WO2019033675A1 - 一种车载空调控制器及控制方法 - Google Patents

一种车载空调控制器及控制方法 Download PDF

Info

Publication number
WO2019033675A1
WO2019033675A1 PCT/CN2017/118472 CN2017118472W WO2019033675A1 WO 2019033675 A1 WO2019033675 A1 WO 2019033675A1 CN 2017118472 W CN2017118472 W CN 2017118472W WO 2019033675 A1 WO2019033675 A1 WO 2019033675A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
air
index
temperature
internal
Prior art date
Application number
PCT/CN2017/118472
Other languages
English (en)
French (fr)
Inventor
王扬
杨邵武
叶雪莹
Original Assignee
惠州市德赛西威汽车电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市德赛西威汽车电子股份有限公司 filed Critical 惠州市德赛西威汽车电子股份有限公司
Publication of WO2019033675A1 publication Critical patent/WO2019033675A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the invention relates to the field of vehicle air conditioner control, in particular to a vehicle air conditioner controller and a control method.
  • the purification system in order to purify the interior environment of the vehicle, the purification system usually only detects the PM2.5 level in the vehicle when removing the PM2.5, and does not combine the air quality outside the vehicle, thereby causing long-time circulation, and the inside of the vehicle. A decrease in the oxygen content of the air occurs.
  • the present invention provides a vehicle air conditioner controller and a control method.
  • a vehicle air conditioner control method includes the following steps:
  • the calculation procedure of PM2.5 calculates the air pollution index positively correlated with PM2.5 according to the PM2.5 level in the vehicle, the PM2.5 level outside the vehicle and the vehicle speed.
  • the air pollution index is positively correlated with the degree of air pollution;
  • an air volume and a negative ion control step controlling an air volume and a negative ion generation amount according to the air pollution index, wherein the air volume and the negative ion generation amount are positively correlated with the air pollution index;
  • step B when multiple parameters are employed, the plurality of parameters have a particular priority order and the issued instructions follow the high priority parameters.
  • the air pollution index includes an off-vehicle PM2.5 index and an in-vehicle PM2.5 index
  • step A includes the following sub-steps:
  • A1. Collect the index of the PM2.5 outside the vehicle, the index of the PM2.5 in the car, and the current speed;
  • step B after the air humidity reaches the humidity threshold, when the outside temperature is less than the first preset temperature, an internal loop rejection command is issued to open the outer loop; when the outside temperature is greater than the second preset temperature , issuing an inner loop permission command; the first preset temperature is less than the second preset temperature.
  • step B when the outside temperature is less than the third preset temperature, an internal loop rejection command is issued to open the outer loop; when the outside temperature is greater than the fourth preset temperature, an inner loop permission command is issued; The third preset temperature is less than the fourth preset temperature.
  • the PM2.5 index in the vehicle is subtracted from the PM2.5 index in the vehicle to obtain a pollution index difference.
  • a pollution index difference is greater than the first threshold, an internal loop rejection command is issued, and the external loop is turned on. Looping; when the pollution index difference is less than the second preset value, an inner loop permission command is issued.
  • the present invention also provides a vehicle air conditioner controller, including:
  • the PM2.5 calculation module is configured to calculate an air pollution index according to the PM2.5 level in the vehicle, the PM2.5 level outside the vehicle, and the vehicle speed;
  • the negative ion control module is configured to generate negative ions according to the air pollution index;
  • a fan control module for adjusting a fan speed according to the air quality
  • the internal and external circulation control module is configured to control the air conditioning circulation mode according to at least one of the air pollution index, the fan air volume, the negative ion state, and the temperature parameter.
  • the temperature parameter includes an interior temperature, an outside temperature, a user set temperature, and a sunlight intensity.
