WO2019037670A1 - 3d玻璃金属复合体及其制备方法和电子产品 - Google Patents

3d玻璃金属复合体及其制备方法和电子产品 Download PDF

Info

Publication number
WO2019037670A1
WO2019037670A1 PCT/CN2018/101133 CN2018101133W WO2019037670A1 WO 2019037670 A1 WO2019037670 A1 WO 2019037670A1 CN 2018101133 W CN2018101133 W CN 2018101133W WO 2019037670 A1 WO2019037670 A1 WO 2019037670A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
frame
metal
glass cover
plastic
Prior art date
Application number
PCT/CN2018/101133
Other languages
English (en)
French (fr)
Inventor
任鹏
马兰
陈梁
王海霞
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP18847877.0A priority Critical patent/EP3675467A4/en
Priority to JP2020511537A priority patent/JP2020532009A/ja
Priority to US16/641,905 priority patent/US20200198195A1/en
Priority to KR1020207008546A priority patent/KR20200043454A/ko
Publication of WO2019037670A1 publication Critical patent/WO2019037670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3888Arrangements for carrying or protecting transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0249Details of the mechanical connection between the housing parts or relating to the method of assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0086Casings, cabinets or drawers for electric apparatus portable, e.g. battery operated apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks

Definitions

  • the present disclosure relates to the field of electronic product technology, and in particular, to a 3D glass metal composite, a preparation method thereof and an electronic product.
  • the combination of the glass front screen and the metal frame is usually assembled by directly bonding with glue, and the glue is applied by coating the glass and the metal frame.
  • the combination of the glass and the metal frame determines the bonding strength between the metal substrate and the glass.
  • the 3D glass-metal composite prepared by the method has the following major disadvantages: (1) the bonding force between the glass and the metal substrate is small, the bonding is not tight, there is a gap, no waterproof, and easy to fall off; (2) bonding There is no stepless combination, resulting in glass protrusion, which not only increases the thickness of the 3D glass metal composite, but also increases the risk of broken screen; (3) more preparation processes, increasing production costs, and also increasing the defect rate.
  • the purpose of the present disclosure is to overcome the above-mentioned drawbacks in the prior art, and to provide a 3D glass-metal composite, a preparation method thereof and an electronic product, wherein the bonding force between the glass and the metal substrate is high and broken in the 3D glass-metal composite
  • the screen has low risk and strong waterproof ability.
  • a first aspect of the present disclosure provides a 3D glass-metal composite including a 3D glass cover, a plastic frame, and a metal frame, the upper surface of the metal frame and the The side surfaces of the 3D glass cover are oppositely disposed, at least a portion of the plastic frame is formed between the edge of the 3D glass cover and the upper surface of the metal frame, and the 3D glass cover and the plastic frame
  • the outer circumference of the body and the metal frame has a stepless smooth transition along the curvature of the 3D glass cover.
  • a second aspect of the present disclosure provides a method for preparing a 3D glass-metal composite, the method comprising the steps of: (1) providing a 3D glass cover plate, and coating an activator on a side surface of the 3D glass cover plate; (2) providing a metal frame preform, the metal frame preform having a reserved portion extending outward along the outer periphery of the metal frame relative to the final structure of the metal frame; (3) the step ( 1) The obtained 3D glass cover plate and the metal frame preform are placed in an injection mold, and the upper surface of the metal frame preform (30 inch) and the side surface of the 3D glass cover (10) are oppositely disposed.
  • the injection molding plastic is filled between the side surface of the 3D glass cover and the upper surface of the metal frame preform, and at least a part of the injection plastic is formed on the side surface of the 3D glass cover (10) and the metal frame preform (30 ⁇ ) Between the upper surfaces, and injection molding to obtain a 3D glass-metal composite preform; (4) cutting the 3D glass-metal composite preform to remove a reserved portion in the metal frame preform to obtain the 3D glass-metal composite .
  • a third aspect of the present disclosure provides a 3D glass-metal composite prepared by the above method.
  • a fourth aspect of the present disclosure provides an electronic product comprising the 3D glass-metal composite of the present disclosure.
  • the bonding force between the 3D glass cover and the metal frame can be as high as above (speed 10 mm/min), and the 3D glass cover and the metal frame are combined by the plastic frame (by injection molding)
  • the method especially the normal temperature injection molding, uses the plastic as the intermediate to combine the metal substrate and the 3D glass cover plate, which greatly improves the bonding force between the two), the bonding force is good, the risk of breaking the screen is low, the waterproof ability is strong, the light and thin, the beautiful, It can be assembled as a practical cover plate, and its preparation method reduces the sticking process, reduces the production cost, and improves the product yield.
  • the activation component of the activator is cross-linked with the plastic for injection molding, and the plastic frame and the glass cover and the plastic frame can be significantly increased.
  • the bonding force between the body and the metal frame reduces the risk of broken screen.
  • FIG. 1 is a schematic structural view of a 3D glass-metal composite according to the present disclosure
  • Figure 2 is a side cross-sectional view of Figure 1;
  • Figure 3 is a schematic enlarged view of the structure of Figure 2;
  • FIG. 4 is a schematic structural view of a 3D glass cover according to the present disclosure.
  • FIG. 5 is a schematic structural view of a metal frame preform according to the present disclosure.
  • FIG. 6 is a schematic structural view of a 3D glass-metal composite preform according to the present disclosure.
  • Reference numerals: 10 is a 3D glass cover, 20 is a plastic frame, 30 is a metal frame, 30 is a metal frame preform, 31 is an outer frame, 32 is an inner frame, and 33 is a reserved portion.
  • the present disclosure provides a 3D glass-metal composite, as shown in FIGS. 1 and 2, the 3D glass-metal composite includes a 3D glass cover 10, a plastic frame 20, and a metal frame 30, the metal The upper surface of the frame 30 is opposite to the side surface of the 3D glass cover 10, and at least a portion of the plastic frame 20 is formed on the side surface of the 3D glass cover 10 and the upper surface of the metal frame 30 (toward the Between the one side surface of the 3D glass cover plate, and the outer circumference of the 3D glass cover 10, the plastic frame 20 and the metal frame 30 smoothly transition without steps along the curvature of the 3D glass cover.
  • the side surface of the 3D glass cover refers to the (outer) side surface of the front glass of the 3D glass hot bending, and may also be the thickness surface of the flat glass.
  • the plastic frame (cured, hard plastic frame) is formed between the side surface of the 3D glass cover and the upper surface of the metal frame, that is, the 3D glass cover, the plastic frame,
  • the metal bezels are sequentially disposed in order, and the outer circumferences of the three (relative to the outwardly protruding side of the 3D glass) have no step-like smooth transition along the curvature of the 3D glass cover (the direction in which the glass is bent).
  • the smooth transition is understood to mean at least that the plastic frame, the metal frame and the outer peripheral surface of the 3D cover glass are on the same curved surface, that is, the outer peripheral surface of the plastic frame and the metal frame The outer peripheral surface of the 3D glass cover extends.
  • the metal frame 30 includes an integrally formed outer frame 31 and an inner frame 32, and an upper surface of the outer frame 31 is disposed opposite to a side surface of the 3D glass cover 10,
  • the inner frame 32 is formed inside the outer frame 31.
  • the outer frame 31 mainly functions as a housing, and the inner frame 32 can be used to match the inner member structure, and a snap structure can be formed on the inner frame 32 to fix the position of the inner member.
  • the lower surface of the frame 32 and the outer frame 31 can also cooperate to form an adapting structure that is connected to the other frames.
  • the outer circumference of the plastic frame 20 corresponds to the outer circumference of the outer frame 31.
  • the inner circumference of the plastic frame 20 is formed between the 3D glass cover 10 and the metal frame 30 corresponding to the inner circumference of the inner frame 32.
  • the bonding area between the plastic frame 20 and the 3D glass cover 10 and the metal frame 30 is increased, thereby facilitating the increase of the bonding strength between the 3D glass cover 10 and the metal frame 30.
  • the upper surface of the inner frame 32 is higher than the The upper surface of the outer frame 31; preferably, the upper surface of the inner frame 32 is arcuately connected to the upper surface of the outer frame 31.
  • the width of the upper surface of the outer frame 31 (the length perpendicular to the extending direction of the outer frame side) is larger than the width of the side surface of the 3D glass cover 10 to reserve the filling space of the plastic frame 20.
  • the bonding area between the plastic frame 20 and the metal frame 30 is increased, which in turn is advantageous for increasing the bonding strength between the 3D glass cover 10 and the metal frame 30.
  • the thickness of the 3D glass cover 10, the plastic frame 20, and the metal frame 30 may be not particularly required, and may be designed according to actual needs, such as the thickness of the cover glass 10 (ie, The width of the side surface may be 0.3-2 mm.
  • the thickness of the plastic frame 20 between the side surface of the glass cover 10 and the outer frame 31 of the metal frame 30 is 0.5-1 mm, and the outer frame 31 of the metal frame 30 is upper.
  • the width of the surface is 0.5-2 mm larger than the width of the side surface of the cover glass 10, the width of the inner frame 32 of the metal frame 30 is 1-2 mm, and the upper surface of the inner frame 32 is 0.1-2.5 mm higher than the upper surface of the outer frame 31. .
  • the 3D glass cover 10 may be a single curved glass cover (formed by a set of oppositely disposed edges) or a hyperbolic cover glass (the two sets of oppositely disposed edges are simultaneously bent) form).
  • the 3D glass cover plate is a hyperbolic glass cover plate, and the structural force of the hyperbolic glass cover plate and the metal frame is more uniform and stable.
  • the material of the plastic frame 20 may be a thermoplastic or a thermosetting resin.
  • the thermoplastic resin may be selected from the group consisting of PC, PA, PPS, PBT, and the like
  • the thermosetting resin may be selected from the group consisting of a phenol resin, an epoxy resin, diallyl phthalate, and the like.
  • the material of the plastic frame is polyamide (PA), glass fiber (GF), polycarbonate.
  • the material of the plastic frame is at least one of a polyamide, a polycarbonate, and a polyphenylene sulfide.
  • a mixture of glass fibers as yet another embodiment of the present disclosure, the material of the plastic frame is a mixture of polyamide and glass fibers.
  • the ratio of the total weight of at least one of the polyamide, the polycarbonate, and the polyphenylene sulfide to the weight of the glass fibers in the plastic frame is (0.5-5):1. Further in another embodiment of the present disclosure the ratio is (1-3):1. It should be understood by those skilled in the art that when the plastic frame contains one of polyamide, polycarbonate and polyphenylene sulfide, the total weight of at least one of polyamide, polycarbonate and polyphenylene sulfide.
  • the total weight of at least one of the polyamide, the polycarbonate, and the polyphenylene sulfide is The sum of the two or more weights.
  • polyamide, glass fiber, polycarbonate, and polyphenylene sulfide are commercially available.
  • the metal substrate is not particularly limited, and may be various metal substrates commonly used in the art.
  • the metal substrate is a stainless steel substrate or an aluminum alloy. Substrate.
  • the surface of the metal frame is formed with an anode.
  • An oxide film layer is formed, and micropores are further formed on the outer surface layer of the anodized film layer.
  • the foregoing metal frame can be prepared by a method including the following steps: processing stainless steel or aluminum alloy in sequence, grinding, chemical polishing, sand blasting, anodizing, micropore treatment, and film processing. The specific steps are detailed below.
  • the present disclosure provides a method of preparing a 3D glass-metal composite, the method comprising: (1) providing a 3D glass cover 10 (as shown in FIG. 4), and in the 3D glass cover 10 The activator is coated on the side surface and dried; (2) a metal frame preform 30 is provided (as shown in FIG.
  • the metal frame preform 30 is reserved along the final structure of the metal frame 30 along the a reserved portion 33 extending outwardly from the outer periphery of the metal frame 30; (3) placing the 3D glass cover 10 obtained in the step (1) and the metal frame preform 30 in an injection mold, in the 3D glass cover 10 A plastic injection is filled between the side surface and the upper surface of the metal frame preform 30, and a 3D glass-metal composite preform is obtained by injection molding (as shown in FIG. 6); (4) cutting the 3D glass-metal composite preform After processing, the reserved portion 33 in the metal frame preform 30 is removed to obtain the 3D glass-metal composite.
  • the inventors of the present disclosure have found that the bonding force between glass and metal can be improved by injection molding (filling plastic injection) in the process of researching the bonding force between glass and metal, whereas 3D glass is different from flat glass in view of 3D glass.
  • injection molding filling plastic injection
  • 3D glass is different from flat glass in view of 3D glass.
  • the special structure, as well as the machining tolerances of the 3D glass cover and the metal frame during the processing it is difficult to make the 3D glass cover and the metal frame completely matched, often after injection molding, 3D metal cover, plastic frame There are still obvious gaps and steps in the outer periphery of the metal frame, which affect the appearance and sealing of the product. Based on the existence of this problem, the inventors of the present disclosure have again improved the method, and proposed a scheme of using a metal frame preform in the injection molding process.
  • the metal frame preform has a reserved portion extending outward along the outer periphery of the metal frame relative to the final structure of the metal frame.
  • the reserved portion can serve a certain amount of plastic spilled outward.
  • the blocking effect so that the injection plastic can be more tightly solidified between the 3D glass substrate and the metal frame to form a stable sealed structure; and after the injection molding, the 3D glass-metal composite preform is cut (ie, CNC machining)
  • the removal of the reserved portion of the metal frame preform is advantageous for beautifying the aesthetics of the prepared 3D glass-metal composite.
  • the metal frame 30 includes an integrally formed outer frame 31 and an inner frame 32, and the outer frame 31 is disposed opposite to a side surface of the 3D glass cover 10,
  • the inner frame 32 is formed inside the outer frame 31, and the reserved portion 33 is formed on the outer circumference of the outer frame 31.
