WO2019049776A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2019049776A1
WO2019049776A1 PCT/JP2018/032311 JP2018032311W WO2019049776A1 WO 2019049776 A1 WO2019049776 A1 WO 2019049776A1 JP 2018032311 W JP2018032311 W JP 2018032311W WO 2019049776 A1 WO2019049776 A1 WO 2019049776A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
resin
resin composition
based resin
vinyl
Prior art date
Application number
PCT/JP2018/032311
Other languages
English (en)
French (fr)
Inventor
友也 深町
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to JP2018546723A priority Critical patent/JP7131389B2/ja
Priority to EP18853801.1A priority patent/EP3680291B1/en
Priority to EA202090451A priority patent/EA202090451A1/ru
Publication of WO2019049776A1 publication Critical patent/WO2019049776A1/ja
Priority to US16/806,230 priority patent/US10889710B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/159Heterocyclic compounds having oxygen in the ring having more than two oxygen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • the present invention relates to a resin composition containing a polyvinyl alcohol (hereinafter abbreviated as PVA) based resin.
  • PVA polyvinyl alcohol
  • Vinyl alcohol resins such as PVA resins and saponified ethylene-vinyl acetate copolymers (hereinafter abbreviated as EVOH) are excellent in solvent resistance, gas barrier properties, strength, transparency and the like, and thus they are used for foods and the like. It is used for molded articles such as packaging films.
  • a PVA-based resin is melt-molded, the smell of acetic acid (hereinafter also referred to as acetic acid odor) may be generated from degassing at the time of melt-molding and the discharge port of the extruder. Acetic acid odor may remain on the pellets and the like.
  • Patent Document 1 discloses a resin composition containing EVOH and a saturated aldehyde such as propanal in a predetermined amount. .
  • the resin composition described in the same document contains a saturated aldehyde in order to prevent coloring of the molded product and to suppress gelation at the time of melt molding, and the resin composition in the same document has an acetic acid odor. It is not intended to reduce.
  • the gist of the present invention contains a PVA resin (A) and a multimeric aldehyde compound (B), and the content of the multimeric aldehyde compound (B) is the same as that of the polyvinyl alcohol resin (A) 100.
  • the resin composition is 0.5 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 parts by weight with respect to the parts by weight.
  • the PVA-based resin (A) is preferably a melt-forming PVA-based resin (A1), and the viscosity-average polymerization degree of the PVA-based resin (A) is 200 to 800. Is preferred.
  • the saponification degree of the polyvinyl alcohol resin (A) is preferably 60 to 100 mol%, and the multimeric aldehyde compound (B) is preferably a paraaldehyde.
  • the acetic acid odor of the pellets of the resin composition is eliminated because degassing during melt molding of the PVA-based resin and the acetic acid odor generated from the discharge port of the extruder are reduced.
  • the acetic acid smell of molded articles molded using pellets is suppressed.
  • the action of the present invention is not clear, it is speculated that the multimeric aldehyde compound (B) has a masking effect on acetic acid, and does not adversely affect the melt-forming of the PVA-based resin (A). It is presumed that the generation of acetic acid odor can be suppressed.
  • the resin composition of the present invention contains a PVA-based resin (A) and a multimeric aldehyde compound (B). First, PVA-based resin (A) will be described.
  • the PVA-based resin (A) used in the present embodiment is one having a vinyl alcohol structural unit having a degree of saponification and a vinyl ester structural unit of an unsaponified portion.
  • the PVA-based resin (A) in addition to unmodified PVA, copolymer-modified PVA obtained by copolymerizing various monomers at the time of production of vinyl ester-based resin and saponifying the same, and unmodified PVA And various post-modified PVAs in which various functional groups are introduced by post-modification.
  • Such modification can be performed in the range in which the water solubility of the PVA-based resin (A) is not lost. Also, in some cases, the modified PVA may be further post-modified.
  • Examples of the monomer used for copolymerization with the vinyl ester-based monomer at the time of producing the vinyl ester-based resin include, for example, olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, etc .; acrylic acid, methacrylic Unsaturated acids such as acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or their salts, mono- or dialkyl esters thereof, etc. Nitriles such as acrylonitrile, methacrylonitrile, etc. Amides such as acrylamide, methacrylamide, etc.
  • Olefin sulfonic acids such as sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid or salts thereof; alkyl vinyl ethers; N-acrylamidomethyl trimethyl ammonium chloride; allyl trimethyl ammonium chloride; dimethyl N-vinyl pyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether; polyoxyethylene (meth) acrylate And polyoxyalkylene (meth) acrylates such as polyoxypropylene (meth) acrylate; polyoxyalkylene (meth) acrylamides such as polyoxyethylene (meth) acrylamide and polyoxypropylene (meth) acrylamide; Meta) acrylamide-1, 1-dimethylpropyl) ester; polyoxyalkylene vinyl ether such as polyoxy
  • post-modified PVA having a functional group introduced by post-modification for example, those having an acetoacetyl group by reaction with diketene, those having a polyalkylene oxide group by reaction with ethylene oxide, epoxy compounds, etc. What has a hydroxyalkyl group by reaction, or a thing obtained by making the aldehyde compound which has various functional groups react with PVA-type resin etc. can be mentioned.
  • the PVA-based resin (A) is preferably a melt-forming PVA-based resin (A1) in consideration of application to various molded articles.
  • the melt-forming PVA-based resin is a PVA-based resin suitable for melt-forming that can be heat-melt-formed, and among PVA-based resins, it has a relatively low melting point.
  • the melting point of the melt-forming PVA-based resin (A1) is usually 140 to 230 ° C., preferably 145 to 220 ° C., more preferably 150 to 200 ° C., still more preferably 155 to 200 ° C., particularly preferably 155 to 190 ° C. It is.
  • the melting point is a value measured by a differential scanning calorimeter (DSC) at a temperature elevation rate of 10 ° C./min.
  • DSC differential scanning calorimeter
  • a modified PVA-based resin is used as the melt-forming PVA-based resin (A1)
  • a PVA-based resin containing a structural unit having a primary hydroxyl group in the side chain, or an ethylene-modified PVA-based resin is preferable, and particularly a melt-forming
  • the PVA-type resin containing the structural unit which has a primary hydroxyl group in a side chain is preferable.
  • the number of primary hydroxyl groups in such a structural unit is usually 1 to 5, preferably 1 to 2, particularly preferably 1.
  • PVA-based resin containing a structural unit having a primary hydroxyl group in such a side chain for example, a modified PVA-based resin having a 1,2-diol structural unit in the side chain, and a hydroxyalkyl group structural unit in the side chain Modified PVA-type resin etc. are mentioned.
  • a modified PVA-based resin represented by the following general formula (1) containing a 1,2-diol structural unit in a side chain (hereinafter, "a modified 1, 2-diol structural unit containing modified PVA-based resin” It may be preferable to use the The portion other than the 1,2-diol structural unit is a vinyl alcohol structural unit and a vinyl ester structural unit of an unsaponifiable portion as in the case of a normal PVA resin.
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, and X represents a single bond or a bonded chain Represent)
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. It is desirable that R 1 to R 4 be all hydrogen atoms since the terminal end of the side chain is a primary hydroxyl group, but it is an alkyl group having 1 to 4 carbon atoms as long as the resin properties are not significantly impaired. Good.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a tert-butyl group.
  • a substituent which the said alkyl group may have a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, a sulfonic acid group etc. are mentioned, for example.
  • X is a single bond or a linked chain.
  • X is a single bond in terms of thermal stability and stability under high temperature and acidic conditions.
  • the linking chain is not particularly limited, and examples thereof include hydrocarbon groups such as an alkylene group, an alkenylene group, an alkynylene group, a phenylene group and a naphthylene group (these hydrocarbon groups are a fluorine atom, a chlorine atom, a bromine atom, etc. .
  • Each R independently represents a hydrogen atom or an optional substituent, and is preferably a hydrogen atom or an alkyl group (in particular, an alkyl group having 1 to 4 carbon atoms).
  • M is a natural number, preferably 1 to 10, and particularly preferably 1 to 5.
  • X is a bond chain
  • X is preferably an alkylene group having 6 or less carbon atoms, particularly a methylene group, or —CH 2 OCH 2 — from the viewpoint of viscosity stability and heat resistance during production.
  • the degree of saponification (measured according to JIS K 6726) of the PVA-based resin (A) used in the present embodiment is usually 60 to 100 mol%.
  • the preferred range of the degree of saponification varies depending on the modified species, and is, for example, usually 60 to 99.9 mol%, preferably 65 to 95 mol%, particularly preferably 70 to 90 mol in the case of an unmodified PVA resin. %. If the degree of saponification is too high, the melting point and the decomposition temperature tend to be close, melt molding tends to be difficult, and if too low, the water solubility tends to decrease.
  • the saponification degree of the side chain 1,2-diol structural unit-containing modified PVA resin is usually 60 to 99.9 mol%, preferably 65 to 99.8 mol%, particularly preferably 70 to 99. 0.5 mol%. If the degree of saponification is too low, the water solubility tends to decrease. Furthermore, the saponification degree of the ethylene-modified PVA-based resin modified with a small amount of ethylene is usually 60 mol% or more, preferably 70 to 95 mol%, particularly preferably 71 to 90 mol%. If the degree of saponification is too high, the melting point and the decomposition temperature tend to be close, melt molding tends to be difficult, and if too low, the water solubility tends to decrease.
  • the viscosity average polymerization degree (measured according to JIS K 6726) of the PVA-based resin (A) used in the present embodiment is usually 100 to 3000, preferably 150 to 2000, and particularly preferably 180 to 1000, More preferably, it is 200 to 800. If the viscosity average degree of polymerization is too large, the melt viscosity at the time of melt molding tends to be high, and melt molding tends to be difficult.
  • the modification ratio in the modified PVA-based resin that is, a structural unit derived from various monomers in the copolymer, or a functional group introduced by post-modification
  • the content of is not generally specified because the characteristics greatly vary depending on the type of functional group, but it is usually 0.1 to 20 mol%.
