WO2019049735A1 - 絶縁膜の成膜方法、基板処理装置及び基板処理システム - Google Patents

絶縁膜の成膜方法、基板処理装置及び基板処理システム Download PDF

Info

Publication number
WO2019049735A1
WO2019049735A1 PCT/JP2018/031810 JP2018031810W WO2019049735A1 WO 2019049735 A1 WO2019049735 A1 WO 2019049735A1 JP 2018031810 W JP2018031810 W JP 2018031810W WO 2019049735 A1 WO2019049735 A1 WO 2019049735A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating film
forming
coating
module
Prior art date
Application number
PCT/JP2018/031810
Other languages
English (en)
French (fr)
Inventor
村松 誠
久志 源島
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020247005561A priority Critical patent/KR102684626B1/ko
Priority to CN201880057445.XA priority patent/CN111052321B/zh
Priority to JP2019540906A priority patent/JP6849083B2/ja
Priority to US16/645,712 priority patent/US11315784B2/en
Priority to KR1020207009114A priority patent/KR102639596B1/ko
Publication of WO2019049735A1 publication Critical patent/WO2019049735A1/ja
Priority to US17/697,311 priority patent/US11823897B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/12Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Definitions

  • the present invention relates to a technology for forming an insulating film which is a coating film containing silicon oxide on a substrate and is cured by a crosslinking reaction.
  • an insulating film such as a silicon oxide film
  • the insulating film is formed by a method such as plasma CVD or application of a coating liquid.
  • the insulating film formed by plasma CVD has an advantage that a dense and good film can be obtained, but the embeddability is poor. Therefore, for example, it is not suitable for embedding an insulator in a minute groove called STI (shallow trench isolation). Therefore, it is necessary to perform plasma CVD and etch back repeatedly, and it is necessary to bury them so that a gap is gradually made. For example, a film forming process becomes complicated, and a large-scale apparatus is required to perform vacuum processing.
  • the method of applying a coating solution to a semiconductor wafer (hereinafter referred to as "wafer") by spin coating, curing the coating film, and forming an insulating film has good embeddability, and forms a fine pattern such as STI. Also, it is easy to fill the insulating film. Furthermore, although there is an advantage that processing can be performed in a normal pressure atmosphere, there is a problem that the strength of the film becomes relatively low. For this reason, for example, the coating film is heat-treated (cured) at 600 ° C. to 800 ° C. to increase the strength of the film.
  • Patent Document 1 describes a technique for forming an insulating film by heating the coating film at a low temperature after the application of the coating film, and then performing the treatment at a high temperature in a water vapor atmosphere. It is not something to solve.
  • the present invention has been made under such circumstances, and an object thereof is to provide a technique capable of obtaining a good film quality in forming an insulating film containing silicon oxide as a coating film on a substrate. .
  • the method of forming an insulating film according to the present invention comprises the steps of: applying a coating solution, in which a precursor for forming an insulating film containing silicon oxide is dissolved in a solvent, on a substrate to form a coating film; A solvent volatilization step of volatilizing a solvent in the coating film; After this step, an energy supplying step of supplying energy to the coating film in a low oxygen atmosphere having an oxygen concentration lower than that of the atmosphere to generate an unbonded hand in a molecular group constituting the precursor; Forming a protective film on the surface of the coating film to suppress oxidation due to the atmosphere of unbound hands in the coating film; And heating the substrate to crosslink the precursor to form an insulating film.
  • a substrate processing apparatus comprises: a coating module for coating a substrate with a coating solution in which a precursor for forming an insulating film containing silicon oxide is dissolved in a solvent to form a coating film; A solvent volatilization module for volatilizing a solvent in the coating film; An energy supplying module for supplying energy to a low oxygen atmosphere having a lower oxygen concentration than the atmosphere, to the coating film from which the solvent is volatilized, in order to activate the precursor; A protective film forming module for forming a protective film on the coating film supplied with the energy; And a substrate transfer mechanism for transferring a substrate between the modules.
  • the substrate processing system of the present invention applies a coating solution in which a precursor for forming an insulating film containing silicon oxide is dissolved in a solvent is applied to the substrate.
  • An energy supply module for supplying energy in a low oxygen atmosphere having an oxygen concentration lower than the atmosphere; a protective film forming module for forming a protective film on the coating film to which the energy is supplied;
  • a substrate transfer mechanism for transferring a substrate between the substrate processing apparatus;
  • a heat treatment apparatus for heating the substrate after being processed by the energy supply module to crosslink the precursor to form an insulating film;
  • a container transfer mechanism for transferring the transfer container between the loading / unloading port of the substrate processing apparatus and the curing apparatus.
  • the present invention applies a coating solution containing a precursor of an insulating film containing silicon oxide to a substrate, volatilizes a solvent of the coating solution, and then performs energy on the coating film in a low oxygen atmosphere before performing a curing step. Supply. For this reason, unbonded hands are likely to be generated at hydrolyzable sites in the precursor.
  • a hydroxyl group is first bonded to the silicon of the molecular group constituting the precursor by hydrolysis, and then the hydroxyl groups of the molecular groups are dehydrated and condensed to carry out crosslinking. The generation of unbonded hands increases the efficiency of hydroxyl group generation.
  • the energy required for hydrolysis is reduced, even if the curing step is performed at a low temperature, the number of sites remaining without hydrolysis is reduced. As a result, since dehydration condensation occurs efficiently, the crosslinking ratio is improved, and the production of a fine (good) insulating film can be expected. Moreover, after supplying energy to the coating film, by forming a protective film on the surface of the coating film, the reaction of non-bonded hands before the curing step can be suppressed, and the film quality of the coating film becomes good.
  • FIG. 16 is a characteristic chart showing relative etching rates in Example 3.
  • a coating solution containing a precursor of an insulating film containing silicon oxide is applied to a substrate, and the obtained coating film is heated to volatilize the solvent in the coating film. Then, the substrate is heated to rearrange the molecular groups in the coating film, and then the coating film is irradiated with ultraviolet light, and then the coating film is cured.
  • the coating solution is manufactured by dissolving a group of oligomers which are a molecular group of a precursor of an insulating film containing silicon oxide in a solvent which is a solvent.
  • a group of oligomers which are a molecular group of a precursor of an insulating film containing silicon oxide in a solvent which is a solvent.
  • the Si-H bond of the oligomer is hydrolyzed (reacted) with H 2 O (moisture) to generate Si-OH as shown in FIG. 1 by heating the substrate to, for example, 500 ° C. Be done.
  • dehydration condensation reaction
  • the oligomers are crosslinked.
  • the oligomer is used as a component of the coating solution is that it does not dissolve in the solvent when the entire precursor is linked. For this reason, the oligomer state, ie, the state before the hydrolysis of the precursor described above is stabilized, and hydrolysis is a process of transitioning from this stabilized state to the unstable state, thus promoting hydrolysis. Is difficult. Therefore, it is necessary to raise the curing temperature or to react for a long time at a low temperature.
  • the dehydration condensation reaction proceeds rapidly only by applying heat energy. For this reason, when the temperature of curing is raised to accelerate hydrolysis, dehydration condensation occurs more than hydrolysis (Si-H becomes Si-OH) (Si-OH becomes Si-O-Si Is easier, the density of the insulating film is reduced. As to the reason, roughly speaking, when some oligomers are cross-linked by dehydration condensation, the other oligomers may not be hydrolyzed yet, and such other oligomers It is presumed that this is due to being incorporated in cross-linked products of parts of oligomers. The method of curing at low temperature for a long time is not acceptable in the production line because the throughput is low.
  • ultraviolet rays are irradiated to the coating film before performing the curing step so as to generate a dangling hand at a site where hydrolysis occurs (in other words, to activate the oligomer). That is, as shown in FIG. 2, the energy of ultraviolet light breaks the Si—H bond in the oligomer to form a dangling hand. As a result, the energy required for hydrolysis in the curing step is reduced, so that the generation efficiency of the hydroxyl group (OH group) is increased, and the crosslinking ratio by subsequent dehydration condensation is improved. This means that a dense (good film quality) insulating film can be obtained even if the curing process is performed at a low temperature.
  • the curing step is carried out in a heating atmosphere of, for example, 350 ° C. to 450 ° C. even if it is a low temperature. Therefore, when the dangling bonds are generated as described above by the energy of the ultraviolet light, crosslinking occurs from the site where the dangling bonds are generated, so that the oligomer whose Si—H bond has not been cleaved is crosslinked. It is confined in the oligomer group, and the compactness of the insulating film is lowered.
  • the step of irradiating the coating film with ultraviolet light needs to be performed at a temperature at which such a phenomenon is suppressed. Specifically, for example, 350 ° C. or less is considered to be desirable. For example, it can be performed at room temperature. . Further, the step of irradiating the coating film with ultraviolet light needs to be performed in a low oxygen concentration atmosphere lower in oxygen concentration than the air atmosphere, for example, in an atmosphere with an oxygen concentration of 400 ppm or less, preferably 50 ppm or less.
  • the low oxygen concentration atmosphere is, for example, an inert gas atmosphere such as nitrogen gas.
  • the oligomers having unbonded hands generated by the irradiation of ultraviolet rays are instantaneously bonded to each other, and the isolated oligomers are confined in the bonded oligomers, as a result.
  • the density of the insulating film is reduced.
  • the substrate is stored in a storage container, for example, while being transported from the substrate processing apparatus where the ultraviolet irradiation treatment is performed to the substrate to the heat treatment furnace for curing treatment. In some cases, it may be left standing in a normal temperature atmosphere.
  • the coating film is irradiated with ultraviolet light and a dangling hand is formed on the surface of the coating film, the reactivity of the coating film is increased, so the dangling bond is easily oxidized by oxygen or moisture in the air. It will be done.
  • a protective film is formed on the surface of the coating film to suppress oxidation of the coating film.
  • the protective film for example, an organic film, a dense oxide film or the like can be used as described later.
  • a process for performing STI on a target substrate will be described as a method for forming an insulating film using the above-described substrate processing system.
  • a groove 110 is formed in the silicon film 100 in the wafer W, which is a substrate to be processed, and a coating solution obtained by, for example, dissolving a precursor of an SOG film in an organic solvent is used.
  • the coating film 101 is formed to fill the trench 110.
  • a precursor for example, polysilazane which is a polymer having a-(SiH 2 NH) -based structure is used.
  • the coating solution has, for example, a polysilazane molecular group dissolved in the form of an oligomer to improve fluidity. Therefore, as shown in FIG. 3, when applied to the wafer W by spin coating, for example, the coating liquid easily enters the narrow trench 110, and the coating film 101 having a good embedding property can be obtained.
  • the coating film 101 is described as PSZ (polysilazane).
  • the wafer W is heated at 100 to 250 ° C., for example, 150 ° C. for 3 minutes. Thereby, the solvent contained in the coating film 101 is volatilized.
  • energy for example, ultraviolet light having a main wavelength of 200 nm or less, for example, ultraviolet light (UV) having a main wavelength of 172 nm is irradiated.
  • the main wavelength is a wavelength corresponding to the maximum peak in the spectrum or in the vicinity thereof.
  • an organic film 102 which is a protective film made of, for example, polystyrene is formed.
  • the surface of the coating film 101 is covered with the organic film 102, and the contact between the dangling bond formed on the coating film 101 and the air atmosphere is suppressed.
  • the organic film 102 is hydrophobic, moisture in the air can be prevented from penetrating into the coating film 101.
  • the dangling bonds formed on the surface of the coating film 101 have high reactivity, they easily react with oxygen and moisture in the air atmosphere. At this time, if the oxidation of the non-bonding hand proceeds in the normal temperature range, the reaction proceeds gradually, and therefore, an oxide film with low density may be formed on the surface of the coating film 101. Therefore, by covering the surface of the coating film 101 with the organic film 102, it is possible to suppress contact with the air atmosphere of the dangling hand formed on the surface of the coating film 101. It is possible to suppress the formation of a low quality oxide film.
  • stepwise heat treatment is performed at a temperature of 350 to 450.degree. C., for example, steam at 400.degree. It is heated stepwise and further heated at 450 ° C. under N 2 gas atmosphere.
  • the organic film 102 formed on the surface of the coating film 101 is polystyrene, it becomes water and carbon dioxide by heating and is sublimated and easily removed, and the surface of the coating film 101 is exposed.
  • the coating film 101 is heated at a temperature of 350 to 450 ° C. in a water vapor atmosphere.
  • FIG. 8 shows a reaction path when curing treatment is performed on polysilazane without irradiating ultraviolet light
  • FIG. 9 shows a reaction path when curing treatment is performed on polysilazane irradiated with ultraviolet light.
  • the H bonded to Si becomes an OH group by hydrolysis, and the N—H group is further oxidized to become ammonia (NH 3 ). An O bond is formed. Then, the OH groups form crosslinks by dehydration condensation.
  • hydrolysis hardly occurs and the film becomes less dense.
  • the coating film 101 containing polysilazane is irradiated with ultraviolet light before curing treatment, as shown in FIG. 9, the Si—H bond is broken to form a dangling bond and a part of Si— The N bond is broken to form a dangling bond.
  • OH groups are easily bonded to the unbonded hands to form Si-OH.
  • OH groups are crosslinked by dehydration condensation to form Si-O-Si bond.
  • Si-N bond in polysilazane is replaced by O to form silicon oxide.
  • the generation efficiency of the OH group is high, and the crosslinking rate is improved, so that the insulating film (silicon oxide film) having a good film quality is formed.
  • the excess coating film 101 on the surface of the wafer W is removed by, for example, CMP (chemical mechanical polishing).
  • CMP chemical mechanical polishing
  • the substrate processing system includes a substrate processing apparatus 1 for performing substrate processing including application processing for applying an insulating film to a wafer W, and a heat treatment furnace for performing heat treatment on the wafer W, for example, a vertical heat treatment apparatus 97.
  • a substrate processing apparatus is provided between the substrate processing apparatus 1 and the heat treatment apparatus 93.
  • a mounting table 90 is provided on which the wafer W is placed in a state of being stored in the carrier C before being transferred to the heat treatment apparatus 93 after the processing is completed in 1.
  • the substrate processing apparatus 1 relays the carrier block S1 which is a carrying in / out port for carrying in and out of the apparatus from a carrier C which is a carrying container in which a plurality of wafers W are stored.
  • the block S2 and the processing block S3 are connected in a line.
  • the carrier block S1 includes a stage 11 on which a plurality (for example, three) of carriers C for storing and transporting a plurality of wafers W are mounted, for example, in the lateral direction (X direction). There is.
  • the carrier block S1 also includes a delivery mechanism 12 which is a transfer arm for delivering the wafer W to the inside of the carrier C placed on the stage 11.
  • the delivery mechanism 12 is configured such that the holding portion of the wafer W can move forward and backward, can move in the X direction, can rotate around the vertical axis, and can move up and down.
  • the relay block S2 has a role of delivering the wafer W taken out of the carrier C in the carrier block S1 to the processing block S3 side.
  • the relay block S2 includes a delivery rack 13 on which a plurality of mounting tables for the wafer W are arranged at the top and bottom, and an elevating transfer mechanism 14 for transferring the wafer W between the mounting tables for the delivery rack 13; Is equipped.
  • the processing block S3 has a two-story structure in which processing blocks B1 and B2 are stacked one on top of the other as shown in FIG.
  • the processing blocks B1 and B2 are configured in substantially the same manner, and the processing block B1 shown in FIG. 12 will be described as an example.
  • the processing block B1 includes a main transport mechanism 15a movable along a transport path 16 formed of, for example, a guide rail extending in the front-rear direction (Y direction) as viewed from the relay block S2.
  • modules for processing the wafer W are disposed on the left and right sides of the transfer path 16.
  • a coating module 2 for coating the insulating film and the organic film is provided on the right side of the loading / unloading block S1.
  • On the left side for example, three solvent volatilization modules 3 and two ultraviolet irradiation modules 5 are arranged side by side from the relay block S2 side.
  • a control unit 91 formed of, for example, a computer is provided in the film forming apparatus of the insulating film.
  • the control unit 91 has a program storage unit, and in the program storage unit, an instruction is formed so that the transfer of the wafer W in the film forming apparatus or the sequence of processing of the wafer W in each module is performed.