  • an upper surface of the inner frame 32 is higher than an upper surface of the outer frame 31, and an upper surface of the inner frame 32 is arcuately connected to an upper surface of the outer frame 31.
  • the width of the upper surface of the outer frame 31 (excluding the reserved portion) (the length perpendicular to the extending direction of the outer frame side) is greater than the width of the side surface of the 3D glass cover to reserve the plastic frame 20 The fill space.
  • the injection mold includes a female mold having a female inner surface and a male mold, and an inner surface of the female mold having an inner surface matching the outer surface structure of the 3D glass cover;
  • the male mold including the side wall structure a columnar insert matching the inner wall of the metal frame preform, the metal frame preform can be flexibly sleeved on the columnar insert, and the upper surface of the columnar insert and the 3D glass cover The inner surface structure of the board is matched.
  • the male mold further includes an annular insert that can be sleeved on the columnar insert and movable up and down relative to the columnar insert, and the annular insert is formed on the columnar insert to form a capable insert The annular groove matched with the metal frame preform structure.
  • the injection molding of the 3D glass-metal composite preform in the step (3) comprises: placing the 3D glass cover 10 obtained in the step (1) in the negative mold; and the annular insert Nesting on the cylindrical insert to form a corresponding male mold, placing the metal frame preform 30 in the male mold; pushing the annular insert to move along the cylindrical insert to the female mold and the male mold clamping state Filling the injection molding plastic at the gap between the 3D glass cover and the metal frame preform (including the space between the 3D glass cover inner wall, the cylindrical insert foreign currency and the metal frame preform), and injection molding 3D glass-metal composite preform.
  • the reserved portion 33 has a width of 1-5 mm in a direction perpendicular to the outer edge of the metal frame and extending outward.
  • the injection plastic is filled with a gap between the 3D glass cover 10 and the metal frame preform 30, preferably such that the outer edge of the injection plastic protrudes from the The outer surface of the 3D glass cover 10 is located between the outer edges of the metal frame preform 30 ⁇ .
  • ribs are formed on the inner side of the curved portion of the cover glass 10 or on the inner side of the side, in the filling plastic
  • the plastic is coated on the outer periphery of the rib to increase the bonding area between the plastic cover 20 of the glass cover 10 and increase the bonding force.
  • the method further includes: in the step (1), before the step of applying an activator on the side surface of the 3D glass cover, at least in the glass cover The ink is applied to the side surface and cured.
  • the 3D glass-metal composite it is possible to determine which parts of the 3D glass cover are coated with ink according to the application of the 3D glass-metal composite, for example, if the 3D glass-metal composite is used as the front cover cover case, only in the 3D glass Applying ink on the edge of the cover plate mainly serves to shield the ITO circuit; if the 3D glass-metal composite is used as the rear screen case, coating on the inner surface of the 3D cover glass (including the edge of the inner surface) The ink mainly serves to display the color of the rear panel cover 3D glass metal composite.
  • the 3D glass cover plate in the step (1), in order to improve the bonding force between the glass cover plate and the metal substrate and reduce the risk of the broken screen, the 3D glass cover plate is roughened by the 3D glass cover plate. To increase its surface roughness.
  • the roughening process is well known to those skilled in the art and will not be described herein.
  • the ink in the step (1), is not particularly limited, and various inks commonly used in the art may be used, and as an embodiment of the present disclosure, the ink is a UV ink or a thermosetting ink.
  • the manner of applying the ink is not particularly limited and may be any manner that can be applied. In order to facilitate production, according to one embodiment of the present disclosure, the manner of applying the ink is silk screen printing, and the thickness of the screen printed ink is 5-15 ⁇ m. The method of specific silk screen printing is well known to those skilled in the art and will not be described herein.
  • the conditions for curing after the application of the ink are not particularly limited, and may be selected according to the kind of the ink, and are various conditions commonly used in the art.
  • the curing method is exposure, and the exposure conditions include The power is 500-1200 kW and the time is 1-5 min.
  • the curing method is drying.
  • the drying conditions include: the temperature is 80-90 ° C, and the time is 50-100 min.
  • the activator in order to significantly improve the bonding force between the 3D glass cover plate and the metal substrate, and significantly reduce the risk of broken screen, according to an embodiment of the present disclosure, in the step (1), the activator includes an activating component, a diluent and a curing agent, the activating component being present in an amount of from 80 to 94% by weight, further preferably from 85 to 91% by weight, based on the weight of the activator; and the diluent is present in an amount of from 5 to 19% by weight Further, it is 6 to 10% by weight; the curing agent is contained in an amount of 1 to 10% by weight, further preferably 3 to 5% by weight.
  • the activating component is at least one of a polyurethane, an epoxy resin, a polyimide, and a polyacrylate.
  • the diluent is at least one of acetone, ethyl acetate, and ethyl acetate.
  • the curing agent is at least one of ethylenediamine, ethylene glycol, glycerin, and diethylenetriamine.
  • the thickness of the applied activator is 5-15 ⁇ m.
  • the coating method can be silk screen printing.
  • the method of silk screen printing may include: reciprocally printing two layers using a 300-380 mesh screen, and the specific operation methods are well known to those skilled in the art, and are not described herein again.
  • the conditions for drying after the application of the activator are not particularly limited, and various conditions commonly used in the art may be used.
  • the drying conditions include: temperature. It is 75-90 ° C and the time is 40-120 min. Among them, in order to achieve the best results, after drying, the injection should be as soon as possible, if the storage period is longer, the required injection temperature is higher.
  • the substrate of the metal frame is not particularly limited, and may be various metal substrates commonly used in the art.
  • the metal substrate is a stainless steel substrate. Or aluminum alloy substrate.
  • the metal frame of the prior art is generally prepared by a method comprising the following steps: processing, grinding, chemical polishing, sandblasting, anodizing, and film processing of stainless steel or aluminum alloy in order to further improve the glass cover.
  • the bonding force between the plate and the metal substrate, and further reducing the risk of breaking the screen according to an embodiment of the present disclosure, the metal frame is prepared by a method comprising the following steps: processing stainless steel or aluminum alloy sequentially, grinding, chemistry Polishing, sand blasting, anodizing, micropore treatment, and film treatment (the film is applied to the metal frame to prevent the anodized film from being scratched).
  • the microporous pretreatment is added after the anodizing treatment, so that the outer surface layer of the anodized film layer further forms a large etching hole of a micron order, and the pore is re-created by the etching, and the plastic material is in the injection molding process in the subsequent molding process.
  • it is easier to directly enter the surface hole of the substrate so that a good combination with the substrate is formed after the plastic frame is formed, and the bonding force between the glass cover and the metal substrate can be further improved.
  • the micropore treatment is performed by immersing the substrate obtained by anodizing in an etching solution, and forming an etching hole having a pore diameter of 200 nm to 2000 nm on the outer surface of the anodized film layer.
  • the etching solution may be a solution for etching the anodic oxide film layer, for example, generally adjusting the concentration with a solution capable of dissolving the alumina, and may be an acid/alkali etching solution, for example, may be selected from a pH of 10-13. The solution.
  • the etching solution is a single alkaline solution or a composite buffer solution having a pH of 10-13, and the single alkaline solution having a pH of 10-13 may be Na 2 CO 3 , NaHCO 3 , NaOH, K. 2 An aqueous solution of CO 3 , KHCO 3 , KOH, or the like.
  • the etching solution is an aqueous solution of Na 2 CO 3 and/or NaHCO 3 , which can uniformly distribute the corrosion holes on the surface of the substrate, and has a uniform pore diameter, and can further combine the glass cover plate with the substrate. good.
  • the above etching liquid may have a solid content of 0.1 to 15% by weight.
  • the composite buffer solution may be a mixed solution of soluble hydrogen phosphate and a soluble base, for example, an aqueous solution of sodium dihydrogen phosphate and sodium hydroxide, and an aqueous solution of sodium dihydrogen phosphate and sodium hydroxide may have a solid content of 0.1 to 15% by weight
  • the aqueous buffer solution may be an aqueous solution of K 3 PO 4 and K 2 HPO 4
  • the composite buffer solution may be an aqueous ammonia solution, an aqueous solution of hydrazine, an aqueous solution of an anthraquinone derivative, an aqueous solution of a water-soluble amine compound, an aqueous solution of NH 3 —NH 4 Cl, or the like.
  • Soaking the substrate obtained by anodizing into the etching solution comprises repeatedly immersing the substrate in the etching solution, and the time of each immersion may be 1-60 min, and each time of immersion, washing with deionized water, immersing The number of times can be 2 to 10 times. Washing can be done by washing in a washing tank for 1 to 5 minutes, or placing it in a washing tank for 1 to 5 minutes.
  • the methods for processing, grinding, chemical polishing, sand blasting, anodizing, and film processing are not particularly limited, and various methods commonly used in the art can be used, which are well known to those skilled in the art, for example, spraying
  • the conditions of the sand treatment may include: the blasting pressure is 0.23-0.25 MPa, the reciprocating 2-4 times, and the running speed is 12-22 Hz, wherein 205 ceramic sand can be used, and the yaw frequency can be 33 Hz (the fixed frequency of the machine).
  • the conditions of the anodizing treatment may include: the concentration of sulfuric acid in the electrolyte is 10-30% by weight, the concentration of aluminum ions is 10-30 g/L; the temperature is 15-25 ° C, the current density is 0.6-3 A/dm 2 , and the voltage is 10 -20V, oxidation time is 30min-50min.
  • the method further includes: in step (2), in the The activator is coated on the upper surface of the provided metal frame preform and dried.
  • the activator, the application method of the activator, and the drying conditions used therein are as described above.
  • the injection molding method is normal temperature injection molding
  • the injection molding conditions include: injection molding width (the side surface of the glass cover 10 after injection molding and the metal frame The thickness between the upper surfaces of the outer frame 31 of the body 30 is 0.5-1 mm, the mold temperature is 15-35 ° C, and the injection molding temperature is 200-300 ° C.
  • the injection molding material is polyamide, glass fiber, polycarbonate, and poly.
  • At least one of the phenyl sulfides is further a mixture of at least one of a polyamide, a polycarbonate, and a polyphenylene sulfide and a glass fiber, and further a mixture of a polyamide and a glass fiber.
  • the ratio of the total weight of at least one of the polyamide, the polycarbonate, and the polyphenylene sulfide to the weight of the glass fiber is (0.5-5):1, further (1- 3): 1.
  • the total weight of at least one of the polyamide, the polycarbonate and the polyphenylene sulfide is The weight of the one, when the injection molding material contains two or more of polyamide, polycarbonate, and polyphenylene sulfide, the total weight of at least one of the polyamide, the polycarbonate, and the polyphenylene sulfide is the two Kind of weight and above.
  • the edge of the glass cover is roughened, and the metal frame is subjected to micropore treatment to form numerous micropores on the surface;
  • the treated glass cover and the silk screen activator on the metal frame are placed in the metal frame by means of normal temperature injection molding, so that the metal substrate, the plastic and the glass cover are combined without steps.
  • the 3D glass cover plate may be a 3D glass cover plate prepared by a conventional process, and may be prepared, for example, by a conventional flat glass through a process of materializing, hot bending, polishing, strengthening, and the like.
  • the flat glass substrate that can be used includes, but is not limited to, Corning Gorilla 4th generation glass, Gorilla 3rd generation glass, Asahi Glass, Schott glass, etc.
  • the glass has a basic thickness of 0.5-0.8 mm. .
  • the opening refers to cutting the flat glass into a flat glass substrate of a desired size.
  • hot bending is the process of converting the glass from a plane to a curved surface, including preheating (at least three consecutive heating sections), compression (at least two consecutive boosting sections) And at least one holding pressure section), cooling (at least two consecutive cooling sections) three stages, for the conditions of the hot bending can refer to the conventional process in the art.
  • polishing refers to a method of reducing the surface roughness of the workpiece by mechanical action to obtain a bright and smooth surface.
  • the conventional process is to press the rotating polishing wheel to the workpiece, so that Abrasives produce rolling and micro-cutting on the surface of the workpiece. It is usually required that the surface roughness of the polished glass should reach Ra ⁇ 0.2 ⁇ m.
  • the strengthening refers to the step of ion exchange of sodium ions and potassium ions on the surface of the glass to form a strengthening layer and increase the hardness of the glass, wherein the strengthening process can be carried out in a molten salt of potassium nitrate, and the process conditions thereof
  • the method comprises the following steps: immersing the glass in a high-purity potassium nitrate molten salt heated to 380° C.-450° C. for 4-10 hours; and preparing the 3D glass cover plate to have a bending strength of 600-800 MPa.
  • the 3D glass cover (especially the 3D glass-metal composite as the front panel cover) is OGS (One Glass Solution with the same name, one glass simultaneously protects the glass and the touch sensor)
  • OGS One Glass Solution with the same name, one glass simultaneously protects the glass and the touch sensor
  • the double function) touch screen tempered glass reduces the thickness of the product, breaks through the barrier of the influence of the injection temperature on the touch screen, and integrates the glass cover and the metal frame, which can reduce the product process, reduce the cost, improve the performance of the product and decorate the product. The appearance makes the product lighter and more practical.
  • a third aspect of the present disclosure provides a 3D glass-metal composite prepared by the foregoing method of the present disclosure.
  • a fourth aspect of the present disclosure provides an electronic product including a housing that is a 3D glass-metal composite according to the present disclosure.
