ粒子(A)は、上記加熱後の溶出Naイオン量が5~38ppm/SiOであるシリカ粒子である、
第1観点に記載の絶縁性組成物に関する。
 第3観点として、前記シリカ粒子(A)は、
多価金属酸化物の多価金属MをM/Siモル比として0.001~0.02の割合にて含み、
粒子中のNaO/SiO質量比が700~1300ppmであるシリカ粒子であって、
前記粒子表面に、NaO/SiO質量比が10~400ppmである厚さ0.1~1.5nmの層が形成された、5~40nmの平均粒子径を有するシリカ粒子である、
第1観点に記載の絶縁性組成物に関する。
 第4観点として、第1観点乃至第3観点のいずれか1項に記載の絶縁性組成物の製造方法であって、
シリカ粒子(A)の水性ゾルを準備する工程、
前記シリカ粒子(A)水性ゾルの水性媒体を有機媒体に置換し、シリカ粒子(A)の有機媒体ゾルを製造する工程(1)、
工程(1)で得られたシリカ粒子(A)有機媒体ゾルと、樹脂(B)と、硬化剤(C)とを混合する工程(2)、
を含む、製造方法に関する。
 第5観点として、前記シリカ粒子(A)の水性ゾルが、
珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、
下記(I)工程と(II)工程とを経て得られたシリカ粒子水性ゾルである、
第4観点に記載の絶縁性組成物の製造方法に関する。
(I)工程:該シリカ粒子(a)分散水溶液を下記(I-i)工程~(I-iii)工程のいずれかに付す工程。
(I-i)室温~50℃、pH1~4の酸性条件下で保持する工程
(I-ii)100~200℃で加熱する工程
(I-iii)前記(I-i)工程と(I-ii)工程とを組み合わせる工程
(II)工程:前記(I)工程を経たシリカ粒子(a)分散水溶液を下記(II-i)工程又は(II-ii)工程に付す工程。
(II-i)陽イオン交換と陰イオン交換を順次行う工程
(II-ii)陽イオン交換と陰イオン交換と陽イオン交換を順次行う工程
 第6観点として、前記(I-i)工程におけるpH1~4の調整が、シリカ粒子(a)分散水溶液に酸を添加することにより為す、
第5観点に記載の絶縁性組成物の製造方法に関する。
 第7観点として、前記シリカ粒子(A)の水性ゾルが、
珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、
該シリカ粒子(a)分散水溶液に、式(1):
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは炭素原子数1~10のアルキル基、エポキシ基、エポキシ基含有有機基、フェニル基、フェニル基含有有機基、又はそれらの組み合わせであり、且つSi-C結合によりケイ素原子と結合している基であり、aは0~3の整数である。Xはアルコキシ基、アシルオキシ基、又はハロゲン基を示す。)
で表されるシラン化合物を添加し、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程
とを経て得られたシリカ粒子水性ゾルである、
第4観点に記載の絶縁性組成物の製造方法に関する。
 第8観点として、前記式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程が、
式(1)で表されるシラン化合物においてa=0であるシラン化合物の加水分解物又は加水分解縮合物でシリカ粒子(a)を被覆する工程の後、
式(1)で表されるシラン化合物においてa=1又はa=2のシラン化合物の加水分解物又は加水分解縮合物でさらにシリカ粒子(a)を被覆する工程を含む、
第7観点に記載の絶縁性組成物の製造方法に関する。
 第9観点として、式(1)で表されるシラン化合物においてa=0であるシラン化合物がテトラエトキシシラン、又はテトラメトキシシランであり、
式(1)で表されるシラン化合物においてa=1又はa=2であるシラン化合物がエポキシ基含有有機基を含むシラン、フェニル基を含むシラン、又はそれらの組み合わせである、
第7観点に記載の絶縁性組成物の製造方法に関する。
 第10観点として、シリカ粒子(a)と、式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物との割合が、それらの質量比で100:2~100:100である、
第7観点に記載の絶縁性組成物の製造方法に関する。
 第11観点として、第1観点乃至第3観点のいずれか1項に記載の絶縁性組成物の製造方法であって、
シリカ粒子(A)の水性ゾルを準備する工程、
前記シリカ粒子(A)水性ゾルの水性媒体を有機媒体に置換し、シリカ粒子(A)有機媒体ゾルを製造する工程(1)、
工程(1)で得られたシリカ粒子(A)有機媒体ゾルと、樹脂(B)と、硬化剤(C)とを混合する工程(2)、
を含み、
前記シリカ粒子(A)の水性ゾルが、
珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程に続いて、
該シリカ粒子(a)分散水溶液を、
第5観点又は第6観点に記載の上記(I)工程と(II)工程に付した後、
第7観点乃至第10観点のいずれか1項に記載の、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程
を経て得られたシリカ粒子水性ゾルである、
絶縁性組成物の製造方法に関する。
 第12観点として、第1観点乃至第3観点のいずれか1項に記載の絶縁性組成物を基板上に被覆し、加熱する工程を含む、基板の製造方法に関する。
 これまで、電気物性や機械物性の向上のために、絶縁性組成物にシリカ(シリカ粒子)を添加することが行われている。シリカの添加は、多くの場合、まず珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱してシリカゾルを製造し、このゾルの分散媒を水から有機溶媒に溶剤置換を行い、樹脂への相溶性を向上させた後、樹脂に含有させるという手法が採用される。
 しかし上記製法により得られたシリカゾル中のシリカ粒子は、陽イオン交換を実施後においても、粒子中にアルカリ金属イオンを含有するために、後にシリカ粒子より溶出するアルカリ金属イオン(特にナトリウムイオン)と空気中の水分の吸着により、絶縁性が低下することがある。
 本発明では、シリカ粒子表面からのナトリウムイオンの溶出を低減するために、シリカ粒子の水性ゾルを製造した後、例えば水性ゾルのpHを酸の添加により酸性として保持する。それにより、シリカ粒子の表面乃至粒子表層に存在し、溶出可能となっているナトリウムイオンを、シリカ粒子表面乃至表層から除去し、その後の陽イオン交換により、系内からナトリウムイオンを除去する。このように、本発明で使用するシリカ粒子は、ナトリウムイオンを除去・低減したものであるため、それらを用いた絶縁性組成物を被覆し絶縁性被膜が形成された基板は、ナトリウムイオンと空気中の水分の吸着により生じ得る絶縁性の低下を抑制することができる。
 また、シリカ粒子の表面からのナトリウムイオンの溶出を低減するために、シリカ粒子の水性ゾルを製造した後、シリカ粒子の表面をシラン化合物の加水分解縮合物により被覆する。この場合、ナトリウムイオンをほとんど含有しないシラン化合物の加水分解物又は加水分解縮合物によってシリカ粒子が被覆されるため、シリカ粒子の表面からのナトリウムイオンの溶出が抑制される。
 このように、本発明で使用するシリカ粒子は、表面からのナトリウムイオンの溶出が低減・抑制されたものであり、これらシリカ粒子を用いた本発明の絶縁性組成物は、その硬化物において絶縁性を低下し難いものとすることができる。
図1は、シリカ粒子を含有しないエポキシ樹脂組成物(エポキシ樹脂と硬化剤のみ)を用いて作製した硬化体における、印加電圧20kV、15kV、10kVでの絶縁破壊寿命と、5kVの推定絶縁破壊寿命を示す図である。 図2は、実施例1で調製したシリカゾル1Aを用いたエポキシ樹脂組成物(シリカ粒子とエポキシ樹脂と硬化剤)より作製した硬化体における、印加電圧20kV、15kV、10kVでの絶縁破壊寿命と、5kVの推定絶縁破壊寿命を示す図である。 図3は、実施例2で調製したシリカゾル2Aを用いたエポキシ樹脂組成物(シリカ粒子とエポキシ樹脂と硬化剤)より作製した硬化体における、印加電圧20kV、15kV、10kVでの絶縁破壊寿命と、5kVの推定絶縁破壊寿命を示す図である。 図4は、実施例3で調製したシリカゾル3Aを用いたエポキシ樹脂組成物(シリカ粒子とエポキシ樹脂と硬化剤)より作製した硬化体における、印加電圧20kV、15kV、10kVでの絶縁破壊寿命と、5kVの推定絶縁破壊寿命を示す図である。 図5は、比較例1で調製したシリカゾル1aを用いたエポキシ樹脂組成物(シリカ粒子とエポキシ樹脂と硬化剤)より作製した硬化体における、印加電圧20kV、15kV、10kVでの絶縁破壊寿命と、5kVの推定絶縁破壊寿命を示す図である。
[絶縁性組成物]
 本発明はシリカ粒子(A)と樹脂(B)と硬化剤(C)とを含む絶縁性組成物であって、該シリカ粒子(A)は、がSiO濃度3.8質量%の該水溶液を121℃、20時間加熱したときの溶出Naイオン40ppm/SiO以下であるシリカ粒子である、絶縁性組成物を対象とする。
<シリカ粒子(A)>
 本発明において、上記シリカ粒子(A)は、上記加熱後の溶出Naイオン量は40ppm/SiO以下であるが、実用的には5~38ppm/SiOとすることが好ましい。
 また上記シリカ粒子(A)は、多価金属酸化物の多価金属MをM/Siモル比として0.001~0.02の割合にて含み、粒子中のNaO/SiO質量比が700~1300ppmであるシリカ粒子であって、前記粒子表面に、NaO/SiO質量比が10~400ppmである厚さ0.1~1.5nmの層(すなわち、Naイオンが低減した層)が形成された、5~40nmの平均粒子径を有するシリカ粒子であることが好ましい。
 上記多価金属酸化物は、シリカ粒子の原料となる珪酸アルカリに基づくものである。
 なお本発明で使用し得るシリカ粒子は、従来と同様に公知の方法で得られた水性シリカゾル(シリカ粒子分散水溶液)より、調製し得る。例えば水性シリカゾルは、珪酸アルカリ(特に、珪酸ナトリウム)水溶液の陽イオン交換により得られた珪酸液を加熱して得られる。本発明では後述するように、該水性シリカゾルであるシリカ粒子分散水溶液において、さらにシリカ粒子の表面処理や媒体(分散媒)置換等を為したものを用いることができる。
 原料の珪酸アルカリには、ケイ素以外に多価金属が含有し、この多価金属が前述の多価金属酸化物を形成する。この多価金属としては鉄、アルミニウム、亜鉛、ジルコニウム、チタン、スズ、及び鉛等が挙げられる。
 上記シリカ粒子(A)はシリカゾルに基づくシリカ粒子である。
 該シリカ粒子(A)の平均粒子径は5~40nmとすることができる。
 本明細書において平均粒子径は、窒素吸着法で測定される比表面積S(m/g)から、D(nm)=2720/Sの式によって与えられる比表面積径(D(nm))であり、一次粒子径の平均値(平均一次粒子径)とすることができる。
<絶縁性組成物の製造方法>
 本発明の絶縁性組成物は、シリカ粒子(A)の水性ゾルを準備し、該シリカ粒子(A)水性ゾルの水性媒体を有機媒体(有機溶剤)に置換し、シリカ粒子(A)有機媒体ゾル(以下、有機溶剤分散シリカソルとも称する)を製造する工程(1)、工程(1)で得られたシリカ粒子(A)有機媒体ゾルと樹脂(B)と硬化剤(C)とを混合する工程(2)を含みて得ることができる。