  • the MP2.5 calculation module includes a vehicle speed compensation module and an MP2.5 index acquisition module, and the compensation value output by the vehicle speed compensation module is inversely related to the vehicle speed.
  • the invention newly designed the internal and external circulation control module, realizes the energy-saving purification control purpose of the purification system without changing the existing comfort, and can realize the automatic internal and external circulation switching without manual operation.
  • the energy-saving purification control algorithm of the purification system proposed by the invention not only considers the demand of the current environment for the purification system, but also dynamically adjusts the purification conditions according to the current interior temperature, the solar radiation and the risk of fogging in the vehicle, that is, the guarantee is ensured. Safety also reflects energy saving and purification.
  • Embodiment 1 is a control relationship diagram of a method in Embodiment 1 of the present invention.
  • Embodiment 2 is a flow chart of a method in Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a method in step A in Embodiment 1 of the present invention.
  • Figure 4 is a graph showing the relationship between the vehicle speed and the air pollution index compensation value in the first embodiment of the present invention.
  • Fig. 5 is a graph showing the relationship between the air pollution index and the air volume in the first embodiment of the present invention.
  • Fig. 6 is a graph showing the relationship between the air pollution index and the negative ion control in the first embodiment of the present invention.
  • Fig. 7 is a flow chart showing the control based on anti-fogging internal and external circulation in the second embodiment of the present invention.
  • FIG. 8 is a flowchart of the internal energy control based on improving energy efficiency in Embodiment 2 of the present invention.
  • Fig. 9 is a flow chart showing the control of the internal and external circulation based on the degree of pollution in the second embodiment of the present invention.
  • FIG. 10 is a system architecture diagram of Embodiment 3 of the present invention.
  • the calculation procedure of PM2.5 calculates the air pollution index positively correlated with PM2.5 according to the PM2.5 level in the vehicle, the PM2.5 level outside the vehicle and the vehicle speed.
  • the air pollution index is positively correlated with the air pollution level.
  • the air pollution index only considers the PM2.5 index, and in order to further specific the air pollution index, it includes the PM2.5 index and the PM2.5 index in the vehicle. Specifically, this step is specifically shown in FIG. 3, and includes the following sub-steps:
  • A1 Collect the index of the PM2.5 outside the vehicle at the current moment, the index of the PM2.5 in the car, and the current speed.
  • the PM2.5 index outside the vehicle has a differential pressure air quality sensor for collection. Because the collection environment outside the vehicle is more complicated, the collection accuracy will be reduced due to the change of the vehicle speed, that is, when the vehicle speed is slow, actually due to the relative airflow. The slower, lower differential pressure results in lower measured values, so the dynamic compensation of the vehicle speed needs to be introduced.
  • the collected value of the PM2.5 outside the vehicle and the value of the PM2.5 in the vehicle are filtered.
  • the filtering means may be various, but may be implemented not only by means of a moving average filtering method or the like.
  • the index of the PM2.5 outside the vehicle is positively compensated.
  • the magnitude of the compensation value is negatively correlated with the vehicle speed. That is, when the vehicle speed is larger, the compensation value is smaller, and when the vehicle speed reaches a certain value. The index of PM2.5 outside the vehicle will no longer be compensated.
  • the relationship between vehicle speed and compensation value is shown in Figure 4.
  • An internal and external circulation control step which issues an internal circulation rejection command or an inner circulation permission command to the air conditioning system according to at least one of an air pollution index, an air humidity, an ambient temperature, and an outlet air temperature.
  • the inner loop reject command refers to rejecting all inner loop control commands, so that the car cannot implement the inner loop, and the inner loop allows the command to allow the loop to be switched within the car, but the outer loop mode can be switched when the user desires.