  • the electronic product is not particularly limited as long as the electronic product has a 3D glass cover and a metal frame, and the electronic product is a mobile phone, a tablet computer, a game machine, a watch, a notebook, a desktop computer, a television, or a meter display.
  • the 3D glass metal composite body is a front screen cover shell and a rear screen cover shell of the electronic product.
  • Polyurethane was purchased from DuPont under the designation PA66 HTN501.
  • Epoxy resin was purchased from DuPont under the designation PKHH.
  • Polyimide was purchased from DuPont under the designation 200H.
  • Polyacrylate was purchased from Guangzhou Ketai Chemical Co., Ltd. under the trade name 7732-18-5.
  • Polyamide was purchased from DuPont under the designation 73G20L.
  • Glass fiber was purchased from DuPont under the designation FR530 NC010.
  • Polycarbonate was purchased from DuPont under the designation CG943.
  • Polyphenylene sulfide was purchased from DuPont under the designation HTN52G35HSL.
  • the conditions of the blasting treatment include: using 205 ceramic sand, the blasting pressure is 0.24 MPa, reciprocating 3 times, the running speed is 18 Hz, and the swaying frequency is 33 Hz.
  • the pressure in the press type 1-2 is gradually changed from low to high, and the pressure of the press type 3 is constant.
  • the pressure in the press type 1-2 described in the above table is the maximum pressure in this section.
  • the aluminum alloy frame preform structure used in the following examples and comparative examples is shown in FIG. 5, and the specific structure is as follows:
  • the aluminum alloy frame preform is adapted to the above-mentioned prepared 3D glass cover structure, including the integrally formed inner frame 32, the outer frame 31 and the reserved portion 33, and the upper surface width ratio of the outer frame 31 (uncalculated reserved portion) is expected.
  • the width of the 3D glass cover is 0.8 mm
  • the width of the upper surface of the inner frame 32 is 2 mm
  • the upper surface of the inner frame 32 is 1.1 mm higher than the upper surface of the outer frame 31.
  • the width of the reserved portion 33 is as follows. Example section.
  • the injection mold includes a female mold having a female inner surface and a male mold, and an inner surface of the female mold having an inner surface matching the outer surface structure of the 3D glass cover; the male mold including the side wall structure and the metal frame preform The inner wall is matched with the columnar insert, the metal frame preform can be flexibly sleeved on the columnar insert, and the upper surface of the columnar insert matches the inner surface structure of the 3D glass cover;
  • the male mold further includes an annular insert that can be sleeved on the columnar insert and movable up and down relative to the columnar insert, and the annular insert is sleeved on the columnar insert to form a corresponding male mold.
  • An annular groove is formed in the film that is compatible with the metal bead preform structure.
  • the side surface of the 3D glass cover plate prepared above is roughened, and the UV ink is screen printed on the side surface of the aforementioned 3D glass cover plate with a screen of 70T.
  • the screen thickness of the UV ink is 10 ⁇ m, and then exposed at 900 kW. Under the machine, the exposure was 3 min; the activator was screen printed on the UV ink with a 380 mesh screen, the silkscreen thickness of the activator was 10 ⁇ m, and then the glass was placed in a tunnel dryer at 90 ° C for 90 min; wherein the activator was a polyurethane system. Including polyurethane, acetone and ethylenediamine, the contents of polyurethane, acetone and ethylenediamine are 88% by weight, 8% by weight and 4% by weight, respectively, based on the weight of the activator.
  • the aluminum alloy is sequentially processed, polished, chemically polished, sandblasted, anodized, microporous, and film-treated to obtain an aluminum alloy frame preform (the structure is as described above, wherein the width of the reserved portion is 1.5mm), then the same activator as step (1) is coated on the upper surface of the aluminum alloy frame preform, coated to a thickness of 10 ⁇ m, dried at 80 ° C for 90 min;
  • the anodizing treatment conditions include:
  • the electrolyte has a sulfuric acid concentration of 20% by weight, an aluminum ion concentration of 20 g/L, a temperature of 20 ° C, a current density of 1.5 A/dm 2 , a voltage of 15 V, and an oxidation time of 40 min;
  • the conditions of the micropore treatment include: The material is immersed in a sodium carbonate solution having a pH of 12 and 10% by weight. After 5 minutes, the material is taken out and placed in a beaker containing water for 1 minute, so that the cycle is repeated 5 times,
  • thermosetting ink was screen printed on the side of the 3D glass cover plate with a 70T screen.
  • the thickness of the thermosetting ink was 15 ⁇ m, and then at 80 ° C.
  • the oven was dried for 90 min; the activator was screen printed on the thermosetting ink with a 300-mesh screen, the silkscreen thickness of the activator was 15 ⁇ m, and then the glass was placed in a tunnel dryer at 80 ° C for 110 min; wherein the activator was polyurethane
  • the system including polyurethane, ethyl acetate and ethylene glycol, has a content of polyurethane, ethyl acetate and ethylene glycol of 85% by weight, 10% by weight and 5% by weight, respectively, based on the weight of the activator.
  • the aluminum alloy is sequentially processed, polished, chemically polished, sandblasted, anodized, microporous, and film-treated to obtain an aluminum alloy frame preform (the structure is as described above, wherein the width of the reserved portion is 1.5mm), then the same activator as the step (1) is coated on the upper surface of the aluminum alloy frame preform, the coating thickness is 15 ⁇ m, and the drying is performed at 75 ° C for 110 min; wherein the conditions of the anodizing treatment include: The concentration of sulfuric acid in the electrolyte is 15% by weight, the concentration of aluminum ion is 28g/L, the temperature is 15°C, the current density is 1A/dm 2 , the voltage is 10V, and the oxidation time is 50min.
  • the conditions of microporous treatment include: the substrate Soaked in a sodium bicarbonate solution with a pH of 10 and 15% by weight, take it out after 5 minutes, soak it in a beaker containing water for 1 min, cycle 5 times, and then soak it in water for the last time;
  • the injection plastic is filled in the gap between the 3D glass cover and the aluminum alloy frame preform (the injection plastic is mixed by polyamide and glass fiber according to a weight ratio of 1:1, and is in an oven.
  • the injection plastic fills the gap between the 3D glass cover and the aluminum alloy frame preform, and the outer edge of the injection plastic protrudes from the outer surface of the 3D glass cover, located at the
  • the outer edge of the aluminum alloy frame preform is injection molded (the injection width is 1 mm, the mold temperature is 15 ° C, and the injection molding temperature is 300 ° C) to obtain a 3D glass-metal composite preform.
  • thermosetting ink was screen printed on the side of the 3D glass cover plate with a 70T screen.
  • the thickness of the thermosetting ink was 5 ⁇ m, and then at 90 ° C.
  • the oven was dried for 60 min; the activator was screen printed on the thermosetting ink with a 300-mesh screen, the screen thickness of the activator was 8 ⁇ m, and then the glass was placed in a tunnel dryer at 80 ° C for 50 min; wherein the activator was polyurethane a system comprising polyurethane, ethyl acetate and diethylenetriamine, the content of polyurethane, ethyl acetate and diethylenetriamine being 91% by weight and 6% by weight, respectively, based on the weight of the activator 3 wt%.
  • the aluminum alloy is sequentially processed, polished, chemically polished, sandblasted, anodized, microporous, and film-treated to obtain an aluminum alloy frame preform (the structure is as described above, wherein the width of the reserved portion is 1.5mm), then the same activator as step (1) is coated on the upper surface of the aluminum alloy frame preform, the coating thickness is 5 ⁇ m, and dried at 90 ° C for 60 min; wherein the conditions of the anodizing treatment include: The concentration of sulfuric acid in the electrolyte is 25% by weight, the concentration of aluminum ion is 15g/L, the temperature is 25°C, the current density is 2.5A/dm 2 , the voltage is 20V, and the oxidation time is 30min.
  • the conditions of microporous treatment include: The material was immersed in a sodium hydrogen carbonate solution having a pH of 10 and 15% by weight. After 5 minutes, the material was taken out and placed in a beaker containing water for 1 minute, and thus circulated 5 times, and finally immersed in water and dried;
  • the injection plastic is filled in the gap between the 3D glass cover and the aluminum alloy frame preform (the injection plastic is mixed by polyamide and glass fiber at a weight ratio of 3:1, and is in an oven.
  • the injection plastic fills the gap between the 3D glass cover and the aluminum alloy frame preform, and the outer edge of the injection plastic protrudes from the outer surface of the 3D glass cover, located at the
  • the outer edge of the aluminum alloy frame preform is injection molded (the injection width is 0.5 mm, the mold temperature is 35 ° C, and the injection molding temperature is 200 ° C) to obtain a 3D glass-metal composite preform.
  • the 3D glass-metal composite product A4 was prepared according to the method of Example 1, except that the activator was a polyurethane system including polyurethane, acetone and ethylenediamine, based on the weight of the activator, polyurethane, acetone and ethylene.
  • the content of the amine was 80% by weight, 10% by weight and 10% by weight, respectively.
  • the 3D glass-metal composite product A5 was prepared in the same manner as in Example 1 except that an epoxy resin was used instead of the polyurethane in the activator.
  • a 3D glass-metal composite product A6 was prepared in accordance with the method of Example 1, except that polyimide was used in place of the polyurethane in the activator.
  • the 3D glass-metal composite product A7 was prepared in the same manner as in Example 1 except that polyacrylate was used in place of the polyurethane in the activator.
  • the 3D glass-metal composite product A8 was prepared in the same manner as in Example 1 except that in the step (2), the activator was not applied on the upper surface of the aluminum alloy frame before the injection molding.
  • the 3D glass-metal composite product A9 was prepared in the same manner as in Example 1, except that the microporous treatment was not performed in the process of preparing the aluminum alloy frame preform.
  • the 3D glass-metal composite product A10 was prepared in the same manner as in Example 1 except that the injection molding compound was a mixture of polycarbonate and glass fibers in a weight ratio of 2:1.
  • the 3D glass-metal composite product A11 was prepared in the same manner as in Example 1 except that the injection molding compound was mixed with polyphenylene sulfide and glass fibers in a weight ratio of 2:1.
  • a 3D glass-metal composite product A12 was prepared in the same manner as in Example 1, except that the injection molding compound was a mixture of polyamide and glass fibers in a weight ratio of 0.5:1.
  • a 3D glass-metal composite product A13 was prepared in accordance with the method of Example 1, except that the injection molding material was polyphenylene sulfide.
  • a 3D glass-metal composite product A14 was prepared in the same manner as in Example 1, except that the injection molding compound was a polyamide.
  • a 3D glass-metal composite product A15 was prepared in accordance with the method of Example 1, except that the injection molding compound was polycarbonate.
  • the 3D glass-metal composite product A16 was prepared in the same manner as in Example 1 except that the injection molding was glass fiber.
  • the 3D glass-metal composite product A17 was prepared according to the method of Example 1, except that in the process of filling the injection plastic, the injection plastic filled the gap between the 3D glass cover and the aluminum alloy frame preform, and the injection plastic The outer edge does not protrude from the outer surface of the 3D glass cover, flush with the outer surface of the 3D glass cover.
  • the 3D glass-metal composite product A18 was prepared in the same manner as in Example 1, except that the upper surface of the inner frame in the aluminum alloy frame preform used was flush with the upper surface of the outer frame.
  • the method comprises the steps (1)-(3), wherein
  • Step (1) is: roughening the aforementioned 3D glass cover plate, screen printing UV ink on the edge of the glass with a screen of 70T, the screen printing thickness of the UV ink is 10 ⁇ m, and then exposing for 3 minutes under a 900 kW exposure machine;
  • the step (2) is: the aluminum alloy is sequentially processed, polished, chemically polished, sandblasted, anodized, and film-treated to obtain an aluminum alloy frame preform;
  • Step (3) is: placing a plastic gasket between the glass cover plate obtained in the step (1) and the aluminum alloy substrate plate frame obtained in the step (2), coating the glass cover plate and the aluminum alloy substrate plate frame Glue, place the glass cover in the aluminum alloy substrate frame, and then dry in a 90 ° C drying oven for 30 min. A 3D glass-metal composite D1 was obtained.
  • Salt spray test Each 3D glass-metal composite was placed in a salt spray chamber, and the surface of the product was continuously sprayed with a NaCl solution having a Ph value of 6.8 and 5% by weight at a temperature of 35 ° C and a humidity of 90%. After 2 hours, each product was placed in a constant temperature and humidity chamber at 50 ° C and a humidity of 95% for 22 hours. This was a cycle of 3 cycles of 72 hours. Then use 38 ° C warm water for gentle washing, and wipe clean with a dust-free cloth, check the sample after standing at room temperature for 2 hours, the appearance of the film is not abnormal, the appearance does not change significantly (such as rust, discoloration and foaming, etc.), that is qualified . The results are shown in Table 1.
  • Anti-chemical test Apply oil, sunscreen, lipstick, liquid foundation, mosquito repellent, hand cream, etc. to each 3D glass-metal composite, and put it at 70 ° C and 90% humidity. After 24 hours in the constant temperature and humidity chamber, the product was placed at 25 ° C for 4 hours, and the product was wiped with alcohol without any obvious residual marks. The results are shown in Table 1.
  • Waterproof performance test IPX7 short-time water immersion test is carried out. The assembled machine is immersed in water for 30 minutes. The top water depth of the workpiece is at least 150mm, and the lowest part is subjected to at least 1m water pressure. After taking out the water surface, dry the workpiece and leave it for 30 minutes. The results are shown in Table 2.
  • the method of the present disclosure can greatly improve the bonding force between the glass cover plate of the prepared 3D glass-metal composite and the metal substrate plate frame, and greatly reduce the risk of glass falling off and the risk of falling behind the screen. Significantly improved product performance.
  • the size matching of the bonding portion of the 3D glass-metal composite prepared according to Embodiments 1-18 of the present disclosure is relatively complete, and there is no problem of assembling steps and gaps between the glass and the metal, and contrast is used.
  • the joint portion of the 3D glass-metal composite prepared in Document 1 has a problem of a relatively obvious assembly gap and step between the glass and the metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casings For Electric Apparatus (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种3D玻璃金属复合体及其制备方法和电子产品。其中3D玻璃金属复合体包括3D玻璃盖板(10)、塑胶框体(20)和金属边框(30),塑胶框体(20)形成在3D玻璃盖板(10)的边面和金属边框(30)上表面之间,且3D玻璃盖板(10)、塑胶框体(20)、金属边框(30)的外周沿3D玻璃盖板(10)的曲度无台阶平滑过渡。