 本発明の絶縁性組成物は、シリカ粒子(A)を2~50質量%、樹脂(B)を20~90質量%、硬化剤(C)を0.1~60質量%の割合で含有することができる。
 絶縁性組成物は更に任意に硬化促進剤(反応促進剤)、反応性希釈剤等を添加することができる。
 なお上記の割合は、シリカ粒子(A)、樹脂(B)、硬化剤(C)及び任意の成分(硬化促進剤等)の合計(固形分)を100質量%としたときの値である。
 また絶縁性組成物において、固形分を10~100質量%にすることができる。固形分は絶縁性組成物から溶剤を取り除いた部分である。従って、固形分を除いた残部は溶剤であり、これは例えばシリカ粒子(A)有機媒体ゾルの有機溶剤が該当する。
 本発明では、シリカ粒子(A)有機媒体ゾルと樹脂(B)と硬化剤(C)を混合した後に、有機溶剤を除去した組成物とすることができる。この場合は固形分が100質量%に近い組成物とすることが可能であり、硬化収縮を低減することができる。
 上記有機溶剤分散シリカゾルの有機溶剤は、アルコール類、エーテル類、ケトン類、エステル類、アミド類、炭化水素類、ニトリル類等の有機溶剤が挙げられる。
 アルコール類としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、イソブチルアルコール、2-ブタノール、エチレングリコール、グリセリン、プリピレングリコール、トリエチレングリコール、ポリエチレングリコール、ベンジルアルコール、1,5-ペンタンジオール、ジアセトンアルコール等が挙げられる。
 エーテル類としては、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。
 ケトン類としては、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、メチルイソブチルケトン、2-ヘプタノン、シクロヘキサノン等が挙げられる。
 エステル類としては、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート等が挙げられる。
 アミド類としては、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられる。
 炭化水素類としては、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、ソルベントナフサ、スチレン等が挙げられ、更にハロゲン化炭化水素類としてはジクロロメタン、トリクロロエチレン等が挙げられる。
 ニトリル類としては、アセトニトリル、グルタロニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。
 その他の有機溶剤としては、ジメチルスルホキシドが挙げられる。
 有機溶剤分散シリカゾルは、SiO濃度が5ないし70質量%であり、好ましくは15ないし60質量%である。
<シリカ粒子(A)の水性ゾルの製造方法(1)>
 本発明で使用するシリカ粒子(A)水性ゾルは、珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、下記(I)工程と(II)工程とを経て得ることができる。
(I)工程:上記シリカ粒子(a)分散水溶液を、下記(I-i)工程~(I-iii)工程のいずれかに付す工程。
(I-i)室温~50℃、pH1~4の酸性条件下で保持する工程
(I-ii)100~200℃で加熱する工程
(I-iii)前記(I-i)工程と(I-ii)工程とを組み合わせる工程
(II)工程:前記(I)工程を経たシリカ粒子(a)分散水溶液を下記(II-i)工程又は(II-ii)工程に付す工程。
(II-i)陽イオン交換と陰イオン交換を順次行う工程
(II-ii)陽イオン交換と陰イオン交換と陽イオン交換を順次行う工程
《(I)工程》
 (I)工程における(I-i)工程:室温~50℃にて、pH1~4の酸性条件下で保持する工程は、シリカ粒子(a)分散液水溶液中のシリカ粒子(a)の表面乃至表層から、酸を用いてナトリウムイオンを取り除き、ナトリウムイオンが低減された層が形成されたシリカ粒子(A)を形成する工程である。pH1~4の調整は、シリカ粒子(a)分散水溶液に、硫酸、硝酸、塩酸等を添加することにより為される。
 (I)工程における(I-ii)工程:100~200℃で加熱する工程は、シリカ粒子(a)分散液水溶液のシリカ粒子(a)の表面乃至表層から、オートクレーブ装置を用いてナトリウムイオンを取り除き、ナトリウムイオンが低減された層が形成されたシリカ粒子(A)を形成する工程である。
 (I)工程において、上記(I-i)工程と(I-ii)工程とを組み合わせて用いることができる((I-iii)工程)。この場合、これら工程の順序は特に限定されない。例えば、(I-ii)工程を行った後に、(I-i)工程を行うことができる。
《(II)工程》
 シリカ粒子(A)水性ゾルは、前記(I)工程の後に、(II)工程を経て得られる。
 (II)工程は、(II-i)陽イオン交換と陰イオン交換を順次行う工程、又は、(II-ii)陽イオン交換と陰イオン交換と陽イオン交換を順次行う工程、のいずれかこの工程である。(II-ii)工程を経ることにより、残留イオンをより一層低減したシリカ粒子(A)水性ゾルが得られる。
<シリカ粒子(A)の水性ゾルの製造方法(2)>
 また、本発明では、シリカ粒子(A)水性ゾルを、珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、該シリカ粒子(a)分散水溶液に、前記式(1)で表されるシラン化合物を添加し、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程、とを経る方法によっても得ることができる。
 前記式(1)で表されるシラン化合物において、基RはSi-C結合によりケイ素原子と結合している基である。
 基Rにおける炭素原子数1~10のアルキル基としては、直鎖又は分枝鎖を有する炭素原子数1~10のアルキル基が挙げられ、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基及び1-エチル-2-メチル-n-プロピル基等が挙げられる。
 また上記アルキル基として環状アルキル基を用いることもでき、例えば炭素原子数1~10の環状アルキル基としては、シクロプロピル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 式(1)で表される化合物において、基Rにおけるエポキシ基はケイ素原子と直接結合することができ(R=エポキシ基)、またエポキシ基含有有機基として、例えばエポキシ基が炭素原子数1~10のアルキレン基やエーテル基を介して、ケイ素原子と結合していてもよい。
 上記アルキレン基は、上記アルキル基として挙げた各基から水素原子を1つ除いた有機基が挙げられ、例えばエチレン基、プロピレン基等が挙げられる。
 また式(1)で表される化合物において、基Rにおけるフェニル基はケイ素原子と直接結合することができ(R=フェニル基)、またフェニル基含有有機基として、例えばフェニル基が炭素原子数1~10のアルキレン基を介して、ケイ素原子と結合していてもよい。
 上記アルキレン基は、上記アルキル基として挙げた各基から水素原子を1つ除いた有機基が挙げられ、例えばエチレン基、プロピレン基等が挙げられる。またフェニル基は置換されたフェニル基を用いてもよい。
 式(1)で表される化合物において、基Xにおけるアルコキシ基としては、炭素原子数1~20の直鎖、分枝鎖、環状のアルキル部分を有するアルコキシ基が挙げられる。例えば直鎖、分枝鎖のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。また環状のアルコキシ基としてはシクロプロポキシ基、シクロブトキシ基、1-メチル-シクロプロポキシ基、2-メチル-シクロプロポキシ基、シクロペンチルオキシ基、1-メチル-シクロブトキシ基、2-メチル-シクロブトキシ基、3-メチル-シクロブトキシ基、1,2-ジメチル-シクロプロポキシ基、2,3-ジメチル-シクロプロポキシ基、1-エチル-シクロプロポキシ基、2-エチル-シクロプロポキシ基、シクロヘキシルオキシ基、1-メチル-シクロペンチルオキシ基、2-メチル-シクロペンチルオキシ基、3-メチル-シクロペンチルオキシ基、1-エチル-シクロブトキシ基、2-エチル-シクロブトキシ基、3-エチル-シクロブトキシ基、1,2-ジメチル-シクロブトキシ基、1,3-ジメチル-シクロブトキシ基、2,2-ジメチル-シクロブトキシ基、2,3-ジメチル-シクロブトキシ基、2,4-ジメチル-シクロブトキシ基、3,3-ジメチル-シクロブトキシ基、1-n-プロピル-シクロプロポキシ基、2-n-プロピル-シクロプロポキシ基、1-i-プロピル-シクロプロポキシ基、2-i-プロピル-シクロプロポキシ基、1,2,2-トリメチル-シクロプロポキシ基、1,2,3-トリメチル-シクロプロポキシ基、2,2,3-トリメチル-シクロプロポキシ基、1-エチル-2-メチル-シクロプロポキシ基、2-エチル-1-メチル-シクロプロポキシ基、2-エチル-2-メチル-シクロプロポキシ基及び2-エチル-3-メチル-シクロプロポキシ基等が挙げられる。
 基Xにおけるアシルオキシ基としては、炭素原子数2~20のアシルオキシ基が挙げられ、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、i-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、i-ブチルカルボニルオキシ基、s-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、1-メチル-n-ブチルカルボニルオキシ基、2-メチル-n-ブチルカルボニルオキシ基、3-メチル-n-ブチルカルボニルオキシ基、1,1-ジメチル-n-プロピルカルボニルオキシ基、1,2-ジメチル-n-プロピルカルボニルオキシ基、2,2-ジメチル-n-プロピルカルボニルオキシ基、1-エチル-n-プロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、1-メチル-n-ペンチルカルボニルオキシ基、2-メチル-n-ペンチルカルボニルオキシ基、3-メチル-n-ペンチルカルボニルオキシ基、4-メチル-n-ペンチルカルボニルオキシ基、1,1-ジメチル-n-ブチルカルボニルオキシ基、1,2-ジメチル-n-ブチルカルボニルオキシ基、1,3-ジメチル-n-ブチルカルボニルオキシ基、2,2-ジメチル-n-ブチルカルボニルオキシ基、2,3-ジメチル-n-ブチルカルボニルオキシ基、3,3-ジメチル-n-ブチルカルボニルオキシ基、1-エチル-n-ブチルカルボニルオキシ基、2-エチル-n-ブチルカルボニルオキシ基、1,1,2-トリメチル-n-プロピルカルボニルオキシ基、1,2,2-トリメチル-n-プロピルカルボニルオキシ基、1-エチル-1-メチル-n-プロピルカルボニルオキシ基、1-エチル-2-メチル-n-プロピルカルボニルオキシ基、フェニルカルボニルオキシ基、及びトシルカルボニルオキシ基等が挙げられる。