  • step B when multiple parameters are employed, the plurality of parameters have a particular priority order and the issued instructions follow the high priority parameters.
  • Air output and negative ion control steps as shown in Fig. 5 and Fig. 6, the air volume and the negative ion generation amount are controlled according to the air pollution index, and the air volume and the negative ion production amount are positively correlated with the air pollution index.
  • the amount of air output is logarithmically related to the air pollution index.
  • the negative ion generator starts to work when the air pollution index reaches a certain value, and there is a certain hysteresis in its working and stopping time.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the present embodiment specifically provides a plurality of internal and external loop control schemes.
  • step B after the air humidity reaches the humidity threshold, when the outside temperature is less than the first preset temperature, an inner loop rejection command is issued to open the outer loop; when the outside temperature is greater than the second preset temperature, the inner loop is allowed to be allowed.
  • An instruction the first preset temperature is less than the second preset temperature.
  • step B when the outside temperature is less than the third preset temperature, an inner loop rejection command is issued to open the outer loop; when the outside temperature is greater than the fourth preset temperature, an inner loop permission command is issued; the third preset temperature is less than The fourth preset temperature.
  • step B the PM2.5 index in the vehicle is subtracted from the PM2.5 index in the vehicle to obtain a pollution index difference.
  • an internal loop rejection command is issued to open the outer loop; when the pollution index difference is smaller than
  • an inner loop permission command is issued.
  • one or more of the above three schemes may be selected according to requirements, and the limitation of the inner and outer loop instructions is implemented according to the priority order.
  • the inner loop can only be switched when the selected scheme issues an inner loop allow command, otherwise the inner loop cannot be switched.
  • the priority order of the first plan is adjusted to the highest to prevent fogging in the car; if it is necessary to ensure the optimal air quality, the third option can be The priority order is adjusted to the highest to ensure the air quality inside the car; if it is necessary to ensure the energy saving situation, the priority order of the second plan can be adjusted to the highest to ensure high energy saving performance.
  • This embodiment provides a vehicle air conditioner controller based on Embodiment 1, as shown in FIG. Including: PM2.5 calculation module, negative ion control module, fan control module and internal and external circulation control module.
  • the PM2.5 calculation module is connected with the negative ion control module, the fan control module and the internal and external circulation control modules, and is used for calculating the air pollution index according to the PM2.5 level in the vehicle, the PM2.5 level outside the vehicle, and the vehicle speed.
  • the negative ion control module is used to generate negative ions based on the air pollution index.
  • the fan control module is used to adjust the fan speed according to the air quality, usually when the air pollution index is larger.
  • the internal and external circulation control module is configured to control the air conditioning circulation mode according to at least one of an air pollution index, a fan air volume, a negative ion state, and a temperature parameter.
  • the temperature parameters include the interior temperature, the outside temperature, the user set temperature, and the sunlight intensity.
  • the MP2.5 calculation module includes a vehicle speed compensation module and an MP2.5 index acquisition module, and the compensation value output by the vehicle speed compensation module is inversely related to the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种车载空调控制方法,包括如下步骤:A、PM2.5计算步骤,B、内外循环控制步骤,根据空气污染指数、空气湿度、环境温度以及出风温度中的至少一个参数向空调系统发出内循环拒绝指令或者内循环允许指令;C、出风量以及负离子控制步骤。在步骤B中,当多个参数被采用时,多个参数具有特定的优先级次序,所发出指令遵循高优先级参数。同时还提供一种车载空调控制系统,包括:PM2.5计算模块、负离子控制模块、风机控制模块以及内外循环控制模块。本系统全新设计了内外循环控制模块,在不改变现有舒适性的前提下,实现了净化系统的节能净化控制目的,同时无需人工操作即可以很好地实现自动内外循环切换。