  • the program is stored.
  • the program is stored in a storage medium such as, for example, a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), or a memory card and installed in the control unit 91.
  • the application module 2 applies, for example, a well-known spin coating method to the wafer W on which a pattern is formed.
  • the application module 2 applies an insulating film application module 2A for applying a coating solution obtained by dissolving polysilazane, which is a precursor of an insulating film, in an organic solvent, and an organic film formation module for applying an organic film on the surface of the wafer W after ultraviolet irradiation treatment.
  • an organic film coating module 2B is an organic film coating module 2B.
  • the insulating film coating module 2A applies polysilazane to the wafer W.
  • the organic film coating module 2B is configured in the same manner except that, for example, polystyrene is coated, the insulating film coating module 2A will be described as an example here.
  • the insulating film coating module 2A is provided with a spin chuck 21 which is held by suction and held on the wafer W and is rotatable and movable by a drive mechanism 22.
  • Reference numeral 23 in FIG. 14 denotes a cup module.
  • Reference numeral 24 in FIG. 14 denotes a guide member which is formed in a circular plate shape and has an outer peripheral wall extending downward from the peripheral edge.
  • a discharge space is formed between the outer cup 25 and the outer peripheral wall, and the lower part of the discharge space is configured to be capable of gas-liquid separation.
  • a liquid receiving portion 27 which is provided so as to extend from the upper end of the outer cup 25 toward the center side and which receives the liquid shaken off from the wafer W.
  • the insulating film coating module 2A is also provided with a coating solution nozzle 28.
  • the coating solution is supplied to the central portion of the wafer W from the coating solution supply source 29 storing coating solution such as polysilazane via the coating solution nozzle 28 W is rotated around a vertical axis at a predetermined rotation speed to spread a coating solution on the surface of wafer W to form a coating film.
  • polystyrene is supplied to the wafer W via the coating solution nozzle 28, and the wafer W is rotated around a vertical axis at a predetermined rotational speed to apply the coating solution to the surface of the wafer W Stretch to form an organic film.
  • the solvent volatilization module 3 which volatilizes the solvent which is a solvent is demonstrated.
  • the solvent volatilization module 3 is configured by a lower member 31 formed of a flat cylindrical body whose upper surface is opened in a housing (not shown), and a lid 32 provided to the lower member 31.
  • the processing container 30 is provided.
  • the lid portion 32 is configured to be vertically moved up and down by a lifting mechanism 37 provided on the upper surface of the bottom surface portion 3 a of the housing, and the processing container 30 is opened by lifting the lid portion 32.
  • the lower member 31 is supported by the bottom surface 3a of the housing via a support member 41.
  • a heating plate 33 in which a heating mechanism 34 for heating the wafer W is placed, for example, at 100 to 250 ° C. is embedded.
  • the lid portion 32 is a flat cylindrical body whose lower surface is open, and an exhaust port 38 is formed at the central portion of the ceiling plate of the lid portion 32.
  • An exhaust pipe 39 is connected to the exhaust port 38. . Assuming that the processing vessel 30 side is on the upstream side, the exhaust pipe 39 is connected at its downstream end to a common exhaust duct routed around in the factory.
  • the lid 32 is placed in contact with the pin 40 provided on the upper surface of the peripheral wall of the lower member 31, and placed so that a slight gap is formed between the lid 32 and the lower member 31. To form a processing space for heating the wafer W. Then, by exhausting air from the exhaust port 38, the atmosphere in the housing is configured to flow into the processing container 30 from the gap between the lid portion 32 and the lower member 31. Further, the lid portion 32 is configured to be able to move up and down between a lowered position where the lid portion 32 closes the processing container 30 and a raised position when the wafer W is delivered to the heating plate 33. .
  • the ultraviolet irradiation module 5 which is an energy supply module includes a flat rectangular housing 50 which is elongated in the front-rear direction.
  • a loading / unloading port 51 for loading / unloading the wafer W and a shutter 52 for opening / closing the loading / unloading port 51 are provided on the side wall surface on the front side of the housing 50.
  • a transfer arm 53 for transferring the wafer W is provided on the front side as viewed from the loading / unloading port 51.
  • the transfer arm 53 is configured as a cooling plate, and is configured to be able to cool the wafer W to a normal temperature (25 ° C.), for example, after the solvent volatilization step and before the ultraviolet irradiation treatment.
  • a mounting table 54 for the wafer W is disposed on the back side of the loading / unloading port 51. Elevating pins 56 and 58 for delivering a wafer are provided below the mounting table 54 and the transfer arm 53, and the elevating pins 56 and 58 are configured to be elevated and lowered by the elevating mechanisms 57 and 59, respectively. .
  • a lamp chamber 70 containing an ultraviolet lamp 71 such as a xenon excimer lamp for irradiating an ultraviolet light having a main wavelength of 172 nm, for example, for irradiating the wafer W mounted on the mounting table 54 with ultraviolet light.
  • the lower surface of the lamp chamber 70 is provided with a light transmission window 72 made of, for example, quartz, which transmits the ultraviolet light of wavelength 172 nm emitted from the ultraviolet lamp 71 toward the wafer W.
  • a gas supply unit 73 and an exhaust port 74 are provided on the lower side wall of the lamp chamber 70 so as to face each other.
  • An N 2 gas supply source 75 for supplying N 2 gas into the housing 50 is connected to the gas supply unit 73.
  • An exhaust mechanism 77 is connected to the exhaust port 74 via an exhaust pipe 76.
  • the gas supply unit 73 supplies and exhausts N 2 gas, and the atmosphere of the wafer W is, for example, 400 ppm or less of low oxygen atmosphere, for example, N 2 It is configured to have a gas atmosphere.
  • the N 2 gas is supplied from the N 2 gas supply source 75 to make the wafer W 2000 mJ, for example, in a low oxygen atmosphere. Energy of / cm 2 is irradiated
  • the wafer W in the film forming apparatus for the insulating film will be briefly described.
  • the wafer W is transferred to the transfer mechanism 12, the transfer shelf 13 and the transfer mechanism 14. Is transferred to the processing block B1 or B2.
  • the coating film 101 is applied by the insulating film coating module 2A, and the wafer W is transported in the order of the solvent volatilization module 3 ⁇ the ultraviolet irradiation module 5 ⁇ the organic film coating module 2B to form an insulating film.
  • the wafer W is delivered to the delivery rack 13 and returned to the carrier C by the transfer mechanism 14 and the delivery mechanism 12.
  • the heat treatment apparatus 93 includes a carrier block S1 in which the carrier C is transported, a delivery mechanism 94 for taking out a wafer from the carrier C, a mounting shelf 96 for mounting the wafer W, and a mounting shelf 96 as shown in FIG.
  • a transfer mechanism 95 is provided to transfer the mounted wafer W to the heat treatment furnace.
  • a vertical heat treatment apparatus 97 as shown in FIG. 17 can be used as the heat treatment furnace.
  • the vertical heat treatment apparatus 97 has an inner reaction tube 103, which is a reaction tube having a quartz tube open at both ends and to which a film forming gas is supplied, and around the inner reaction tube 103, A cylindrical outer reaction tube 104 made of quartz is provided which is closed at the upper end side and opened at the lower end side. Below the outer reaction tube 104, a stainless steel tubular manifold 115 connected airtightly to the outer reaction tube 104 and the opening and connected to the outer reaction tube 104 is provided, and the lower end of the manifold 115 is a flange 117 It is formed.
  • a ring-shaped support portion 116 is formed inside the manifold 115, and the lower end of the inner reaction tube 103 is connected upright along the inner peripheral edge of the support portion 116.
  • the inner reaction tube 103, the outer reaction tube 104 and the manifold 115 correspond to the reaction vessel 111.
  • the vertical heat treatment apparatus 97 further includes a heat insulator 113 covering the outer reaction tube 104 from the upper side, and the lower side of the heat insulator 113 is fixed to the base 109 fixing the reaction container 111. Inside the heat insulator 113, a heating unit 114 made of a resistance heating element is provided along the entire circumference.
  • the opening 118 surrounded by the flange 117 in the manifold 115 is provided with a quartz circular lid 119 for opening and closing the opening 118, and the lid 119 is provided on the boat elevator 120 for raising and lowering the lid 119. It is done.
  • a rotary table 121 is provided on the upper surface side of the lid 119, and the rotary table 121 is rotatably provided about a vertical axis by a drive unit 122 provided below the boat elevator 120.
  • a heat insulation unit 123 is provided above the rotating table 121.
  • a wafer boat 105 which is a substrate holder is provided above the heat insulation unit 123.
  • the wafer boat 105 includes a top plate 124 a and a bottom plate 124 b, and the wafer W is inserted into a column 125 connecting the top plate 124 a and the bottom plate 124 b to hold the wafer W in a shelf shape.
  • the groove 126 is formed
  • a steam supply nozzle 127 and an N 2 gas supply nozzle 128 which is a purge gas supply unit are provided below the support portion 116 in the manifold 115.
  • the water vapor supply nozzle 127 extends horizontally and its tip is open as a gas supply port.
  • the proximal end side of the water vapor supply nozzle 127 is connected to a port 115 a formed in the manifold 115.
  • one end of the steam supply pipe 131 is connected to the port 115a from the outer peripheral side of the manifold 115, and the other end of the steam supply pipe 131 is connected to the steam supply source 132 via the valve V131 and the flow rate adjustment unit M131. There is.
  • the N 2 gas supply nozzle 128 also has a horizontal portion and a vertical portion extending in the direction in which the wafers W are arranged.
  • the proximal end side of the N 2 gas supply nozzle 128 is connected to a port 115 b formed in the manifold 115.
  • one end of an N 2 gas supply pipe 133 is connected to the port 115 b from the outer peripheral side of the manifold 115, and the other end of the N 2 gas supply pipe 133 is supplied with N 2 gas via a valve V 133 and a flow rate adjustment unit M 133 Connected to the source 134.
  • one end side of an exhaust pipe 136 connected to the other end side of the exhaust pipe 136 is connected to the upper side of the support portion 116 in the manifold 115, and the upper side of the support portion 116 in the manifold 115, that is, the outer reaction tube 104 It exhausts from a gap with the inner reaction tube 103.
  • the wafer W carried into the heat treatment apparatus by the carrier C is placed on the wafer boat 105 in a state where the lid 119 is lowered.
  • the lid 119 By further raising the lid 119, as shown in FIG. 17, the wafer boat 105 is accommodated in the reaction container 111, and the opening 118 is closed by the lid 119.
  • the water vapor is supplied from the water vapor supply nozzle 127 into the reaction container 111, and the wafer W is heated to a predetermined temperature, for example, 450 ° C. by the heating unit 114, whereby the curing process is performed on the wafer W.
  • the heat treatment apparatus 93 is also provided with a control unit 92 for carrying the wafer W in the heat treatment apparatus 93 and curing the wafer W in the vertical heat treatment apparatus 97 as shown in FIG.
  • the control unit 92 has a program storage unit, and the program storage unit instructs the transfer of the wafer W in the heat treatment apparatus 93 or the sequence of processing of the wafer W in the vertical heat treatment apparatus 97 to be performed.
  • the program is stored.
  • the program is stored in a storage medium such as, for example, a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), or a memory card, and installed in the control unit 92.
  • the substrate processing system transmits control signals to the control unit 91 of the substrate processing apparatus 1 and the control unit 92 of the heat treatment apparatus 93, and controls the transport of the carrier C by the transport car 98, The host computer 99 for performing the film forming method of Then, the wafer W processed by the substrate processing apparatus 1 is stored in the carrier C, and is transferred by the transfer vehicle 98 to the mounting table 90. Furthermore, for example, the processing of the heat treatment apparatus 93 is started, for example, on the mounting table 90 for one day. Thereafter, when it becomes the order of processing of the heat treatment apparatus 93, the carrier C is delivered by the carrier 98 to the carrier block S1 of the heat treatment apparatus 93, and the curing process is performed as described above.
  • the coating solution containing polysilazane is applied to the wafer W and the solvent in the coating film 101 is volatilized
  • ultraviolet light is applied to the coating film 101 in a nitrogen atmosphere before performing the curing process. Irradiating. For this reason, unbonded hands are likely to be generated at the hydrolyzed site in polysilazane. Therefore, since the dangling hand is generated in silicon, which is a site to be hydrolyzed in advance, the generation efficiency of the hydroxyl group is increased. That is, since the energy required for hydrolysis is reduced, even when the temperature of the curing step is set to 350 ° C., the number of sites remaining without hydrolysis is reduced. As a result, since dehydration condensation occurs efficiently, the crosslinking ratio is improved, and a dense (good film quality) insulating film can be formed.
  • the organic film 102 is formed on the surface of the coating film 101. Therefore, even when the wafer W stored in the carrier C from the substrate processing apparatus 1 and unloaded is placed on the mounting table 90, formation of a low-density oxide film due to loose oxidation of the unbonded hand is suppressed Be done. Therefore, the coating film 101 formed on the wafer W after the curing process becomes a dense film, and the variation in film quality among the wafers W can be suppressed.
  • the organic film may be removed before curing the coating film.
  • the heat processing apparatus 93 is provided with a liquid processing apparatus for supplying a rinse toward the wafer W, and the wafer W transferred to the heat processing apparatus 93 is subjected to a rinse process to dissolve and remove the organic film. It may be configured to be transported to the heat treatment apparatus 97.
  • the substrate processing apparatus 1 is provided with a liquid processing apparatus for supplying a rinse, and the substrate is transferred from the mounting table 90 to the one end substrate processing apparatus 1 immediately before being transferred to the heat treatment apparatus 93 to perform rinse processing. It may be transported.
  • the wafer W may be heated to perform ashing, or the organic film 102 may be decomposed and removed by heating at the time of the ashing process.
  • the organic film 102 acrylic or the like may be used, for example. Alternatively, it may be a resist.
  • a reflow process may be performed to rearrange the oligomers in the coating film 101. For example, when forming a SOG film, when a coating film is applied and a solvent is removed, a gap may be generated between oligomers contained in the coating film. Therefore, after performing the solvent removal process, the wafer W is heated at 200 to 300.degree.
  • the oligomers in the coating film 101 are rearranged and arranged to fill the gap (reflow step).
  • the gap between the oligomers is narrowed. Therefore, when a crosslink between oligomers is formed by the curing process in the latter stage, a dense film is easily formed.
  • a heating module for example, one of the solvent volatilization modules 3 can heat the wafer W at 200 to 300 ° C., for example 250 ° C.
  • a reflow module may be provided.
  • the curing process may be performed by heating while supplying ammonia gas in the curing process.
  • the gas supplied during the curing process may be N 2 gas.
  • the present invention may be applied to the formation of an interlayer insulating film such as a low dielectric constant film.
  • the heating temperature is required to be, for example, 400 ° C. or less in order to suppress migration or diffusion of copper which is a wiring material.
  • the present invention since an insulating film of good film quality can be obtained even at a low curing temperature, it can be expected to be applied to the formation of an interlayer insulating film.
  • the present invention may be applied to PMD (Pre Metal Dielectric).
  • the coating film is further irradiated with ultraviolet light.
  • ultraviolet irradiation dose 2000 mJ / cm 2 when irradiation is performed first ultraviolet coating film, and then ultraviolet rays of 1000 mJ / cm 2 dose as a step of irradiating the second ultraviolet coating film Irradiate.
  • ultraviolet rays 1000 mJ / cm 2 dose as a step of irradiating the second ultraviolet coating film Irradiate.
  • the coating film when the coating film is irradiated with ultraviolet light, the activity is enhanced on the surface of the coating film as shown in FIG. 18, and the energy is gradually attenuated as the coating film penetrates from the surface. Therefore, the energy distribution received in the depth direction of the coating film by irradiating the ultraviolet radiation of a dose amount such that the energy Ea received by all the layers of the coating film becomes E1 ⁇ Ea ⁇ E2, for example, a dose of 2000 mJ / cm 2 Is, for example, a distribution as shown by (1) in FIG. Furthermore, as shown by (2) in FIG.
  • the very thin layer d of the upper layer received energy exceeding the allowable value E2 by irradiating the ultraviolet ray at a dose of 1000 mJ in the second ultraviolet irradiation.
  • a layer is formed.
  • the lower layer side can be made into the layer which received the energy between tolerance value E1 and tolerance value E2.
  • the layer since all layers have exceeded the allowable value E1, the layer has a dangling bond formed in the surface layer, and further, oxygen and moisture in the air and normal temperature in the region of the thickness d of the surface layer. A state in which the activity is enhanced to such an extent that they react easily is formed.
  • the layer to which energy exceeding the surface tolerance E2 is supplied is rapidly oxidized by oxygen and moisture in the atmosphere.
  • a very dense oxide film 106 is formed.