  • the modification ratio is usually 0.1 to 20 mol%, preferably 0.5 to 10 mol% And particularly preferably 1 to 8 mol%. If the modification rate is too high or too low, melt forming tends to be difficult.
  • the content of 1,2-diol structural unit in PVA-based resin is 1 H-NMR spectrum of PVA-based resin having a degree of saponification of 100 mol% (solvent: DMSO-d 6 , internal standard: tetramethylsilane) It can be obtained from Specifically, it can be calculated from peak areas derived from hydroxyl group protons, methine protons and methylene protons in the 1,2-diol structural unit, methylene protons in the main chain, protons of hydroxyl groups linked to the main chain, and the like.
  • the modification ratio is usually 0.1 to 15 mol%, preferably 0.5 to 10 mol%, and further preferably It is preferably 1 to 10 mol%, particularly preferably 5 to 9 mol%. If the modification ratio is too high, the water solubility tends to decrease, and if it is too low, melt molding tends to be difficult.
  • the PVA-based resin (A) used in the present embodiment may be of one type or a mixture of two or more types.
  • two or more types of PVA resin (A) for example, a combination of two or more unmodified PVA resins having different degrees of saponification, viscosity average degree of polymerization, melting point, etc .; unmodified PVA resins and modified PVA Combination with a resin; combination of two or more modified PVA-based resins having different saponification degree, viscosity average degree of polymerization, melting point, kind of functional group, modification rate, etc. may be mentioned, but saponification degree, viscosity average polymerization The average value of the degree, the modification rate, etc. is preferably within the preferred range of the present embodiment.
  • the bonding mode of the main chain of the PVA resin (A) used in the present embodiment is mainly 1,3-diol bond, and the content of 1,2-diol bond is about 1.5 to 1.7 mol%
  • the content of 1,2-diol bond can be increased by raising the polymerization temperature at the time of polymerizing the vinyl ester type monomer, and the content thereof is 1.8 mol% or more, and further, 2 It can be increased to .0 to 3.5 mol%.
  • PVA-type resin (A) used by this embodiment the method of superposing
  • vinyl ester-based monomer examples include vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, Vinyl pivalate, vinyl octylate, vinyl monochloroacetate, vinyl adipate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, vinyl trifluoroacetate, etc. can be used, but the price and availability Vinyl acetate is preferably used in view of easiness of
  • the polymerization of the vinyl ester-based monomer can be carried out by any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization and the like. Among them, it is preferable to carry out solution polymerization which can efficiently remove the heat of reaction under reflux.
  • An alcohol is usually used as a solvent for solution polymerization, and preferably a lower alcohol having 1 to 3 carbon atoms is used.
  • saponification of the obtained polymer known saponification methods conventionally performed can be adopted. That is, it can be carried out using an alkali catalyst or an acid catalyst in a state in which the polymer is dissolved in an alcohol or a water / alcohol solvent.
  • the alkali catalyst for example, hydroxides and alcoholates of alkali metals such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, lithium methylate and the like can be used.
  • a transesterification reaction using an alkali catalyst in an anhydrous alcohol solvent is preferably used in view of the reaction rate and the ability to reduce impurities such as fatty acid salts.
  • the reaction temperature of the saponification reaction is usually 20 to 60.degree. If the reaction temperature is too low, the reaction rate tends to decrease and the reaction efficiency tends to decrease. If the reaction temperature is too high, the reaction solvent may be at or above the boiling point, and safety in production tends to decrease.
  • saponification under high pressure using a column-type continuous saponification column or the like with high pressure resistance it is possible to saponify at a higher temperature, for example, 80 to 150 ° C., and a small amount of saponification catalyst It is also possible to obtain one with a high degree of saponification for a short time.
  • the side chain 1,2-diol structural unit-containing modified PVA-based resin can be produced by a known production method. For example, it can be manufactured by the method described in JP-A-2002-284818, JP-A-2004-285143, and JP-A-2006-95825.
  • the resin composition of the present invention contains a specific amount of the multimeric aldehyde compound (B).
  • the multimeric aldehyde compound is slightly mixed during the production of the PVA-based resin, but in the present invention, the multimeric aldehyde compound is further contained separately from the multimeric aldehyde compound contained in the production of the PVA-based resin.
  • the content thereof is in the range of 0.5 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 parts by weight with respect to 100 parts by weight of the PVA resin (A).
  • the multimeric aldehyde compound means a cyclic complex obtained by polymerizing two or more acetaldehydes.
  • Examples of the multimeric aldehyde compound (B) used in the present embodiment include paraaldehyde, methaldehyde and the like, and preferably, paraaldehyde alone, methaldehyde alone, or a mixture of paraaldehyde and metaaldehyde be able to.
  • the content of the multimeric aldehyde compound (B) in the resin composition of the present embodiment is 0.5 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 parts by weight with respect to 100 parts by weight of the PVA-based resin (A) This is very important. As described above, although the action of the present invention is not clear, it is presumed that the multimeric aldehyde compound (B) has a masking effect on acetic acid, and adversely affects the melt-forming of the PVA-based resin (A) It is presumed that the generation of odor (specifically, acetic acid odor) can be suppressed.
  • the content of the multimeric aldehyde compound (B) is preferably 0.5 ⁇ 10 -4 to 20 ⁇ 10 -4 parts by weight, particularly preferably 0. 10 -4 parts by weight, per 100 parts by weight of the PVA-based resin (A). It is 5 ⁇ 10 -4 to 10 ⁇ 10 -4 parts by weight.
  • the content of the multimeric aldehyde compound (B) is too small, the effect of suppressing the acetic acid odor tends to be difficult to be obtained, and when the content is too large, the thermal deterioration of the PVA resin (A) is promoted, There is a tendency for the molded article to be easily colored during melt molding.
  • the method of measuring the content of the multimeric aldehyde compound (B) in the resin composition is as follows. First, a standard solution for quantitative determination is prepared, the amount of the multimeric aldehyde compound (B) is measured by head space gas chromatography, and the multimeric aldehyde compound (B) contained in the resin composition is measured using this result. Quantify. (1) Preparation of Standard Solution for Determination 1 g of multimeric aldehyde compound (B) is collected in a well-washed glass measuring flask (100 mL), dissolved in acetone, and the concentration of multimeric aldehyde compound (B) 10000 mg / L Solution in acetone.
  • the resin composition of the present invention may contain other components such as a plasticizer in addition to the PVA-based resin (A) and the multimeric aldehyde compound (B).
  • plasticizers include compounds obtained by adding ethylene oxide to polyhydric alcohols such as aliphatic polyhydric alcohols (for example, ethylene glycol, hexanediol, glycerin, trimethylolpropane, diglycerin, etc.); various alkylene oxides (for example, Ethylene oxide, propylene oxide, mixed adduct of ethylene oxide and propylene oxide, etc .; sugars (eg, sorbitol, mannitol, pentaerythritol, xylol, arabinose, ribulose etc.); phenol derivatives such as bisphenol A and bisphenol S; Amide compounds such as methyl pyrrolidone; Glucosides such as ⁇ -methyl-D-glucoside; and the like
  • the content of the plasticizer in the case of containing a plasticizer in the resin composition of the present invention is preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of the PVA resin (A), and particularly preferably Is 1 to 30 parts by weight, more preferably 2 to 20 parts by weight. If the amount of the plasticizer is too small, the melt moldability tends to be lowered, and if the amount is too large, the properties (gas barrier properties, water solubility, etc.) of the PVA-based resin tend to be impaired.
  • thermoplastic resin for example, polyethylene, polypropylene, polyester etc.
  • perfume foaming agent, deodorant, extender
  • filler for example, talc, clay, montmorillonite, calcium carbonate, etc.
  • Inorganic fillers such as glass beads, glass fibers, silica, mica, alumina, hydrotalcite, titanium oxide, zirconium oxide, boron nitride, aluminum nitride, organic fillers such as melamine-formalin resin), release agents, ultraviolet absorption Agents, antioxidants, processing stabilizers, weathering stabilizers, fungicides, preservatives and the like, and these additives can be appropriately blended.
  • Method of producing resin composition for example, (i) a method of adding a multimeric aldehyde compound (B) to a PVA-based resin (A), (ii) before saponification of a PVA-based resin (A) A method of saponifying a polymer, ie, a polymer obtained from a polymerization component containing at least a vinyl ester monomer, after adding the polymer aldehyde compound (B), (iii) a polymer aldehyde compound (B) and an alcohol The method etc. which immerse PVA-type resin (A) in mixed solution are mentioned. Among them, the method (i) is preferable in terms of control of the content.
  • the shape of the resin composition of the present invention is usually cylindrical (pellet-like) or powdery. Since the PVA-based resin (A) is obtained in the form of powder, it is preferable to melt and knead it with the multimeric aldehyde compound (B) to make it into a cylindrical shape to make a raw material pellet.
  • the raw material pellet is generally used as a raw material for various melt moldings, and the shape thereof is usually 0.5 to 4 mm, preferably 1 to 3 mm, particularly preferably 1.5 to 2.5 mm in diameter. is there.
  • the length is usually 0.5 to 4 mm, preferably 1 to 3 mm, particularly preferably 1.5 to 2.5 mm.
  • an extruder In order to make the resin composition of the present invention into raw material pellets, it is preferable to use an extruder.
  • an extruder although a single-screw extruder and a twin-screw extruder can be used, a twin-screw extruder is preferable at the point from which sufficient kneading
  • the L / D (screw length / screw diameter) of such an extruder is usually 10 to 80, preferably 15 to 70, and particularly preferably 20 to 60. If this L / D is too small, kneading tends to be insufficient and the discharge tends to be unstable. On the contrary, if it is too large, the temperature of the resin composition becomes too high due to excessive heat generation due to shearing. It tends to cause deterioration.
  • the screw speed of the extruder is usually 10 to 1000 rpm, preferably 30 to 700 rpm, particularly preferably 50 to 500 rpm.
  • the rotation speed is too small, the discharge tends to be unstable, and when it is too large, excessive shear heat generation tends to cause deterioration of the resin composition.