 基Xにおけるハロゲン基としてはフッ素、塩素、臭素、ヨウ素等が挙げられる。
 式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物による被覆は、シリカ粒子(a)を式(1)で表されるシラン化合物においてa=0であるシランの加水分解物又は加水分解縮合物で被覆した後に、さらに式(1)で表されるシラン化合物においてa=1又はa=2のシラン化合物の加水分解物又は加水分解縮合物で被覆する、二段階による被覆による二層構造を形成することが好ましい。
 また、式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物による被覆は、シリカ粒子(a)を式(1)で表されるシラン化合物においてa=0であるシランの加水分解物又は加水分解縮合物で被覆した後に、さらに式(1)で表されるシラン化合物においてa=1のシラン化合物の加水分解物又は加水分解縮合物で被覆する二段階による被覆による二層構造を形成することができる。
 式(1)で表されるシラン化合物においてa=0であるシラン化合物の加水分解物又は加水分解縮合物による最初の被覆は、テトラエトキシシランや、テトラメトキシシランの加水分解物又は加水分解縮合物による被覆が好ましい。
 次に、式(1)で表されるシラン化合物においてa=1又はa=2のシラン化合物の加水分解物又は加水分解縮合物による2層目の被覆は、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルモノメチルジメトキシシラン、3-グリシドキシプロピルモノメチルジエトキシシラン等のエポキシ基含有有機基を含むシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルモノメチルジメトキシシラン、フェニルモノメチルジエトキシシラン等のフェニル基を含むシラン、又はこれらを組み合わせて用いることが好ましい。
 式(1)で表されるシラン化合物における加水分解性基:-Si-X基、すなわち、アルコキシシリル基、アシロキシシリル基、又はハロゲン化シリル基の加水分解には、加水分解性基の1モル当たり、0.5~100モル、好ましくは1~10モルの水が用いられる。これら加水分解に用いられる水として、シリカ粒子(a)分散水溶液中の水が使用できる。
 式(1)で表されるシラン化合物の加水分解と縮合を行う際の反応温度は、通常20~80℃である。
 加水分解は完全に加水分解を行うことも、部分加水分解することでもよい。即ち、加水分解物中に加水分解物やモノマーが残存していてもよい。
 また上記の加水分解と縮合を行う際に触媒(加水分解触媒)を用いることができる。
 加水分解触媒は、前記加水分解性基の1モル当たり0.001~10モル、好ましくは0.001~1モルにて用いることができる。
 加水分解触媒としては、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基を挙げることができる。
 上記加水分解・縮合により、重量平均分子量が1,000~1,000,000、又は1,000~100,000である加水分解性シランの加水分解縮合物(ポリオルガノシロキサン)を得ることができる。
 加水分解縮合物を得る際に加水分解が完全に完了しない部分加水分解物や、シラン化合物が加水分解縮合物に混合されて、その混合物を用いることもできる。この縮合物はポリシロキサン構造を有するポリマーである。
 前記シリカ粒子(a)と、式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物との割合は、それらの質量比で100:2~100:100とすることができる。
 なお、上記式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物(粒子表面の被覆物)の量は、該シラン化合物の添加量として捉えることができる。すなわち、前記溶液中のシリカ粒子(a)に対する前記式(1)で表されるシラン化合物の添加量は、シリカ粒子(a)と式(1)で表されるシラン化合物の質量比として、100:2~100:100と捉えることができる。
<シリカ粒子(A)の水性ゾルの製造方法(3)>
 またシリカ粒子(A)水性ゾルを、前述の<シリカ粒子(A)の水性ゾルの製造方法(1)>と<シリカ粒子(A)の水性ゾルの製造方法(2)>とを組合せて製造してもよい。
 すなわち、珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程に続いて、
<シリカ粒子(A)の水性ゾルの製造方法(1)>に記載の(I)工程と(II)工程に付した後、<シリカ粒子(A)の水性ゾルの製造方法(2)>に記載の、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程、を経て、シリカ粒子(A)水性ゾルを得ることができる。
 すなわち、<シリカ粒子(A)の水性ゾルの製造方法(1)>により、シリカ粒子(a)の表面乃至表層からナトリウムイオンを取り除き、ナトリウムイオンが低減された層が表面に形成されたシリカ粒子を形成し、さらに、<シリカ粒子(A)の水性ゾルの製造方法(2)>により、ナトリウムイオンをほとんど含有しないシラン化合物の加水分解物又は加水分解縮合物によってシリカ粒子を被覆することにより、シラン粒子表面からのナトリウムイオンの溶出がより一層抑制・低減されることとなる。
 なお、上記<シリカ粒子(A)の水性ゾルの製造方法(1)>に記載の(I)工程と(II)工程に付した後、シリカ粒子(a)は既にその表面乃至表層のナトリウムイオンが低減された層が形成された、言わば“シリカ粒子(A)”となっているとも捉えられるが、本製造方法3では該粒子を、製造方法2に記載の“シリカ粒子(a)”として捉える。
[樹脂(B)]
 本発明において樹脂(B)としては、エチレン性不飽和結合を有する重合性化合物、エポキシ環を有する重合性化合物、オキセタン環を有する重合性化合物、ビニルエーテル構造を有する重合性化合物等の重合性化合物、又はこれら重合性化合物を重合することにより得られた樹脂を用いることができる。すなわち本発明では、いわゆる単量体といえる重合性化合物とその重合体(狭義の樹脂)の双方を樹脂(B)として扱う。前述の重合性化合物を重合して得られた樹脂は末端や側鎖に重合性官能基が存在しているため、それらを利用して更に重合することができる。
 エチレン性不飽和結合を有する重合性化合物としては、例えばアクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸及びフタル酸等の不飽和カルボン酸化合物が挙げられる。また、これらの不飽和カルボン酸化合物と、アルコール化合物若しくはアミン化合物とから誘導される、不飽和カルボン酸エステル化合物又は不飽和カルボン酸アミド化合物も挙げることができ、例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、イタコン酸エステル化合物、クロトン酸エステル化合物、マレイン酸エステル化合物、フタル酸エステル化合物、アクリル酸アミド化合物、メタクリル酸アミド化合物、イタコン酸アミド化合物、クロトン酸アミド化合物、マレイン酸アミド化合物及びフタル酸アミド化合物等が挙げられる。前記アルコール化合物としては特に制限はないが、エチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリス(2-ヒドロキシルエチル)イソシアヌル酸、トリエタノールアミン、ペンタエリスリトール等の、例えば2個ないし6個のヒドロキシ基を有するポリオール化合物が挙げられる。前記アミン化合物としては特に制限はないが、エチレンジアミン、ジアミノシクロヘキサン、ジアミノナフタレン、1,4-ビス(アミノメチル)シクロヘキサン、3,3’,4,4’-テトラアミノビフェニル、トリス(2-アミノエチル)アミン等の、例えば2個ないし6個の一級又は二級のアミノ基を有するポリアミン化合物が挙げられる。
 エチレン性不飽和結合を有する重合性化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ノナプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス〔4-((メタ)アクリロキシジエトキシ)フェニル〕プロパン、3-フェノキシ-2-プロパノイル(メタ)アクリレート、1,6-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロピル)-ヘキシルエーテル、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリス-(2-ヒドロキシルエチル)-イソシアヌル酸エステル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、5-ノルボルネン-2-イルメチル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、sec-ブチル(メタ)クリレート、t-ペンチル(メタ)アクリレート、α-ヒドロキシメチル(メタ)アクリル酸エチル、α-ヒドロキシメチル(メタ)アクリル酸ブチル、α-ヒドロキシメチル(メタ)アクリル酸メチル、(メタ)アクリル酸、(メタ)アクリル酸n-ステアリル、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、セチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フタル酸水素(メタ)アクリロイルオキシエチル、ベンジル(メタ)アクリレート、メチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、グリシジル(メタ)アクリレート、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、ビニルベンゼン、ジビニルベンゼン、ビニルトルエン、スチレン、α-メチルスチレン、p-メチルスチレン等が挙げられる。なお、ここで例えばエチレングリコールジ(メタ)アクリレートとはエチレングリコールジアクリレートとエチレングリコールジメタクリレートとを意味する。
 またエチレン性不飽和結合を有する重合性化合物としては、多価イソシアネート化合物とヒドロキシアルキル不飽和カルボン酸エステル化合物との反応によって得ることができるウレタン化合物、多価エポキシ化合物とヒドロキシアルキル不飽和カルボン酸エステル化合物との反応によって得ることができる化合物、フタル酸ジアリル等のジアリルエステル化合物及びジビニルフタレート等のジビニル化合物を挙げることもできる。
 エポキシ環を有する重合性化合物としては、1ないし6個のエポキシ環を有する化合物を使用することができる。1ないし6個のエポキシ環を有する重合性化合物は、例えばジオール化合物、トリオール化合物、ジカルボン酸化合物、トリカルボン酸化合物等の2個以上のヒドロキシ基又はカルボキシ基を有する化合物と、エピクロルヒドリン等のグリシジル化合物から製造することができる、2個以上のグリシジルエーテル構造又はグリシジルエステル構造を有する化合物を挙げることができる。