  • the lower layer side of the layer supplied with energy exceeding the allowable value E2 does not have a high activity so as to be instantaneously oxidized, and the bonding of the non-bonding hand does not proceed and the layer becomes the non-bonding hand.
  • the dense oxide film 106 corresponds to a protective film.
  • the inventors of the present invention have formed an oxide film on the surface layer of the coated film on the wafer W which was subjected to the irradiation for one day by irradiating the ultraviolet light of 3000 mJ / cm 2 or more, and the oxidation did not proceed in the coated film. Have confirmed that. Furthermore, it has been confirmed that all layers have become oxide films by the subsequent curing process. Further, as shown in Example 3 described later, since the oxide film having high etching resistance is formed, it is presumed that the dense oxide film is formed.
  • a protective film can be formed on the surface of the coating film, and moderate oxidation of the protective film in the coating film under normal temperature air atmosphere can be suppressed, and similar effects can be obtained.
  • the coated film is exposed to the air atmosphere as in the above-described embodiment, and the surface of the coated film is May form a dense oxide film.
  • oxygen may be supplied to the surface of the coating film to forcibly form a dense oxide film.
  • the ultraviolet light irradiated for the second time may be ultraviolet light having a wavelength shorter than the ultraviolet light irradiated for the first time.
  • ultraviolet light penetrates from the surface when irradiated to the coating film, and energy gradually attenuates as it penetrates deep.
  • the wavelength ⁇ b of the ultraviolet light is short as shown by (4) in FIG. 20 as compared with the case where the wavelength ⁇ a of ultraviolet light is long Decay rate of energy in the direction is faster ( ⁇ a> ⁇ b).
  • the layer oxidized in the air atmosphere is given a high energy of the tolerance value E2 or more in advance, it is densely formed, but it is not a film formed in a batch by the curing process, so Si-O bonded by the curing process The nature may differ from that of the -Si bond. Therefore, it is possible to form a thin oxide film to be a protective film by irradiating the coating film with ultraviolet light having a short wavelength and reducing the thickness of the layer to which energy exceeding the allowable value E2 is irradiated. The uniformity of the film quality is good when the entire layer is oxidized.
  • the coating film is irradiated twice with ultraviolet rays, but by increasing the illuminance of the ultraviolet rays, the dose of 3000 mJ / cm 2 of the total of the two ultraviolet irradiations of the above example can be obtained. It may be irradiated with ultraviolet light at one time. Even in such a case, a very thin layer on the surface of the coating film can reach the energy irradiation amount exceeding the allowable level, and can form a state where the energy irradiation amount of the allowable level is reached inside the coating film. . As a result, a dense film can be formed on the very thin layer on the surface of the coating film, and the same effect can be obtained.
  • a dense film may be formed on the surface of the coating film by increasing the total irradiation time of the ultraviolet light to the coating film. By prolonging the irradiation time of the ultraviolet light, the dose of the ultraviolet light irradiated to the coating film can be increased, and the same effect can be obtained.
  • the irradiation dose of energy is preferably 5000 J / cm 2 or less.
  • the coating film may be exposed to a catalyst atmosphere such as ammonia gas, for example, before formation of the protective film.
  • a gas supply unit may be further provided in the ultraviolet irradiation module 5 shown in FIG. 16 so that ammonia gas can be supplied toward the wafer W mounted on the mounting table 54.
  • an ultraviolet ray of a dose amount of 2000 mJ / cm 2 is applied to the coating film to form an unbonded hand using such an ultraviolet irradiation module 5
  • ammonia gas is supplied to the wafer W and the coating film is, for example, an ammonia gas atmosphere. Exposure to for 1 minute.
  • Ammonia easily penetrates the coating film because the reactivity of the coating film is increased by ultraviolet irradiation. Thereafter, irradiation with ultraviolet light at a dose of 1000 mJ / cm 2 is performed to further activate the surface of the coating film, and the coating film may be exposed to the air atmosphere to form a dense oxide layer on the surface of the coating film.
  • the unbonded hands become Si-O-Si bonds by heating in a water vapor atmosphere, but the catalytic effect of ammonia penetrating into the coating film As a result, dehydrating condensation proceeds to promote the reaction in which the dangling bonds become Si—O—Si bonds.
  • the coating film can form the Si-O-Si bond more reliably, and a denser oxide film can be obtained.
  • An acid or an alkali can be used as an atmosphere to be a catalyst.
  • a liquid catalyst such as TMH (tetramethyl hydroxide) may be used.
  • the coated film is irradiated with ultraviolet light to form an unbonded hand, and then TMH is supplied to the surface of the wafer W and the surface of the wafer W is rotated by rotating the wafer W around the vertical axis. Form a liquid pool.
  • the catalyst can permeate into the coating film.
  • the coating film is irradiated with ultraviolet light to enhance the activity of the surface of the coating film, and exposed to the air, whereby an oxide film to be a protective film can be formed on the surface of the coating film containing the catalyst.
  • the substrate processing apparatus 1 may be provided with a catalyst addition module for adding a catalyst to the coating film with the atmosphere of the substrate as the catalyst atmosphere.
  • a plurality of ultraviolet irradiation modules 5, for example, the first ultraviolet irradiation module 5 and the second ultraviolet irradiation module 5 may be provided.
  • the wafer W after the solvent volatilization process is irradiated with ultraviolet light of a dose amount of, for example, 2000 mJ / cm 2 by the first ultraviolet irradiation module, transported to the catalyst addition module, and the catalyst is added to the coating film Do.
  • the wafer W may be transported to the second ultraviolet irradiation module 5 and the coating film may be irradiated with ultraviolet rays at a dose of 1000 mJ / cm 2 to enhance the activity of the surface of the coating film.
  • the insulating film may be formed by applying the coating solution a plurality of times.
  • the substrate processing apparatus 1 shown in FIG. 12 and FIG. 13 may be provided with a curing module capable of heating the wafer W to, for example, 450.degree. C. while supplying water vapor to the wafer W. .
  • the wafer W in which the trench 110 is formed is transported to the insulating film coating module 2A, and the coating liquid is applied for the first time.
  • the coating film 101a in a state in which the coating liquid has entered into the trench 110 formed in the silicon film 100 is formed.
  • the coating film formed by the first application of the coating solution is indicated by 101a
  • the coating film formed by the second application of the coating solution is indicated by 101b.
  • the wafer W is transferred to the solvent volatilization module 3 in the same manner as in the embodiment to volatilize the solvent, and then transferred to, for example, the ultraviolet irradiation module 5 to coat the coating film 101a in a low oxygen atmosphere as shown in FIG.
  • the ultraviolet light is irradiated at a dose of 2000 mJ / cm 2 .
  • the wafer W is transferred to the curing module, and curing is performed at 450 ° C. for 120 minutes in a water vapor atmosphere as shown in FIG.
  • the wafer W is transferred to the insulating film coating module 2A, and a second coating process is performed.
  • the coating film 101b is further stacked on the wafer W.
  • the wafer W is transferred to the solvent volatilization module 3 to volatilize the solvent, and then transferred to the ultraviolet irradiation module 5, and the coating film 101b is dosed at a dose of 2000 mJ / cm 2 in a low oxygen atmosphere as shown in FIG. Irradiate with ultraviolet light.
  • the coating film 101b is further irradiated with ultraviolet light at a dose of 1000 mJ / cm 2 to increase the activity of the surface of the coating film.
  • the wafer W is accommodated in the carrier C, carried out of the substrate processing apparatus 1, taken up by the mounting table 90, and carried to the heat treatment apparatus 93.
  • heating is performed stepwise at 400 ° C. and 450 ° C. in a steam atmosphere, and then heated to 450 ° C. in an N 2 gas atmosphere.
  • the ultraviolet rays are transmitted from the surface layer side to the lower layer side of the coating films 101a and 101b. Therefore, the ultraviolet rays are lower than the surface layer sides of the coating films 101a and 101b. It tends to weaken and there is a risk that the Si-H bond may not be sufficiently dangling. Therefore, when the wafer W is subjected to a curing process, the crosslinking rate may be low on the lower side of the coating films 101a and 101b, and the crosslinking rate of the entire film may be low. Further, for example, when the coating film on the surface layer is removed by CMP, there is a possibility that a layer having poor film quality in the coating film may be exposed.
  • the coating films 101a and 101b and irradiating the ultraviolet radiation a plurality of times to form the coating films 101a and 101b having a predetermined film thickness, it is possible to perform the ultraviolet irradiation treatment while the coating films 101a and 101b are thin. .
  • unbonded hands are easily formed on all layers of the coating films 101a and 101b. Therefore, when the curing process is performed, crosslinking is likely to be formed in all layers of the coating films 101a and 101b, and dense coating films 101a and 101b can be formed with a high crosslinking ratio over all layers.
  • a dense oxide film 106 to be a protective film is formed on the upper side of the upper side coating film 101b in the air atmosphere. Therefore, when the wafer W is placed, the non-bonds of the coating films 101a and 101b are protected without being oxidized.
  • a reflow process of heating the wafer W at 250 ° C. may be performed.
  • the step of irradiating ultraviolet light formation of a non-bonded hand and hydrolysis and dehydration condensation may proceed simultaneously if the temperature is increased to 350 to 400 ° C. at which crosslinking proceeds, for example, polysilazane. is there.
  • the temperature which irradiates an ultraviolet-ray is 350 degrees C or less.
  • the temperature is such that crosslinking does not proceed at the time of ultraviolet irradiation, ultraviolet light may be irradiated in the reflow step.
  • the solvent volatilization process there is also a possibility that the solvent may be denatured by the irradiation of ultraviolet light. Therefore, it is necessary to be after the solvent removal step.
  • the effect can be obtained by performing the above-described film forming method of the insulating film by setting the heating temperature of the wafer W in the solvent volatilization step to 200 to 250.degree. This is because the energy absorbed by the solvent is reduced by more reliably removing the solvent in the coating film 101, and the reflow process step is not performed in Example 2, but the reflow process occurs. It is presumed that this is a synergetic effect due to the occurrence of the effect corresponding to the rearrangement of the oligomer.
  • the main wavelength is preferably 200 nm or less.
  • ultraviolet light with a wavelength of 193 nm such as an ArF lamp may be used, or a deuterium lamp may be used.
  • an electron beam or the like may be used as energy to irradiate the coating film.
  • the apparatus for volatilizing the solvent in the coating film 101 used in the solvent volatilization step reduces the pressure in the sealed processing container, for example, to half of the atmospheric pressure, for example, to promote the volatilization of the solvent in the wafer W placed in the processing container. It may be an apparatus for volatilizing the solvent.
  • Example 1 An example in which an ultraviolet ray with a main wavelength of 172 nm was irradiated so as to have a dose amount of 2000 mJ / cm 2 in an N 2 gas atmosphere in the ultraviolet ray irradiation step in the film forming method of the insulating film was described as Example 1-1. After applying the coating liquid described in the embodiment, the wafer W was heated at 150 ° C. for 3 minutes in the solvent volatilization step, and then the ultraviolet irradiation step was performed without performing the reflow step.
  • Comparative Examples 1 and 2 In the ultraviolet irradiation step, Comparative Example 1 was treated in the same manner as Example 1-1 except that ultraviolet light of 2000 mJ / cm 2 was irradiated in the air atmosphere. An example treated in the same manner as Example 1-1 except that the ultraviolet irradiation was not performed was regarded as Comparative Example 2.
  • Example 1 wet etching is performed with 0.5% dilute hydrofluoric acid to evaluate the etching amount per unit time (etching rate), and the heat of silicon with respect to 0.5% dilute hydrofluoric acid
  • the relative etching rate in each example was determined when the etching rate of the oxide film was 1.
  • the relative etching rates in Comparative Examples 1 and 2 were 3.74 and 5.55, respectively.
  • the relative etching rate in Example 1 was 2.04. According to this result, when applying the coating liquid containing polysilazane to the wafer W to form the insulating film, the etching strength can be increased by irradiating the coating film before the curing step with the energy of the ultraviolet light in the N 2 gas atmosphere. It can be said that it can be enhanced.
  • Example 1 Furthermore, in each of Example 1 and Comparative Example 1, (FT-IR: Fourier transform infrared spectrophotometer) was used to evaluate the amount of atomic bonds before and after the ultraviolet irradiation treatment and after the curing treatment.
  • FT-IR Fourier transform infrared spectrophotometer
  • Si—H bonds decreased and Si—O bonds increased.
  • a decrease in Si—H bonds was observed after the ultraviolet irradiation treatment, but no Si—O bond was increased, and an Si—O bond was increased after the cure treatment.
  • the Si-H bond is reduced by UV irradiation treatment, and a dangling hand can be formed.
  • UV irradiation treatment is performed in the air atmosphere
  • the crosslinking reaction takes place prior to curing treatment. It is presumed that the crosslinking reaction before the curing treatment can be suppressed if the ultraviolet irradiation treatment is performed in an N 2 gas atmosphere. Then, it is presumed that the etching strength is enhanced by forming a dangling hand before the curing treatment and suppressing the crosslinking reaction.
  • the dose of ultraviolet light was set to 3000 and 4000 mJ / cm 2 , the relative etching rates were similarly evaluated.
  • Example 2 It was 2.42, and an insulating film having high strength could be obtained even at a dose of ultraviolet light of about 4000 mJ / cm 2 .
  • the dose amount of ultraviolet light is set to 3000 and 4000 mJ / cm 2 as described in Example 3 to be described later, it is presumed that a layer to be a dense oxide film is rapidly formed on the surface.
  • the coated film after treatment can be said to be a sufficiently dense film.
  • an insulating film is formed on wafer W using the substrate processing system shown in FIG. 11 according to the following embodiment, and the etching strength of the insulating film is evaluated. did.
  • Example 2-1 After the wafer W was coated with the coating liquid described in the embodiment, the wafer W was heated at 150 ° C. for 3 minutes in the solvent volatilization step, and then the ultraviolet irradiation step was performed without performing the reflow step. In the subsequent curing process, heating was performed at 450 ° C. in an N 2 gas atmosphere after performing heating in two stages of 400 ° C. for 30 minutes and 450 ° C. for 120 minutes in a heat treatment furnace with steam supplied. .
  • the target film thickness of the coating film was 100 nm.
  • Examples 2-2 and 2-3 In Examples 2-2 to 2-3, processing was performed in the same manner as in Example 2-1 except that the heating temperature of the wafer W in the solvent volatilization step was set to 200 ° C. and 250 ° C.
  • Example 3-1-1 Using the substrate processing system shown in FIG. 11, a polysilazane film was formed on the surface of the wafer W, and then the wafer W was heated at 150 ° C. for 30 minutes. Then, under a nitrogen gas atmosphere, the wafer W was irradiated with ultraviolet light with an intensity of 40 mW / cm 2 so that the dose amount was 1000 mJ / cm 2 . Subsequently, the wafer W is stored in the carrier C, and is placed for one day in the normal temperature (25.degree.
  • Example 3-1-1 An example of heating at 450 ° C. for 120 minutes was defined as Example 3-1-1.
  • the target film thickness of the coating film was 120 nm.
  • Examples 3-1-2 and 3-1-3 The dose of the ultraviolet, 2000 mJ / cm 2 and 3000 mJ / cm 2 and was, except that, in Example 3-1-1, respectively examples an example of processing in the same manner as 3-1-2,3-1-3 And Example 3-2-1
  • Example 3-2-1 As the curing process, an example of processing similar to Example 3-1-1 except that heating was performed at 400 ° C. for 3 minutes and 600 ° C. for 120 minutes in a steam atmosphere was set as Example 3-2-1. .
  • Examples 3-2-2 to 3-2-4 The dose of ultraviolet to be irradiated to the coating film, 2000mJ / cm 2, 3000mJ / cm 2 and 4000 mJ / cm 2 and was, except that, husband example treated in the same manner as in Example 3-2-1 s Example 3 -2-2 to 3-2-4.
  • Comparative Examples 3-1 and 3-2 The examples treated in the same manner as in Examples 3-1-1 and 3-2-1 except that the coating film was not irradiated with ultraviolet rays were referred to as Comparative Examples 3-1 and 3-2, respectively.
  • FIG. 27 shows the results and is a characteristic chart showing relative etching rates in each of Examples 3-1-1 to 3-2-4 and Comparative Examples 3-1 and 3-2.
  • the relative etching rates were 4.12 and 3.05, but Examples 3-1-1 to 3-1-3, In any of Examples 3-2-1 to 3-2-4, the relative etching rate decreased as the ultraviolet dose increased.
  • Example 3-2-4 in which the temperature in the curing process is set to 600 ° C. is lowered to nearly 1, and in the case of Example 3-1-3 in which the temperature in the curing process is set to 450 ° C.
  • the relative etching rate was lowered to about 2 even at Therefore, it can be said that an insulating film with higher etching strength can be obtained by increasing the dose of ultraviolet light in the step of irradiating the coated film with ultraviolet light. Further, even in the case of performing the placement, it can be said that an insulating film having a sufficiently high etching strength can be obtained even when the temperature in the curing process is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】基板上に酸化シリコンを含む絶縁膜を塗布膜として形成するにあたって、良好な膜質が得られる技術を提供すること。 【解決手段】ポリシラザンを含む塗布液をウエハWに塗布し、塗布液の溶媒を揮発させた後、キュア工程を行う前に、窒素雰囲気で前記塗布膜に紫外線を照射している。このためポリシラザンにおける予め加水分解される部位であるシリコンに未結合手を生成される。そのため加水分解に必要なエネルギーが低下することから、キュア工程の温度を350℃としたときにも、加水分解されずに残る部位が少なくなる。この結果効率的に脱水縮合が起こるので、架橋率が向上して緻密な(良質な膜質である)絶縁膜を成膜することができる。 また前記塗布膜に紫外線を照射した後塗布膜の表面に保護膜を形成することにより、キュア工程前における未結合手の反応を抑制することができ、塗布膜の膜質が良好になる。