  • the temperature of the resin composition in the extruder is generally 140 to 280 ° C., preferably 150 to 260 ° C., and particularly preferably 170 to 240 ° C., although it may not be general according to the desired throughput etc. Be When the resin temperature is too high, the PVA-based resin (A) tends to be thermally deteriorated and easily colored, and conversely, when the resin temperature is too low, the viscosity of the resin becomes high, and the extruder is loaded or PVA There is a tendency that the resin (A) does not fully melt.
  • the adjustment method of the resin temperature is not particularly limited, a method of appropriately setting the temperature of the cylinder in the extruder or a method of controlling by the number of revolutions of the extruder is usually used.
  • melt-forming the raw material pellet using the resin composition of the present invention obtained above for example, extrusion molding (T-die extrusion, inflation extrusion, blow molding, melt spinning, profile extrusion, etc.), An injection molding method is mentioned.
  • T-die extrusion, inflation extrusion, blow molding, melt spinning, profile extrusion, etc. An injection molding method is mentioned.
  • Producing various molded articles such as films, sheets, containers (bottles and tanks, etc.), fibers, rods, tubes, etc. by melt-forming, particularly melt-extrusion of raw material pellets using the resin composition of the present invention Can.
  • a film or sheet which is a molded product of a resin composition can be used as it is for various applications, usually, it is laminated with another base material in order to further increase the strength or to impart other functions. It can be a laminate.
  • Molded articles produced by melt-molding the resin composition of the present invention include, for example, films, sheets, pipes, disks, rings, bags, bottles, fibers and the like in various shapes. be able to. Specifically, they are useful as various packaging materials such as electronic members, foods, beverages (coffee capsules), cosmetics, pharmaceuticals, agricultural chemicals, industrial chemicals, etc., water-soluble cores, and filaments for hot melt lamination molding.
  • the resin composition of the present invention is to suppress the acetic acid odor generated from the degassing at the time of melt molding of the resin composition and the discharge port of the extruder, etc. when producing the raw material pellets and molded products as described above. Since it can, the acetic acid smell of the obtained pellet or molded article can be suppressed.
  • Example 1 [Production of Resin Composition 1] Unmodified PVA was produced by a conventional method. The degree of saponification of the obtained PVA was 73 mol%, and the viscosity average degree of polymerization was 550. A resin composition 1 was obtained by adding 0.005 part of paraaldehyde to 100 parts of the obtained unmodified PVA.
  • the odor of the resin composition 1 was evaluated by the following method using a plastograph (a small torque detector by a mixer extruder) manufactured by Brabender. 55 g of the resin composition 1 was weighed and put into a plastograph which had been heated to 200 ° C. in advance, and the resin composition 1 weighed under the conditions of 20 rpm of the kneader was charged within 90 seconds, and a sample lid was used. I closed the inlet. After sample introduction, the mixture was kneaded at 200 ° C. and 50 rpm for 2 minutes. Thereafter, the kneader was stopped and the sample inlet was opened.
  • a plastograph a small torque detector by a mixer extruder
  • Example 2 [Production of Resin Composition 2] Unmodified PVA was produced by a conventional method. The degree of saponification of the obtained PVA was 78 mol%, and the viscosity average degree of polymerization was 550. A resin composition 2 was obtained by adding 0.005 part of paraaldehyde to 100 parts of the obtained unmodified PVA.
  • Example 3 [Production of Resin Composition 3] In a reaction vessel equipped with a reflux condenser, a dropping device, and a stirrer, 280 parts of vinyl acetate (40% of the whole is used for initial charging), 185.5 parts of methanol, and 3,4-diacetoxy-1-butene 35 .36 parts (40% of the whole was used for the initial charge) was charged, the temperature was raised under nitrogen flow with stirring, and after reaching the boiling point, 0.093 parts of acetyl peroxide was added to start polymerization . Further, after 0.75 hours from the start of polymerization, 420 parts of vinyl acetate and 53.04 parts of 3,4-diacetoxy-1-butene were dropped at an equal speed over 12.5 hours.
  • the solution is diluted with methanol to adjust the solid concentration to 50%, and the methanol solution is charged in a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding a ratio of 4.1 mmol per 1 mol of the total amount of the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit in the copolymer.
  • saponification precipitates, and after becoming particulate, 1.0 equivalent of sodium hydroxide for acetic acid for neutralization is added, it is separated by filtration, well washed with methanol and hot air It was dried in a drier to obtain a side chain 1,2-diol structural unit-containing modified PVA-based resin.
  • the saponification degree of the obtained modified PVA-based resin containing a side chain 1,2-diol structural unit is the amount of alkali consumption required for hydrolysis of the remaining vinyl acetate and structural units of 3,4-diacetoxy-1-butene in the resin. It was 86 mol% when analyzed by. Moreover, when the viscosity average polymerization degree was analyzed according to JIS K 6726, it was 450. In addition, the content of 1,2-diol structural unit represented by the above formula (1) is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetramethylsilane, 50 ° C.) It was 6 mol%, when it computed from the integral value measured.
  • a resin composition 3 was obtained by adding 0.005 part of paraaldehyde to 100 parts of the side chain 1,2-diol structural unit-containing modified PVA-based resin obtained above.
  • Example 4 [Production of Resin Composition 4] Unmodified PVA was produced by a conventional method. The degree of saponification of the obtained PVA was 88 mol%, and the viscosity average degree of polymerization was 550. A resin composition 4 was obtained by adding 0.005 part of paraaldehyde to 100 parts of the obtained unmodified PVA.
  • Example 5 [Production of Resin Composition 5]
  • 280 parts of vinyl acetate (40% of the whole is used for initial charging)
  • 185.5 parts of methanol 185.5 parts
  • 3,4-diacetoxy-1-butene 35 .36 parts (40% of the whole was used for the initial charge) was charged
  • the temperature was raised under nitrogen flow with stirring
  • 0.093 parts of acetyl peroxide was added to start polymerization .
  • 420 parts of vinyl acetate and 53.04 parts of 3,4-diacetoxy-1-butene were dropped at an equal speed over 12.5 hours.
  • the solution is diluted with methanol to adjust the solid concentration to 50%, and the methanol solution is charged in a kneader, and a 2% methanol solution of sodium in sodium hydroxide is maintained while maintaining the solution temperature at 35 ° C.
  • Saponification was carried out by adding a ratio of 4.3 mmol to 1 mol of the total amount of the vinyl acetate structural unit and the 3,4-diacetoxy-1-butene structural unit in the copolymer. As saponification proceeds and saponification precipitates and becomes particulate, a 2% methanol solution of sodium in sodium hydroxide is further added to a vinyl acetate structural unit and a 3,4-diacetoxy-1-butene structural unit.
  • Saponification was carried out by adding 8 millimoles to a total amount of 1 mole. Then, 0.8 equivalent of sodium hydroxide is added to acetic acid for neutralization, it is separated by filtration, washed well with methanol and dried in a hot air drier, and modified PVA containing side chain 1,2-diol structural unit System resin was obtained.
  • the saponification degree of the obtained modified PVA-based resin containing a side chain 1,2-diol structural unit is the amount of alkali consumption required for hydrolysis of the remaining vinyl acetate and structural units of 3,4-diacetoxy-1-butene in the resin. It was 99.2 mol% when analyzed by. Moreover, when the viscosity average polymerization degree was analyzed according to JIS K 6726, it was 450. In addition, the content of 1,2-diol structural unit represented by the above formula (1) is 1 H-NMR (300 MHz proton NMR, d 6 -DMSO solution, internal standard substance; tetramethylsilane, 50 ° C.) It was 6 mol%, when it computed from the integral value measured.
  • a resin composition 5 was obtained by adding 0.005 part of paraaldehyde to 100 parts of the side chain 1,2-diol structural unit-containing modified PVA-based resin obtained above.
  • the resin composition 5 was measured for the content of paraaldehyde in the same manner as in Example 1, and the acetic acid odor was evaluated. The results are shown in Table 3.
  • Example 1 In Example 1, only non-modified PVA (73 mol% of saponification degree, viscosity average degree of polymerization 550) was used, and addition of paraaldehyde was not performed. The content of paraaldehyde was measured in the same manner as in Example 1 for the unmodified PVA, and the acetic acid odor was evaluated. The results are shown in Table 3.
  • Comparative example 2 A resin composition 6 was obtained in the same manner as in Example 1 except that 0.002 parts of propanal was added instead of 0.005 part of paraaldehyde. The content of propanal was measured for the obtained resin composition 6 in the same manner as in Example 1, and the acetic acid odor was evaluated. In addition, in the comparative example 2, preparation of the standard solution in [the measuring method of content of a multimer aldehyde compound (B)] of Example 1, and preparation of a calibration curve used instead of paraaldehyde for propanal. The results are shown in Table 3.
  • Reference Example 1 A resin composition 7 was obtained by adding 0.005 part of paraaldehyde to 100 parts of a saponified ethylene-vinyl acetate copolymer (content of ethylene structural unit: 32 mol%, saponification degree: 99.9%). The content of paraaldehyde was measured in the same manner as in Example 1 for the resulting resin composition 7, and the acetic acid odor was evaluated. The results are shown in Table 3.
  • the resin compositions of Examples 1 to 5 containing the multimeric aldehyde compound (B) in the amount specified in the present invention did not have an acetic acid odor.
  • the resin composition of Comparative Example 1 in which the amount of the multimeric aldehyde compound (B) is a trace amount (which was detected but could not be quantified) has an acetic acid odor, and the multimeric aldehyde compound (B) However, Comparative Example 2 containing propanal also had an acetic acid odor.
  • Comparative Example 1 using EVOH there was no acetic acid odor even if the amount of the multimeric aldehyde compound (B) was small.
  • the resin composition of the present invention degassing during melt molding of PVA-based resin and the acetic acid odor generated from the discharge port of the extruder are reduced, and the acetic acid odor of the molded product is also suppressed. It is useful as a raw material for various packaging materials such as beverages, cosmetics, pharmaceuticals, agricultural chemicals, and industrial chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、ポリビニルアルコール(PVA)系樹脂の溶融成形時に発生し、成形品に残存し得る酢酸臭が低減される樹脂組成物を提供することを課題とする。本発明の樹脂組成物は、PVA系樹脂(A)と、多量体アルデヒド化合物(B)とを含有し、前記多量体アルデヒド化合物(B)の含有量が、前記PVA系樹脂(A)100重量部に対して、0.5×10-4~100×10-4重量部である。