Description

一种车载空调控制器及控制方法 技术领域
本发明涉及车载空调控制领域,特别涉及一种车载空调控制器及控制方法。
背景技术
随着汽车电子技术的加快发展,对汽车舒适性、安全性、环保性等方面都提出了更好的要求。对于传统汽车空调系统来说,一方面,车内乘客抽烟或车外灰尘进入车厢后,会危害人体健康;一方面,即使人体感知到空气污染严重,也无法有效的净化空气,从而无法减少对人体健康的危害。
现有技术中,为了使车内环境净化,净化系统在清除PM2.5时通常只检测车内PM2.5水平,并不结合车外空气质量情况,因此会导致长时间循环,是的车内空气含氧量下降的情况出现。
另外,净化系统是否能起到有效长久的净化效果以及车内乘客的舒适性,很大程度上取决于控制它的汽车空调控制器。而传统的汽车空调控制器在设计净化系统里往往只考虑了负离子的控制,而没有关联内外循环风门以及舒适性。
发明内容
本发明为了解决上述技术问题,提供一种车载空调控制器及控制方法。
一种车载空调控制方法,包括如下步骤:
A、PM2.5计算步骤,根据车内PM2.5水平、车外PM2.5水平以及车速计算出与PM2.5正相关空气污染指数,所述空气污染指数与空气污染程度正相关;
B、内外循环控制步骤,根据所述空气污染指数、空气湿度、环境温度以及出风温度中的至少一个参数向空调系统发出内循环拒绝指令或者内循环允许指令;
C、出风量以及负离子控制步骤,根据所述空气污染指数控制出风量与负离子产生量,所述出风量与所述负离子产生量与所述空气污染指数呈正相关;
在步骤B中,当多个参数被采用时,多个参数具有特定的优先级次序,所发出指令遵循高优先级参数。
进一步的,所述空气污染指数包括车外PM2.5指数以及车内PM2.5指数,所述步骤A包括如下子步骤:
A1、采集当前时刻车外PM2.5的指数、车内PM2.5的指数以及当前车速;
A2、对所采集到的车外PM2.5的数值与车内PM2.5的数值进行滤波处理;
A3、根据当前车数对车外PM2.5的指数进行正补偿,所述车速的补偿值与车速负相关;
A4、输出空气污染指数。
优选的,所述步骤B中,在空气湿度达到湿度阈值之后,当车外温度小于第一预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第二预设温度时,发出内循环允许指令;所述第一预设温度小于第二预设温度。
优选的,所述步骤B中,当车外温度小于第三预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第四预设温度时,发出内循环允许指令;所述第三预设温度小于第四预设温度。
优选的,所述步骤B中,将车内PM2.5指数与车外PM2.5指数相减获得污染指数差,当所述污染指数差大于第一阈值时,发出内循环拒绝指令,开启外循环;当所述污染指数差小于第二预设值时,发出内循环允许指令。
另外,本发明还提供一种车载空调控制器,包括:
PM2.5计算模块,用于根据车内PM2.5水平、车外PM2.5水平以及车速计算空气污染指数;负离子控制模块,用于根据所述空气污染指数发生负离子;
风机控制模块,用于根据所述空气质量调整风机风速;以及
内外循环控制模块,用于根据所述空气污染指数、风机风量、负离子状态以及温度参数中的至少一种参数控制空调循环模式。
进一步的,所述温度参数包括车内温度、车外温度、用户设定温度以及阳光强度。
进一步的,所述MP2.5计算模块包括车速补偿模块以及MP2.5指数采集模块,所述车速补偿模块输出的补偿数值与车速反相关。
本发明所起到的有益效果包括:
1)本发明全新设计了内外循环控制模块,在不改变现有舒适性的前提下,实现了净化系统的节能净化控制目的,同时无需人工操作即可以很好地实现自动内外循环切换。
2)本发明提出的净化系统节能净化控制算法不仅考虑了当前环境对净化系统的需求,还根据当前车内温度、阳光辐射以及车内结雾风险等级进行净化工况的动态调整,即保证了安全性,又体现了节能净化性。
附图说明
图1为本发明实施例1中的方法控制关系图。
图2为本发明实施例1中的方法流程图。
图3为本发明实施例1中步骤A的方法流程图。
图4为本发明实施例1中车速与空气污染指数补偿值的关系图。
图5为本发明实施例1中的空气污染指数与出风量关系图。
图6为本发明实施例1中的空气污染指数与负离子控制关系图。
图7为本发明实施例2中的基于防起雾内外循环控制流程图。
图8为本发明实施例2中的基于提高能效内外循环控制流程图。
图9为本发明实施例2中的基于污染程度内外循环控制流程图。
图10为本发明实施例3中的系统架构图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征更易被本领域技术人员理解,从而对本发明的保护范围作出更为清楚的界定。