 エポキシ環を有する重合性化合物の具体例としては、1,4-ブタンジオールジグリシジルエーテル、1,2-エポキシ-4-(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6-ジグリシジルフェニルグリシジルエーテル、1,1,3-トリス[p-(2,3-エポキシプロポキシ)フェニル]プロパン、1,2-シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、ビスフェノール-A-ジグリシジルエーテル、ビスフェノール-F-ジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルレゾルシノールジグリシジルエーテル、フタル酸ジグリシジルエステル、ネオペンチルグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、テトラブロモビスフェノール-A-ジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、水素化ビスフェノール-A-ジグリシジルエーテル、トリス-(2,3-エポキシプロピル)イソシアヌレート、1-{2,3-ジ(プロピオニルオキシ)}-3,5-ビス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6・(1H,3H,5H)-トリオン、1,3-ビス{2,3-ジ(プロピオニルオキシ)}-5-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6・(1H,3H,5H)-トリオン、モノアリルジグリシジルイソシアヌレート、ジグリセロールポリジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-へキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、p-ターシャリーブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエーテル、o-フタル酸ジグリシジルエーテル、ジブロモフェニルグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,6-ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、2,2-ビス(4-グリシジルオキシフェニル)プロパン、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、2-(3,4-エポキシシクロヘキシル)-3’,4’-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4’,5’-エポキシ-2’-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(2,3-エポキシシクロペンチル)エーテル等を挙げることができる。
 また、エポキシ環を有する重合性化合物は、下記式(2)
Figure JPOXMLDOC01-appb-C000003
(R及びRは、それぞれ独立して、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、複素環基、又はそれらのハロゲン化、アミノ化、若しくはニトロ化誘導体を表す。)で表される官能基を分子内に有する化合物(i)及び分子内にグリシジル基を有する化合物(ii)とを含むエステル変性エポキシ化合物を用いることができる。
 オキセタン環を有する重合性化合物としては、1ないし6個のオキセタン環を有する化合物を使用することができる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3,3-ジエチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン、ジ((3-エチル-3-オキセタニル)メチル)エーテル、及びペンタエリスリトールテトラキス((3-エチル-3-オキセタニル)メチル)エーテル等を挙げることができる。
 ビニルエーテル構造を有する重合性化合物としては、1ないし6個のビニルエーテル構造を有する化合物を使用することができる。例えば、ビニル-2-クロロエチルエーテル、ビニル-ノルマルブチルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、ビニルグリシジルエーテル、ビス(4-(ビニロキシメチル)シクロヘキシルメチル)グルタレート、トリ(エチレングリコール)ジビニルエーテル、アジピン酸ジビニルエステル、ジエチレングリコールジビニルエーテル、トリス(4-ビニロキシ)ブチルトリメリレート、ビス(4-(ビニロキシ)ブチル)テレフタレート、ビス(4-(ビニロキシ)ブチルイソフタレート、エチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、シクロヘキサンジメタノールジビニルエーテル等を挙げることができる。
[硬化剤(C)]
 本発明において硬化剤(C)は樹脂(B)の硬化剤として機能する。
 前記樹脂(B)がエチレン性不飽和結合を有する重合性化合物、ビニルエーテル構造を有する重合性化合物の場合、硬化剤(C)として、ラジカル重合開始剤を用いることができる。
 ラジカル重合開始剤としてはアゾビスイソブチロニトリル等のアゾ化合物、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド等の有機過酸化物が挙げられる。
 前記樹脂(B)がエポキシ環を有する重合性化合物、オキセタン環を有する重合性化合物の場合、硬化剤(C)として、酸無水物、アミン、ジアミン(ポリアミン)等を用いることができる。
 酸無水物としては、例えば脂肪族及び芳香族系のテトラカルボン酸二無水物が挙げられる。
 脂肪族テトラカルボン酸二無水物としては、例えばメチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸およびメチルヘキサヒドロ無水フタル酸等が挙げられる。
 芳香族系のテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等を挙げられる。芳香族系のテトラカルボン酸二無水物の中でも、入手性・汎用性等の観点からピロメリット酸二無水物が特に好ましい。
 なお、これら酸無水物は単独で用いてもよく、2種以上を併用してもよい。
 アミンとしては例えば、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド類、イミド類、カルバメート類、アンモニア、アンモニウム塩等が挙げられる。
 第一級の脂肪族アミン類として、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示される。
 第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が例示される。
 第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が例示される。
 また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
 芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等)、ジフェニル(p-トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、4-ピロリジノピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
 更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン)等が例示される。
 スルホニル基を有する含窒素化合物として3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が例示される。
 ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノ-ル、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-キヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が例示される。
 アミド類としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、1-シクロヘキシルピロリドン等が例示される。
 イミド類としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
 カルバメート類としては、N-t-ブトキシカルボニル-N,N-ジシクロヘキシルアミン、N-t-ブトキシカルボニルベンズイミダゾール、オキサゾリジノン等が例示される。
 アンモニウムカチオンとしては、アンモニアや、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物等の窒素原子に、プロトン付加したアンモニウムカチオン、第4級アンモニウムカチオンが挙げられる。第4級アンモニウムカチオンの例として、テトラエチルアンモニウム、ベンジルトリエチルアンモニウムが挙げられる。
 芳香族系ジアミン化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。この中でも、4,4’-ジアミノジフェニルエーテルが好ましい。なお、これらは単独で用いてもよく、2種以上を併用してもよい。
<基板の製造方法>
 本発明は、前記絶縁性組成物(シリカ粒子(A)と樹脂(B)と硬化剤(C)とを含む絶縁性組成物)を基板上に被覆し、加熱する工程を含む、基板の製造方法も対象とする。
 ここで用いられる基板として、アルミ、銅、ステンレス、シリコン等の金属やガラス、プラスチック、ガラスクロス等の基板を用いることができる。
 前記絶縁性組成物の基板への被覆はスピンコート、バーコート、ポッティング、注型、含浸等の塗布方法を用いて行うことができる。被覆された被膜の膜厚は100nm~5mmにすることができる。塗布された被膜は50~500℃で加熱することができる。
 本発明の絶縁性組成物は、半導体封止材料、電子材料用接着剤、プリント配線基板材料、層間絶縁膜材料、パワーモジュール用封止材等の電子材料用絶縁樹脂や発電機コイル、変圧器コイル、ガス絶縁開閉装置等の高電圧機器に使用される絶縁樹脂として好適に使用できる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(分析方法)
〔SiO濃度の測定〕
 対象のシリカゾルを坩堝に取り、130℃で乾燥後、得られたゲルを1000℃焼成し、焼成残分を計量してSiO濃度を算出した。
〔平均一次粒子径(窒素吸着法粒子径)の測定〕
 酸性シリカゾルの300℃乾燥粉末の比表面積を、比表面積測定装置モノソーブ(登録商標)MS-16(ユアサアイオニクス(株)製)を用いて測定し、平均一次粒子径を算出した。
〔水分の測定〕
 カールフィッシャー滴定法にて求めた。
〔粘度の測定〕
 対象のシリカゾルの粘度を、B型回転粘度計(東機産業(株)製)を用いて測定した。