Description

樹脂組成物
 本発明は、ポリビニルアルコール(以下、PVAと略記する。)系樹脂を含有する樹脂組成物に関する。
 PVA系樹脂やエチレン-酢酸ビニル共重合体ケン化物(以下、EVOHと略記する。)などのビニルアルコール系樹脂は、耐溶剤性、ガスバリア性、強度、透明性などに優れることから、食品などの包装用フィルムなどの成形品に用いられている。
 しかしながら、PVA系樹脂を溶融成形する場合、溶融成形時の脱気および押出機の吐出口等から酢酸の臭い(以下、酢酸臭ともいう。)が発生することがあり、溶融成形して得られたペレットなどに酢酸臭が残存することがある。かかる酢酸臭を低減させるために、香料などを用いて他の匂いを付ける方法が挙げられるが、かかるペレットを用いて食品などの包装用フィルムを成形した場合、被包装物の商品価値が損なわれるおそれがある。
 一方、樹脂の熱劣化を抑制し、臭気を抑えることを目的とする技術として、例えば特許文献1には、EVOHと所定量のプロパナール等の飽和アルデヒドを含有する樹脂組成物が開示されている。
日本国特開2015-71692号公報
 しかしながら、同文献に記載の樹脂組成物には、成形品の着色の防止や溶融成形時のゲル化を抑制するために飽和アルデヒドが含有されており、同文献の樹脂組成物は、酢酸臭を低減することを目的とするものではない。
 本発明ではこのような背景下において、PVA系樹脂の溶融成形時に発生し、成形品に残存し得る酢酸臭が低減される樹脂組成物を提供することを目的とする。
 しかるに本発明者は、かかる事情に鑑み鋭意研究を重ねた結果、PVA系樹脂に対して特定のアルデヒド化合物を特定量含有する樹脂組成物が上記課題を解決することを見出し、本発明を完成した。
 すなわち、本発明の要旨は、PVA系樹脂(A)と、多量体アルデヒド化合物(B)とを含有し、前記多量体アルデヒド化合物(B)の含有量が、前記ポリビニルアルコール系樹脂(A)100重量部に対して、0.5×10-4~100×10-4重量部である樹脂組成物である。
 本発明の樹脂組成物は、前記PVA系樹脂(A)が溶融成形用PVA系樹脂(A1)であることが好ましく、前記PVA系樹脂(A)の粘度平均重合度が200~800であることが好ましい。
 また、前記ポリビニルアルコール系樹脂(A)のケン化度が60~100モル%であることが好ましく、前記多量体アルデヒド化合物(B)がパラアルデヒドであることが好ましい。
 本発明の樹脂組成物によれば、PVA系樹脂の溶融成形時の脱気および押出機の吐出口等から発生する酢酸臭が低減されるので、樹脂組成物のペレットの酢酸臭がなくなり、かかるペレットを用いて成形された成形品の酢酸臭が抑えられる。本発明の作用は明らかではないが、多量体アルデヒド化合物(B)は酢酸に対して、マスキング効果を有すると推測され、PVA系樹脂(A)の溶融成形時に悪影響を与えることなく、臭気(具体的に、酢酸臭)の発生を抑制することができると推測される。
 以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されるものではない。
 本発明の樹脂組成物は、PVA系樹脂(A)と、多量体アルデヒド化合物(B)とを含有する。まず、PVA系樹脂(A)について説明する。
 〔PVA系樹脂(A)〕
 本実施形態で用いられるPVA系樹脂(A)は、ケン化度相当のビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位を有するものである。
 本実施形態では、PVA系樹脂(A)として、未変性PVAの他に、ビニルエステル系樹脂の製造時に各種モノマーを共重合させ、これをケン化して得られる共重合変性PVAや、未変性PVAに後変性によって各種官能基を導入した各種の後変性PVAが挙げられる。かかる変性は、PVA系樹脂(A)の水溶性が失われない範囲で行うことができる。また、場合によっては、変性PVAを更に後変性させてもよい。
 ビニルエステル系樹脂の製造時にビニルエステル系モノマーとの共重合に用いられるモノマーとしては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩、そのモノ又はジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;N-アクリルアミドメチルトリメチルアンモニウムクロライド;アリルトリメチルアンモニウムクロライド;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類あるいはそのアシル化物等の誘導体を挙げることができる。
 また、3,4-ジヒドロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4,5-ジヒドロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、グリリンモノアリルエーテル、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル、ビニルエチレンカーボネート、2,2-ジメチル-4-ビニル-1,3-ジオキソラン等のジオールを有する化合物などが挙げられる。
 これらのモノマーの含有量は、水溶性を失わない範囲であり、例えば、エチレンやプロピレン等のオレフィン類は5モル%以下が好ましい。
 また、後変性によって官能基が導入された後変性PVAとしては、例えば、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基を有するもの、あるいは各種官能基を有するアルデヒド化合物をPVA系樹脂と反応させて得られたもの等を挙げることができる。
 本発明においてPVA系樹脂(A)は、各種成形品への適用を考慮して、溶融成形用PVA系樹脂(A1)であることが好ましい。なお、溶融成形用PVA系樹脂とは、熱溶融成形が可能な溶融成形に適したPVA系樹脂であり、PVA系樹脂の中でも比較的低融点のものをいう。溶融成形用PVA系樹脂(A1)の融点は、通常、140~230℃、好ましくは145~220℃、より好ましくは150~200℃、更に好ましくは155~200℃、特に好ましくは155~190℃である。
 なお、融点は、示差走査熱量計(DSC)で昇降温速度10℃/minで測定した値である。
 上記のように比較的低融点とするためには、PVA系樹脂のケン化度を低くする、変性PVA系樹脂を用いること等が挙げられる。
 溶融成形用PVA系樹脂(A1)として、変性PVA系樹脂を用いる場合には、側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂や、エチレン変性PVA系樹脂が好ましく、特に、溶融成形性に優れる点で、側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂が好ましい。かかる構造単位における一級水酸基の数は、通常1~5個であり、好ましくは1~2個であり、特に好ましくは1個である。また、一級水酸基以外にも二級水酸基を有することが好ましい。
 このような側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂としては、例えば、側鎖に1,2-ジオール構造単位を有する変性PVA系樹脂、側鎖にヒドロキシアルキル基構造単位を有する変性PVA系樹脂等が挙げられる。中でも、特に下記一般式(1)で表される、側鎖に1,2-ジオール構造単位を含有する変性PVA系樹脂(以下、「側鎖1,2-ジオール構造単位含有変性PVA系樹脂」と称することがある。)を用いることが好ましい。
 なお、1,2-ジオール構造単位以外の部分は、通常のPVA系樹脂と同様、ビニルアルコール構造単位と未ケン化部分のビニルエステル構造単位である。
Figure JPOXMLDOC01-appb-C000001
(上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~4のアルキル基を表し、Xは単結合又は結合鎖を表す。)
 上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~4のアルキル基を表す。R~Rは、すべて水素原子であることが側鎖の末端が一級水酸基となり望ましいが、樹脂特性を大幅に損なわない程度の量であれば炭素数1~4のアルキル基であってもよい。当該炭素数1~4のアルキル基としては特に限定しないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。当該アルキル基が有していてもよい置換基としては、例えば、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等が挙げられる。
 上記一般式(1)中、Xは単結合又は結合鎖である。Xは、熱安定性の点や高温下や酸性条件下での安定性の点で、単結合であることが好ましい。