实施例1:
一种车载空调控制方法,用于从能耗、安全性以及舒适性方面对车载空调内的空气质量进行控制,如图1和图2所示,包括如下步骤:
A、PM2.5计算步骤,根据车内PM2.5水平、车外PM2.5水平以及车速计算出与PM2.5正相关空气污染指数,空气污染指数与空气污染程度正相关。其中,在本发明中,空气污染指数只考虑PM2.5指数,为了进一步具体空气污染指数,其包括车外PM2.5指数以及车内PM2.5指数。具体的,本步骤具体如图3所示,包括如下子步骤:
A1、采集当前时刻车外PM2.5的指数、车内PM2.5的指数以及当前车速。其中,车外PM2.5指数有差压式的空气质量传感器进行采集,由于车外的采集环境较为复杂,其采集精度会因为车速的变化而降低,即车速慢的时,实际上由于相对气流较慢,压差低,导致测量值偏低,因此需要引入车速这一动态补偿量。
A2、对所采集到的车外PM2.5的数值与车内PM2.5的数值进行滤波处理,滤波的手段可以是多样的,可以但不仅限于通过滑动平均滤波法等手段实现。
A3、根据当前车数对车外PM2.5的指数进行正补偿,在进行补偿时补偿值的大小与车速呈负相关,即当车速越大,补偿值越小,并且当车速达到一定值时,将不再对车外PM2.5的指数进行补偿,车速与补偿值的关系图如图4所示。
A4、向空调控制器输出车内PM2.5指数以及补偿后的车外PM2.5指数。
B、内外循环控制步骤,根据空气污染指数、空气湿度、环境温度以及出风温度中的至少一个参数的向空调系统发出内循环拒绝指令或者内循环允许指令。其中内循环拒绝指令指的是拒绝一切内循环控制指令,使汽车无法实现内循环,而内循环允许指令在可以允许汽 车切换内循环,但是当用户需要时仍可以切换外循环模式。
在步骤B中,当多个参数被采用时,多个参数具有特定的优先级次序,所发出指令遵循高优先级参数。
C、出风量以及负离子控制步骤,如图5和图6所示,根据空气污染指数控制出风量与负离子产生量,出风量与负离子产生量与空气污染指数呈正相关。其中出风量与空气污染指数呈类对数关系。而负离子发生器在空气污染指数达到一定值时开始工作,其工作和停止时间存在一定的滞后性。
实施例2:
本实施例与实施例1的区别在于:本实施例具体提供了多种内外循环控制方案。
方案一:
如图7所示。步骤B中,在空气湿度达到湿度阈值之后,当车外温度小于第一预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第二预设温度时,发出内循环允许指令;第一预设温度小于第二预设温度。
方案二:
如图8所示。步骤B中,当车外温度小于第三预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第四预设温度时,发出内循环允许指令;第三预设温度小于第四预设温度。
方案三:
如图9所示。步骤B中,将车内PM2.5指数与车外PM2.5指数相减获得污染指数差,当污染指数差大于第一阈值时,发出内循环拒绝指令,开启外循环;当污染指数差小于第二预设值时,发出内循环允许指令。
再实际操作过程中,可以根据需要选取上述三个方案中的一个或者多个,同时根据优先级次序实现内外循环指令的限制。只有当所选取的方案均发出内循环允许指令时,方可切换内循环,否则不能切换内循环。
通常当需要考虑安全性时,为了起到防起雾的效果,会将方案一的优先级次序调至最高,以防止车内起雾;如果需要保证最优的空气质量,可以将方案三的优先级次序调至最高,以保证车内空气质量;如果需要保证节能情况,可以将方案二的优先级次序调至最高,以保证较高的节能性能。
同时,为了保证系统的稳定,在发送内循环允许指令和内循环拒绝指令时均存在一定幅度的滞后。
实施例3:
本实施例在实施例1的基础上提供一种车载空调控制器,如图10所示。包括:PM2.5计算模块、负离子控制模块、风机控制模块以及内外循环控制模块。
其中,PM2.5计算模块与负离子控制模块、风机控制模块以及内外循环控制模块连接,用于根据车内PM2.5水平、车外PM2.5水平以及车速计算空气污染指数。负离子控制模块用于根据空气污染指数发生负离子。风机控制模块用于根据空气质量调整风机风速,通常去情况下,当空气污染指数越大。内外循环控制模块用于根据空气污染指数、风机风量、负离子状态以及温度参数中的至少一种参数控制空调循环模式。
本实施例中,温度参数包括车内温度、车外温度、用户设定温度以及阳光强度。
本实施例中,MP2.5计算模块包括车速补偿模块以及MP2.5指数采集模块,车速补偿模块输出的补偿数值与车速反相关。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (8)