〔多価金属元素Mの平均含有率:M/Siモル比の測定〕
 対象のシリカゾルをフッ酸で分解処理した溶液を準備し、ICP発光分光分析法(ICP-AES)を用いて、シリカゾル中の鉄、アルミニウム、亜鉛、ジルコニウム、チタンの含有量を測定した。それらの測定値から、シリカゾルに含まれる多価金属元素Mの平均含有率:M/Siモル比を算出した。
〔粒子中のNaO/SiO質量比の測定〕
 対象のシリカゾルをフッ酸で分解処理した溶液を準備し、原子吸光分析法(AAS)を用いて、シリカゾル中のNaO量(単位はppm/SiO)を測定した。
〔粒子表面のNaO/SiO質量比の測定〕
 酸性シリカゾルをSiOとして1.0g採取し純水で50gに希釈した後、8質量%硫酸でpH1.9に調製し、23℃で4.5時間保持した。このゾルを遠心分離方式ディスポーザブル限外濾過器(商品名CENTRICUT、倉敷紡績株式会社製、分画分子量1万)に仕込み、3000rpmで30分間遠心分離し、得られた濾液中のNa含有量を原子吸光法にて測定した。得られた値から、粒子表面のNaO量(単位はppm/SiO)を算出した。
〔溶出Naイオン量の測定〕
 シリカゾルをテフロン(登録商標)容器に仕込み、純水でSiO濃度が3.8質量%になるように希釈した後、オートクレーブ容器中で121℃、20時間加熱した。得られたゾルを遠心分離方式ディスポーザブル限外濾過器(商品名CENTRICUT、倉敷紡績株式会社製、分画分子量1万)に仕込み、3000rpmで30分間遠心分離し、得られた濾液中のNa含有量を原子吸光法にて測定した。得られた値から、粒子中からの溶出Naイオン量(単位はppm/SiO)を算出した。
 (参考例1)
 100Lポリ容器に、珪酸ソーダ溶液(富士化学(株)製、3号珪酸ソーダ、SiO濃度29.1質量%、SiO/NaOモル比3.2、AlО/SiOモル比0.0003)9.6kgと純水60.2kgとを仕込み、均一になるよう撹拌した。この希釈珪酸ソーダ溶液に、ディスパーにて撹拌を行いながらアルミン酸ソーダ水溶液(Al濃度1.0質量%、NaO濃度0.77質量%)1.98kgを添加し、30分間撹拌を行った。得られた水溶液を水素型強酸性陽イオン交換樹脂(アンバーライト(登録商標)IR-120B、オルガノ(株)製)24Lが充填されたカラムに通過させて、活性珪酸溶液(SiO濃度3.7質量%、pH2.8)70.0kgを得た。
 還流器、撹拌機、加熱部及び一つの注液口を供えた100Lのステンレス製容器に、0.31kgの前記珪酸ソーダ溶液と9.1kgの純水とを仕込み、これを90℃に加熱してヒール液とした。該ヒール液を90℃に維持しつつ、これに注液口から前記活性珪酸溶液69.6kgを一定流量で6時間かけて添加した。添加終了後、90℃で4時間保持した後、限外濾過法により濃縮を行い、SiO濃度28.5質量%のアルカリ性シリカゾル1(平均一次粒子径(窒素吸着法粒子径)11.3nm、pH9.8)9.0kgを得た。
 得られたアルカリ性シリカゾル1を水素型強酸性陽イオン交換樹脂(アンバーライト(登録商標)IR-120B、オルガノ(株)製)1.5Lを充填したカラム、水酸基型強塩基性陰イオン交換樹脂(アンバーライト(登録商標)IR-410、オルガノ(株)製)1.0Lを充填したカラム、水素型強酸性陽イオン交換樹脂(アンバーライトIR-120B)300mLを充填したカラムの順に通液し、酸性シリカゾル1a(SiO濃度:25.0質量%、平均一次粒子径:11.3nm、pH:2.8、多価金属元素Mの平均含有率:M/Siモル比:0.0028、粒子中から溶出するNaイオン量:41ppm/SiO、粒子中のNaO/SiO質量比:1486ppm、粒子表面のNaO/SiO質量比:569ppm)10.0kgを得た。
(実施例1)
 参考例1で得られた酸性シリカゾル1aの2000gを3Lステンレス製オートクレーブ容器を用いて120℃で6時間加熱処理を行った。得られたゾルを3Lポリエチレン製広口瓶に採取し、ディスパーを用いて1000rpmで撹拌しながら8質量%硫酸50gを添加し、その後10分間撹拌した。得られたシリカゾルのpHは1.6であった。このゾルを23℃で24時間静置した後、水素型強酸性陽イオン交換樹脂(アンバーライトIR-120B)100mLを充填したカラム、水酸基型強塩基性陰イオン交換樹脂(アンバーライトIR-410)250mLを充填したカラム、水素型強酸性陽イオン交換樹脂(アンバーライトIR-120B)50mLを充填したカラムの順に2時間をかけて通液して酸性シリカゾル1A(平均一次粒子径:11.3nm、SiO濃度:23.7質量%、pH:2.6、多価金属元素Mの平均含有率:M/Siモル比:0.0022、粒子中から溶出するNaイオン量:9ppm/SiO、粒子中のNaO/SiO質量比:869ppm、粒子表面のNaO/SiO質量比:318ppm)を得た。
 酸性シリカゾル1Aの2000gを撹拌機、コンデンサー、温度計及び注入口2個を備えた内容積3Lのガラス製反応器に仕込み、反応器内のゾルを沸騰させたままの状態で、別のボイラーで発生させたメタノールの蒸気を反応器内のシリカゾル中に連続的に吹き込んで、液面をほぼ一定に保ちながらメタノールによる水の置換を行った。留出液の体積が20Lになったところで置換を終了して、メタノール分散シリカゾル1Aを1840g得た。得られたメタノール分散シリカゾル1Aは、SiO濃度:25.0質量%、水分:0.6質量%、粘度:2mPa・sであった。
 メタノール分散シリカゾル1Aの300gを500mLナス型フラスコに採取し、マグネチックスターラーで撹拌しながらフェニルトリメトキシシラン(商品名:KBM-103、信越化学工業株式会社製)18.5gを添加し、液温を60℃で2時間保持した。トリアミルアミン(東京化成工業試薬)0.225gを添加した後、表面処理メタノール分散シリカゾル1Aを得た。
 得られた表面処理メタノール分散シリカゾル1A 294.9gにメチルエチルケトンを300g、ビスフェノールF型エポキシ樹脂(商品名:YDF-8170C、新日鉄住金化学株式会社製)を123.2g添加し、均一になるまで撹拌した。その後、ロータリーエバポレーターにて200~10Torr、浴温90℃の条件でメタノール、メチルエチルケトンを除去することにより、ビスフェノールF型エポキシ樹脂分散シリカゾル1A(SiO濃度:30.5質量%、B型粘度(25℃):7000mPa・s、エポキシ当量:250g/eq)を得た。
(実施例2)
 参考例1で得られた酸性シリカゾル1a(平均一次粒子径:11.3nm、SiO濃度:25.0質量%、pH:2.8、前記多価金属元素Mの平均含有率:M/Siモル比0.0028)652gを2Lガラス製セパラブルフラスコ容器に仕込み、純水978gを添加した後、10%水酸化ナトリウム水溶液を11.0g添加、撹拌した。内温85℃に加熱し、テトラエトシキシラン172gを3時間かけて滴下した。その後、85℃1時間加熱を行い、ロータリーエバポレーターでSiO濃度が23%になるまで濃縮を行った。得られたゾル850gを水素型強酸性陽イオン交換樹脂(アンバーライトIR-120B)300mLを充填したカラムに1時間をかけて通液して酸性シリカゾル2A(平均一次粒子径:12.0nm、SiO濃度:21.6質量%、pH:3.0、多価金属元素Mの平均含有率:M/Siモル比:0.0021、粒子中から溶出するNaイオン量:17ppm/SiO、粒子中のNaO/SiO質量比:1263ppm、粒子表面のNaO/SiO質量比:340ppm)を得た。
 酸性シリカゾル2Aの500gを撹拌機、コンデンサー、温度計及び注入口2個を備えた内容積1Lのガラス製反応器に仕込み、反応器内のゾルを沸騰させたままの状態で、別のボイラーで発生させたメタノールの蒸気を反応器内のシリカゾル中に連続的に吹き込んで、液面をほぼ一定に保ちながらメタノールによる水の置換を行った。留出液の体積が5Lになったところで置換を終了して、メタノール分散シリカゾル2Aを430g得た。得られたメタノール分散シリカゾル2Aは、SiO濃度:25.0質量%、水分:0.6質量%、粘度:2mPa・sであった。
 実施例1のメタノール分散シリカゾル1Aの代わりに2Aを用いた以外は、実施例1と同様の操作(フェニルトリメトキシシランによる表面処理、ビスフェノールF型エポキシ樹脂の添加)を行い、ビスフェノールF型エポキシ樹脂分散シリカゾル2A(SiO濃度:30.5質量%、B型粘度(25℃):4300mPa・s、エポキシ当量:243g/eq)を得た。
(実施例3)
 参考例1で得られた酸性シリカゾル1a(平均一次粒子径:11.3nm、SiO濃度:25.0質量%、pH:2.8、多価金属元素Mの平均含有率:M/Siモル比:0.0028)652gを2Lガラス製セパラブルフラスコ容器に仕込み、純水978gを添加した後、10%水酸化ナトリウム水溶液を23.9g添加、撹拌した。内温85℃に加熱し、テトラエトシキシラン374gを3時間かけて滴下した。その後、85℃1時間加熱を行い、ロータリーエバポレーターでSiO濃度が23%になるまで濃縮を行った。得られたゾル868gを水素型強酸性陽イオン交換樹脂(アンバーライトIR-120B)300mLを充填したカラムに1時間をかけて通液して酸性シリカゾル3A(平均一次粒子径:12.6nm、SiO濃度:24.1質量%、pH:2.7、多価金属元素Mの平均含有率:M/Siモル比:0.0016、粒子中から溶出するNaイオン量:32ppm/SiO、粒子中のNaO/SiO質量比:1103ppm、粒子表面のNaO/SiO質量比:153ppm)を得た。
 実施例2の酸性シリカゾル2Aの代わりに酸性シリカゾル3Aを使用した以外は、実施例1と同様の操作(メタノール置換、フェニルトリメトキシシランによる表面処理、ビスフェノールF型エポキシ樹脂の添加)を行い、ビスフェノールF型エポキシ樹脂分散シリカゾル3A(SiO:濃度30.5質量%、B型粘度(25℃):5380mPa・s、エポキシ当量:243g/eq)を得た。
(比較例1)
 実施例1の酸性シリカゾル1Aを2000gの代わりに、参考例1で得られた酸性シリカゾル1aを1900g使用した以外は実施例1と同様の操作(メタノール置換、フェニルトリメトキシシランによる表面処理、ビスフェノールF型エポキシ樹脂の添加)を行い、ビスフェノールF型エポキシ樹脂分散シリカゾル1a(SiO濃度:30.5質量%、B型粘度(25℃):4800mPa・s、エポキシ当量:247g/eq)を得た。
 実施例1~3及び比較例1で得られたビスフェノールF型エポキシ樹脂分散シリカゾル、必要によりさらにエポキシ樹脂(ビスフェノールF型エポキシ樹脂、商品名:YDF-8170C、新日鉄住金化学株式会社製)、硬化剤として酸無水物(リカシッドMH-700、新日本理化(株)製)、反応促進剤(ジメチルベンジルアミン、東京化成工業(株))を表1記載の配合比で混合し、エポキシ樹脂硬化用組成物を得た。
 得られたエポキシ樹脂硬化用組成物を注型板(フッ素系離形剤:製品名:オプツールDSX、ダイキン工業株式会社製)で処理されたガラス板3mm厚)に流し込み、70℃で2時間、続いて90℃で2時間、さらに150℃で8時間の硬化条件で加熱処理を行い、エポキシ樹脂硬化体を得た。
 なお、以降の説明において、上記実施例及び比較例のビスフェノールF型エポキシ樹脂分散シリカゾルの例番号を、エポキシ樹脂硬化用組成物及びその硬化体の例番号としても扱うものとする。
 