 上記結合鎖としては、特に限定されず、例えば、アルキレン基、アルケニレン基、アルキニレン基、フェニレン基、ナフチレン基等の炭化水素基(これらの炭化水素基は、フッ素原子、塩素原子、臭素原子等のハロゲン基等で置換されていてもよい。)の他、-O-、-(CHO)-、-(OCH-、-(CHO)CH-、-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等が挙げられる。Rは各々独立して水素原子又は任意の置換基であり、水素原子又はアルキル基(特に炭素数1~4のアルキル基)が好ましい。またmは自然数であり、好ましくは1~10、特に好ましくは1~5である。
 Xが結合鎖の場合は、製造時の粘度安定性や耐熱性等の点で、Xは炭素数6以下のアルキレン基、特にメチレン基、あるいは-CHOCH-が好ましい。
 上記一般式(1)で表される1,2-ジオール構造単位における特に好ましい構造は、R~Rがすべて水素原子であり、Xが単結合である。
 本実施形態で用いられるPVA系樹脂(A)のケン化度(JIS K 6726に準拠して測定)は、通常、60~100モル%である。
 ケン化度の好ましい範囲は、変性種によって異なり、例えば、未変性PVA系樹脂の場合、通常、60~99.9モル%であり、好ましくは65~95モル%、特に好ましくは70~90モル%である。かかるケン化度が高すぎると融点と分解温度が近くなり、溶融成形が困難になる傾向があり、低すぎると水溶性が低下する傾向がある。
 また、側鎖1,2-ジオール構造単位含有変性PVA系樹脂のケン化度は、通常、60~99.9モル%であり、好ましくは65~99.8モル%、特に好ましくは70~99.5モル%である。かかるケン化度が低すぎると水溶性が低下する傾向がある。
 更に、少量のエチレンで変性されたエチレン変性PVA系樹脂のケン化度は、通常、60モル%以上であり、好ましくは70~95モル%、特に好ましくは71~90モル%である。かかるケン化度が高すぎると融点と分解温度が近くなり、溶融成形が困難になる傾向があり、低すぎると水溶性が低下する傾向がある。
 本実施形態で用いられるPVA系樹脂(A)の粘度平均重合度(JIS K 6726に準拠して測定)は、通常、100~3000であり、好ましくは150~2000、特に好ましくは180~1000、更に好ましくは200~800である。かかる粘度平均重合度が大きすぎると溶融成形時の溶融粘度が高くなり、溶融成形が困難となる傾向がある。
 また、PVA系樹脂(A)が変性PVA系樹脂である場合、かかる変性PVA系樹脂中の変性率、すなわち共重合体中の各種モノマーに由来する構成単位、あるいは後変性によって導入された官能基の含有量は、官能基の種類によって特性が大きく異なるため一概には言えないが、通常、0.1~20モル%である。
 PVA系樹脂(A)が側鎖1,2-ジオール構造単位含有変性PVA系樹脂である場合の変性率は、通常、0.1~20モル%であり、好ましくは0.5~10モル%、特に好ましくは1~8モル%である。かかる変性率が高すぎても低すぎても溶融成形が困難になる傾向がある。
 なお、PVA系樹脂中の1,2-ジオール構造単位の含有率は、ケン化度100モル%のPVA系樹脂のH-NMRスペクトル(溶媒:DMSO-d、内部標準:テトラメチルシラン)から求めることができる。具体的には1,2-ジオール構造単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出することができる。
 PVA系樹脂(A)が少量のエチレンで変性されたエチレン変性PVA系樹脂である場合の変性率は、通常、0.1~15モル%であり、好ましくは0.5~10モル%、更に好ましくは1~10モル%、特に好ましくは5~9モル%である。かかる変性率が高すぎると水溶性が低下する傾向があり、低すぎると溶融成形が困難となる傾向がある。
 本実施形態で用いられるPVA系樹脂(A)は、一種類であっても、二種類以上の混合物であってもよい。PVA系樹脂(A)を二種類以上用いる場合としては、例えば、ケン化度、粘度平均重合度、融点などが異なる二種以上の未変性PVA系樹脂の組み合わせ;未変性PVA系樹脂と変性PVA系樹脂との組み合わせ;ケン化度、粘度平均重合度、融点、官能基の種類や変性率などが異なる二種以上の変性PVA系樹脂の組み合わせ等が挙げられるが、ケン化度、粘度平均重合度、変性率などの平均値は本実施形態の好ましい範囲内であることが好ましい。
 本実施形態で用いられるPVA系樹脂(A)の主鎖の結合様式は1,3-ジオール結合が主であり、1,2-ジオール結合の含有量は1.5~1.7モル%程度であるが、ビニルエステル系モノマーを重合する際の重合温度を高温にすることによって1,2-ジオール結合の含有量を増やすことができ、その含有量を1.8モル%以上、更には2.0~3.5モル%に増やすことができる。
 本実施形態で用いられるPVA系樹脂(A)の製造方法としては、例えば酢酸ビニルなどのビニルエステル系モノマーを重合し、ケン化して製造する方法が挙げられる。
 上記ビニルエステル系モノマーとしては、例えば、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル、トリフロロ酢酸ビニル等を用いることができるが、価格や入手の容易さの観点で、酢酸ビニルが好ましく用いられる。
 ビニルエステル系モノマーの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。溶液重合の溶媒としては、通常はアルコールが用いられ、好ましくは炭素数1~3の低級アルコールが用いられる。
 得られた重合体のケン化についても、従来より行われている公知のケン化方法を採用することができる。すなわち、重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。
 前記アルカリ触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。
 通常、無水アルコール系溶媒下、アルカリ触媒を用いたエステル交換反応が反応速度の点や脂肪酸塩等の不純物を低減できるなどの点で好適に用いられる。
 ケン化反応の反応温度は、通常20~60℃である。反応温度が低すぎると、反応速度が小さくなり反応効率が低下する傾向があり、高すぎると反応溶媒の沸点以上となる場合があり、製造面における安全性が低下する傾向がある。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80~150℃でケン化することが可能であり、少量のケン化触媒も短時間、高ケン化度のものを得ることが可能である。
 また、側鎖1,2-ジオール構造単位含有変性PVA系樹脂は、公知の製造方法により製造することができる。例えば、日本国特開2002-284818号公報、日本国特開2004-285143号公報、日本国特開2006-95825号公報に記載されている方法により製造することができる。
 〔多量体アルデヒド化合物(B)〕
 本発明の樹脂組成物は多量体アルデヒド化合物(B)を特定量含有する。多量体アルデヒド化合物はPVA系樹脂の製造時に僅かながら混入するものであるが、本発明においては、PVA系樹脂製造時に含まれる多量体アルデヒド化合物とは別に、さらに多量体アルデヒド化合物を含有させることにより、その含有量をPVA系樹脂(A)100重量部に対して0.5×10-4~100×10-4重量部の範囲とする。なお、本明細書において、多量体アルデヒド化合物とは、二つ以上のアセトアルデヒドを重合させて得られる環状の複合体を意味する。
 本実施形態で用いられる多量体アルデヒド化合物(B)としては、例えば、パラアルデヒド、メタアルデヒド等が挙げられ、好ましくは、パラアルデヒド単独、メタアルデヒド単独、又はパラアルデヒドとメタアルデヒドとの混合物を用いることができる。
 本実施形態の樹脂組成物における多量体アルデヒド化合物(B)の含有量は、PVA系樹脂(A)100重量部に対して、0.5×10-4~100×10-4重量部であることが重要である。前述のように、本発明の作用は明らかではないが、多量体アルデヒド化合物(B)は酢酸に対して、マスキング効果を有すると推測され、PVA系樹脂(A)の溶融成形時に悪影響を与えることなく、臭気(具体的に、酢酸臭)の発生を抑制することができると推測される。
 多量体アルデヒド化合物(B)の含有量は、PVA系樹脂(A)100重量部に対して、好ましくは0.5×10-4~20×10-4重量部であり、特に好ましくは0.5×10-4~10×10-4重量部である。多量体アルデヒド化合物(B)の含有量が少なすぎると、酢酸臭を抑制する効果が得られ難くなる傾向があり、含有量が多すぎると、PVA系樹脂(A)の熱劣化を促進し、溶融成形時に成形品が着色しやすくなる傾向がある。
 樹脂組成物中の多量体アルデヒド化合物(B)の含有量の測定方法は以下の通りである。
 まず定量用の標準液を作製し、ヘッドスペースガスクロマトグラフ法により多量体アルデヒド化合物(B)の量を測定し、かかる結果を用いて、樹脂組成物に含有される多量体アルデヒド化合物(B)を定量する。
 (1)定量用の標準液の調製
 よく洗浄したガラス製メスフラスコ(100mL)に多量体アルデヒド化合物(B)を1g採取し、アセトンで溶解し、多量体アルデヒド化合物(B)の濃度10000mg/Lのアセトン溶液とする。