  1. 一种车载空调控制方法,其特征在于,包括如下步骤:
    A、PM2.5计算步骤,根据车内PM2.5水平、车外PM2.5水平以及车速计算出与PM2.5正相关空气污染指数,所述空气污染指数与空气污染程度正相关;
    B、内外循环控制步骤,根据所述空气污染指数、空气湿度、环境温度以及出风温度中的至少一个参数向空调系统发出内循环拒绝指令或者内循环允许指令;
    C、出风量以及负离子控制步骤,根据所述空气污染指数控制出风量与负离子产生量,所述出风量与所述负离子产生量与所述空气污染指数呈正相关;
    在步骤B中,当多个参数被采用时,多个参数具有特定的优先级次序,所发出指令遵循高优先级参数。
  2. 根据权利要求1所述的车载空调控制方法,其特征在于,所述空气污染指数包括车外PM2.5指数以及车内PM2.5指数,所述步骤A包括如下子步骤:
    A1、采集当前时刻车外PM2.5的指数、车内PM2.5的指数以及当前车速;
    A2、对所采集到的车外PM2.5的数值与车内PM2.5的数值进行滤波处理;
    A3、根据当前车数对车外PM2.5的指数进行正补偿,所述车速的补偿值与车速负相关;
    A4、输出空气污染指数。
  3. 根据权利要求1所述的车载空调控制方法,其特征在于,所述步骤B中,在空气湿度达到湿度阈值之后,当车外温度小于第一预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第二预设温度时,发出内循环允许指令;所述第一预设温度小于第二预设温度。
  4. 4根据权利要求1所述的车载空调控制方法,其特征在于,所述步骤B中,当车外温度小于第三预设温度时,发出内循环拒绝指令,开启外循环;当车外温度大于第四预设温度时,发出内循环允许指令;所述第三预设温度小于第四预设温度。
  5. 根据权利要求1所述的车载空调控制方法,其特征在于,所述步骤B中,将车内PM2.5指数与车外PM2.5指数相减获得污染指数差,当所述污染指数差大于第一阈值时,发出内循环拒绝指令,开启外循环;当所述污染指数差小于第二预设值时,发出内循环允许指令。
  6. 一种车载空调控制器,其特征在于,包括:
    PM2.5计算模块,用于根据车内PM2.5水平、车外PM2.5水平以及车速计算空气污染指数;负离子控制模块,用于根据所述空气污染指数发生负离子;
    风机控制模块,用于根据所述空气质量调整风机风速;以及
    内外循环控制模块,用于根据所述空气污染指数、风机风量、负离子状态以及温度参数中的至少一种参数控制空调循环模式。
  7. 根据权利要求6所述的车载空调控制器,其特征在于,所述温度参数包括车内温度、车外温度、用户设定温度以及阳光强度。
  8. 根据权利要求6所述的车载空调控制器,其特征在于,所述MP2.5计算模块包括车速补偿模块以及MP2.5指数采集模块,所述车速补偿模块输出的补偿数值与车速反相关。
PCT/CN2017/118472 2017-08-14 2017-12-26 一种车载空调控制器及控制方法 WO2019033675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710693825.XA CN107584988A (zh) 2017-08-14 2017-08-14 一种车载空调控制器及控制方法
CN201710693825.X 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019033675A1 true WO2019033675A1 (zh) 2019-02-21