Figure JPOXMLDOC01-appb-T000004
(エポキシ樹脂硬化体の絶縁破壊寿命の測定)
 各硬化体を、縦横:140mm×140mmで、厚さ(t)が1mmシート状の大きさのサンプルとし、これをヤマヨ試験器(有)製の絶縁破壊試験装置、型式:YST-243WS形によって、試験温度:110℃(空気中)、試験電圧:印加電圧20kV、15kV、及び10kVにおける、絶縁破壊寿命を測定した。電極形状は、下部は平板電極(φ=25mm)、上部は球状電極(φ=20mm)を用い、いずれの電極もサンプルと接するように設置して試験した。各電圧毎にサンプル数:n=3ないしは4で測定し、印加電圧V〔kV/mm〕に対するそれらの絶縁破壊寿命t(hr)に関するV-tプロットを作成した。V-tプロットの外挿法により5kVにおける推定破壊寿命(h:時間)を算出した。
 なお、ブランクとしてシリカを含まないエポキシ樹脂と硬化剤のみを含むエポキシ樹脂組成物より同様に硬化体を作製し、絶縁破壊寿命の測定、推定破壊寿命の算出に供した。
 得られたV-tプロットを図1(ブランク)、図2(実施例1)、図3(実施例2)、図4(実施例3)、図5(比較例1)に、5kVにおける推定破壊寿命を表2に、それぞれ示す。
 