Description

3D玻璃金属复合体及其制备方法和电子产品
相关申请的交叉引用
本申请基于申请号为201710740918.3,申请日为2017年08月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电子产品技术领域,具体地,涉及一种3D玻璃金属复合体及其制备方法和电子产品。
背景技术
现有技术中,玻璃前屏和金属边框的结合方式通常采用胶水直接贴合组装,通过在玻璃与金属边框上涂布胶水,进行组装。玻璃与金属边框的结合方式决定了金属基材与玻璃的结合力大小。由该方法制备得到的3D玻璃金属复合体存在以下几大缺点:(1)玻璃与金属基材间的结合力较小,结合不紧密,有缝隙、不防水、易脱落;(2)贴合没有做到无台阶结合,导致玻璃突出,不但增加了3D玻璃金属复合体的厚度,同时也增加了碎屏风险;(3)制备工序较多,增加了生产成本,同时也提高了不良率。
发明内容
本公开的目的是为了克服现有技术中的上述缺陷,提供一种3D玻璃金属复合体及其制备方法和电子产品,该3D玻璃金属复合体中玻璃与金属基材间的结合力高、碎屏风险低、防水能力强。
为了实现上述目的,本公开的第一方面提供了一种3D玻璃金属复合体,所述3D玻璃金属复合体包括3D玻璃盖板、塑胶框体和金属边框,所述金属边框的上表面和所述3D玻璃盖板的边面相对设置,所述塑胶框体的至少一部分形成在所述3D玻璃盖板的边面和金属边框上表面之间,且所述3D玻璃盖板、所述塑胶框体、所述金属边框的外周沿所述3D玻璃盖板的曲度无台阶平滑过渡。
本公开的第二方面提供了一种3D玻璃金属复合体的制备方法,该方法包括以下步骤:(1)提供3D玻璃盖板,并在所述3D玻璃盖板的边面上涂布活化剂,烘干;(2)提供金属边框预制体,所述金属边框预制体相对于金属边框的最终结构预留有沿所述金属边框的外 周向外延伸的预留部分;(3)将步骤(1)得到的3D玻璃盖板与所述金属边框预制体置于注塑模具中,所述金属边框预制体(30ˊ)的上表面和所述3D玻璃盖板(10)的边面相对设置,在3D玻璃盖板的边面与所述金属边框预制体的上表面之间填充注塑料,注塑料的至少一部分形成在所述3D玻璃盖板(10)的边面和金属边框预制体(30ˊ)的上表面之间,并注塑得到3D玻璃金属复合预制体;(4)对所述3D玻璃金属复合预制体进行切削处理,去除金属边框预制体中预留部分,得到所述3D玻璃金属复合体。
本公开的第三方面提供了采用上述方法制备得到的3D玻璃金属复合体。
本公开的第四方面提供了一种电子产品,所述电子产品包括本公开所述的3D玻璃金属复合体。
本公开的3D玻璃金属复合体中,3D玻璃盖板与金属边框间的结合力可高达以上(速度10mm/min),且3D玻璃盖板与金属边框之间通过塑胶框体结合(通过注塑的方式,特别是常温注塑,利用塑胶为中间体结合金属基材与3D玻璃盖板,大大提高了两者间的结合力),结合力好、碎屏风险低、防水能力强、轻薄、美观、可以作为实用性强的盖板装配,且其制备方法减少了贴屏工序,降低了生产成本,提高了产品良率。
本公开的方法中,通过在3D玻璃盖板的边缘上涂布活化剂,使得活化剂的活化组分与注塑用的塑胶发生交联反应,能够显著增加塑胶框体与玻璃盖板、塑胶框体与金属边框之间的结合力,降低碎屏风险。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开的3D玻璃金属复合体的结构示意图;
图2是图1的侧剖结构示意图;
图3是图2中A处的放大结构示意图;
图4是根据本公开3D玻璃盖板的结构示意图;
图5是根据本公开金属边框预制体的结构示意图;
图6是根据本公开的3D玻璃金属复合预制体的结构示意图。
附图标记:10为3D玻璃盖板、20为塑胶框体、30为金属边框、30ˊ为金属边框预制体、31为外框、32为内框、33为预留部分。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
第一方面,本公开提供了一种3D玻璃金属复合体,如图1和图2所示,该3D玻璃金属复合体包括3D玻璃盖板10、塑胶框体20和金属边框30,所述金属边框30的上表面和所述3D玻璃盖板10的边面相对设置,所述塑胶框体20的至少一部分形成在所述3D玻璃盖板10的边面和金属边框30上表面(朝向所述3D玻璃盖板的一侧表面)之间,且所述3D玻璃盖板10、所述塑胶框体20和所述金属边框30的外周沿所述3D玻璃盖板的曲度无台阶平滑过渡。
本公开的3D玻璃金属复合体中,本领域技术人员应该理解的是:3D玻璃盖板的边面是指3D玻璃热弯前平面玻璃的(外周)侧表面,也可以成为平面玻璃的厚度面;所述塑胶框体(固化的、硬的塑胶框体)形成在所述3D玻璃盖板的边面和金属边框的上表面之间,即所述3D玻璃盖板、所述塑胶框体、所述金属边框按顺序依次设置,且三者的外周(相对于3D玻璃向外突出的一侧)沿所述3D玻璃盖板的曲度(玻璃弯曲后的延伸方向)无台阶平滑过渡。
所述平滑过渡至少应该理解为所述塑胶框体、所述金属边框和所述3D玻璃盖板的外周面位于同一曲面上,也就是说所述塑胶框体和所述金属边框的外周面沿3D玻璃盖板的外周面延伸。
本公开的3D玻璃金属复合体中,所述金属边框30包括一体成型的外框31和内框32,所述外框31的上表面与所述3D玻璃盖板10的边面相对设置,所述内框32形成在所述外框31的内部。在这种结构中,外框31主要起到壳体的作用,而内框32可以用于与内部构件结构匹配,可以在内框32上形成卡扣结构,以固定内部构件的位置,该内框32和外框31的下表面还可以配合形成与其他框体相连的适配结构。为了进一步增加3D玻璃盖板10与金属边框30之间的结合力,如图3所示,根据本发明的一个实施例,所述塑胶框体20的外周与所述外框31的外周相对应、塑胶框体20的内周与所述内框32的内周相对应的形成在所述3D玻璃盖板10与所述金属边框30之间。在这种情况下,增加了塑胶框体20与3D玻璃盖板10、以及与金属边框30之间的结合面积,进而有利于增加3D玻璃盖板10与 金属边框30之间的结合强度。
本公开的3D玻璃金属复合体中,为了进一步增加3D玻璃盖板10与金属边框30之间的结合力,如图3所示,优选情况下,所述内框32的上表面高于所述外框31的上表面;优选所述内框32的上表面与所述外框31的上表面弧形过渡连接。此时外框31的上表面的宽度(垂直于外框中边的延伸方向的长度)大于3D玻璃盖板10的边面的宽度,以预留有所述塑胶框体20的填充空间。在这种结构中,增加了塑胶框体20与金属边框30之间的结合面积,进而有利于增加3D玻璃盖板10与金属边框30之间的结合强度。
本公开的3D玻璃金属复合体中,对于3D玻璃盖板10、塑胶框体20、以及金属边框30的厚度可以没有特殊要求,可以根据实际需求进行相应设计,例如玻璃盖板10的厚度(即边面的宽度)可以为0.3-2mm,此时塑胶框体20位于玻璃盖板10的边面与金属框体30中外框31之间的厚度为0.5-1mm,金属边框30中外框31的上表面的宽度比玻璃盖板10中边面的宽度大0.5-2mm,金属边框30中内框32的宽度为1-2mm,内框32的上表面比外框31的上表面高0.1-2.5mm。
本公开的3D玻璃金属复合体中,3D玻璃盖板10可以为单曲玻璃盖板(一组相对设置的边缘弯曲形成),也可以为双曲玻璃盖板(两组相对设置的边缘同时弯曲形成)。优选情况下,所述3D玻璃盖板为双曲玻璃盖板,该双曲玻璃盖板与金属边框的结构力更为均匀、稳定。
本公开的3D玻璃金属复合体中,塑胶框体20的材料可以为热塑性塑料,也可以为热固性树脂。所述热塑性树脂可以选自PC、PA、PPS和PBT等,所述热固性树脂可以选自酚醛树脂、环氧树脂、邻苯二甲酸二烯丙酯等。为了明显提高3D玻璃盖板与金属边框间的结合力,且明显降低碎屏风险,如本公开的一个实施例,塑胶框体的材料为聚酰胺(PA)、玻璃纤维(GF)、聚碳酸酯(PC)和聚苯硫醚(PPS)中的至少一种;如本公开的另一个实施例,塑胶框体的材料为聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种与玻璃纤维的混合物;如本公开的再一个实施例,塑胶框体的材料为聚酰胺和玻璃纤维的混合物。
在本公开的一个实施例中,在塑胶框体中,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量与玻璃纤维的重量的比值为(0.5-5):1。进一步在本公开的另一个实施例中该比例为(1-3):1。本领域技术人员应该理解的是,塑胶框体中含有聚酰胺、聚碳酸酯和聚苯硫醚中的一种时,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量为该一种的重量,塑胶框体中含有聚酰胺、聚碳酸酯和聚苯硫醚中的两种以上时,聚酰胺、聚碳酸酯和聚苯 硫醚中的至少一种的总重量为该两种以上的重量和。本公开中,聚酰胺、玻璃纤维、聚碳酸酯和聚苯硫醚可通过商购获得。
本公开的3D玻璃金属复合体中,对于金属基材没有特别的限定,可以为本领域常用的各种金属基材,在本公开的一个实施例中,金属基材为不锈钢基材或铝合金基材。
本公开的3D玻璃金属复合体中,为了进一步提高3D玻璃盖板10与金属基材间的结合力,且明显降低碎屏风险,在本公开的一个实施例中,金属边框的表面形成有阳极氧化膜层,且在该阳极氧化膜层的外表层进一步形成有微孔。前述金属边框可以通过包括如下处理步骤的方法制备得到:将不锈钢或铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理。具体的步骤详见后述相应内容。
第二方面,本公开提供了一种3D玻璃金属复合体的制备方法,所述方法包括:(1)提供3D玻璃盖板10(如图4所示),并在所述3D玻璃盖板10的边面上涂布活化剂,烘干;(2)提供金属边框预制体30ˊ(如图5所示),所述金属边框预制体30ˊ相对于金属边框30的最终结构预留有沿所述金属边框30的外周向外延伸的预留部分33;(3)将步骤(1)得到的3D玻璃盖板10与所述金属边框预制体30ˊ置于注塑模具中,在3D玻璃盖板10的边面与所述金属边框预制体30的上表面之间填充注塑料,通过注塑得到3D玻璃金属复合预制体(如图6所示);(4)对所述3D玻璃金属复合预制体进行切削处理,去除金属边框预制体30ˊ中预留部分33,得到所述3D玻璃金属复合体。
本公开的发明人在对玻璃与金属的结合力进行研究的过程中发现,通过注塑(填充注塑料)的方式能够提高玻璃和金属之间结合力,然而3D玻璃与平面玻璃不同,鉴于3D玻璃的特殊结构,以及3D玻璃盖板和金属框架在加工过程中所存在的加工公差,很难使得3D玻璃盖板与金属框架的尺寸完全匹配,往往在注塑后,3D金属盖板、塑胶框体和金属框架的外周还是会存在明显的缝隙和台阶,影响产品的外观及密封性。基于这一问题的存在,本公开的发明人再次对方法进行了改进,提出了在注塑过程中采用金属边框预制体的方案。该金属边框预制体相对于金属边框的最终结构预留有沿所述金属边框的外周向外延伸的预留部分,在注塑的过程中,预留部分能够对向外溢流的注塑料起到一定的阻挡作用,进而使得注塑料能够更紧密的固化在3D玻璃基板与金属框架之间,形成稳定密封的结构;而在注塑后,对3D玻璃金属复合预制体进行切削处理(即进行CNC加工),去除金属边框预制体中预留部分(同时去除塑胶边框中多余的部分),有利于美化所制备的3D玻璃金属复合体的美观性。
本公开的方法中,根据本公开的一个实施例,所述金属边框30包括一体成型的外框31和内框32,所述外框31与所述3D玻璃盖板10的边面相对设置,所述内框32形成在所述外框31的内部,所述预留部分33形成在所述外框31的外周。根据本公开的一个实施例,所述内框32的上表面高于所述外框31的上表面,所述内框32的上表面与所述外框31的上表面弧形过渡连接。此时外框31(不包括预留部分)的上表面的宽度(垂直于外框中边的延伸方向的长度)大于3D玻璃盖板边面的宽度,以预留有所述塑胶框体20的填充空间。
根据本公开的一个实施例,所述注塑模具包括阴模和阳模,所述阴模的内部具有与所述3D玻璃盖板的外表面结构匹配的内表面;所述阳模包括侧壁结构与所述金属边框预制体的内壁相匹配的柱状镶块,所述金属边框预制体可以灵活地套设在所述柱状镶块上,且所述柱状镶块的上表面与所述3D玻璃盖板的内表面结构匹配。所述阳模还包括能够套设在所述柱状镶块上、并能够相对所述柱状镶块上下移动的环形镶块,所述环形镶块套设在柱状镶块上时形成有能够与所述金属边框预制体结构匹配的环形槽。
本公开方法中,所述步骤(3)中注塑得到3D玻璃金属复合预制体包括:将所述步骤(1)得到的3D玻璃盖板10置于所述阴模中;将所述环形镶块套设在柱形镶块上形成相应阳模,将所述金属边框预制体30ˊ置于所述阳模中;推动环形镶块沿柱形镶块移动至所述阴模与阳模合模状态,在3D玻璃盖板与所述金属边框预制体之间的空隙处(包括由3D玻璃盖板内壁、柱形镶块外币与金属边框预制体之间的空间处)填充注塑料,并注塑得到3D玻璃金属复合预制体。
本公开的方法中,沿垂直于所述金属边框外边缘并向外延伸的方向,所述预留部分33的宽度为1-5mm。
本公开的方法中,在所述填充注塑料的过程中,所述注塑料充满3D玻璃盖板10与所述金属边框预制体30ˊ之间的空隙,优选使得注塑料的外部边缘突出于所述3D玻璃盖板10的外表面、位于所述金属边框预制体30ˊ的外边缘之间。通过增加注塑料的用量,有利于使得所制备的塑胶框体的密实度,优化密封效果。