Description

絶縁膜の成膜方法、基板処理装置及び基板処理システム
 本発明は、基板の上に酸化シリコンを含む塗布膜であって、架橋反応により硬化される絶縁膜を成膜する技術に関する。
 半導体装置の製造工程の中には、シリコン酸化膜などの絶縁膜を成膜する工程があり、絶縁膜は、例えばプラズマCVDや、塗布液の塗布によるなどの方法により成膜される。プラズマCVDにより成膜された絶縁膜は緻密で良質な膜が得られる利点があるが、埋め込み性が悪い。そのため例えばSTI(シャロートレンチアイソレーション)と呼ばれる微細な溝に絶縁物を埋め込む場合に適さない。従ってプラズマCVDと、エッチバックとを繰り返し行い、徐々に隙間ができないように埋め込んでいく必要があるなど、成膜プロセスが繁雑になったり、真空処理を行うため大掛かりな装置が必要になる。
 また例えばスピンコーティングなどにより半導体ウエハ(以下「ウエハ」という)に塗布液を塗布し、塗布膜をキュアして絶縁膜を成膜する手法は、埋め込み性が良好であり、STIなど微細なパターンにも、絶縁膜を充填しやすい。さらに常圧雰囲気にて処理を行うことができる利点があるが、膜の強度が比較的低くなるという課題がある。このため例えば600℃~800℃で塗布膜を熱処理(キュア)して膜の強度を高くしている。
 しかしパターンの微細化に伴い、製造される半導体装置に対する熱履歴をできるだけ低く抑える要請があり、例えば層間絶縁膜を成膜する場合、銅(Cu)配線のマイグレーション、Cuの拡散などの観点から400℃よりも高温にできない。そのため塗布液の塗布により絶縁膜を成膜する手法はキュア温度が高いため層間絶縁膜に適用できない。
 特許文献1には、塗布膜の塗布後、低温で塗布膜を加熱し、その後水蒸気雰囲気にて高温で処理を行うことにより絶縁膜を成膜する技術が記載されているが本発明の課題を解決するものではない。
特開2012-174717号公報
 本発明はこのような事情の下になされたものであり、その目的は、基板上に酸化シリコンを含む絶縁膜を塗布膜として形成するにあたって、良好な膜質が得られる技術を提供することにある。
 本発明の絶縁膜の成膜方法は、酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成する工程と、
 前記塗布膜中の溶媒を揮発させる溶媒揮発工程と、
 この工程の後、前記前駆体を構成する分子団に未結合手を生成するために、大気よりも酸素濃度が低い低酸素雰囲気で前記塗布膜にエネルギーを供給するエネルギー供給工程と、
 前記塗布膜の表面に、塗布膜中の未結合手の大気雰囲気による酸化を抑制するための保護膜を形成する工程と、
 その後、前記基板を加熱し、前記前駆体を架橋させて絶縁膜を形成するキュア工程と、を含むことを特徴とする。
 本発明の基板処理装置は、酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成するための塗布モジュールと、
 前記塗布膜中の溶媒を揮発させるための溶剤揮発モジュールと、
 前記前駆体を活性化させるために、溶媒が揮発された塗布膜に対して、大気よりも酸素濃度が低い低酸素雰囲気でエネルギーを供給するためのエネルギー供給モジュールと、
 前記エネルギーが供給された塗布膜に保護膜を形成する保護膜形成モジュールと、
 各モジュールの間で基板を搬送するための基板搬送機構と、を備えたことを特徴とする。
 本発明の基板処理システムは、基板を搬送容器に入れて搬入出するための搬入出ポートと、酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成するための塗布モジュールと、前記塗布膜中の溶媒を揮発させるための溶媒揮発モジュールと、前記前駆体を活性化させるために、溶媒が揮発された塗布膜に対して、大気よりも酸素濃度が低い低酸素雰囲気でエネルギーを供給するためのエネルギー供給モジュールと、前記エネルギーが供給された塗布膜に保護膜を形成する保護膜形成モジュールと、各モジュール及び前記搬入出ポートの間で基板を搬送するための基板搬送機構と、を備えた基板処理装置と、
 前記エネルギー供給モジュールにて処理された後の基板を加熱し、前記前駆体を架橋させて絶縁膜を形成するための熱処理装置と、
 前記基板処理装置の前記搬入出ポートと前記キュア装置との間で前記搬送容器を搬送するための容器搬送機構と、を備えたことを特徴とする。
 本発明は、酸化シリコンを含む絶縁膜の前駆体を含む塗布液を基板に塗布し、塗布液の溶媒を揮発させた後、キュア工程を行う前に、低酸素雰囲気で前記塗布膜にエネルギーを供給している。このため前駆体における加水分解される部位にて未結合手が生成されやすい。キュア工程では先ず加水分解により、前駆体を構成する分子団のシリコンに水酸基が結合し、次いで分子団同士の水酸基が脱水縮合して架橋が行われるが、予め加水分解される部位であるシリコンに未結合手を生成していることから、水酸基の生成効率が高くなる。即ち、加水分解に必要なエネルギーが低下することから、低温でキュア工程を行っても、加水分解されずに残る部位が少なくなる。この結果効率的に脱水縮合が起こるので、架橋率が向上して緻密な(良質な)絶縁膜の製造が期待できる。
 また塗布膜にエネルギーを供給した後、塗布膜の表面に保護膜を形成することで、キュア工程前における未結合手の反応を抑制することができ、塗布膜の膜質が良好になる。
従来の絶縁膜のキュア工程を説明する説明図である。 本発明の絶縁膜のキュア工程を説明する説明図である。 本発明の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 従来の成膜処理におけるポリシラザンの反応経路を説明する説明図である。 本発明の成膜処理におけるポリシラザンの反応経路を説明する説明図である。 絶縁膜の表面の平坦化を示す説明図である。 本発明の実施の形態に係る基板処理システムを示す平面図である。 基板処理装置を示す平面図である。 基板処理装置の縦断面図である。 前記基板処理装置に設けられる塗布モジュールを示す断面図である。 前記基板処理装置に設けられる溶剤揮発モジュールを示す断面図である。 前記基板処理装置に設けられる紫外線照射モジュールを示す断面図である。 熱処理装置に設けられる縦型熱処理装置を示す断面図である。 第2の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 第2の実施の形態に係るウエハの断面図である。 第2の実施の形態に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 本発明の実施の形態の他の例に係る絶縁膜の成膜工程を説明する説明図である。 実施例3における相対的エッチングレートを示す特性図である。
 [発明の概要]
 本発明の実施形態の詳細について説明する前に、本発明の概要について述べておく。本発明の絶縁膜の成膜方法の一例として、酸化シリコンを含む絶縁膜の前駆体を含む塗布液を基板に塗布し、得られた塗布膜を加熱して塗布膜中の溶媒を揮発させ、次いで基板を加熱して塗布膜中の分子団の再配列を行い、その後、塗布膜に紫外線を照射し、しかる後、塗布膜をキュアする工程が挙げられる。
 塗布液は、酸化シリコンを含む絶縁膜の前駆体の分子団であるオリゴマーの群を溶媒である溶剤に溶解させて製造される。一般的なキュア工程では、基板を例えば500℃に加熱することにより図1に示すようにオリゴマーのSi-H結合がHO(水分)との加水分解(反応)により、Si-OHが生成される。続いて脱水縮合(反応)が起こってSi-O-Si結合が生成され、オリゴマー同士が架橋される。
 塗布液の成分としてオリゴマーが用いられる理由は、前駆体全体が連繋されていると溶剤に溶解しないからである。このためオリゴマーの状態、即ち既述の前駆体の加水分解前の状態は安定化しており、加水分解はこの安定化状態から不安定状態に移行させるプロセスであることから、加水分解を促進させるのが難しい。従ってキュア温度を高温化するかあるいは低温で長い時間反応させることが必要になる。
 一方脱水縮合反応は熱エネルギーを与えるだけで速やかに進行する。このため加水分解を促進させるためにキュアの温度を高温化すると、加水分解が起こる(Si-HがSi-OHとなる)よりも、脱水縮合が起こる(Si-OHがSi-O-Siとなる)方が容易であることから、絶縁膜の緻密性が低くなる。その理由については、概略的な言い方をすれば、一部のオリゴマー同士が脱水縮合により架橋されたときに、他のオリゴマーは未だ加水分解が行われていない場合が起こり、当該他のオリゴマーが一部のオリゴマー同士の架橋物内に取り込まれてしまうことに起因すると推測される。なお低温で長時間キュアを行う手法は、スループットが低くなるので、生産ラインでは受け入れ難い。 
 そこで本発明では、キュア工程を行う前に例えば紫外線を塗布膜に照射して、加水分解が起こる部位に未結合手を生成する(オリゴマーをいわば活性化する)ようにしている。即ち図2に示すように紫外線のエネルギーによりオリゴマーにおけるSi-Hの結合を切断して未結合手を生成している。このためキュア工程において加水分解に必要なエネルギーが低くなるので、水酸基(OH基)の生成効率が高くなり、その後の脱水縮合による架橋率が向上する。このことは、低温でキュア工程を行っても、緻密な(良好な膜質である)絶縁膜が得られるということである。
 塗布膜に対する紫外線の照射は、キュア工程の前に行うことが必要である。その理由については、キュア工程は低温とはいっても例えば350℃~450℃の加熱雰囲気で行われる。そのため紫外線のエネルギーにより既述のように未結合手が生成されると、未結合手が生成された部位から架橋が起こり、このためSi-H結合が未だ切断されていないオリゴマーが、架橋されたオリゴマー群の中に閉じ込められてしまい、絶縁膜の緻密性が低くなる。 
 このため紫外線を塗布膜に照射する工程は、このような現象が抑えられた温度で行うことが必要であり、具体的には例えば350℃以下が望ましいと考えられ、例えば室温で行うことができる。また紫外線を塗布膜に照射する工程は、大気雰囲気よりも酸素濃度が低い低酸素濃度雰囲気で行うことが必要であり、例えば酸素濃度が400ppm以下、好ましくは50ppm以下の雰囲気で行われる。低酸素濃度雰囲気は、一例として窒素ガスなどの不活性ガス雰囲気が挙げられる。 
 この工程が行われる雰囲気において酸素濃度が高いと、紫外線の照射により生成された未結合手を有するオリゴマー同士が瞬時で結合し、結合されたオリゴマーの中に、孤立したオリゴマーが閉じ込められ、結果として絶縁膜の緻密性が低くなる。
 ここで紫外線を塗布膜に照射する工程を行った後、例えば基板に紫外線照射処理を行った基板処理装置からキュア処理を行う熱処理炉に搬送する間に、基板が例えば収納容器に収納された状態で、常温の大気雰囲気にて引き置き(放置)されることがある。塗布膜に紫外線を照射し、塗布膜の表面に未結合手を形成していた場合には、塗布膜の反応性が高まっているため、大気中の酸素や水分により容易に未結合手が酸化されてしまう。しかしながら温度の低い状態、例えば常温域において、未結合手が酸化されると、強度の低い酸化膜が形成されてしまい膜質が劣化してしまうことがある。従って本発明では、基板を基板処理装置から搬出する前に、塗布膜の表面に塗布膜の酸化を抑制する保護膜の形成を行う。保護膜としては、後述するように例えば有機膜や、緻密に構成された酸化膜などを用いることができる。
 [第1の実施の形態]
 次に本発明の絶縁膜の成膜方法の実施の形態について詳述する。上述の基板処理システムを用いた絶縁膜の成膜方法として、被処理基板に対してSTIを行うプロセスについて説明する。図3に示すように被処理基板であるウエハWには、シリコン膜100に溝部(トレンチ)110が形成されており、そして例えばSOG膜の前駆体を有機溶剤に溶解した塗布液をウエハWに塗布することにより、トレンチ110を埋めるように塗布膜101が形成される。前駆体としては、例えば-(SiHNH)‐を基本構造とするポリマーであるポリシラザンが用いられる。塗布液は、例えば流動性を良くするためにポリシラザンの分子団がオリゴマーの状態で溶解している。そのため図3に示すように、例えばスピンコーティングによりウエハWに塗布したときに塗布液が細いトレンチ110内に進入しやすく埋め込み性の良好な塗布膜101が得られる。なお図3~図10では、塗布膜101にPSZ(ポリシラザン)と記載している。
 続いて図4に示すようにウエハWを100~250℃、例えば150℃で3分間加熱する。これにより塗布膜101中に含まれる溶媒が揮発する。その後、図5に示すように400ppm、好ましくは50ppm以下の酸素濃度の雰囲気、例えば窒素(N)ガス雰囲気にて、塗布膜101に5000mJ/cm以下、例えば4000mJ/cmのエネルギーを照射する。エネルギーとしては、例えば主たる波長が200nm以下の紫外線、例えば主たる波長が172nmの紫外線(UV)を照射する。主たる波長とはスペクトルにおいて最大ピーク、あるいはその近傍に対応する波長である。
 次いで塗布膜101の表面に、例えばポリスチレンで構成された保護膜である有機膜102を形成する。これにより図6に示すように塗布膜101の表面が有機膜102により覆われ、塗布膜101に形成された未結合手と、大気雰囲気との接触が抑制される。また有機膜102は疎水性であるため、大気中の水分が塗布膜101中に浸透することを防ぐことができる。
 塗布膜101の表面に形成されている未結合手は、反応性が高いため、大気雰囲気中の酸素や水分と容易に反応してしまう。この時常温域にて未結合手の酸化を進行させると反応が緩やかに進行するため塗布膜101の表面に緻密性の低い酸化膜が形成されてしまうことがある。そのため塗布膜101の表面を有機膜102で覆っておくことで、塗布膜101の表面に形成されている未結合手の大気雰囲気との接触を抑制することができ、塗布膜101の表面における緻密性の低い酸化膜の形成を抑制することができる。
 さらに続くキュア工程においては、図7に示すようにウエハWに向けて水蒸気を供給しながら、350~450℃の温度にて段階的加熱処理、例えば水蒸気を雰囲気下で400℃と、450℃で段階的に加熱し、さらにNガス雰囲気下で450℃で加熱する。この時塗布膜101の表面に形成された有機膜102は、ポリスチレンであるため、加熱により、水と二酸化炭素とになって昇華して容易に除去され、塗布膜101の表面が露出する。さらに塗布膜101が水蒸気雰囲気下で350~450℃の温度で加熱される。