Figure JPOXMLDOC01-appb-T000005
 図2(実施例1)、図3(実施例2)及び図4(実施例3)に示すように、本発明の組成物は、ブランク(図1)及び比較例1(図5)の組成物と比べ、印加電圧(試験電圧):10kVにおける絶縁破壊寿命が長く、また印加電圧(試験電圧)の上昇に伴う絶縁破壊寿命の低下は穏やかなものとなった。
 上記結果から5kVにおける推定破壊寿命を算定したところ(表2)、本発明の組成物はブランク及び比較例1の組成物と比べて、長期にわたり耐電圧を有するものとなることが考えられる結果となった。
 シリカ粒子と樹脂と硬化剤とを含む絶縁性組成物において、シリカ粒子からのNaイオンの溶出を低減し絶縁性の経時変化を生じない絶縁性組成物を提供することができる。
 

Claims (12)

  1. シリカ粒子(A)と樹脂(B)と硬化剤(C)とを含む絶縁性組成物であって、
    前記シリカ粒子(A)は、SiO濃度3.8質量%の該水溶液を121℃、20時間加熱したときの溶出Naイオン量が40ppm/SiO以下であるシリカ粒子である、
    絶縁性組成物。
  2. 前記シリカ粒子(A)は、上記加熱後の溶出Naイオン量が5~38ppm/SiOであるシリカ粒子である、
    請求項1に記載の絶縁性組成物。
  3. 前記シリカ粒子(A)は、
    多価金属酸化物の多価金属MをM/Siモル比として0.001~0.02の割合にて含み、
    粒子中のNaO/SiO質量比が700~1300ppmであるシリカ粒子であって、
    前記粒子表面に、NaO/SiO質量比が10~400ppmである厚さ0.1~1.5nmの層が形成された、5~40nmの平均粒子径を有するシリカ粒子である、
    請求項1に記載の絶縁性組成物。
  4. 請求項1乃至請求項3のいずれか1項に記載の絶縁性組成物の製造方法であって、
    シリカ粒子(A)の水性ゾルを準備する工程、
    前記シリカ粒子(A)水性ゾルの水性媒体を有機媒体に置換し、シリカ粒子(A)の有機媒体ゾルを製造する工程(1)、
    工程(1)で得られたシリカ粒子(A)有機媒体ゾルと、樹脂(B)と、硬化剤(C)とを混合する工程(2)、
    を含む、製造方法。
  5. 前記シリカ粒子(A)の水性ゾルが、
    珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、
    下記(I)工程と(II)工程とを経て得られたシリカ粒子水性ゾルである、
    請求項4に記載の絶縁性組成物の製造方法。
    (I)工程:該シリカ粒子(a)分散水溶液を下記(I-i)工程~(I-iii)工程のいずれかに付す工程。
    (I-i)室温~50℃、pH1~4の酸性条件下で保持する工程
    (I-ii)100~200℃で加熱する工程
    (I-iii)前記(I-i)工程と(I-ii)工程とを組み合わせる工程
    (II)工程:前記(I)工程を経たシリカ粒子(a)分散水溶液を下記(II-i)工程又は(II-ii)工程に付す工程。
    (II-i)陽イオン交換と陰イオン交換を順次行う工程
    (II-ii)陽イオン交換と陰イオン交換と陽イオン交換を順次行う工程
  6. 前記(I-i)工程におけるpH1~4の調整が、シリカ粒子(a)分散水溶液に酸を添加することにより為す、
    請求項5に記載の絶縁性組成物の製造方法。
  7. 前記シリカ粒子(A)の水性ゾルが、
    珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程と、
    該シリカ粒子(a)分散水溶液に、式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素原子数1~10のアルキル基、エポキシ基、エポキシ基含有有機基、フェニル基、フェニル基含有有機基、又はそれらの組み合わせであり、且つSi-C結合によりケイ素原子と結合している基であり、aは0~3の整数である。Xはアルコキシ基、アシルオキシ基、又はハロゲン基を示す。)
    で表されるシラン化合物を添加し、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程
    とを経て得られたシリカ粒子水性ゾルである、
    請求項4に記載の絶縁性組成物の製造方法。
  8. 前記式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程が、
    式(1)で表されるシラン化合物においてa=0であるシラン化合物の加水分解物又は加水分解縮合物でシリカ粒子(a)を被覆する工程の後、
    式(1)で表されるシラン化合物においてa=1又はa=2のシラン化合物の加水分解物又は加水分解縮合物でさらにシリカ粒子(a)を被覆する工程を含む、
    請求項7に記載の絶縁性組成物の製造方法。
  9. 式(1)で表されるシラン化合物においてa=0であるシラン化合物がテトラエトキシシラン、又はテトラメトキシシランであり、
    式(1)で表されるシラン化合物においてa=1又はa=2であるシラン化合物がエポキシ基含有有機基を含むシラン、フェニル基を含むシラン、又はそれらの組み合わせである、
    請求項7に記載の絶縁性組成物の製造方法。
  10. シリカ粒子(a)と、式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物との割合が、それらの質量比で100:2~100:100である、
    請求項7に記載の絶縁性組成物の製造方法。
  11. 請求項1乃至請求項3のいずれか1項に記載の絶縁性組成物の製造方法であって、
    シリカ粒子(A)の水性ゾルを準備する工程、
    前記シリカ粒子(A)水性ゾルの水性媒体を有機媒体に置換し、シリカ粒子(A)有機媒体ゾルを製造する工程(1)、
    工程(1)で得られたシリカ粒子(A)有機媒体ゾルと、樹脂(B)と、硬化剤(C)とを混合する工程(2)、
    を含み、
    前記シリカ粒子(A)の水性ゾルが、
    珪酸アルカリ水溶液の陽イオン交換により得られた珪酸液を加熱することにより、シリカ粒子(a)分散水溶液を得る工程に続いて、
    該シリカ粒子(a)分散水溶液を、
    請求項5又は請求項6に記載の上記(I)工程と(II)工程に付した後、
    請求項7乃至請求項10のいずれか1項に記載の、シリカ粒子(a)の表面を式(1)で表されるシラン化合物の加水分解物又は加水分解縮合物で被覆する工程
    を経て得られたシリカ粒子水性ゾルである、
    絶縁性組成物の製造方法。
  12. 請求項1乃至請求項3のいずれか1項に記載の絶縁性組成物を基板上に被覆し、加熱する工程を含む、基板の製造方法。
     