本公开的方法中,为了进一步增加3D玻璃盖板10与塑料框体20之间结合力,在玻璃盖板10的弯曲部分的内侧、或者侧边的内侧还形成有凸棱,在填充注塑料的过程中,使得塑料包覆在该凸棱的外周,以增加玻璃盖板10余塑料边框20之间的结合面积,增加结合力。
本公开的方法中,如本公开的一个实施例,该方法还包括:步骤(1)中,在所述3D 玻璃盖板的边面上涂布活化剂的步骤之前,至少在玻璃盖板的边面上涂布油墨,固化。其中,可以根据3D玻璃金属复合体的应用情况来确定在3D玻璃盖板的哪些部位上涂布油墨,例如,如果3D玻璃金属复合体被用作前屏盖板壳体时,仅仅在3D玻璃盖板的边缘上涂布油墨,主要起遮蔽ITO电路的作用;如果3D玻璃金属复合体被用作后屏壳体时,在3D玻璃盖板的内表面(包括内表面的边缘)上涂布油墨,主要起显示后屏盖板3D玻璃金属复合体颜色的作用。
本公开的方法中,步骤(1)中,为了提高玻璃盖板与金属基材间的结合力,且降低碎屏风险,对3D玻璃盖板为边面进行了粗糙化处理的3D玻璃盖板,以增加其表面粗糙度。粗糙化处理为本领域技术人员所熟知,在此不再赘述。
本公开的方法中,步骤(1)中,对于油墨没有特别的限定,可以为本领域常用的各种油墨,如本公开的一个实施例油墨为UV油墨或热固油墨。对于涂布油墨的方式没有特别的限定,可以为能够涂布的任何方式。为了方便生产,根据本公开的一个实施例,涂布油墨的方式为丝印,丝印的油墨的厚度为5-15μm。具体丝印的方法为本领域技术人员所熟知,在此不再赘述。对于涂布油墨后进行的固化的条件没有特别的限定,可以根据油墨的种类进行选择,均为本领域常用的各种条件,其中,油墨为UV油墨时,固化的方式为曝光,曝光条件包括:功率为500-1200kW,时间为1-5min;油墨为热固油墨时,固化的方式为烘干,烘干的条件包括:温度为80-90℃,时间为50-100min。
本公开的方法中,为了明显提高3D玻璃盖板与金属基材间的结合力,且明显降低碎屏风险,根据本公开的一个实施例,步骤(1)中,活化剂包括活化组分、稀释剂和固化剂,以所述活化剂的重量为基准,所述活化组分的含量为80-94重量%,进一步为85-91重量%;所述稀释剂的含量为5-19重量%,进一步为6-10重量%;所述固化剂的含量为1-10重量%,进一步为3-5重量%。
根据本公开的一个实施例,所述活化组分为聚氨酯、环氧树脂、聚酰亚胺和聚丙烯酸酯中的至少一种。
根据本公开的一个实施例,所述稀释剂为丙酮、醋酸乙酯和乙酸乙酯中的至少一种。
根据本公开的一个实施例,所述固化剂为乙二胺、乙二醇、丙三醇和二亚乙基三胺中的至少一种。
本公开的方法中,为了进一步提高3D玻璃盖板与金属边框间的结合力,且进一步降低碎屏风险,根据本公开的一个实施例,涂布的活化剂的厚度为5-15μm。其中,涂布的 方式可以为丝印。丝印的方法可以包括:采用300-380目网版,往复印刷两层,具体的操作方法为本领域技术人员所熟知,在此不再赘述。
本公开的方法中,步骤(1)中,对于涂布活化剂后进行的烘干的条件没有特别的限定,可以为本领域常用的各种条件,优选情况下,烘干的条件包括:温度为75-90℃,时间为40-120min。其中,为了达到最佳效果,烘干后,应尽快注塑,如果储存期越长,要求的注塑温度越高。
本公开的方法中,步骤(2)中,对于金属边框的基材没有特别的限定,可以为本领域常用的各种金属基材,根据本公开的一个实施例,金属基材为不锈钢基材或铝合金基材。
其中,现有技术的金属边框一般通过包括如下处理步骤的方法制备得到:将不锈钢或铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理和贴膜处理,为了进一步提高玻璃盖板与金属基材间的结合力,且进一步降低碎屏风险,根据本公开的一个实施例,金属边框通过包括如下处理步骤的方法制备得到:将不锈钢或铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理(在金属边框上贴膜是为了防止阳极氧化膜被划伤)。其中,在阳极氧化处理后增加微孔前处理,使得阳极氧化膜层的外表层进一步形成微米级的大的腐蚀孔,通过这种腐蚀再造孔,在后续的成型过程中,塑胶材料在注塑过程中会更容易直接进入基材表面孔中,从而在形成塑胶框体后与基材形成良好的结合,能够进一步提高玻璃盖板与金属基材间的结合力。
根据本公开的一个实施例,微孔处理的方式为:将阳极氧化处理得到的基材浸泡到刻蚀液中,在阳极氧化膜层外表层形成孔径为200nm-2000nm的腐蚀孔。其中,刻蚀液可以为将阳极氧化膜膜层腐蚀的溶液,例如,一般用能溶解氧化铝的溶液调节浓度即可,可以为酸/碱刻蚀液,例如可以选自pH为10-13的溶液。根据本公开的一个实施例,刻蚀液为pH为10-13的单一碱性溶液或复合缓冲溶液,pH为10-13的单一碱性溶液可以为Na 2CO 3、NaHCO 3、NaOH、K 2CO 3、KHCO 3、KOH等的水溶液。根据本公开的一个实施例,刻蚀液为Na 2CO 3和/或NaHCO 3水溶液,能够使腐蚀孔在基材表面均匀分布,并且孔径均匀,能够使玻璃盖板与基材的结合性能更佳。上述刻蚀液的固含量可以为0.1-15重量%。复合缓冲溶液可以为可溶性磷酸氢盐和可溶性碱的混合溶液,例如磷酸二氢钠和氢氧化钠的水溶液,磷酸二氢钠和氢氧化钠的水溶液的固含量可以为0.1-15重量%,也可以为K 3PO 4和K 2HPO 4的水溶液,复合缓冲溶液还可以为氨水溶液、肼水溶液、肼衍生物水溶液、水溶性胺系化合物水溶液、NH 3-NH 4Cl水溶液等。将阳极氧化处理得到的基材浸泡到刻蚀液中包括将基材反复多次浸入 刻蚀液中,每次浸渍的时间可以为1-60min,每次浸渍后用去离子水洗净,浸入的次数可以为2到10次。洗净可以是放入水洗槽中清洗1到5min,或者放入水洗槽中放置1到5min。
其中,对于加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理和贴膜处理的方法没有特别限定,可以为本领域常用的各种方法,此均为本领域技术人员所熟知,例如,喷砂处理的条件可以包括:喷砂压强为0.23-0.25MPa,往复2-4次,走速为12-22Hz,其中,可以使用205陶瓷砂,摇摆频率可以为33Hz(机台固定频率)。阳极氧化处理的条件可以包括:电解液中硫酸浓度为10-30重量%,铝离子浓度为10-30g/L;温度为15-25℃,电流密度为0.6-3A/dm 2,电压为10-20V,氧化时间为30min-50min。
本公开的方法中,为了进一步提高3D玻璃盖板与金属基材间的结合力,且进一步降低碎屏风险,根据本公开的一个实施例,该方法还包括:步骤(2)中,在所提供的金属边框预制体的上表面上涂布活化剂,烘干。其中所采用的活化剂、活化剂的涂布方式,以及烘干条件参见前述描述。
本公开的方法中,根据本公开的一个实施例,步骤(3)中,注塑的方式为常温注塑,进一步地,注塑的条件包括:注塑宽度(注塑后玻璃盖板10的边面与金属框体30的外框31的上表面之间的厚度)为0.5-1mm,模具温度为15-35℃,注塑料温度为200-300℃。
本公开的方法中,为了明显提高玻璃盖板与金属基材间的结合力,且明显降低碎屏风险,根据本公开的一个实施例,注塑料为聚酰胺、玻璃纤维、聚碳酸酯和聚苯硫醚中的至少一种,进一步为聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种与玻璃纤维的混合物,更进一步为聚酰胺和玻璃纤维的混合物。
其中,根据本公开的一个实施例,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量与玻璃纤维的重量的比值为(0.5-5):1,进一步为(1-3):1。本领域技术人员应该理解的是,注塑料中含有聚酰胺、聚碳酸酯和聚苯硫醚中的一种时,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量为该一种的重量,注塑料中含有聚酰胺、聚碳酸酯和聚苯硫醚中的两种以上时,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量为该两种以上的重量和。
本公开的方法中,如前所述,根据本公开的一种的实施方式,将玻璃盖板的边缘进行粗糙化处理,同时将金属边框进行微孔处理,使其表面形成无数微孔;在处理后的玻璃盖板和金属边框上丝印活化剂,再通过常温注塑的方式将玻璃盖板置于金属边框内,实现金属基材、塑胶、玻璃盖板无台阶相结合。
本公开的方法中,其中3D玻璃盖板可以为采用常规工艺方法制备的3D玻璃盖板,例如可以采用常规的平面玻璃经过开料、热弯、抛光、强化等工序制备而成。其中可以采用的平面玻璃基板包括但不限于康宁大猩猩四代玻璃、大猩猩三代玻璃、旭硝子玻璃、肖特玻璃等,根据本公开的一个实施例,所述玻璃基本的厚度为0.5-0.8mm。
在3D玻璃盖板的制备过程中,开料是指将平面玻璃切割为所需尺寸的平面玻璃基板。
在3D玻璃盖板的制备过程中,热弯是使得玻璃由平面转化为曲面的过程,其包括预热(至少连续的三个加热段)、压型(至少两个连续的升压压型段和至少一个保压压型段)、冷却(至少两个连续的冷却段)三个阶段,对于热弯的条件可以参照本领域的常规工艺。
在3D玻璃盖板的制备过程中,抛光是指利用机械作用使工件表面粗糙度降低,以获得光亮、平整表面的加工方法,其常规的工艺手段是将旋转的抛光毛轮压向工件,使磨料对工件表面产生滚压和微量切削,通常要求抛光后的玻璃表面粗糙度应达到Ra<0.2μm。
在3D玻璃盖板的制备过程中,强化是指玻璃表面的钠离子和钾离子进行离子交换而形成强化层,提高玻璃硬度的步骤,其中强化过程可以在硝酸钾熔盐中进行,其工艺条件包括:将玻璃浸入加热至380℃-450℃的高纯度硝酸钾熔盐中,保持4-10小时;所制备的3D玻璃盖板的抗弯曲强度可以达到600-800MPa。
其中,根据本公开的一个实施例,3D玻璃盖板(尤其是3D玻璃金属复合体作为前屏盖板壳体)为OGS(One Glass Solution同名触板,一块玻璃同时起到保护玻璃和触摸传感器的双重作用)触屏钢化玻璃,降低了产品厚度,突破了注塑温度对触摸屏影响的壁垒,使玻璃盖板与金属边框一体化成型,能够减少产品工序,降低成本,提高产品的性能并装饰产品外观,使产品更加轻薄、实用。
本公开的第三方面提供了本公开前述方法制备得到的3D玻璃金属复合体。
本公开的第四方面提供了一种电子产品,所述电子产品包括壳体,所述壳体为根据本公开所述的3D玻璃金属复合体。
对于电子产品没有特别的限定,只要该电子产品中有3D玻璃盖板和金属边框即可,所述电子产品为手机、平板电脑、游戏机、手表、笔记本、台式电脑、电视或仪表显示器。所述3D玻璃金属复合体为电子产品的前屏盖板壳体、后屏盖板壳体。
以下将通过实施例对本公开进行详细描述。以下实施例中,如无特别说明,所用的试剂材料均可通过商购获得,所用的方法均为本领域的常规方法。
聚氨酯购自杜邦公司,牌号为PA66 HTN501。
环氧树脂购自杜邦公司,牌号为PKHH。
聚酰亚胺购自杜邦公司,牌号为200H。
聚丙烯酸酯购自广州科泰化工有限公司,牌号为7732-18-5。
聚酰胺购自杜邦公司,牌号为73G20L。
玻璃纤维购自杜邦公司,牌号为FR530 NC010。
聚碳酸酯购自杜邦公司,牌号为CG943。
聚苯硫醚购自杜邦,牌号为HTN52G35HSL。
喷砂处理的条件包括:使用205陶瓷砂,喷砂压强为0.24MPa,往复3次,走速为18Hz,摇摆频率33Hz。
在如下实施例和对比例中所采用的3D玻璃结构如图4所示,制备方法如下:
(1)取平板玻璃(康宁大猩猩四代玻璃),切割为长宽厚为155*75*0.5mm的平面玻璃基板,将前述平面玻璃基板放入至成型模具中,将一次成型模具置于成型炉中,分别依次经过四段预热、三段压型和两段冷却,形成曲面玻璃坯体,其中四段预热、三段压型和两段冷却的工艺条件如下表所示,得到3D玻璃坯体;
Figure PCTCN2018101133-appb-000001
压型1-2中压力为由低至高渐变加压,压型3压力恒定,上表中所记载的压型1-2中压力为这一区间的最大压力。
(2)对3D玻璃坯体进行抛光处理:使得表面粗糙度Ra<0.2μm条件,得到3D玻璃预制体;
(3)对3D玻璃预制体进行强化处理:将3D玻璃预制体加热至380℃后,浸入到温度为420℃的纯度为95%的硝酸钾熔盐中,浸渍5h,取出后放置在380℃的加热炉中退火处理,得到抗弯曲强度为750MPa的3D玻璃盖板,该3D玻璃盖板的长宽高为148mm*73mm*2.4mm,边面厚度为0.5mm。
在如下实施例和对比例中所采用的铝合金边框预制体结构如图5所示,具体结构说明如下:
该铝合金边框预制体与前述制备3D玻璃盖板结构适配,包括一体成型的内框32、外 框31和预留部分33,预计外框31(未计算预留部分)的上表面宽度比前述3D玻璃盖板的宽度大0.8mm,内框32的上表面宽度为2mm,内框32的上表面比外框31的上表面高出1.1mm,所述预留部分33的宽度参照如下实施例部分。
在如下实施例和对比例中所采用的注塑模具说明如下:
所述注塑模具包括阴模和阳模,所述阴模的内部具有与所述3D玻璃盖板的外表面结构匹配的内表面;所述阳模包括侧壁结构与所述金属边框预制体的内壁相匹配的柱状镶块,所述金属边框预制体可以灵活地套设在所述柱状镶块上,且所述柱状镶块的上表面与所述3D玻璃盖板的内表面结构匹配;所述阳模还包括能够套设在所述柱状镶块上、并能够相对所述柱状镶块上下移动的环形镶块,所述环形镶块套设在柱状镶块上形成相应阳模,该样膜中形成有能够与所述金属边框预制体结构匹配的环形槽。
实施例1
(1)将前述制备的3D玻璃盖板的边面进行粗糙化处理,用70T的网版在前述3D玻璃盖板的边面丝印UV油墨,UV油墨的丝印厚度为10μm,然后在900kW的曝光机下,曝光3min;用380目的网版将活化剂丝印于UV油墨上,活化剂的丝印厚度为10μm,然后将玻璃放入90℃的隧道干燥器中干燥90min;其中,活化剂为聚氨酯体系,包括聚氨酯、丙酮和乙二胺,以所述活化剂的重量为基准,聚氨酯、丙酮和乙二胺的含量分别为88重量%、8重量%和4重量%。
(2)将铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理,得到铝合金边框预制体(结构参照前述描述,其中预留部分的宽度为1.5mm),然后将与步骤(1)相同的活化剂涂布于铝合金边框预制体的上表面上,涂布厚度为10μm,在80℃烘干90min;其中,阳极氧化处理的条件包括:电解液中硫酸浓度为20重量%,铝离子浓度为20g/L,温度为20℃,电流密度为1.5A/dm 2,电压为15V,氧化时间为40min;微孔处理的条件包括:将基材浸泡在pH为12、10重量%的碳酸钠溶液中,5min后将其取出,放入装有水的烧杯中浸泡1min,如此循环5次,最后一次用水浸泡后,烘干;
(3)将步骤(1)得到的3D玻璃盖板置于所述阴模中,将步骤(2)得到的铝合金边框预制体置于所述阳模的环形槽中,将所述阴模与阳模合模,在3D玻璃盖板与所述铝合金边框预制体之间的空隙处填充注塑料(注塑料是由聚酰胺和玻璃纤维按照重量比2:1进行 混合,并在烘箱中预热至250℃所得),使得注塑料充满3D玻璃盖板与所述铝合金边框预制体(包括3D玻璃盖板的内壁、柱状镶块的外壁、以及铝合金边框预制体的上表面之间所形成的环形空腔处,下同)之间的空隙,且使得注塑料的外部边缘突出于所述3D玻璃盖板的外表面、位于所述铝合金边框预制体的外边缘内部,并注塑(注塑宽度为0.8mm,模具温度为30℃,注塑料温度为250℃)得到3D玻璃金属复合预制体。
(4)采用CNC工艺,去除3D玻璃金属复合预制体中铝合金边框的预留部分,以及塑胶框体突出的部分,使得3D玻璃盖板、塑胶框体、金属边框的外周沿3D玻璃盖板的曲度无台阶平滑过渡,得到3D玻璃金属复合体产品A1。
实施例2
(1)将前述制备的3D玻璃盖板的边面进行粗糙化处理,用70T的网版在3D玻璃盖板的边面丝印热固油墨,热固油墨的丝印厚度为15μm,然后在80℃的烘箱中干燥90min;用300目的网版将活化剂丝印于热固油墨上,活化剂的丝印厚度为15μm,然后将玻璃放入80℃的隧道干燥器中干燥110min;其中,活化剂为聚氨酯体系,包括聚氨酯、醋酸乙酯和乙二醇,以所述活化剂的重量为基准,聚氨酯、醋酸乙酯和乙二醇的含量分别为85重量%、10重量%和5重量%。
(2)将铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理,得到铝合金边框预制体(结构参照前述描述,其中预留部分的宽度为1.5mm),然后将与步骤(1)相同的活化剂涂布于铝合金边框预制体的上表面上,涂布厚度为15μm,在75℃烘干110min;其中,阳极氧化处理的条件包括:电解液中硫酸浓度为15重量%,铝离子浓度为28g/L,温度为15℃,电流密度为1A/dm 2,电压为10V,氧化时间为50min;微孔处理的条件包括:将基材浸泡在pH为10、15重量%的碳酸氢钠溶液中,5min后将其取出,放入装有水的烧杯中浸泡1min,如此循环5次,最后一次用水浸泡后,烘干;
(3)将步骤(1)得到的3D玻璃盖板置于所述阴模中,将步骤(2)得到的铝合金边框预制体置于所述阳模的环形槽中,将所述阴模与阳模合模,在3D玻璃盖板与所述铝合金边框预制体之间的空隙处填充注塑料(注塑料是由聚酰胺和玻璃纤维按照重量比1:1进行混合,并在烘箱中预热至300℃所得),使得注塑料充满3D玻璃盖板与所述铝合金边框预制体之间的空隙,且使得注塑料的外部边缘突出于所述3D玻璃盖板的外表面、位于所述铝合金边框预制体的外边缘之内,并注塑(注塑宽度为1mm,模具温度为15℃,注塑料温度 为300℃)得到3D玻璃金属复合预制体。
(4)采用CNC工艺,去除3D玻璃金属复合预制体中铝合金边框的预留部分,以及塑胶框体突出的部分,使得3D玻璃盖板、塑胶框体、金属边框的外周沿3D玻璃盖板的曲度无台阶平滑过渡,得到3D玻璃金属复合体产品A2。
实施例3
(1)将前述制备的3D玻璃盖板的边面进行粗糙化处理,用70T的网版在3D玻璃盖板的边面丝印热固油墨,热固油墨的丝印厚度为5μm,然后在90℃的烘箱中干燥60min;用300目的网版将活化剂丝印于热固油墨上,活化剂的丝印厚度为8μm,然后将玻璃放入80℃的隧道干燥器中干燥50min;其中,活化剂为聚氨酯体系,包括聚氨酯、乙酸乙酯和二亚乙基三胺,以所述活化剂的重量为基准,聚氨酯、乙酸乙酯和二亚乙基三胺的含量分别为91重量%、6重量%和3重量%。
(2)将铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理,得到铝合金边框预制体(结构参照前述描述,其中预留部分的宽度为1.5mm),然后将与步骤(1)相同的活化剂涂布于铝合金边框预制体的上表面上,涂布厚度为5μm,在90℃烘干60min;其中,阳极氧化处理的条件包括:电解液中硫酸浓度为25重量%,铝离子浓度为15g/L,温度为25℃,电流密度为2.5A/dm 2,电压为20V,氧化时间为30min;微孔处理的条件包括:将基材浸泡在pH为10、15重量%的碳酸氢钠溶液中,5min后将其取出,放入装有水的烧杯中浸泡1min,如此循环5次,最后一次用水浸泡后,烘干;
(3)将步骤(1)得到的3D玻璃盖板置于所述阴模中,将步骤(2)得到的铝合金边框预制体置于所述阳模的环形槽中,将所述阴模与阳模合模,在3D玻璃盖板与所述铝合金边框预制体之间的空隙处填充注塑料(注塑料是由聚酰胺和玻璃纤维按照重量比3:1进行混合,并在烘箱中预热至200℃所得),使得注塑料充满3D玻璃盖板与所述铝合金边框预制体之间的空隙,且使得注塑料的外部边缘突出于所述3D玻璃盖板的外表面、位于所述铝合金边框预制体的外边缘之内,并注塑(注塑宽度为0.5mm,模具温度为35℃,注塑料温度为200℃)得到3D玻璃金属复合预制体。
(4)采用CNC工艺,去除3D玻璃金属复合预制体中铝合金边框的预留部分,以及塑胶框体突出的部分,使得3D玻璃盖板、塑胶框体、金属边框的外周沿3D玻璃盖板的曲度无台阶平滑过渡,得到3D玻璃金属复合体产品A3。
实施例4
按照实施例1的方法制备3D玻璃金属复合体产品A4,不同的是,活化剂为聚氨酯体系,包括聚氨酯、丙酮和乙二胺,以所述活化剂的重量为基准,聚氨酯、丙酮和乙二胺的含量分别为80重量%、10重量%和10重量%。
实施例5
按照实施例1的方法制备3D玻璃金属复合体产品A5,不同的是,活化剂中用环氧树脂代替聚氨酯。
实施例6
按照实施例1的方法制备3D玻璃金属复合体产品A6,不同的是,活化剂中用聚酰亚胺代替聚氨酯。
实施例7
按照实施例1的方法制备3D玻璃金属复合体产品A7,不同的是,活化剂中用聚丙烯酸酯代替聚氨酯。
实施例8
按照实施例1的方法制备3D玻璃金属复合体产品A8,不同的是,步骤(2)中,在注塑之前,并不在铝合金边框的上表面上涂布活化剂。
实施例9
按照实施例1的方法制备3D玻璃金属复合体产品A9,不同的是,制备铝合金边框预制体的过程中并不进行微孔处理。
实施例10
按照实施例1的方法制备3D玻璃金属复合体产品A10,不同的是,注塑料为聚碳酸酯和玻璃纤维按照重量比2:1进行混合。
实施例11
按照实施例1的方法制备3D玻璃金属复合体产品A11,不同的是,注塑料为聚苯硫醚和玻璃纤维按照重量比2:1进行混合。
实施例12
按照实施例1的方法制备3D玻璃金属复合体产品A12,不同的是,注塑料为聚酰胺和玻璃纤维按照重量比0.5:1进行混合。
实施例13
按照实施例1的方法制备3D玻璃金属复合体产品A13,不同的是,注塑料为聚苯硫醚。
实施例14
按照实施例1的方法制备3D玻璃金属复合体产品A14,不同的是,注塑料为聚酰胺。
实施例15
按照实施例1的方法制备3D玻璃金属复合体产品A15,不同的是,注塑料为聚碳酸酯。
实施例16
按照实施例1的方法制备3D玻璃金属复合体产品A16,不同的是,注塑料为玻璃纤维。
实施例17
按照实施例1的方法制备3D玻璃金属复合体产品A17,不同的是,在填充注塑料的过程中,注塑料充满3D玻璃盖板与所述铝合金边框预制体之间的空隙,且注塑料的外部边缘未突出于所述3D玻璃盖板的外表面,与3D玻璃盖板的外表面齐平。
实施例18
按照实施例1的方法制备3D玻璃金属复合体产品A18,不同的是,所采用的铝合金边框预制体中内框的上表面与外框的上表面齐平。
对比例1
按照实施例1的方法,不同的是,该方法包括步骤(1)-(3),其中,
步骤(1)为:将前述3D玻璃盖板进行粗糙化处理,用70T的网版在玻璃的边缘丝印UV油墨,UV油墨的丝印厚度为10μm,然后在900kW的曝光机下,曝光3min;
步骤(2)为:将铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理和贴膜处理,得到铝合金边框预制体;
步骤(3)为:在步骤(1)得到的玻璃盖板与步骤(2)得到的铝合金基材板框之间放一个塑胶垫圈,在玻璃盖板与铝合金基材板框上涂布胶水,将玻璃盖板置于铝合金基材板框中,然后放入90℃干燥箱中烘干30min。得到3D玻璃金属复合体D1。
试验例
分别对3D玻璃金属复合体A1-A18和D1进行如下各项性能测试。
1、平面度测试:用三坐标测量机(购自海克斯康,型号为Global classic 050705)测量各3D玻璃金属复合体的玻璃盖板表面的平面度。结果见表1。
2、镜面推力测试:用万能材料力学试验机(购自INSTRON,型号为3369,推进速度为10mm/min)测试各3D玻璃金属复合体的玻璃盖板与金属边框间的结合力,固定住金属边框,推动玻璃盖板直至玻璃破碎或玻璃脱落为止。做30个平行重复,取平均值。结果见表1。
3、将各3D玻璃金属复合体组装成整机,进行跌落测试:无负载跌落测试,高度1m。经跌落试验后,记录产品未出现变形、压痕和损伤的最大次数。结果见表1。
4、温度冲击测试:将各3D玻璃金属复合体分别放入温度冲击试验机(购自KSON庆声公司,型号为KSKC-415TBS)中,-40℃放置2h,85℃放置2h,此为1个循环,共做5个循环,然后25℃放置4h,测试前/后无腐蚀、斑点、掉色、变色、裂纹、起泡、扭曲等不良以及不能有手指甲刮伤现象,即为合格。结果见表1。
5、湿热循环测试:将各3D玻璃金属复合体放于50℃、湿度95%的恒温恒湿箱中72h。测试前/后无腐蚀、斑点、掉色、变色、裂纹、起泡、扭曲等不良以及不能有手指甲刮伤现象,即为合格。结果见表1。
6、盐雾测试:将各3D玻璃金属复合体放置到盐雾室中,在温度为35℃、湿度为90%条件下,用Ph值为6.8、5重量%的NaCl溶液连续对产品表面喷雾2小时,然后将各产品 放置于50℃、湿度95%恒温恒湿箱中22小时,此为一个循环,共做3个循环72h。然后使用38℃的温水进行轻柔的冲洗,并用无尘布擦拭干净,常温放置2小时后检查样品,膜层外观无异常、外观无明显变化(如锈蚀、变色及起泡等),即为合格。结果见表1。
7、抗化学品测试:分别将食用油、防晒油、唇膏、粉底液、驱蚊液、护手霜等均匀涂抹于各3D玻璃金属复合体上,放于温度为70℃、湿度为90%的恒温恒湿箱中24h后,在25℃放置4h,用酒精擦拭产品,无明显残留痕迹,即为合格。结果见表1。
8、防水性能测试:进行IPX7短时浸水试验,将组装好的整机浸入水中30min,工件的顶部水深至少150mm,最下面的部位至少承受1m的水压。拿出水面后,表干工件,放置30min后,可正常工作为合格。结果见表2。
表1.
Figure PCTCN2018101133-appb-000002
由表1可以看出,本公开的方法能够大大提高制备得到的3D玻璃金属复合体的玻璃盖板与金属基材板框之间的结合力,大大降低了玻璃脱落风险和摔落后碎屏风险,显著提 高了产品性能。
此外,通过外观检视方法可以看出,根据本公开实施例1-18所制备的3D玻璃金属复合体的结合部分尺寸匹配较为完整,不存在玻璃与金属间存在装配台阶、缝隙问题,而采用对比文件1所制备的3D玻璃金属复合体的结合部分存在玻璃和金属间有较明显的装配缝隙、台阶的问题。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于此。在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本公开所公开的内容,均属于本公开的保护范围。