 図8は紫外線を照射せずにポリシラザンにキュア処理を行った時の反応経路を示し図9は、紫外線を照射したポリシラザンにキュア処理を行った時の反応経路を示す。図8に示すようにポリシラザンにキュア処理を行うと、加水分解により、Siと結合しているHがOH基となり、さらにN-H基が酸化され、アンモニア(NH)となることでSi-O結合が形成される。そしてOH基同士が脱水縮合により、架橋を形成していく。しかしながら発明の概要にて述べたようにキュア処理をしたときに加水分解が起こりにくく、緻密性の低い膜となる。
 これに対してポリシラザンを含む塗布膜101にキュア処理前に紫外線を照射することで、図9に示すようにSi-H結合が切断されて未結合手が形成されると共に、一部のSi-N結合が切断されて未結合手が形成される。これによりキュア処理を行った時に未結合手にOH基が容易に結合し、Si-OHが生成される。また脱水縮合によりOH基同士が架橋し、Si-O-Si結合が形成される。さらにポリシラザンにおけるSi-N結合がOに置換されて酸化シリコンが生成されていく。既述のように予め未結合手を形成することにより、OH基が生成効率が高く、架橋率が向上するため、良好な膜質の絶縁膜(酸化シリコン膜)が形成される。
 絶縁膜が硬化した後、図10に示すようにウエハWは、例えばCMP(chemical Mechanical polishing)によりウエハWの表面の余分な塗布膜101が除去される。この時塗布膜101の強度が低い場合には、CMPによる研磨が難しくなるが、塗布膜101が緻密性が高い酸化シリコン膜となっており、強度が十分に高められているためCMPにより研磨されてウエハWの表面にシリコン膜100が露出する。
 続いて絶縁膜を成膜する基板処理システムについて説明する。図11に示すように基板処理システムは、ウエハWに絶縁膜の塗布を行う塗布処理含む基板処理を行うための基板処理装置1と、ウエハWに熱処理を行う熱処理炉、例えば縦型熱処理装置97を含む熱処理装置93と、を備えている。また基板処理装置1と熱処理装置93との間においてキャリアCを搬送する容器搬送機構である搬送車(AVG)98が設けられ、基板処理装置1と熱処理装置93との間には、基板処理装置1にて処理を終え、熱処理装置93に搬送される前にウエハWがキャリアCに収納された状態で載置されて引き置きがされる載置台90が設けられている。
 図12、図13に示すように基板処理装置1は、ウエハWが複数枚収納された搬送容器であるキャリアCから、装置内に搬入出するための搬入出ポートであるキャリアブロックS1と、中継ブロックS2と、処理ブロックS3とを一列に接続して構成されている。
 キャリアブロックS1は、図12に示すように複数枚のウエハWを収納して搬送するためのキャリアCが例えば横方向(X方向)に複数(例えば3個)載置されるステージ11を備えている。またキャリアブロックS1は、ステージ11に載置されたキャリアC内に対してウエハWの受け渡しを行うための搬送アームである受け渡し機構12と、を備えている。受け渡し機構12は、ウエハWの保持部分が進退自在、X方向に移動自在、鉛直軸周りに回転自在、昇降自在に構成されている。
 中継ブロックS2は、キャリアブロックS1にてキャリアCから取り出されたウエハWを処理ブロックS3側に受け渡す役割を持っている。中継ブロックS2は、ウエハWの載置台が上下に複数配置された受け渡し棚13と、受け渡し棚13の各載置台の間でウエハWの移載を行うための昇降自在な移載機構14と、を備えている。受け渡し棚13には、処理ブロックS3に設けられる主搬送機構15a、15bがウエハWの受け渡しを行うことができる高さ位置と、受け渡し機構42がウエハWの受け渡しを行うことができる高さ位置と、においてウエハWの載置台が配置されている。
 処理ブロックS3は、図13に示すように上下に処理ブロックB1、B2が積層された2階建てになっている。処理ブロックB1、B2は略同様に構成されており、図12に示す処理ブロックB1を例に説明する。処理ブロックB1は、各々中継ブロックS2から見て前後方向(Y方向)に伸びる例えばガイドレールからなる搬送路16に沿って移動自在な主搬送機構15aを備えている。処理ブロックB1には、搬送路16の左右両側にウエハWに対して処理を行うためのモジュールが配置されている。処理ブロックB1においては、搬入出ブロックS1から見て右側に、絶縁膜及び有機膜を塗布するための塗布モジュール2が設けられている。また左側には、中継ブロックS2側から、例えば3台の溶剤揮発モジュール3及び2台の紫外線照射モジュール5が並んで配置されている。
 また絶縁膜の成膜装置には、例えばコンピュータからなる制御部91が設けられている。制御部91は、プログラム格納部を有しており、プログラム格納部には、成膜装置内におけるウエハWの搬送、あるいは各モジュールにおけるウエハWの処理のシーケンスが実施されるように命令が組まれた、プログラムが格納される。このプログラムは、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)、メモリーカードなどの記憶媒体により格納されて制御部91にインストールされる。
 続いて、塗布モジュール2について説明する。塗布モジュール2は例えばパターンの形成されたウエハWに対して、公知のスピンコーティング法により塗布を行う。塗布モジュール2は、絶縁膜の前駆体となるポリシラザンを有機溶剤に溶解した塗布液を塗布する絶縁膜塗布モジュール2Aと、紫外線照射処理後のウエハWの表面に有機膜を塗布する有機膜形成モジュールである有機膜塗布モジュール2Bと、を備えている。これら絶縁膜塗布モジュール2Aと、有機膜塗布モジュール2Bと、のうち絶縁膜塗布モジュール2Aは、ウエハWにポリシラザンを塗布する。また有機膜塗布モジュール2Bは、例えばポリスチレンを塗布することを除いて同様に構成されているため、ここでは、絶縁膜塗布モジュール2Aを例に説明する。
 絶縁膜塗布モジュール2Aは、図14に示すようにウエハWを吸着保持して駆動機構22により回転自在、昇降自在に構成されたスピンチャック21を備えている。また図14中の23はカップモジュールである。図14中24は、円形板状に構成され、周縁から下方に伸びる外周壁を備えたガイド部材である。
 また外カップ25と前記外周壁との間には、排出空間が形成され、排出空間の下方は、気液分離できる構造になっている。ガイド部材24の周囲には、外カップ25の上端から中心側に向かって伸び出すように設けられた、ウエハWから振り切られた液を受け止める液受け部27が設けられている。また絶縁膜塗布モジュール2Aは塗布液ノズル28を備え、例えばポリシラザンなどの塗布液が貯留された塗布液供給源29から塗布液ノズル28を介してウエハWの中心部に塗布液を供給すると共にウエハWを鉛直軸周りに所定の回転数で回転させ、ウエハWの表面に塗布液を展伸して塗布膜を形成する。有機膜塗布モジュール2Bについても同様にウエハWに対して塗布液ノズル28を介してポリスチレンを供給すると共に、ウエハWを鉛直軸周りに所定の回転数で回転させ、ウエハWの表面に塗布液を展伸して有機膜を形成する。
 次に溶媒である溶剤を揮発させる溶剤揮発モジュール3について説明する。図15に示すように溶剤揮発モジュール3は、図示しない筐体内に上面が開口している扁平な円筒体からなる下部材31と、この下部材31に対して設けられた蓋部32とで構成された処理容器30を備えている。蓋部32は筐体の底面部3aの上面設けられたに昇降機構37により、上下に昇降するように構成され、蓋部32を上昇させることで処理容器30が開放される。下部材31は筐体の底面部3aに支持部材41を介して支持されている。また下部材31にはウエハWを載置して、例えば100~250℃に加熱するための加熱機構34が埋設された加熱板33が設けられている。筐体の底面部3aには、下部材31の底部及び加熱板33を貫通しウエハWを外部の主搬送機構15aとの間で受け渡しを行うための昇降ピン35を昇降させるための昇降機構36が設けられている。
 蓋部32は下面が開口している扁平な円筒体からなり、蓋部32の天井板の中央部には、排気口38が形成され、この排気口38には排気管39が接続されている。この排気管39は処理容器30側を上流側とすると、工場内に引き回されている共用の排気ダクトにその下流端が接続されている。
 蓋部32は、下部材31の周壁部の上面に設けられたピン40に接触するように載置され、蓋部32と下部材31との間にわずかな隙間が形成されるように載置され、ウエハWを加熱する処理空間を形成する。そして排気口38から排気を行うことにより、筐体内の雰囲気が蓋部32と、下部材31と隙間から処理容器30内に流入するように構成されている。また蓋部32は、蓋部32を処理容器30を閉じた状態とする下降位置と、ウエハWを加熱板33に対して受け渡すときの上昇位置との間で昇降できるように構成されている。
 エネルギー供給モジュールである紫外線照射モジュール5は、図16に示すように扁平で前後方向に細長い直方体形状の筐体50を備えている。筐体50の前方側の側壁面にはウエハWを搬入出するための搬入出口51と、この搬入出口51を開閉するシャッタ52とが設けられている。
 筐体50の内部は、搬入出口51から見て手前側にウエハWを搬送する搬送アーム53が設けられている。搬送アーム53は、クーリングプレートとして構成され、例えば溶剤揮発工程後、紫外線照射処理の前に、ウエハWを常温(25℃)まで冷却できるように構成されている。搬入出口51から見て奥側には、ウエハWの載置台54が配置されている。載置台54及び搬送アーム53の下方にはウエハの受け渡しを行うための昇降ピン56、58が夫々設けられ、昇降ピン56、58は、夫々昇降機構57、59により昇降するように構成されている。
方側には、載置台54に載置されたウエハWに紫外線光を照射するための例えば主たる波長が172nmの紫外線を照射するキセノンエキシマランプなどの紫外線ランプ71を収容したランプ室70が設けられている。ランプ室70の下面は、紫外線ランプ71から照射された波長172nmの紫外線光をウエハWへ向けて透過させる例えば石英製の光透過窓72が設けられている。またランプ室70の下方の側壁には、ガス供給部73と、排気口74と、が互いに対向するように設けられている。ガス供給部73には、筐体50内にNガスを供給するためのNガス供給源75が接続されている。排気口74には、排気管76を介して排気機構77が接続されている。
 そして載置台54に載置されたウエハWに紫外線を照射するときには、ガス供給部73からNガスを供給すると共に排気を行い、ウエハWの雰囲気を例えば400ppm以下の低酸素雰囲気、例えばNガス雰囲気とするように構成されている。搬送アームに53にて常温まで冷却されたウエハWが載置台54に載置されると、Nガス供給源75からNガスを供給し、低酸素雰囲気とした状態でウエハWに例えば2000mJ/cmのエネルギーが照射される
 絶縁膜の成膜装置におけるウエハWの流れを簡単に説明すると、ウエハWを収納したキャリアCがステージ11に載置されると、ウエハWは、受け渡し機構12、受け渡し棚13及び移載機構14を介して、処理ブロックB1又はB2に搬送される。その後、ウエハWは、絶縁膜塗布モジュール2Aにて塗布膜101が塗布され、溶剤揮発モジュール3→紫外線照射モジュール5→有機膜塗布モジュール2Bの順番に搬送されて絶縁膜が形成される。その後ウエハWは、受け渡し棚13に受け渡され、移載機構14及び受け渡し機構12によりキャリアCに戻される。
 続いて熱処理装置93について説明する。熱処理装置93は、図11に示すようにキャリアCが搬送されるキャリアブロックS1と、キャリアCからウエハを取り出す受け渡し機構94と、ウエハWを載置する載置棚96と、載置棚96に載置されたウエハWを熱処理炉に移載する移載機構95を備えている。
 熱処理炉は、例えば図17に示すような縦型熱処理装置97を用いることができる。縦型熱処理装置97は、両端が開口した石英製の管状に構成され、内部に成膜ガスが供給される反応管である内側反応管103を備えており、内側反応管103の周囲には、上端側が塞がれ、下端側が開口した石英製の円筒状の外側反応管104が設けられている。外側反応管104の下方には、外側反応管104と開口部に気密に接続され、外側反応管104と連続するステンレス製の筒状のマニホールド115が設けられ、マニホールド115の下端は、フランジ117が形成されている。またマニホールド115の内側には、リング状の支持部116が形成され、内側反応管103は、その下端が支持部116の内側の周縁に沿って起立して接続されている。内側反応管103、外側反応管104及びマニホールド115は反応容器111に相当する。
 また縦型熱処理装置97は、外側反応管104を上方側から覆う断熱体113を備え、断熱体113の下方は、反応容器111を固定している基体109に固定されている。断熱体113の内側には、全周に亘って抵抗発熱体からなる加熱部114が設けられている。 
 マニホールド115におけるフランジ117に囲まれる開口部118には、開口部118を開閉する石英製の円形の蓋体119が設けられ、蓋体119は、蓋体119を昇降させるボートエレベータ120の上に設けられている。蓋体119の上面側には、回転台121が設けられ、回転台121は、ボートエレベータ120の下方に設けられた駆動部122により鉛直軸周りに回転自在に設けられている。
 回転台121の上方には、断熱ユニット123が設けられている。断熱ユニット123の上方には、基板保持具であるウエハボート105が設けられている。ウエハボート105は、天板124aと、底板124bと、を備え、天板124aと底板124bとを互いに接続する支柱125には、ウエハW挿入して、ウエハWを棚状に保持するための保持溝126が形成されている
 マニホールド115における支持部116の下方側には、水蒸気供給ノズル127及びパージガス供給部であるNガス供給ノズル128が設けられている。水蒸気供給ノズル127は、水平に伸びその先端がガス供給口として開口している。水蒸気供給ノズル127の基端側はマニホールド115に形成されたポート115aに接続されている。またポート115aには、マニホールド115の外周側から水蒸気供給管131の一端が接続され、水蒸気供給管131の他端側は、バルブV131、流量調整部M131を介して水蒸気供給源132に接続されている。