 さらに、アセトンで希釈し、濃度40~5000mg/Lの標準液を数種類調製する。
 (2)検量線の作成
 上記(1)で作製した濃度40~5000mg/Lの標準液をヘッドスペース用のバイアルに1μLを採取し、速やかにアルミニウムキャップで密栓し、120℃に加熱し、多量体アルデヒド化合物(B)を気化させ、下記の表1の条件で、ヘッドスペースガスクロマトグラフ法によりピークを測定し、検量線を作成する。
 (3)樹脂組成物中の多量体アルデヒド化合物(B)の量の測定
 樹脂組成物を、バイアル瓶に100mg採取し、アルミキャップで密栓し、120℃に加熱し、多量体アルデヒド化合物(B)を気化させ、下記の表1の条件で、ヘッドスペースガスクロマトグラフ法によりピークを測定する。
 (4)多量体アルデヒド化合物(B)の定量
 上記(2)で作成した検量線をもとに、上記(3)で得られたピークを用いて多量体アルデヒド化合物(B)の含有量を定量する。
Figure JPOXMLDOC01-appb-T000002
 〔その他の成分〕
 本発明の樹脂組成物は、PVA系樹脂(A)及び多量体アルデヒド化合物(B)の他に、可塑剤などの他の成分を含有していてもよい。
 かかる可塑剤としては、例えば、脂肪族多価アルコール(例えば、エチレングリコール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジグリセリン等)等の多価アルコールにエチレンオキサイドを付加した化合物;各種アルキレンオキサイド(例えば、エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドの混合付加体等);糖類(例えば、ソルビトール、マンニトール、ペンタエリスリトール、キシロール、アラビノース、リブロース等);ビスフェノールAやビスフェノールS等のフェノール誘導体;N-メチルピロリドン等のアミド化合物;α-メチル-D-グルコシド等のグルコシド類;等が挙げられる。
 本発明の樹脂組成物に可塑剤を含有させて用いる場合における可塑剤の含有量は、PVA系樹脂(A)100重量部に対して、好ましくは0.1~40重量部であり、特に好ましくは1~30重量部、更に好ましくは2~20重量部である。可塑剤が少なすぎると溶融成形性が低下する傾向があり、多すぎるとPVA系樹脂の特性(ガスバリア性、水溶性など)が損なわれる傾向がある。
 また、他の成分としては、例えば、熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリエステルなど)、香料、発泡剤、消臭剤、増量剤、充填剤(例えば、タルク、クレー、モンモリロナイト、炭酸カルシウム、ガラスビーズ、ガラス繊維、シリカ、マイカ、アルミナ、ハイドロタルサイト、酸化チタン、酸化ジルコニウム、窒化硼素、窒化アルミニウム等の無機充填剤、メラミン-ホルマリン系樹脂等の有機充填剤)、剥離剤、紫外線吸収剤、酸化防止剤、加工安定剤、耐候性安定剤、防かび剤、防腐剤等が挙げられ、これら添加剤を適宜配合することができる。
 〔樹脂組成物の製造方法〕
 本発明の樹脂組成物の製造方法としては、例えば、(i)PVA系樹脂(A)に多量体アルデヒド化合物(B)を添加する方法、(ii)PVA系樹脂(A)のケン化前の重合体、即ち少なくともビニルエステル系モノマーを含む重合成分から得られた重合体に多量体アルデヒド化合物(B)を添加した後、ケン化する方法、(iii)多量体アルデヒド化合物(B)とアルコールの混合溶液に、PVA系樹脂(A)を浸漬する方法などが挙げられる。中でも(i)の方法が含有量の制御の点から好ましい。
 本発明の樹脂組成物の形状は、通常、円柱状(ペレット状)又は、粉末状である。PVA系樹脂(A)は、粉末状で得られるため、多量体アルデヒド化合物(B)と共に溶融混練し、円柱状とし、原料ペレットにすることが好ましい。
 原料ペレットは、各種溶融成形の原料として一般的に用いられるものであり、かかる形状は、直径は、通常0.5~4mm、好ましくは1~3mm、特に好ましくは1.5~2.5mmである。かかる長さは、通常0.5~4mm、好ましくは1~3mm、特に好ましくは1.5~2.5mmである。
 本発明の樹脂組成物を原料ペレットにするためには、押出機を用いることが好ましい。
押出機としては、単軸押出機や二軸押出機を用いることができるが、適度なせん断により充分な混練が得られる点で二軸押出機が好ましい。
 かかる押出機のL/D(スクリュ長さ/スクリュ径)は、通常、10~80であり、好ましくは15~70、特に好ましくは20~60である。かかるL/Dが小さすぎると、混練が不充分で吐出が不安定となる傾向があり、逆に大きすぎると過度のせん断による発熱で、樹脂組成物の温度が高くなりすぎ、樹脂組成物の劣化の原因となる傾向がある。
 押出機のスクリュ回転数は、通常、10~1000rpmであり、好ましくは30~700rpm、特に好ましくは50~500rpmの範囲である。かかる回転数が小さすぎると吐出が不安定となる傾向があり、また、大きすぎると過度のせん断発熱によって樹脂組成物の劣化の原因となる傾向がある。
 押出機内における樹脂組成物の温度は、所望の処理量等によって一概にはいえないが、通常、140~280℃であり、好ましくは150~260℃、特に好ましくは170~240℃の範囲で用いられる。
 かかる樹脂温度が高すぎるとPVA系樹脂(A)が熱劣化し、着色しやすくなる傾向にあり、逆に樹脂温度が低すぎると樹脂の粘度が高くなり、押出機に負荷がかかったり、PVA系樹脂(A)が充分に溶融状態とならない傾向がある。
 かかる樹脂温度の調整方法は特に限定されないが、通常は、押出機内シリンダーの温度を適宜設定する方法や、押出機の回転数によって制御する方法が用いられる。
 上記で得られた本発明の樹脂組成物を用いた原料ペレットを更に溶融成形する方法としては、例えば、押出成形法(T-ダイ押出、インフレーション押出、ブロー成形、溶融紡糸、異型押出等)、射出成形法が挙げられる。本発明の樹脂組成物を用いた原料ペレットを溶融成形、特に溶融押出成形することによって、フィルム、シート、容器(ボトルやタンク等)、繊維、棒、管など、各種の成形品を製造することができる。また、樹脂組成物の成形品であるフィルムやシートをそのまま各種用途に用いることもできるが、通常はさらに強度を上げたり他の機能を付与したりするために、他の基材と積層して積層体とすることができる。
 本発明の樹脂組成物を溶融成形して製造された成形品は、例えば、フィルム、シート、パイプ、円盤、リング、袋状物、ボトル状物、繊維状物など多種多様の形状のものを挙げることができる。具体的には、電子部材、食品、飲料(コーヒーカプセル)、化粧品、医薬品、農薬品、工業薬品等の各種の包装材、水溶性の中子、熱溶融積層造形用のフィラメントとして有用である。
 本発明の樹脂組成物は、上記のように原料ペレットや成形品を作製する際の、樹脂組成物の溶融成形時の脱気および押出機の吐出口等から発生する酢酸臭を抑制することができるので、得られたペレットや成形品の酢酸臭を抑制することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 なお、実施例及び比較例中「部」及び「%」とあるのは重量基準である。
 また、下記実施例及び比較例中におけるPVA系樹脂(A)のケン化度、粘度平均重合度は前述の方法に従って測定した。
 実施例1
 〔樹脂組成物1の製造〕
 常法により、未変性のPVAを製造した。得られたPVAのケン化度は73モル%、粘度平均重合度は550であった。得られた未変性PVA100部にパラアルデヒド0.005部を添加して、樹脂組成物1を得た。
 〔多量体アルデヒド化合物(B)の含有量の測定方法〕
 上記で得られた樹脂組成物1について、パラアルデヒドの含有量を測定した。結果を表3に示す。
 (1)定量用の標準液の調製
 よく洗浄したガラス製メスフラスコ(100mL)にパラアルデヒドを1g採取し、アセトンで溶解し、パラアルデヒドの濃度10000mg/Lのアセトン溶液とした。
 さらに、アセトンで希釈し、濃度40~5000mg/Lの標準液を数種類調製した。
 (2)検量線の作成
 上記(1)で作製した濃度40~5000mg/Lの標準液をヘッドスペース用のバイアルに1μLを採取し、速やかにアルミニウムキャップで密栓し、120℃に加熱し、パラアルデヒドを気化させ、下記の表2の条件で、ヘッドスペースガスクロマトグラフ法によりピークを測定し、検量線を作成した。
 (3)樹脂組成物1のパラアルデヒドの量の測定
 樹脂組成物1を、バイアル瓶に100mg採取し、アルミキャップで密栓し、120℃に加熱し、パラアルデヒドを気化させ、下記の表2の条件で、ヘッドスペースガスクロマトグラフ法によりピークを測定した。
 (4)パラアルデヒドの定量
 上記(2)で作成した検量線をもとに、上記(3)で得られたピークを用いてパラアルデヒドの含有量を定量した。
Figure JPOXMLDOC01-appb-T000003
 〔酢酸臭の評価〕
 次に樹脂組成物1について、ブラベンダー社製プラストグラフ(ミキサー押出機による小型トルク検出装置)を用いた下記の方法により臭気を評価した。