Claims (20)

  1. 一种3D玻璃金属复合体,其特征在于,所述3D玻璃金属复合体包括3D玻璃盖板(10)、塑胶框体(20)和金属边框(30),所述金属边框(30)的上表面和所述3D玻璃盖板(10)的边面相对设置,所述塑胶框体(20)的至少一部分形成在所述3D玻璃盖板(10)的边面和金属边框(30)的上表面之间,且所述3D玻璃盖板(10)、所述塑胶框体(20)、所述金属边框(30)的外周沿所述3D玻璃盖板(10)的曲度无台阶平滑过渡。
  2. 根据权利要求1所述的3D玻璃金属复合体,其中,所述金属边框(30)包括一体成型的外框(31)和内框(32),所述外框(31)与所述3D玻璃盖板(10)的边面相对设置,所述内框(32)形成在所述外框(31)的内侧;所述塑胶框体(20)的外周与所述外框(31)的外周相对应、所述塑胶框体(20)的内周与所述内框(32)的内周相对应的形成在所述3D玻璃盖板(10)与所述金属边框(30)之间。
  3. 根据权利要求2所述的3D玻璃金属复合体,其中,所述内框(32)的上表面高于所述外框(31)的上表面;所述内框(32)的上表面与所述外框(31)的上表面弧形过渡连接。
  4. 根据权利要求1至3中任意一项所述的3D玻璃金属复合体,其中,所述3D玻璃盖板(10)为双曲玻璃盖板。
  5. 根据权利要求1至4中任意一项所述的3D玻璃金属复合体,其中,所述塑胶框体(20)的材料为聚酰胺、玻璃纤维、聚碳酸酯和聚苯硫醚中的至少一种,优选为聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种与玻璃纤维的混合物,进一步优选为聚酰胺和玻璃纤维的混合物,更进一步优选地,塑胶框体中,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量与玻璃纤维的重量的比值为0.5-5:1,再进一步优选为1-3:1。
  6. 根据权利要求1至5中任意一项所述的3D玻璃金属复合体,其中,所述金属边框(30)的基材为不锈钢基材或铝合金基材。
  7. 根据权利要求1至6中任意一项所述的3D玻璃金属复合体,其中,所述金属边框的表面形成有阳极氧化膜层,且在该阳极氧化膜层的外表层形成有微孔,所述塑胶框体的部分填充进所述微孔中。
  8. 根据权利要求2或3所述的3D玻璃金属复合体,其中,外框(31)的上表面的宽度大于3D玻璃盖板(10)的边面的宽度。
  9. 根据权利要求2或3所述的3D玻璃金属复合体,其中,所述塑胶框体20的外周与 所述外框31的外周相对应、塑胶框体20的内周与所述内框32的内周相对应。
  10. 一种3D玻璃金属复合体的制备方法,其特征在于,所述方法包括以下步骤:
    (1)提供3D玻璃盖板(10),并在所述3D玻璃盖板的边面上涂布活化剂,烘干;
    (2)提供金属边框预制体(30ˊ),所述金属边框预制体相对于金属边框(30)的最终结构预留有沿所述金属边框(30)的外周向外延伸的预留部分(33);
    (3)将步骤(1)得到的3D玻璃盖板(10)与所述金属边框预制体(30ˊ)置于注塑模具中,所述金属边框预制体(30ˊ)的上表面和所述3D玻璃盖板(10)的边面相对设置,在3D玻璃盖板(10)的边面与所述金属边框预制体(30ˊ)的上表面之间填充注塑料,注塑料的至少一部分形成在所述3D玻璃盖板(10)的边面和金属边框预制体(30ˊ)的上表面之间,并注塑得到3D玻璃金属复合预制体;
    (4)对所述3D玻璃金属复合预制体进行切削处理,去除金属边框预制体(30ˊ)中预留部分(33),得到所述3D玻璃金属复合体。
  11. 根据权利要求10所述的方法,其中,所述金属边框包括一体成型的外框(31)和内框(32),所述外框(31)与所述3D玻璃盖板(10)的边面相对设置,所述内框(32)形成在所述外框(31)的内侧,所述预留部分(33)形成在所述外框(31)的外周;所述内框(32)的上表面高于所述外框(31)的上表面;所述内框(32)的上表面与所述外框(31)的上表面弧形过渡连接。
  12. 根据权利要求10或11所述的方法,其中,沿垂直于所述金属边框(30)外边缘并向外延伸的方向,所述预留部分(33)的宽度为1-5mm。
  13. 根据权利要求10至12中任意一项所述的方法,其中,所述填充注塑料的过程中,所述注塑料充满3D玻璃盖板(10)与所述金属边框预制体(30ˊ)之间的空隙,且使得注塑料的外部边缘突出于所述3D玻璃盖板(10)的外表面、位于所述金属边框预制体(30ˊ)的外边缘之间。
  14. 根据权利要求10至13中任意一项所述的方法,其中,该方法还包括:在所提供的金属边框预制体(30ˊ)的上表面上涂布活化剂,烘干。
  15. 根据权利要求10至14中任意一项所述的方法,其中,该方法还包括:在所述3D玻璃盖板(10)的边面上涂布活化剂的步骤之前,至少在玻璃盖板(10)的边面上涂布油墨,固化;
    所述油墨为UV油墨或热固油墨;
    涂布油墨的方式为丝印,丝印的油墨的厚度为5-15μm。
  16. 根据权利要求10至14中任意一项所述的方法,其中,所述活化剂包括活化组分、 稀释剂和固化剂,以所述活化剂的重量为基准,所述活化组分的含量为80-94重量%,优选为85-91重量%;所述稀释剂的含量为5-19重量%,优选为6-10重量%;所述固化剂的含量为1-10重量%,优选为3-5重量%;
    所述活化组分为聚氨酯、环氧树脂、聚酰亚胺和聚丙烯酸酯中的至少一种;
    所述稀释剂为丙酮、醋酸乙酯和乙酸乙酯中的至少一种;
    所述固化剂为乙二胺、乙二醇、丙三醇和二亚乙基三胺中的至少一种;
    涂布的活化剂的厚度为5-15μm。
  17. 根据权利要求10至14中任意一项所述的方法,其中,所述金属边框(30)的基材为不锈钢基材或铝合金基材,
    所述金属边框(30)通过包括如下处理步骤的方法制备得到:将不锈钢或铝合金依次进行加工成型、打磨、化学抛光、喷砂处理、阳极氧化处理、微孔处理和贴膜处理。
  18. 根据权利要求10至14中任意一项所述的方法,其中,所述注塑的条件包括:注塑宽度为0.5-1mm,模具温度为15-35℃,注塑料温度为200-300℃;
    优选地,所述注塑料为聚酰胺、玻璃纤维、聚碳酸酯和聚苯硫醚中的至少一种,更优选为聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种与玻璃纤维的混合物,进一步优选为聚酰胺和玻璃纤维的混合物,更进一步优选地,聚酰胺、聚碳酸酯和聚苯硫醚中的至少一种的总重量与玻璃纤维的重量的比值为0.5-5:1,再进一步优选为1-3:1。
  19. 权利要求10至18中任意一项所述方法制备得到的3D玻璃金属复合体。
  20. 一种电子产品,所述电子产品包括壳体,其特征在于,所述壳体为权利要求1-9和19中任意一项所述的3D玻璃金属复合体;
    所述电子产品为手机、平板电脑、游戏机、手表、笔记本、台式电脑、电视或仪表显示器;
    所述壳体为电子产品的前屏壳体、后屏壳体或防水表壳。
PCT/CN2018/101133 2017-08-25 2018-08-17 3d玻璃金属复合体及其制备方法和电子产品 WO2019037670A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18847877.0A EP3675467A4 (en) 2017-08-25 2018-08-17 3D GLASS-METAL COMBINATION, PROCESS FOR MANUFACTURING ITEM AND ELECTRONIC PRODUCT
JP2020511537A JP2020532009A (ja) 2017-08-25 2018-08-17 3dガラス−金属複合体及びその製造方法並びに電子機器
US16/641,905 US20200198195A1 (en) 2017-08-25 2018-08-17 3d glass-metal composite body, preparing method thereof, and electronic device
KR1020207008546A KR20200043454A (ko) 2017-08-25 2018-08-17 3d 유리-금속 복합체, 이의 제조방법 및 전자제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710740918.3A CN109429446B (zh) 2017-08-25 2017-08-25 3d玻璃金属复合体及其制备方法和电子产品
CN201710740918.3 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019037670A1 true WO2019037670A1 (zh) 2019-02-28