 またNガス供給ノズル128は、水平部分とウエハWの配列方向に伸びる垂直部分とを備えている。たNガス供給ノズル128の基端側はマニホールド115に形成されたポート115bに接続されている。またポート115bには、マニホールド115の外周側からNガス供給管133の一端が接続され、Nガス供給管133の他端側は、バルブV133、流量調整部M133を介してNガス供給源134に接続されている。
 またマニホールド115における支持部116の上方側には、他端側に真空排気機構135が接続された排気管136の一端側が接続され、マニホールド115における支持部116の上方側、即ち外側反応管104と内側反応管103との隙間から排気するように構成されている。
 この縦型熱処理装置97は、例えば蓋体119を下降させた状態で、キャリアCにて熱処理装置に搬入されたウエハWが、ウエハボート105に載置される。さらに蓋体119を上昇させることで、図17に示すように反応容器111内にウエハボート105が収納されると共に、蓋体119により開口部118が閉じられる。そして水蒸気供給ノズル127から反応容器111内に水蒸気を供給すると共に、加熱部114によりウエハWが所定の温度例えば450℃に加熱することにより、ウエハWにキュア処理が行われる。
 そしてこの熱処理装置93においても図11に示すように熱処理装置93におけるウエハWの搬送や縦型熱処理装置97におけるウエハWのキュア処理を実行するための制御部92が設けられている。制御部92は、プログラム格納部を有しており、プログラム格納部には、熱処理装置93内におけるウエハWの搬送、あるいは縦型熱処理装置97におけるウエハWの処理のシーケンスが実施されるように命令が組まれた、プログラムが格納される。このプログラムは、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)、メモリーカードなどの記憶媒体により格納されて制御部92にインストールされる。また基板処理システムは、基板処理装置1の制御部91と、熱処理装置93の制御部92と、に制御信号を送信すると共に、搬送車98によるキャリアCの搬送を制御し、既述の絶縁膜の成膜方法を実行するための上位コンピュータ99を備えている。
 そして基板処理装置1にて処理を終えたウエハWは、キャリアCに収納され、搬送車98により載置台90に搬送される。さらに例えば熱処理装置93の処理が開始されるまで、例えば1日の間載置台90上にて引き置きがされる。その後熱処理装置93の処理の順番になると、当該キャリアCは搬送車98により熱処理装置93のキャリアブロックS1に受け渡されて既述のようにキュア工程が行われる。
 上述の実施の形態によれば、ポリシラザンを含む塗布液をウエハWに塗布し、塗布膜101中の溶剤を揮発させた後、キュア工程を行う前に、窒素雰囲気で前記塗布膜101に紫外線を照射している。このためポリシラザンにおける加水分解される部位にて未結合手が生成されやすい。そのため予め加水分解される部位であるシリコンに未結合手を生成していることから、水酸基の生成効率が高くなる。即ち、加水分解に必要なエネルギーが低下することから、キュア工程の温度を350℃としたときにも、加水分解されずに残る部位が少なくなる。この結果効率的に脱水縮合が起こるので、架橋率が向上して緻密な(良質な膜質である)絶縁膜を成膜することができる。
 さらに基板を基板処理装置1から搬送する前に塗布膜101の表面に有機膜102を成膜している。そのため基板処理装置1からキャリアCに収納されて搬出されたウエハWが、載置台90にて引き置きされたときにも、未結合手の緩やかな酸化による緻密さの低い酸化膜の形成が抑制される。従って、キュア処理後のウエハWに形成される塗布膜101が緻密な膜になると共にウエハW間の膜質のばらつきも抑制することができる。
 また塗布膜にキュア処理を行う前に有機膜の除去を行うようにしてもよい。このような例としては、熱処理装置93にウエハWに向けてリンスを供給する液処理装置を設け、熱処理装置93に搬送されたウエハWにリンス処理を行い有機膜を溶解除去した後、縦型熱処理装置97に搬送するように構成すればよい。また基板処理装置1にリンスを供給する液処理装置を設け、熱処理装置93に搬送する直前に載置台90から一端基板処理装置1に搬送し、リンス処理を行った後、速やかに熱処理装置93に搬送するようにしてもよい。
 さらには、ウエハWにキュア工程を行った後、ウエハWを加熱してアッシングを行うようにしてもよく、このアッシング処理時の加熱により有機膜102を分解除去するようにしてもよい。また有機膜102は、例えばアクリルなどを用いてもよい。あるいはレジストであってもよい。
 また図4に示す溶剤を揮発させる工程に続いて、塗布膜101中のオリゴマーの再配列を行うリフロー工程を行うようにしてもよい。例えばSOG膜を成膜するにあたって、塗布膜を塗布し、溶剤を除去したときに塗布膜中に含まれるオリゴマー間に隙間が生じていることがある。そのため溶剤除去工程を行った後、ウエハWを200~300℃、例えば250℃で加熱する。これにより塗布膜101中のオリゴマーが再配列されて、隙間を埋めるように並ぶ(リフロー工程)。このリフロー工程を行いオリゴマーが再配列することによりオリゴマー間の隙間が狭くなる。そのため後段のキュア処理によりオリゴマー同士の架橋を形成したときに緻密な膜になりやすくなる。
 このような装置としては、例えば図12に示す基板処理装置1において、溶剤揮発モジュール3の内の1台を、例えばウエハWを200~300℃、例えば250℃で加熱することができる加熱モジュール(リフローモジュール)を設ければよい。
 さらに上述の実施の形態において、キュア工程において、アンモニアガスを供給しながら加熱してキュア処理を行うようにしてもよい。あるいはキュア処理の際に供給するガスはNガスであってもよい。
 また本発明は、低誘電率膜などの層間絶縁膜の成膜に適用してもよい。層間絶縁膜の成膜にあたっては、配線材料である銅のマイグレーションや拡散を抑えるために、加熱温度は例えば400℃以下にすることが要請されている。本発明ではキュア温度が低温であっても良質な膜質の絶縁膜が得られることから、層間絶縁膜の成膜に適用することが期待できる。
 また例えば細い溝部が形成された基板に絶縁膜を形成する例としてPMD(Pre Metal Dielectric)に適用してもよい。
[第2の実施の形態]
 次いで本発明の第2の実施の形態に係る絶縁膜の成膜方法について説明する。この実施の形態では、図5に示した塗布膜101に紫外線を照射する工程を行った後、さらに塗布膜に紫外線を照射する。例えば塗布膜に1回目の紫外線の照射を行うときに2000mJ/cmのドーズ量の紫外線の照射を行い、次いで塗布膜に2回目の紫外線の照射する工程として1000mJ/cmのドーズ量の紫外線を照射する。
 塗布膜に供給するエネルギー量と、塗布膜の活性について説明すると、図18の模式図に示すように塗布膜にエネルギーを照射したときに、ある許容値E1を超えるエネルギーを与えることで未結合手が形成される。しかしさらにエネルギーを与え許容値E2を上回るエネルギーを与えると、塗布膜の活性が高まりすぎ、大気中の酸素や水分と常温にて容易に反応してしまう程度に活性が高まる。そして塗布膜の全層に許容値E1を超えるエネルギーを与えた状態で、後続のキュア処理を行うことにより、塗布膜の全層が緻密な酸化膜となる。
 ここで塗布膜に紫外線を照射すると、図18に示すように塗布膜の表面で活性が高まり、塗布膜を表面から浸透していくに従い、そのエネルギーは徐々に減衰していく。そのため塗布膜の全層の受けるエネルギーEaがE1<Ea<E2となるドーズ量の紫外線、例えば2000mJ/cmのドーズ量の紫外線を照射することで、塗布膜の深さ方向において受けたエネルギー分布は例えば図18中(1)で示すような分布となる。さらに2回目の紫外線照射において1000mJのドーズ量の紫外線を照射することにより、図18中(2)で示すように、上層のごく薄い厚さdの層にて許容値E2を上回るエネルギーを受けた層が形成される。そしてその下層側は、許容値E1から許容値E2の間のエネルギーを受けた層とすることができる。この時塗布膜においては、全層において許容値E1を超えているため、未結合手が形成された層となっており、さらに表層の厚さdの領域では、大気中の酸素や水分と常温にて容易に反応してしまう程度に活性が高まった状態が形成されている。
 そしてこのウエハWが大気雰囲気に曝されると、図19に示すように表面の許容値E2を上回るエネルギーが供給されている層では、大気中の酸素や水分により急激に酸化する。この時酸化反応が急速に進行するため、大気中雰囲気における酸化ではあるが、非常に緻密性の高い酸化膜106が形成される。この時許容値E2を上回るエネルギーが供給されている層の下層側は瞬時に酸化するほど活性が高まっていないため未結合手の結合は進行せず未結合手を維持した層となる。この緻密な酸化膜106は保護膜に相当する。なお発明者らは、3000mJ/cm以上の紫外線を照射し、一日引き置きを行ったウエハWにおいて塗布膜の表層に酸化膜が形成され、塗布膜中においては、酸化が進行していないことを確認している。さらにその後のキュア処理により全層が酸化膜になっていることを確認している。さらに後述の実施例3に示すようにエッチング耐性の高い酸化膜が形成されていることから、緻密な酸化膜が成膜されていると推測される。
 塗布膜の表面に緻密な膜が形成されると、大気中の酸素や水分は、塗布膜中に浸透しにくくなる。そのためこのウエハWが常温の大気雰囲気にて保管されたときに、緻密な膜の下層の未結合手が形成されている層は、大気中の酸素や水分に接することがなく、活性を保った状態で保護される。その後キュア工程においては、加熱と水蒸気雰囲気により急激な酸化が進行されるため、水蒸気は、塗布膜の表層の緻密な層を通過し緻密な層の下方側の未結合手の酸化を促進していく。このように水蒸気が塗布膜中に浸透し、緻密な酸化膜が成膜される。このように構成することで、塗布膜の表面に保護膜を形成し、塗布膜中の保護膜の常温大気雰囲気下での緩やかな酸化を抑制することができるため同様の効果を得ることができる。
 また2回目の紫外線照射を行い塗布膜の表面を許容値E2を超えるエネルギーが照射された層を形成した後、上述の実施の形態のように塗布膜を大気雰囲気に曝して、塗布膜の表面に緻密な酸化膜を形成してもよい。または塗布膜の表面に許容値E2を超えるエネルギーが照射された層を形成した後、塗布膜の表面に酸素を供給して強制的に緻密な酸化膜を成膜するようにしてもよい。
 また2回目に照射する紫外線は一回目に照射する紫外線よりも波長の短い紫外線であってもよい。既述のように紫外線は、塗布膜に照射されたときに表面から浸透し、深い位置に浸透するに従い、徐々にエネルギーが減衰する。この時図20中(3)のグラフに示すように紫外線の波長λaが長い場合に比べて、図20中(4)で示すように紫外線の波長λbが短い場合には、塗布膜の深さ方向におけるエネルギーの減衰速度が速くなる(λa>λb)。そのため同じドーズ量の紫外線を照射して、塗布膜の表面に許容値E2を上回る活性となる層を形成したときに、波長が長い紫外線の場合には、許容値E2を超えるエネルギーが照射される層の厚さは、daとなる。一方波長の短い紫外線の場合には、許容値E2を超えるエネルギーが照射される層の厚さはdaよりも薄い厚さdbになる。そのため波長の短い紫外線の場合には、波長が長い場合に比べて大気に触れて酸化したときに緻密な酸化層が薄く形成される。
 予め許容値E2以上のエネルギーを与えて、大気雰囲気にて酸化した層は緻密に構成されるが、キュア処理にて一括に形成される膜ではないため、キュア処理にて結合させたSi-O-Si結合とは性質が異なるおそれがある。そのため塗布膜に波長の短い紫外線を照射して、許容値E2を超えるエネルギーが照射される層の厚さを薄くすることで、保護膜となる酸化膜を薄く形成することができ、キュア処理を行って全層酸化させたときに膜質の均一性が良好になる。
 また上述の例では、塗布膜への紫外線の照射を2回行っているが、紫外線の照度を上げて、上述の例の2回の紫外線照射の総計分、例えば3000mJ/cmのドーズ量の紫外線を一回で照射してもよい。このような場合にも塗布膜の表面のごく薄い層が、許容レベルを超えるエネルギー照射量に到達し、塗布膜の内部においては、許容レベルのエネルギー照射量に到達した状態を形成することができる。これにより、塗布膜の表層のごく薄い層に緻密な膜を形成することができるため同様の効果を得ることができる。
 また塗布膜への紫外線の照射時間の総時間を長くすることで、塗布膜の表面に緻密な膜を形成するようにしてもよい。紫外線の照射時間を長くすることで、塗布膜に照射される紫外線のドーズ量を増やすことができるため同様の効果が得られる。
 また第2の実施の形態において、塗布膜101に照射するエネルギーのドーズ量が多くなり過ぎると、塗布膜101の表面に形成される酸化膜の緻密さがきわめて高くなる。これによりキュア工程において塗布膜101中に水蒸気が浸透しにくくなり、塗布膜101が酸化しにくくなることがある。そのためエネルギーの照射量は、5000J/cm以下であることが好ましい。
 また塗布膜に紫外線を照射した後、保護膜の形成を行う前に、例えば塗布膜をアンモニアガス等の触媒雰囲気に曝すようにしてもよい。このような装置としては、例えば図16に示した紫外線照射モジュール5にさらにガス供給部を設け、載置台54に載置されたウエハWに向けてアンモニアガスを供給できるように構成すればよい。このような紫外線照射モジュール5を用い、例えば塗布膜に2000mJ/cmのドーズ量の紫外線を照射し未結合手を形成した後、ウエハWにアンモニアガスを供給し、塗布膜を例えばアンモニアガス雰囲気に1分間曝す。塗布膜は紫外線照射により反応性が高まっているためアンモニアが容易に塗布膜に浸透する。その後、1000mJ/cmのドーズ量の紫外線の照射を行い、塗布膜の表面を更に活性化し、さらに塗布膜を大気雰囲気に曝し、塗布膜の表面に緻密な酸化層を形成すればよい。