 樹脂組成物1を55g量りとり、予め200℃に昇温してあるプラストグラフに、ニーダー回転数20rpmの条件にて量り取った樹脂組成物1を90秒以内に投入し、専用の蓋で試料投入口を塞いだ。試料投入後、200℃、50rpmで2分間混練した。その後、ニーダーを止め試料投入口を開放した。この時、試料投入口から酢酸の臭い(酢酸臭)の有無を、パネリスト5名により確認し、以下の基準で評価した。結果を表3に示す。
<酢酸臭評価基準>
 5名のパネリストのうち3名以上が酢酸臭を感じない:○
 5名のパネリストのうち3名以上が酢酸臭を感じる :×
 実施例2
 〔樹脂組成物2の製造〕
 常法により、未変性のPVAを製造した。得られたPVAのケン化度は78モル%、粘度平均重合度は550であった。得られた未変性PVA100部にパラアルデヒド0.005部を添加して、樹脂組成物2を得た。
 樹脂組成物2について、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
 実施例3
 〔樹脂組成物3の製造〕
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル280部(全体の40%を初期仕込みに使用)、メタノール185.5部、及び3,4-ジアセトキシ-1-ブテン35.36部(全体の40%を初期仕込みに使用)を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.093部投入し、重合を開始した。
 さらに、重合開始から0.75時間後に酢酸ビニル420部と3,4-ジアセトキシ-1-ブテン53.04部を12.5時間かけて等速で滴下した。酢酸ビニルの重合率が98%となった時点で、m-ジニトロベンゼンを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を50%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して4.1ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点から所定時間後に中和用の酢酸を水酸化ナトリウムの1.0当量添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖1,2-ジオール構造単位含有変性PVA系樹脂を得た。
 得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂のケン化度は、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、86モル%であった。また、粘度平均重合度は、JIS K6726に準じて分析を行ったところ、450であった。
 また、前記式(1)で表される1,2-ジオール構造単位の含有量は、H-NMR(300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、6モル%であった。
 上記で得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂100部にパラアルデヒドを0.005部添加して、樹脂組成物3を得た。
 樹脂組成物3について、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
 実施例4
 〔樹脂組成物4の製造〕
 常法により、未変性のPVAを製造した。得られたPVAのケン化度は88モル%、粘度平均重合度は550であった。得られた未変性PVA100部にパラアルデヒド0.005部を添加して、樹脂組成物4を得た。
 樹脂組成物4について、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
 実施例5
 〔樹脂組成物5の製造〕
 還流冷却器、滴下装置、及び撹拌機を備えた反応缶に、酢酸ビニル280部(全体の40%を初期仕込みに使用)、メタノール185.5部、及び3,4-ジアセトキシ-1-ブテン35.36部(全体の40%を初期仕込みに使用)を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを0.093部投入し、重合を開始した。
 さらに、重合開始から0.75時間後に酢酸ビニル420部と3,4-ジアセトキシ-1-ブテン53.04部を12.5時間かけて等速で滴下した。酢酸ビニルの重合率が98%となった時点で、m-ジニトロベンゼンを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 ついで、上記溶液をメタノールで希釈し、固形分濃度を50%に調整して、かかるメタノール溶液をニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウム中のナトリウム分2%メタノール溶液を共重合体中の酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して4.3ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で、さらに水酸化ナトリウム中のナトリウム分2%メタノール溶液を酢酸ビニル構造単位及び3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して8ミリモル追加しケン化を行った。
 その後、中和用の酢酸を水酸化ナトリウムの0.8当量を添加し、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、側鎖1,2-ジオール構造単位含有変性PVA系樹脂を得た。
 得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂のケン化度は、樹脂中の残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの構造単位の加水分解に要するアルカリ消費量にて分析したところ、99.2モル%であった。また、粘度平均重合度は、JIS K6726に準じて分析を行ったところ、450であった。
 また、前記式(1)で表される1,2-ジオール構造単位の含有量は、H-NMR(300MHz プロトンNMR、d-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、6モル%であった。
 上記で得られた側鎖1,2-ジオール構造単位含有変性PVA系樹脂100部に対して、パラアルデヒドを0.005部添加して、樹脂組成物5を得た。
 樹脂組成物5について、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
 比較例1
 実施例1において、未変性PVA(ケン化度73モル%、粘度平均重合度550)のみを用い、パラアルデヒドの添加を行わなかった。
 未変性PVAについて、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
 比較例2
 実施例1において、パラアルデヒド0.005部の代わりにプロパナールを0.002部添加した以外は、同様にして樹脂組成物6を得た。
 得られた樹脂組成物6について、実施例1と同様にプロパナールの含有量を測定し、酢酸臭の評価を行った。なお、比較例2では、実施例1の〔多量体アルデヒド化合物(B)の含有量の測定方法〕における標準液の調製、検量線の作成はパラアルデヒドに替えてプロパナールを用いた。結果を表3に示す。
 参考例1
 エチレン-酢酸ビニル共重合体ケン化物(エチレン構造単位の含有量32モル%、ケン化度99.9ル%)100部にパラアルデヒドを0.005部添加し、樹脂組成物7を得た。
 得られた樹脂組成物7について、実施例1と同様にパラアルデヒドの含有量を測定し、酢酸臭の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明で規定される量の多量体アルデヒド化合物(B)を含有する実施例1~5の樹脂組成物は、酢酸臭がしなかった。一方、多量体アルデヒド化合物(B)の量が微量である(検出はされたが定量は出来なかった)比較例1の樹脂組成物は、酢酸臭があり、また多量体アルデヒド化合物(B)ではなく、プロパナールを含有した比較例2も酢酸臭があった。
 EVOHを用いた参考例1においては、多量体アルデヒド化合物(B)が微量であっても酢酸臭はなかった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2017年9月7日出願の日本特許出願(特願2017-172434)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、PVA系樹脂の溶融成形時の脱気および押出機の吐出口等から発生する酢酸臭が低減され、成形品の酢酸臭も抑制されるので、電子部材、食品、飲料、化粧品、医薬品、農薬品、工業薬品等の各種の包装材の原料として有用である。 