PCT/JP2018/033283 2017-09-07 2018-09-07 シリカ含有絶縁性組成物 WO2019050008A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207007578A KR102563150B1 (ko) 2017-09-07 2018-09-07 실리카함유 절연성 조성물
JP2019541031A JP7231886B2 (ja) 2017-09-07 2018-09-07 シリカ含有絶縁性組成物
CN201880057067.5A CN111095440B (zh) 2017-09-07 2018-09-07 含有二氧化硅的绝缘性组合物
US16/645,750 US11961636B2 (en) 2017-09-07 2018-09-07 Silica-containing insulating composition
EP18853127.1A EP3680918B1 (en) 2017-09-07 2018-09-07 Silica-containing insulating composition
RS20240061A RS65075B1 (sr) 2017-09-07 2018-09-07 Izolaciona kompozicija koja sadrži silicijum dioksid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017171967 2017-09-07
JP2017-171967 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019050008A1 true WO2019050008A1 (ja) 2019-03-14

Family

ID=65634113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033283 WO2019050008A1 (ja) 2017-09-07 2018-09-07 シリカ含有絶縁性組成物

Country Status (8)

Country Link
US (1) US11961636B2 (ja)
EP (1) EP3680918B1 (ja)
JP (1) JP7231886B2 (ja)
KR (1) KR102563150B1 (ja)
CN (1) CN111095440B (ja)
RS (1) RS65075B1 (ja)
TW (1) TWI778124B (ja)
WO (1) WO2019050008A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230045117A1 (en) * 2020-11-04 2023-02-09 Nissan Chemical Corporation Aluminum-containing silica sol dispersed in nitrogen-containing solvent and resin composition
WO2024038900A1 (ja) * 2022-08-18 2024-02-22 日産化学株式会社 シリコーン化合物を含むシリカゾル及び樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461675B1 (ko) * 2020-07-07 2022-11-01 닛산 가가쿠 가부시키가이샤 탄화수소에 분산한 무기산화물졸 및 그의 제조방법
CN113088094B (zh) * 2021-02-23 2022-04-19 上杭鑫昌龙实业有限公司 一种高压电气绝缘填充膏及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829858A (ja) * 1981-08-13 1983-02-22 Nitto Electric Ind Co Ltd 電子部品封止用樹脂組成物
JPH11199218A (ja) * 1998-01-07 1999-07-27 Tatsumori:Kk 絶縁材料用微細球状シリカの製造方法
JP2001220496A (ja) * 1999-12-02 2001-08-14 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置素子用中空パッケージ
JP2006008754A (ja) * 2004-06-23 2006-01-12 Nippon Chem Ind Co Ltd シリカゲル粉末、絶縁性向上剤組成物及び絶縁性樹脂組成物
JP2010254548A (ja) * 2009-03-31 2010-11-11 Admatechs Co Ltd コロイダルシリカ及びその製造方法
WO2014199904A1 (ja) * 2013-06-10 2014-12-18 日産化学工業株式会社 シリカ含有樹脂組成物及びその製造方法並びにシリカ含有樹脂組成物の成形品
JP2016079195A (ja) 2014-10-10 2016-05-16 株式会社日立製作所 電気絶縁樹脂
JP2017095547A (ja) 2015-11-19 2017-06-01 日立金属株式会社 耐部分放電性塗料および絶縁電線

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO300125B1 (no) * 1988-03-16 1997-04-14 Nissan Chemical Ind Ltd Stabil væskeformig silikasol, samt fremgangsmåte ved fremstilling derav
JPH0764544B2 (ja) * 1989-12-15 1995-07-12 信越化学工業株式会社 シリカ粉末の製造方法
JP4631119B2 (ja) * 2000-01-28 2011-02-16 Jsr株式会社 疎水化コロイダルシリカの製造方法
CN1669922A (zh) * 2005-02-22 2005-09-21 山东海化集团有限公司 一种沉淀二氧化硅的制备方法
TWI457283B (zh) * 2008-02-12 2014-10-21 Nissan Chemical Ind Ltd 氧化矽膠體粒子及其製造方法、以及其有機溶劑分散氧化矽溶膠、聚合性化合物分散氧化矽溶膠及二羧酸酐分散氧化矽溶膠
JP6007851B2 (ja) * 2013-04-08 2016-10-12 日立金属株式会社 絶縁電線、およびそれを用いたコイル、モータ
JP2016222507A (ja) * 2015-06-01 2016-12-28 コニカミノルタ株式会社 合わせガラス用中間膜、それを用いた合わせガラスおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829858A (ja) * 1981-08-13 1983-02-22 Nitto Electric Ind Co Ltd 電子部品封止用樹脂組成物
JPH11199218A (ja) * 1998-01-07 1999-07-27 Tatsumori:Kk 絶縁材料用微細球状シリカの製造方法
JP2001220496A (ja) * 1999-12-02 2001-08-14 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置素子用中空パッケージ
JP2006008754A (ja) * 2004-06-23 2006-01-12 Nippon Chem Ind Co Ltd シリカゲル粉末、絶縁性向上剤組成物及び絶縁性樹脂組成物
JP2010254548A (ja) * 2009-03-31 2010-11-11 Admatechs Co Ltd コロイダルシリカ及びその製造方法
WO2014199904A1 (ja) * 2013-06-10 2014-12-18 日産化学工業株式会社 シリカ含有樹脂組成物及びその製造方法並びにシリカ含有樹脂組成物の成形品
JP2016079195A (ja) 2014-10-10 2016-05-16 株式会社日立製作所 電気絶縁樹脂
JP2017095547A (ja) 2015-11-19 2017-06-01 日立金属株式会社 耐部分放電性塗料および絶縁電線

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230045117A1 (en) * 2020-11-04 2023-02-09 Nissan Chemical Corporation Aluminum-containing silica sol dispersed in nitrogen-containing solvent and resin composition
US11708273B2 (en) * 2020-11-04 2023-07-25 Nissan Chemical Corporation Aluminum-containing silica sol dispersed in nitrogen-containing solvent and resin composition
WO2024038900A1 (ja) * 2022-08-18 2024-02-22 日産化学株式会社 シリコーン化合物を含むシリカゾル及び樹脂組成物

Also Published As

Publication number Publication date
EP3680918A1 (en) 2020-07-15
JPWO2019050008A1 (ja) 2020-11-05
US20200286644A1 (en) 2020-09-10
RS65075B1 (sr) 2024-02-29
JP7231886B2 (ja) 2023-03-02
CN111095440A (zh) 2020-05-01
US11961636B2 (en) 2024-04-16
TWI778124B (zh) 2022-09-21
EP3680918A4 (en) 2021-06-30
KR20200051645A (ko) 2020-05-13
CN111095440B (zh) 2022-01-04
KR102563150B1 (ko) 2023-08-07
TW201919998A (zh) 2019-06-01
EP3680918B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP7231886B2 (ja) シリカ含有絶縁性組成物
TWI457283B (zh) 氧化矽膠體粒子及其製造方法、以及其有機溶劑分散氧化矽溶膠、聚合性化合物分散氧化矽溶膠及二羧酸酐分散氧化矽溶膠
US9969867B2 (en) Silica sol and silica-containing epoxy resin composition
US8344048B2 (en) Epoxy resin-forming liquid preparation containing inorganic particle
JP7059932B2 (ja) 硬化膜形成組成物
CN114746366B (zh) 分散在含氮溶剂中的含铝硅溶胶、和树脂组合物
WO2022186312A1 (ja) 保護膜形成組成物
JP7494703B2 (ja) 酸無水物分散アルミナゾル、その用途およびその製造方法
TWI828809B (zh) 球狀鎂橄欖石粒子、其製造方法,及含有球狀鎂橄欖石粒子之樹脂組成物
JP7365010B2 (ja) 揮発性アルデヒドの発生を低減した金属酸化物粒子含有組成物
WO2024071033A1 (ja) アミン含有中空シリカ粒子の有機溶媒ゾル及びその製造方法
JP7360098B1 (ja) 粒度分布を有するシリカゾル及びその製造方法
WO2024096130A1 (ja) アルミニウム原子含有中空シリカ粒子及びその製造方法
JP2021070827A (ja) 酸無水物分散アルミナゾル、その用途およびその製造方法
TW202323356A (zh) 含環氧基之有機矽溶膠、環氧樹脂組成物、及其製造方法
WO2024038900A1 (ja) シリコーン化合物を含むシリカゾル及び樹脂組成物
TW202348673A (zh) 耐藥液性保護膜
TW202346401A (zh) 耐藥液性保護膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019541031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853127

Country of ref document: EP

Effective date: 20200407

WWE Wipo information: entry into national phase

Ref document number: P-2024/0061

Country of ref document: RS