Family

ID=61043116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118472 WO2019033675A1 (zh) 2017-08-14 2017-12-26 一种车载空调控制器及控制方法

Country Status (2)

Country Link
CN (1) CN107584988A (zh)
WO (1) WO2019033675A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046256A (zh) * 2021-03-08 2022-09-13 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333087A (zh) * 2018-02-27 2018-07-27 法雷奥汽车空调湖北有限公司 车用pm2.5传感器精度调整装置及控制逻辑
CN111824166A (zh) * 2019-03-29 2020-10-27 长城汽车股份有限公司 疲劳提醒方法及装置
CN111845243A (zh) * 2019-04-25 2020-10-30 上汽通用汽车有限公司 车内空气质量监控系统和方法以及包括该系统的车辆
CN111731070B (zh) * 2020-08-01 2020-11-20 深圳小木科技有限公司 一种车载空调和车厢空气调节方法
CN111976428A (zh) * 2020-08-31 2020-11-24 廖子轩 一种空气质量调节系统及方法
CN112406482A (zh) * 2020-11-25 2021-02-26 沈阳建筑大学 一种自动提示滤网更换周期的节能型负离子车载净化器
CN112895838A (zh) * 2021-03-10 2021-06-04 恒大新能源汽车投资控股集团有限公司 车辆通风换气控制方法、存储介质和系统
CN112937246B (zh) * 2021-03-11 2022-03-25 东风汽车集团股份有限公司 一种车内空气质量的控制方法及系统
CN113787878B (zh) * 2021-08-23 2024-01-05 武汉格罗夫氢能汽车有限公司 基于气象数据演算整车热负荷的氢能汽车空调控制方法
CN113829839A (zh) * 2021-10-27 2021-12-24 奇瑞商用车(安徽)有限公司 一种汽车pm2.5空气净化控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203957780U (zh) * 2014-05-23 2014-11-26 上海通用汽车有限公司 一种车辆空调控制系统
CN204506791U (zh) * 2015-04-13 2015-07-29 浙江海洋学院 一种车内环境调节装置
CN105966195A (zh) * 2016-05-31 2016-09-28 中国汽车技术研究中心 一种车内空气品质智能管理系统及其使用方法
CN106004347A (zh) * 2016-05-31 2016-10-12 重庆长安汽车股份有限公司 车内空气质量控制系统及方法
EP3081414A2 (de) * 2015-04-16 2016-10-19 Volkswagen Aktiengesellschaft Vorrichtung und verfahren zur erhaltung und verbesserung der luftqualität in einem innenraum
CN206124669U (zh) * 2016-09-14 2017-04-26 北京汽车股份有限公司 汽车及其空调控制系统
CN106915217A (zh) * 2017-03-22 2017-07-04 彭治魁 一种车辆空调系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104589951B (zh) * 2013-10-31 2017-03-15 杭州三花研究院有限公司 汽车空调循环风门的控制方法及其控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203957780U (zh) * 2014-05-23 2014-11-26 上海通用汽车有限公司 一种车辆空调控制系统
CN204506791U (zh) * 2015-04-13 2015-07-29 浙江海洋学院 一种车内环境调节装置
EP3081414A2 (de) * 2015-04-16 2016-10-19 Volkswagen Aktiengesellschaft Vorrichtung und verfahren zur erhaltung und verbesserung der luftqualität in einem innenraum
CN105966195A (zh) * 2016-05-31 2016-09-28 中国汽车技术研究中心 一种车内空气品质智能管理系统及其使用方法
CN106004347A (zh) * 2016-05-31 2016-10-12 重庆长安汽车股份有限公司 车内空气质量控制系统及方法
CN206124669U (zh) * 2016-09-14 2017-04-26 北京汽车股份有限公司 汽车及其空调控制系统
CN106915217A (zh) * 2017-03-22 2017-07-04 彭治魁 一种车辆空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046256A (zh) * 2021-03-08 2022-09-13 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质
CN115046256B (zh) * 2021-03-08 2024-05-28 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质

Also Published As

Publication number Publication date
CN107584988A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2019033675A1 (zh) 一种车载空调控制器及控制方法
CN204506791U (zh) 一种车内环境调节装置
CN110293819A (zh) 车用智能空调的控制方法、装置、系统及车辆
WO2017005084A1 (zh) 一种汽车车内空气质量监测及净化调节系统
CN103253214B (zh) 一种汽车天窗智能调节系统及方法
US5934987A (en) Device and method for controlling air conduction elements of a vehicle
CN106314078A (zh) 一种车载空气净化系统的控制方法、装置及汽车
CN105667250A (zh) 一种电动汽车用自动空调控制系统
CN110395087B (zh) 一种基于模糊pid控制的车载智能空调控制方法及系统
CN109501555B (zh) 一种基于双通道pm2.5传感器提升车内空气净化效率的方法
CN203810650U (zh) 一种汽车自动除雾系统
CN101858635A (zh) 空调机的控制方法
CN108790748A (zh) 车用天窗系统、具有其的车辆及车辆控制方法
CN106627054A (zh) 一种车载太阳能充电车窗及其车窗空调系统
CN104827849A (zh) 一种ahc高度控制系统以及车辆
CN111959228A (zh) 一种车内空气净化与湿度调节系统
CN112124249A (zh) 一种自动除雾控制方法
CN104251547B (zh) 用于飞机空调系统的除水装置
CN113771582A (zh) 一种车内舒适性自调整空调系统的工作方法
WO2024082610A1 (zh) 基于空调器的净化控制方法、装置及空调器
CN113370746A (zh) 一种纯电动汽车热泵系统除雾闭环控制系统及其控制方法
CN202303770U (zh) 一种自动控制鼓风机风速的汽车空调控制系统
CN107487148A (zh) 一种车辆及其车载空调出风量控制方法和系统
CN109305014B (zh) 车辆、车用换气装置及其换气控制方法
CN104163086B (zh) 新能源客车空调控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921914

Country of ref document: EP

Kind code of ref document: A1