 このウエハWを熱処理装置に搬送し、キュア処理を行ったときに、水蒸気雰囲気下の加熱により未結合手がSi-O-Si結合になるが、塗布膜中に浸透しているアンモニアの触媒効果により、脱水縮合が進行され、未結合手がSi-O-Si結合となる反応が促進される。このように構成することで塗布膜はより確実にSi-O-Si結合を形成することができ、より緻密な酸化膜を得ることができる。また触媒となる雰囲気としては、酸やアルカリを用いることができる。またTMH(水酸化テトラメチル)などの液状の触媒を用いてもよい。液状の触媒を用いる場合には、塗布膜に紫外線を照射し未結合手を形成した後、当該ウエハWの表面にTMHを供給すると共にウエハWを鉛直軸周りに回転させることでウエハWの表面に液溜まりを形成するようにすればよい。これにより塗布膜中に触媒を浸透させることができる。さらに塗布膜に紫外線を照射し、塗布膜の表面の活性を高め、大気雰囲気にさらすことで、触媒が含まれた塗布膜の表面に保護膜となる酸化膜を成膜することができる。
 またこのような塗布膜中に触媒を含ませるための装置としては、例えば基板処理装置1に基板の雰囲気を触媒雰囲気として塗布膜に触媒を添加する触媒添加モジュールを設ければよい。さらに複数の紫外線照射モジュール5、例えば第1の紫外線照射モジュール5、第2の紫外線照射モジュール5を設ければよい。この場合には、溶剤揮発工程を終えたウエハWに第1の紫外線照射モジュールにて例えば2000mJ/cmのドーズ量の紫外線照射を行い、触媒添加モジュールに搬送して、塗布膜に触媒を添加する。さらに当該ウエハWを第2の紫外線照射モジュール5に搬送して塗布膜に1000mJ/cmのドーズ量の紫外線照射を行い、塗布膜の表面の活性を高めるようにしてもよい。
 また本発明は、塗布液を複数回塗布して絶縁膜を成膜するようにしても良い。この場合には、例えば図12、図13に示す基板処理装置1に、ウエハWに水蒸気を供給すると共に、ウエハWを例えば450℃に加熱することができるキュア処理モジュールを設けるようにしてもよい。まずトレンチ110が形成されたウエハWを絶縁膜塗布モジュール2Aに搬送して、一回目の塗布液の塗布を行う。これにより例えば図21に示すようにシリコン膜100に形成されたトレンチ110の内部に塗布液が進入した状態の塗布膜101aが形成される。なお図21~図26では、1回目の塗布液の塗布により形成される塗布膜を101aで示し、2回目の塗布液の塗布により形成される塗布膜を101bで示す。
 その後ウエハWを、実施の形態と同様に溶剤揮発モジュール3に搬送し、溶剤を揮発させた後、例えば紫外線照射モジュール5に搬送し、図22に示すように低酸素雰囲気にて塗布膜101aに2000mJ/cmのドーズ量の紫外線を照射する。次いでウエハWをキュア処理モジュールに搬送し、図23に示すように水蒸気雰囲気下で450℃、120分キュア処理を行う。その後ウエハWを絶縁膜塗布モジュール2Aに搬送し、2回目の塗布処理を行う。これにより図24に示すようにウエハWに、さらに塗布膜101bが積層される。その後ウエハWを溶剤揮発モジュール3に搬送し、溶剤を揮発させた後、紫外線照射モジュール5に搬送し、図25に示すように低酸素雰囲気にて塗布膜101bに2000mJ/cmのドーズ量の紫外線を照射する。その後例えば塗布膜101bにさらに1000mJ/cmのドーズ量の紫外線の照射を行い、塗布膜の表面の活性を高める。
 その後ウエハWは、キャリアCに収納されて基板処理装置1から搬出され、載置台90にて引き置きがなされ、熱処理装置93に搬送される。そして図26に示すように例えば水蒸気雰囲気下で400℃、450℃で段階的に加熱した後Nガス雰囲気下で450℃に加熱する。
 塗布膜101a、101bに紫外線を照射したときに、紫外線は塗布膜101a、101bの表層側から下層側に透過していくため、塗布膜101a、101bの下層側は表層側に比べて、紫外線が弱まりやすく、Si-H結合が十分に未結合手にならないおそれがある。そのためウエハWにキュア処理を行った時に塗布膜101a、101bの下層側において、架橋率が低くなることがあり、膜全体としての架橋率が低くなることがある。また例えば表層の塗布膜をCMPにより除去したときに塗布膜における膜質の悪い層が露出するおそれがある。
 そのため塗布膜101a、101bの塗布と、紫外線照射とを複数回繰り返して所定の膜厚の塗布膜101a、101bを成膜することで、塗布膜101a、101bが各々薄い状態で紫外線照射処理ができる。これにより塗布膜101a、101bの全層に、未結合手が形成されやすくなる。そのためキュア処理を行った時に塗布膜101a、101bの全層で、架橋が形成されやすくなり、全層に亘って架橋率が高く緻密な塗布膜101a、101bを形成することができる。またウエハWを基板処理装置1から搬出したときに、大気雰囲気にて、上段側の塗布膜101bの上段に保護膜となる緻密な酸化膜106が形成される。そのためウエハWの引き置き時に塗布膜101a、101bの未結合手が酸化されずに保護される。
 さらに1回目の塗布処理及び2回目の塗布処理における溶剤を揮発させた後に、例えばウエハWを250℃で加熱するリフロー工程を行うようにしてもよい。
 また紫外線を照射する工程において、架橋が進行する温度、例えばポリシラザンでは、350~400℃まで上げてしまうと、未結合手の形成と、加水分解及び脱水縮合と、が同時に進行してしまうことがある。これにより結合されたオリゴマーの中に、孤立したオリゴマーが閉じ込められ、結果として絶縁膜の緻密性が低くなる。
 そのため紫外線を照射する温度は、350℃以下であることが好ましい。また紫外線照射時に架橋の進行しない温度であることが要件であることから、リフロー工程において紫外線を照射するようにしてもよい。しかしながら溶剤揮発工程においては、溶剤が紫外線の照射により変質するおそれもある。そのため、溶剤除去工程以後である必要がある。
 また後述の実施例2に示すように溶剤揮発工程におけるウエハWの加熱温度を200~250℃にして上述の絶縁膜の成膜方法を実行することで効果を上げることができる。これは、塗布膜101中の溶剤をより確実に除去することで、溶剤に吸収されるエネルギーは少なくなるためと、実施例2ではリフロー処理工程を行っていないが、リフロー処理を行うことにより生じるオリゴマーの再配列に相当する効果が生じたためと、の相乗効果であると推測される。
 また効率よく未結合手を形成する観点から、塗布膜を透過せず、塗布膜に吸収される波長のエネルギーが好ましい。そのため紫外線の場合には、主たる波長が200nm以下であることが好ましく、例えばArFランプなどの波長193nmの紫外線を用いてもよく、また重水素ランプなどを用いてもよい。さらに塗布膜に照射するエネルギーとしては、電子線などを用いてもよい。
 また溶剤揮発工程に用いる塗布膜101中の溶剤を揮発させる装置は、例えば密閉した処理容器内を例えば大気圧の半分まで減圧し、処理容器内に載置したウエハWにおける溶剤の揮発を促進して溶剤を揮発させる装置でも良い。
 [実施例]
 本発明の実施の形態の効果を検証するために以下の試験を行った。図11に示した基板処理システムを用い、評価用のウエハWに絶縁膜を成膜し、絶縁膜のエッチング強度について評価した。
 <実施例1>
 絶縁膜の成膜方法における紫外線照射工程においてNガス雰囲気下で主たる波長が172nmの紫外線をドーズ量が2000mJ/cmとなるように照射した例を実施例1-1とした。なおウエハWは、実施の形態に示した塗布液を塗布した後、溶剤揮発工程において、ウエハWを150℃で3分加熱し、その後リフロー工程を行わずに、紫外線照射工程を行った。続いて引き置きを行わずに熱処理装置に搬送し、キュア工程においては、熱処理炉内において、水蒸気を供給した状態で、400℃で30分、450℃で120分の2段階の加熱を行った後、Nガス雰囲気下で450℃で加熱した。なお塗布膜の目標膜厚は100nmとした。
 <比較例1、2>
 また紫外線照射工程において、大気雰囲気にて2000mJ/cmの紫外線を照射したことを除いて、実施例1-1と同様に処理した例を比較例1とした。また紫外線照射を行わないことを除いて、実施例1-1と同様に処理した例を比較例2とした。
 実施例1、比較例1、2の各々において、0.5%希フッ酸によりウェットエッチングを行い単位時間当たりのエッチング量(エッチングレート)を評価し、0.5%希フッ酸に対するシリコンの熱酸化膜のエッチングレートを1としたときの各々の例における相対的エッチングレートを求めた。
 比較例1、2における相対的エッチングレートは、夫々3.74、5.55であった。これに対して、実施例1における相対的エッチングレートは、2.04であった。
 この結果によれば、ポリシラザンを含む塗布液をウエハWに塗布し絶縁膜を成膜するにあたって、キュア工程前の塗布膜にNガス雰囲気下で紫外線のエネルギーを照射することにより、エッチング強度を高めることができるといえる。
 さらに実施例1及び比較例1の各々において、(FT-IR:フーリエ変換赤外分光光度計)を用い、紫外線照射処理の前後及びキュア処理後における原子結合の量を評価した。比較例1においては、紫外線照射処理の後において、Si-H結合が減少し、Si-O結合が増加していた。また実施例1においては、紫外線照射処理の後にSi-H結合の減少は見られたが、Si-O結合は増加しておらず、キュア処理後においてSi-O結合が増加していた。
 この結果から紫外線照射処理をすることによりSi-H結合が減少しており、未結合手を形成することができるが、紫外線照射処理を大気雰囲気で行うと、キュア処理に先立って、架橋反応が進行し、紫外線照射処理をNガス雰囲気下で行うと、キュア処理前の架橋反応抑制できると推測される。そしてキュア処理前に未結合手を形成すると共に、架橋反応を抑制することにより、エッチング強度が高まると推測される。
 また紫外線のドーズ量を3000及び4000mJ/cmに設定したことを除いて実施例1-1と同様に処理を行った例においても同様に、相対的エッチングレートを評価したところ各々2.70.2.42であり、4000mJ/cm程度の紫外線のドーズ量においても強度の高い絶縁膜を得ることができた。後述の実施例3にて述べるように紫外線のドーズ量を3000及び4000mJ/cmに設定した例では、表面に速やかに緻密な酸化膜となる層が形成されていると推測されるが、キュア処理後の塗布膜は十分に緻密な膜となるといえる。
 [実施例2]
 また溶剤揮発工程におけるウエハWの加熱温度による効果を検証するため、以下の実施例に従って図11に示した基板処理システムを用い、ウエハWに絶縁膜を成膜し、絶縁膜のエッチング強度について評価した。
<実施例2-1>
 ウエハWは、実施の形態に示した塗布液を塗布した後、溶剤揮発工程において、ウエハWを150℃で3分加熱し、その後リフロー工程を行わずに、紫外線照射工程を行った。続くキュア工程においては、熱処理炉内において、水蒸気を供給した状態で、400℃で30分、450℃で120分の2段階の加熱を行った後、Nガス雰囲気下で450℃で加熱した。なお塗布膜の目標膜厚は100nmとした。
<実施例2-2、2-3>
 溶剤揮発工程におけるウエハWの加熱温度を200℃、250℃に設定したことを除いて実施例2-1と同様に処理した例を、夫々実施例2-2~2-3とした。
 実施例2-1、2-2及び2-3における相対的エッチングレートは、夫々3.68、2.74及び2.74であった。溶剤揮発工程におけるウエハWの加熱温度を上げることでより緻密で良好な絶縁膜を得ることができると言える。
 [実施例3]
 また塗布膜の表面に緻密な酸化膜を形成することによる塗布膜の酸化の抑制を検証するために以下の試験を行った。
 <実施例3-1-1>
 図11に示した基板処理システムを用い、ウエハWの表面にポリシラザン膜を成膜し、その後、ウエハWを150℃で30分間加熱した。次いで窒素ガス雰囲気下で、ウエハWに40mW/cmの強度の紫外線をドーズ量が1000mJ/cmとなるように照射した。続いてウエハWをキャリアCに収納し、常温(25℃)大気雰囲気下で一日引き置きを行い、その後ウエハWを熱処理装置に搬送し、キュア処理として、水蒸気雰囲気下で、400℃で3分間、450℃で120分で加熱した例を実施例3-1-1とした。なお塗布膜の目標膜厚は、120nmとした。
 <実施例3-1-2、3-1-3>
 紫外線のドーズ量を、2000mJ/cm及び3000mJ/cmとしたことを除いて、実施例3-1-1と同様に処理した例を夫々実施例3-1-2、3-1-3とした。
 <実施例3-2-1>
 キュア処理として、水蒸気雰囲気下で、400℃で3分間、600℃で120分で加熱したことを除いて実施例3-1-1と同様に処理した例を実施例3-2-1とした。
 <実施例3-2-2~3-2-4>
 塗布膜に照射する紫外線のドーズ量を、2000mJ/cm、3000mJ/cm及び4000mJ/cmとしたことを除いて、実施例3-2-1と同様に処理した例を夫々実施例3-2-2~3-2-4とした。
 <比較例3-1、3-2>
 塗布膜に紫外線を照射しないことを除いて実施例3-1-1、3-2-1と同様に処理した例を夫々比較例3-1、3-2とした。
 実施例3-1-1~3-2-4及び比較例3-1、3-2の各々について、0.5%希フッ酸溶液に対するエッチング速度を求め、熱酸化処理により作成したシリコン酸化膜における0.5%希フッ酸溶液によるエッチング速度に対する相対的エッチングレートを求めた。
 図27はこの結果を示し、実施例3-1-1~3-2-4及び比較例3-1、3-2の各々における相対的エッチングレートを示す特性図である。図27に示すように比較例3-1、3-2においては、相対的エッチングレートは、4.12及び3.05であったが、実施例3-1-1~3-1-3、実施例3-2-1~3-2-4のいずれにおいても紫外線のドーズ量が増加するに従い、相対的エッチングレートが低くなっていた。
 またキュア処理における温度を600℃に設定した実施例3-2-4における相対的エッチングレートは1近くまで下がっており、キュア処理における温度を450℃に設定した実施例3-1-3の場合においても相対的エッチングレートは2程度まで下がっていた。従って、塗布膜に紫外線を照射する工程における紫外線のドーズ量を増加させることによって、よりエッチング強度が高い絶縁膜を得ることができると言える。さらに引き置きを行った場合においても、キュア処理における温度が低い場合においても十分にエッチング強度が高い絶縁膜を得ることができると言える。