Claims (5)

  1.  ポリビニルアルコール系樹脂(A)と、多量体アルデヒド化合物(B)とを含有し、前記多量体アルデヒド化合物(B)の含有量が、前記ポリビニルアルコール系樹脂(A)100重量部に対して、0.5×10-4~100×10-4重量部である樹脂組成物。
  2.  前記ポリビニルアルコール系樹脂(A)が溶融成形用ポリビニルアルコール系樹脂(A1)である、請求項1記載の樹脂組成物。
  3.  前記ポリビニルアルコール系樹脂(A)の粘度平均重合度が200~800である、請求項1または2記載の樹脂組成物。
  4.  前記ポリビニルアルコール系樹脂(A)のケン化度が60~100モル%である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記多量体アルデヒド化合物(B)がパラアルデヒドである、請求項1~4のいずれか1項に記載の樹脂組成物。
PCT/JP2018/032311 2017-09-07 2018-08-31 樹脂組成物 WO2019049776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018546723A JP7131389B2 (ja) 2017-09-07 2018-08-31 樹脂組成物
EP18853801.1A EP3680291B1 (en) 2017-09-07 2018-08-31 Resin composition
EA202090451A EA202090451A1 (ru) 2017-09-07 2018-08-31 Смоляная композиция
US16/806,230 US10889710B2 (en) 2017-09-07 2020-03-02 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172434 2017-09-07
JP2017-172434 2017-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/806,230 Continuation US10889710B2 (en) 2017-09-07 2020-03-02 Resin composition

Publications (1)

Publication Number Publication Date
WO2019049776A1 true WO2019049776A1 (ja) 2019-03-14

Family

ID=65634012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032311 WO2019049776A1 (ja) 2017-09-07 2018-08-31 樹脂組成物

Country Status (5)

Country Link
US (1) US10889710B2 (ja)
EP (1) EP3680291B1 (ja)
JP (1) JP7131389B2 (ja)
EA (1) EA202090451A1 (ja)
WO (1) WO2019049776A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913029A4 (en) * 2019-02-26 2022-03-16 Moresco Corporation METHOD FOR MANUFACTURING VINYL-ETHYLENE ACETATE-BASED HOT-MELT ADHESIVE, AND HOT-MELT ADHESIVE

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240089A (ja) * 1993-02-22 1994-08-30 Kuraray Co Ltd ポリビニルアルコール組成物
JPH0859944A (ja) * 1994-08-17 1996-03-05 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系樹脂組成物及びその用途
JP2000063728A (ja) * 1998-08-24 2000-02-29 Sekisui Chem Co Ltd インク用バインダー樹脂及びインク
JP2002256126A (ja) * 2001-02-27 2002-09-11 Unitika Chem Co Ltd ポリビニルアルコール系フィルム
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2004018463A (ja) * 2002-06-17 2004-01-22 Tanisake:Kk 徐放性物質及び該徐放性物質の製造方法
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
JP2008208347A (ja) * 2007-01-31 2008-09-11 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系樹脂組成物およびフィルム
JP2015071692A (ja) 2013-10-02 2015-04-16 株式会社クラレ 樹脂組成物、樹脂成形体及び多層構造体
JP2017172434A (ja) 2016-03-23 2017-09-28 マツダ株式会社 エンジンの失火判定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221651A1 (en) * 1985-09-27 1987-05-13 Kao Corporation Water soluble polyvinyl alcohol derivative
DE10229213B4 (de) * 2002-06-28 2007-04-12 Kuraray Specialities Europe Gmbh Polyvinylacetale, deren Herstellung und Verwendung
CN105579350B (zh) * 2013-10-02 2018-04-13 株式会社可乐丽 吹塑成型容器、燃料容器、吹塑成型瓶容器和吹塑成型容器的制造方法
US10081167B2 (en) * 2013-10-02 2018-09-25 Kuraray Co., Ltd. Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container and packaging material
TWI648297B (zh) 2013-10-02 2019-01-21 Kuraray Co., Ltd. 樹脂組成物、樹脂成型體及多層結構體
JP6145379B2 (ja) * 2013-10-02 2017-06-14 株式会社クラレ ブロー成形容器及びブロー成形容器の製造方法
CN106366640A (zh) * 2016-08-31 2017-02-01 李锦明 一种高导热高强度母粒材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240089A (ja) * 1993-02-22 1994-08-30 Kuraray Co Ltd ポリビニルアルコール組成物
JPH0859944A (ja) * 1994-08-17 1996-03-05 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系樹脂組成物及びその用途
JP2000063728A (ja) * 1998-08-24 2000-02-29 Sekisui Chem Co Ltd インク用バインダー樹脂及びインク
JP2002284818A (ja) 2000-12-15 2002-10-03 Nippon Synthetic Chem Ind Co Ltd:The 新規ビニルアルコール系樹脂及びその用途
JP2002256126A (ja) * 2001-02-27 2002-09-11 Unitika Chem Co Ltd ポリビニルアルコール系フィルム
JP2004018463A (ja) * 2002-06-17 2004-01-22 Tanisake:Kk 徐放性物質及び該徐放性物質の製造方法
JP2004285143A (ja) 2003-03-20 2004-10-14 Nippon Synthetic Chem Ind Co Ltd:The 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
JP2008208347A (ja) * 2007-01-31 2008-09-11 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系樹脂組成物およびフィルム
JP2015071692A (ja) 2013-10-02 2015-04-16 株式会社クラレ 樹脂組成物、樹脂成形体及び多層構造体
JP2017172434A (ja) 2016-03-23 2017-09-28 マツダ株式会社 エンジンの失火判定装置

Also Published As

Publication number Publication date
EP3680291A4 (en) 2020-07-15
US10889710B2 (en) 2021-01-12
EP3680291B1 (en) 2023-11-08
EA202090451A1 (ru) 2020-06-09
US20200199343A1 (en) 2020-06-25
EP3680291A1 (en) 2020-07-15
JPWO2019049776A1 (ja) 2020-08-20
JP7131389B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
US8722782B2 (en) Polyvinyl alcohol-based resin composition
JP6554702B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
EP1801154A1 (en) Ethylene/vinyl alcohol copolymer composition and multilayer structure comprising the same
JP4217199B2 (ja) 溶融成形用ポリビニルアルコール系樹脂及びその製造方法、並びにその用途
JPWO2008123150A1 (ja) ポリビニルブチラール樹脂ペレットおよびその製法
JP7131389B2 (ja) 樹脂組成物
JP4750892B2 (ja) エチレン−ビニルエステル共重合体加溶媒分解物組成物の製造方法
JP7167711B2 (ja) ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法
JP2012036341A (ja) 樹脂組成物およびそれを用いた多層構造体
JP5008292B2 (ja) 樹脂組成物およびそれを用いた多層構造体
JP4746290B2 (ja) 変性エチレン−ビニルアルコール共重合体の製造方法
WO2017110676A1 (ja) エチレン-ビニルエステル系共重合体ケン化物組成物及びその製造方法
WO2022210529A1 (ja) ポリビニルアルコール系樹脂組成物及び射出成形物
JP4117232B2 (ja) 樹脂組成物及びその製造方法
JP6203038B2 (ja) 成形品及びその製造方法
JP7359138B2 (ja) 樹脂組成物、成形品、及び樹脂組成物の製造方法
JP7339742B2 (ja) 多層フィルム
JP2017114931A (ja) 紫外線遮蔽フィルム
JP2019038944A (ja) 生分解性ポリエステル系樹脂及び積層体
JP2009173903A (ja) Evoh樹脂組成物の製造方法
EP4198084A1 (en) Polyvinyl alcohol resin composition and melt-molded body using said resin composition
JP2023152991A (ja) 変性エチレン-ビニルアルコール系共重合体組成物、ペレット、多層構造体、変性エチレン-ビニルアルコール系共重合体組成物の製造方法及び、多層構造体の製造方法
JP5349175B2 (ja) 水性分散液
WO2023190817A1 (ja) 変性エチレン-ビニルアルコール系共重合体組成物、ペレット、多層構造体、変性エチレン-ビニルアルコール系共重合体組成物の製造方法及び、多層構造体の製造方法
CN113677496A (zh) 成型品和成型品的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546723

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853801

Country of ref document: EP

Effective date: 20200407