Family

ID=65439947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101133 WO2019037670A1 (zh) 2017-08-25 2018-08-17 3d玻璃金属复合体及其制备方法和电子产品

Country Status (6)

Country Link
US (1) US20200198195A1 (zh)
EP (1) EP3675467A4 (zh)
JP (1) JP2020532009A (zh)
KR (1) KR20200043454A (zh)
CN (1) CN109429446B (zh)
WO (1) WO2019037670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508021A (zh) * 2019-03-05 2021-10-15 旭硝子欧洲玻璃公司 用于车辆的模制玻璃装饰元件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375632B2 (en) * 2018-02-26 2022-06-28 Mitsui Chemicals, Inc. Dissimilar material joint and housing for accommodating electronic components
CN111098443A (zh) * 2019-12-06 2020-05-05 安徽康佳同创电器有限公司 一种玻璃盖板的制造方法、玻璃盖板及波轮洗衣机
CN111781996A (zh) * 2020-06-30 2020-10-16 联想(北京)有限公司 一种电子设备
CN115666029B (zh) * 2021-06-26 2024-04-12 荣耀终端有限公司 壳体组件和电子设备
KR20230028959A (ko) * 2021-08-23 2023-03-03 삼성전자주식회사 절연부를 포함하는 하우징을 포함하 는전자 장치 및 이의 제조 방법
CN114259111B (zh) * 2021-11-29 2024-07-30 歌尔股份有限公司 智能指环及其指环壳的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR530E (fr) 1902-05-01 1903-02-03 Clement Adolphe Dispositif pour le controle d'allumage et la mise en marche automatique des moteurs à explosion
CN102006739A (zh) * 2009-09-03 2011-04-06 鸿富锦精密工业(深圳)有限公司 壳体
US20120033357A1 (en) * 2010-08-09 2012-02-09 Hon Hai Precision Industry Co., Ltd. Electronic device housing and manufacturing method thereof
CN105376930A (zh) * 2015-12-09 2016-03-02 广东欧珀移动通信有限公司 电子产品壳体及其制作方法
CN105491824A (zh) * 2015-12-21 2016-04-13 东莞华清光学科技有限公司 一种电子设备防水防摔壳体及制备方法
US20170158546A1 (en) * 2015-12-04 2017-06-08 61C&S Co., Ltd. Apparatus for manufacturing front glass for display of electronic device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240239A (ja) * 2003-02-07 2004-08-26 Sony Corp 表示装置およびその製造方法
CN102131356B (zh) * 2010-02-02 2014-06-18 苹果公司 具有外部玻璃表面的便携电子设备壳体
TW201219906A (en) * 2010-11-02 2012-05-16 Taiwan Green Point Entpr Co Display panel assembly and method for making the same
CN102938986B (zh) * 2011-08-15 2015-05-27 深圳富泰宏精密工业有限公司 壳体及其制备方法
CN103290450B (zh) * 2012-02-24 2016-04-13 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及铝合金树脂复合体
CN103286908B (zh) * 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN202979520U (zh) * 2012-10-30 2013-06-05 贝尔罗斯(广州)电子部件有限公司 封盖及电子设备
US9547338B2 (en) * 2013-08-15 2017-01-17 Apple, Inc. Electronic device with injection molded display trim
CN105196652B (zh) * 2014-06-30 2017-07-21 比亚迪股份有限公司 一种金属‑树脂复合体及其制备方法
CN204046667U (zh) * 2014-07-18 2014-12-24 深圳市星际移动通信设备有限公司 一种窄边式终端前壳及终端
CN105551384A (zh) * 2014-09-02 2016-05-04 三星电子株式会社 曲面显示器以及包括该曲面显示器的可移动电子设备
KR101516766B1 (ko) * 2014-09-02 2015-05-04 삼성전자주식회사 곡면 표시 영역을 가지는 디스플레이 및 이를 포함하는 전자 장치
US9578149B2 (en) * 2015-02-06 2017-02-21 Samsung Electronics Co., Ltd. Electronic device including display with bent area
KR102410549B1 (ko) * 2015-04-09 2022-06-20 삼성전자주식회사 베젤리스 스크린을 구비한 전자 장치
CN204669749U (zh) * 2015-04-15 2015-09-23 东莞劲胜精密组件股份有限公司 一种3d曲面玻璃屏
CN104935699B (zh) * 2015-06-26 2016-07-06 努比亚技术有限公司 无边框移动终端
KR102470129B1 (ko) * 2015-07-20 2022-11-24 삼성전자주식회사 디스플레이 장치 및 그 제조방법
US9872408B2 (en) * 2015-10-02 2018-01-16 Samsung Electronics Co., Ltd. Electronic device including waterproof structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR530E (fr) 1902-05-01 1903-02-03 Clement Adolphe Dispositif pour le controle d'allumage et la mise en marche automatique des moteurs à explosion
CN102006739A (zh) * 2009-09-03 2011-04-06 鸿富锦精密工业(深圳)有限公司 壳体
US20120033357A1 (en) * 2010-08-09 2012-02-09 Hon Hai Precision Industry Co., Ltd. Electronic device housing and manufacturing method thereof
US20170158546A1 (en) * 2015-12-04 2017-06-08 61C&S Co., Ltd. Apparatus for manufacturing front glass for display of electronic device
CN105376930A (zh) * 2015-12-09 2016-03-02 广东欧珀移动通信有限公司 电子产品壳体及其制作方法
CN105491824A (zh) * 2015-12-21 2016-04-13 东莞华清光学科技有限公司 一种电子设备防水防摔壳体及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675467A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508021A (zh) * 2019-03-05 2021-10-15 旭硝子欧洲玻璃公司 用于车辆的模制玻璃装饰元件
CN113508021B (zh) * 2019-03-05 2023-10-31 旭硝子欧洲玻璃公司 用于车辆的模制玻璃装饰元件

Also Published As

Publication number Publication date
KR20200043454A (ko) 2020-04-27
CN109429446B (zh) 2020-12-25
EP3675467A4 (en) 2020-08-05
US20200198195A1 (en) 2020-06-25
JP2020532009A (ja) 2020-11-05
EP3675467A1 (en) 2020-07-01
CN109429446A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2019037670A1 (zh) 3d玻璃金属复合体及其制备方法和电子产品
CN107295760B (zh) 一种具有陶瓷面板的金属壳体及其制备方法和应用
WO2019085866A1 (zh) 外壳及其制备方法和电子产品
TWI692684B (zh) 一種電子裝置的殼體及其製備方法和電子裝置
WO2016101706A1 (zh) 一种金属-树脂复合体及其制备方法和一种电子产品外壳
JP6498771B2 (ja) 通信装置金属ハウジング及びその製造方法
CN103722668A (zh) 一种金属-塑料复合手机外壳及其成形方法
US10745820B2 (en) Method of mirror coating an optical article and article thereby obtained
CN107438340B (zh) 一种外壳、电子设备及外壳的制备方法
WO2017114293A1 (zh) 铝合金壳体及其制备方法
WO2018113505A1 (zh) 外壳及其制备方法和电子产品
CN101370367A (zh) 铝合金便携式电子装置机壳及其制造方法
CN104441406B (zh) 铝制机壳模内注塑成型工艺
CN107445492A (zh) 终端外壳、电子设备及终端外壳加工工艺
CN114871950B (zh) 制备金属基材的方法、金属基材、中框和电子设备
CN214927895U (zh) 一种手机屏幕保护膜
JP5616191B2 (ja) ナノ構造体作製用型体及びその製造方法
CN112004669A (zh) 阳极处理的金属基板的无镍密封
CN114101002A (zh) 一种钛合金胶接前的表面处理方法
CN109252197B (zh) 一种渗碳零件电镀银的方法
CN112746301A (zh) 电子设备的壳体的制作方法、壳体及电子设备
CN111118505A (zh) 金属表面处理方法
CN112074134A (zh) 电子设备金属壳体及其加工工艺
KR102357545B1 (ko) 기재의 표면조도 개선 방법 및 이를 이용하여 표면조도가 개선된 기재
CN207047103U (zh) 一种汽车挡风窗玻璃与一种汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207008546

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018847877

Country of ref document: EP

Effective date: 20200325