 

Claims (16)

  1.  酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成する工程と、
     前記塗布膜中の溶媒を揮発させる溶媒揮発工程と、
     この工程の後、前記前駆体を構成する分子団に未結合手を生成するために、大気よりも酸素濃度が低い低酸素雰囲気で前記塗布膜にエネルギーを供給するエネルギー供給工程と、
     前記塗布膜の表面に、塗布膜中の未結合手の大気雰囲気による酸化を抑制するための保護膜を形成する工程と、
     その後、前記基板を加熱し、前記前駆体を架橋させて絶縁膜を形成するキュア工程と、を含むことを特徴とする絶縁膜の成膜方法。
  2.  前記保護膜は有機膜であることを特徴とする請求項1に記載の絶縁膜の成膜方法。
  3.  前記保護膜を形成する工程は、前記エネルギー供給工程を第1のエネルギー供給工程とすると、第1のエネルギー供給工程に続いて、大気よりも酸素濃度が低い低酸素雰囲気で前記塗布膜にさらにエネルギーを供給する第2のエネルギー供給工程と、
     第2のエネルギー供給工程の後、塗布膜の表面を酸化して保護膜となる酸化膜を形成する工程と、を含むことを特徴とする請求項1に記載の絶縁膜の成膜方法。
  4.  前記保護膜を形成する工程に続いて、基板を大気雰囲気中に載置する工程を含み、続いてキュア工程を行うことを特徴とする請求項1に記載の絶縁膜の成膜方法。
  5.  前記溶媒を揮発させる工程の後、塗布膜中の分子団を再配列するために基板を加熱するリフロー工程を行うことを特徴とする請求項1に記載の絶縁膜の成膜方法。
  6.  前記エネルギー供給工程は、前記リフロー工程の後、基板の温度を降温させた状態で行われることを特徴とする請求項5記載の絶縁膜の成膜方法。
  7.  前記エネルギー供給工程が行われる低酸素雰囲気は、酸素濃度が400ppm以下であることを特徴とする請求項1に記載の絶縁膜の成膜方法。
  8.  前記低酸素雰囲気は、不活性ガスを含む雰囲気であることを特徴とする請求項1に記載の絶縁膜の成膜方法。
  9.  前記エネルギーは、主たる波長が200nmよりも短い紫外線のエネルギーであることを特徴とする請求項1に記載の絶縁膜の成膜方法。
  10.  酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成するための塗布モジュールと、
     前記塗布膜中の溶媒を揮発させるための溶媒揮発モジュールと、
     前記前駆体を活性化させるために、溶媒が揮発された塗布膜に対して、大気よりも酸素濃度が低い低酸素雰囲気でエネルギーを供給するためのエネルギー供給モジュールと、
     前記エネルギーが供給された塗布膜に保護膜を形成するための保護膜形成モジュールと、
     各モジュールの間で基板を搬送するための基板搬送機構と、を備えたことを特徴とする基板処理装置。
  11.  前記保護膜形成モジュールは、塗布膜の表面に有機膜を形成する有機膜形成モジュールであることを特徴とする請求項10に記載の基板処理装置。
  12.  前記保護膜形成モジュールは、前記エネルギー供給モジュールと共通であり、前記エネルギー供給モジュールは、前記前駆体を構成する分子団に未結合手を生成すると共に、塗布膜の表面に酸化により緻密な酸化層となる活性の高められた層を形成することを特徴とする請求項10に記載の基板処理装置。
  13.  前記溶剤揮発モジュールは、基板を加熱する溶媒加熱用の加熱モジュールであることを特徴とする請求項10に記載の基板処理装置。
  14.  溶媒が揮発された塗布膜中の分子団を再配列するために基板を加熱するリフロー用の加熱モジュールを備えていることを特徴とする請求項10に記載の基板処理装置。
  15.  前記エネルギー供給モジュールは、主たる波長が200nmよりも短い紫外線を塗布膜に照射するためのモジュールであることを特徴とする請求項10に記載の基板処理装置。
  16.  基板を搬送容器に入れて搬入出するための搬入出ポートと、酸化シリコンを含む絶縁膜を形成するための前駆体を溶媒に溶解させた塗布液を基板に塗布して塗布膜を形成するための塗布モジュールと、前記塗布膜中の溶媒を揮発させるための溶媒揮発モジュールと、前記前駆体を活性化させるために、溶媒が揮発された塗布膜に対して、大気よりも酸素濃度が低い低酸素雰囲気でエネルギーを供給するためのエネルギー供給モジュールと、前記エネルギーが供給された塗布膜に保護膜を形成する保護膜形成モジュールと、各モジュール及び前記搬入出ポートの間で基板を搬送するための基板搬送機構と、を備えた基板処理装置と、
     前記基板処理装置にて処理された後の基板を加熱し、前記前駆体を架橋させて絶縁膜を形成するための熱処理装置と、
     前記基板処理装置の前記搬入出ポートと前記キュア装置との間で前記搬送容器を搬送するための容器搬送機構と、を備えたことを特徴とする基板処理システム。

     
PCT/JP2018/031810 2017-09-11 2018-08-28 絶縁膜の成膜方法、基板処理装置及び基板処理システム WO2019049735A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020247005561A KR102684626B1 (ko) 2017-09-11 2018-08-28 절연막의 성막 방법, 기판 처리 장치 및 기판 처리 시스템
CN201880057445.XA CN111052321B (zh) 2017-09-11 2018-08-28 绝缘膜的成膜方法、基板处理装置和基板处理系统
JP2019540906A JP6849083B2 (ja) 2017-09-11 2018-08-28 絶縁膜の成膜方法、基板処理装置及び基板処理システム
US16/645,712 US11315784B2 (en) 2017-09-11 2018-08-28 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate
KR1020207009114A KR102639596B1 (ko) 2017-09-11 2018-08-28 절연막의 성막 방법, 기판 처리 장치 및 기판 처리 시스템
US17/697,311 US11823897B2 (en) 2017-09-11 2022-03-17 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174287 2017-09-11
JP2017174287 2017-09-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/645,712 A-371-Of-International US11315784B2 (en) 2017-09-11 2018-08-28 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate
US17/697,311 Division US11823897B2 (en) 2017-09-11 2022-03-17 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate

Publications (1)

Publication Number Publication Date
WO2019049735A1 true WO2019049735A1 (ja) 2019-03-14

Family

ID=65635300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031810 WO2019049735A1 (ja) 2017-09-11 2018-08-28 絶縁膜の成膜方法、基板処理装置及び基板処理システム

Country Status (6)

Country Link
US (2) US11315784B2 (ja)
JP (1) JP6849083B2 (ja)
KR (1) KR102639596B1 (ja)
CN (1) CN111052321B (ja)
TW (1) TWI787338B (ja)
WO (1) WO2019049735A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546744B (zh) * 2017-04-17 2023-10-20 东京毅力科创株式会社 绝缘膜的成膜方法、绝缘膜的成膜装置及基板处理系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186509A (ja) * 1992-01-17 1993-07-27 Mitsui Toatsu Chem Inc 塗膜の硬化方法
JPH0799237A (ja) * 1993-06-24 1995-04-11 Northern Telecom Ltd 集積回路の製造方法
JPH07206410A (ja) * 1994-01-17 1995-08-08 Toshiba Corp シリコン窒化膜の形成方法
JPH10209275A (ja) * 1997-01-17 1998-08-07 Sony Corp 半導体装置の製造方法
JPH1140554A (ja) * 1997-07-22 1999-02-12 Fujitsu Ltd 絶縁膜形成材料、並びにこれを用いた絶縁膜形成方法及び半導体装置
JP2006100299A (ja) * 2004-09-28 2006-04-13 Hitachi Ltd 半導体デバイス製造方法および製造システム
JP2007036067A (ja) * 2005-07-28 2007-02-08 Sony Corp 半導体装置の製造方法
WO2007088908A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 有機シリカ系膜およびその形成方法、半導体装置の絶縁膜形成用組成物およびその製造方法、ならびに配線構造体および半導体装置
JP2008251774A (ja) * 2007-03-30 2008-10-16 Mitsui Chemicals Inc 多孔質シリカフィルムの製造方法
JP2009076869A (ja) * 2007-08-24 2009-04-09 Tokyo Electron Ltd 基板の処理方法、プログラム及びコンピュータ記憶媒体
JP2010003983A (ja) * 2008-06-23 2010-01-07 Az Electronic Materials Kk シャロー・トレンチ・アイソレーション構造とその形成方法
JP2010080709A (ja) * 2008-09-26 2010-04-08 Toshiba Corp シリコン酸化膜の形成方法および不揮発性半導体記憶装置の製造方法
JP2012174764A (ja) * 2011-02-18 2012-09-10 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2012250181A (ja) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc バリアーフィルムの製造方法及び電子機器
JP2013086501A (ja) * 2011-10-24 2013-05-13 Konica Minolta Advanced Layers Inc バリアーフィルム、バリアーフィルムの製造方法及び電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913638B2 (ja) * 2001-09-03 2007-05-09 東京エレクトロン株式会社 熱処理方法及び熱処理装置
WO2003026002A1 (fr) 2001-09-18 2003-03-27 Murata Kikai Kabushiki Kaisha Vehicule a guidage automatique
US8084372B2 (en) * 2007-08-24 2011-12-27 Tokyo Electron Limited Substrate processing method and computer storage medium
JP5692736B2 (ja) * 2009-10-05 2015-04-01 株式会社Adeka 絶縁膜形成用塗布液、それを用いた絶縁膜
JP5710308B2 (ja) 2011-02-17 2015-04-30 メルクパフォーマンスマテリアルズIp合同会社 二酸化ケイ素膜の製造方法
FR2980394B1 (fr) * 2011-09-26 2013-10-18 Commissariat Energie Atomique Structure multicouche offrant une etancheite aux gaz amelioree
US20150344651A1 (en) * 2013-01-11 2015-12-03 Konica Minolta, Inc. Process for manufacturing gas barrier film
CN105246683A (zh) * 2013-05-28 2016-01-13 柯尼卡美能达株式会社 阻气性膜及其制造方法
CN107534095A (zh) 2015-05-14 2018-01-02 应用材料公司 用于oled应用的封装膜堆叠
US11450526B2 (en) * 2018-05-30 2022-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Cyclic spin-on coating process for forming dielectric material

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186509A (ja) * 1992-01-17 1993-07-27 Mitsui Toatsu Chem Inc 塗膜の硬化方法
JPH0799237A (ja) * 1993-06-24 1995-04-11 Northern Telecom Ltd 集積回路の製造方法
JPH07206410A (ja) * 1994-01-17 1995-08-08 Toshiba Corp シリコン窒化膜の形成方法
JPH10209275A (ja) * 1997-01-17 1998-08-07 Sony Corp 半導体装置の製造方法
JPH1140554A (ja) * 1997-07-22 1999-02-12 Fujitsu Ltd 絶縁膜形成材料、並びにこれを用いた絶縁膜形成方法及び半導体装置
JP2006100299A (ja) * 2004-09-28 2006-04-13 Hitachi Ltd 半導体デバイス製造方法および製造システム
JP2007036067A (ja) * 2005-07-28 2007-02-08 Sony Corp 半導体装置の製造方法
WO2007088908A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 有機シリカ系膜およびその形成方法、半導体装置の絶縁膜形成用組成物およびその製造方法、ならびに配線構造体および半導体装置
JP2008251774A (ja) * 2007-03-30 2008-10-16 Mitsui Chemicals Inc 多孔質シリカフィルムの製造方法
JP2009076869A (ja) * 2007-08-24 2009-04-09 Tokyo Electron Ltd 基板の処理方法、プログラム及びコンピュータ記憶媒体
JP2010003983A (ja) * 2008-06-23 2010-01-07 Az Electronic Materials Kk シャロー・トレンチ・アイソレーション構造とその形成方法
JP2010080709A (ja) * 2008-09-26 2010-04-08 Toshiba Corp シリコン酸化膜の形成方法および不揮発性半導体記憶装置の製造方法
JP2012174764A (ja) * 2011-02-18 2012-09-10 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2012250181A (ja) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc バリアーフィルムの製造方法及び電子機器
JP2013086501A (ja) * 2011-10-24 2013-05-13 Konica Minolta Advanced Layers Inc バリアーフィルム、バリアーフィルムの製造方法及び電子機器

Also Published As

Publication number Publication date
KR102639596B1 (ko) 2024-02-23
CN111052321A (zh) 2020-04-21
US11823897B2 (en) 2023-11-21
US20220208547A1 (en) 2022-06-30
KR20240028546A (ko) 2024-03-05
US11315784B2 (en) 2022-04-26
JPWO2019049735A1 (ja) 2020-10-01
JP6849083B2 (ja) 2021-03-24
CN111052321B (zh) 2023-10-24
TWI787338B (zh) 2022-12-21
US20210159074A1 (en) 2021-05-27
TW201919773A (zh) 2019-06-01
KR20200051672A (ko) 2020-05-13

Similar Documents

Publication Publication Date Title
US10068765B2 (en) Multi-step system and method for curing a dielectric film
US9017933B2 (en) Method for integrating low-k dielectrics
US20090075491A1 (en) Method for curing a dielectric film
KR101326894B1 (ko) 기판처리방법 및 기판처리장치
JP2012060000A (ja) シリコン酸化膜の製造装置
TWI793115B (zh) 絕緣膜之成膜方法、絕緣膜之成膜裝置及基板處理系統
US11823897B2 (en) Method for forming insulating film, apparatus for processing substrate, and system for processing substrate
JP2009076869A (ja) 基板の処理方法、プログラム及びコンピュータ記憶媒体
WO2003001579A1 (fr) Dispositif et procede de traitement de substrat
KR102684626B1 (ko) 절연막의 성막 방법, 기판 처리 장치 및 기판 처리 시스템
JP2001156061A (ja) 基板処理方法及び基板処理装置
JP2006086539A (ja) 基板の処理方法及び基板の処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009114

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18852818

Country of ref document: EP

Kind code of ref document: A1