WO2019022045A1 - 造膜溶液とそれを使用した分離膜の製造方法 - Google Patents

造膜溶液とそれを使用した分離膜の製造方法 Download PDF

Info

Publication number
WO2019022045A1
WO2019022045A1 PCT/JP2018/027614 JP2018027614W WO2019022045A1 WO 2019022045 A1 WO2019022045 A1 WO 2019022045A1 JP 2018027614 W JP2018027614 W JP 2018027614W WO 2019022045 A1 WO2019022045 A1 WO 2019022045A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
good solvent
separation membrane
cellulose triacetate
solvent
Prior art date
Application number
PCT/JP2018/027614
Other languages
English (en)
French (fr)
Inventor
松山秀人
ジョンソンイル
高尾翔太
浜田豊三
Original Assignee
株式会社ダイセル
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人神戸大学 filed Critical 株式会社ダイセル
Priority to US16/633,903 priority Critical patent/US20210086140A1/en
Priority to CN201880045209.6A priority patent/CN110831690B/zh
Publication of WO2019022045A1 publication Critical patent/WO2019022045A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • B01D2325/0212Symmetric or isoporous membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the present invention relates to a membrane-forming solution for producing hollow fiber membranes and flat membranes, and a method for producing a separation membrane using the same.
  • Separation membranes using hollow fiber membranes and flat membranes are widely used in various technical fields, and many hydrophilic membrane materials and hydrophobic membrane materials are known as membrane materials.
  • those using cellulose acetate as a membrane material are excellent in hydrophilicity and chlorine resistance, and are biodegradable, so they are very excellent as separation membranes.
  • Chinese Patent No. 102824559 (CN 102824859 B)
  • cellulose acetate is contained as one of membrane materials.
  • Chinese Patent No. 103831023 (CN 103831023 B) describes the invention of a process for the preparation of cellulose acetate hollow fiber nanofiltration membranes.
  • These high temperature solvents can not be used as a solvent for thermally induced phase separation (TIPS method) of cellulose triacetate having a degree of acetyl substitution of 2.7 or more.
  • a hollow fiber membrane is produced by a thermally induced phase separation method (TIPS method) using cellulose acetate butyrate partially modified with butyryl group as a membrane material.
  • TIPS method thermally induced phase separation method
  • An object of the present invention is to provide a film-forming solution capable of forming a film by a thermally induced phase separation method, and a method for producing a separation membrane using the same.
  • the present invention is a film-forming solution containing cellulose triacetate having a degree of acetyl substitution of 2.7 or more and a good solvent for thermally induced phase separation,
  • a membrane-forming solution which is capable of heating and dissolving the cellulose triacetate (solid content concentration 25 mass%) and capable of phase separation while cooling to room temperature (20 to 30 ° C.);
  • Provided is a method of producing a separation membrane using the same.
  • the present invention is also a film-forming solution comprising cellulose triacetate having a degree of acetyl substitution of 2.7 or more, a good solvent for thermally induced phase separation, and a poor solvent for thermally induced phase separation,
  • the good solvent can heat and dissolve the cellulose triacetate (solid content 25% by mass)
  • the poor solvent can not dissolve the cellulose triacetate (solid content 25% by mass) at 160 ° C.
  • a film-forming solution comprising 5 to 40% by mass of the good solvent and 60 to 95% by mass of the poor solvent in the total amount of the good solvent and the poor solvent, and a separation membrane using the same Provide a manufacturing method.
  • a cellulose triacetate having a degree of acetyl substitution of 2.7 or more which is excellent in high strength, high permeability, high blocking performance, and fouling resistance by the thermally induced phase separation method using the film-forming solution of the present invention. It is possible to obtain a liquid separation membrane, a gas separation membrane, and a support membrane or separation functional membrane constituting them.
  • (A) is a scanning electron microscope (SEM) photograph (60 ⁇ ) of the radial direction cross section of the hollow fiber membrane obtained in Comparative Example 1
  • (b) is an enlarged SEM photograph (50,000 ⁇ of the outer surface side of (a))
  • (c) are enlarged SEM photographs (50,000 ⁇ ) of the inner surface side of (a).
  • the first film-forming solution of the present invention is a film-forming solution containing cellulose triacetate having a degree of acetyl substitution of 2.7 or more and a good solvent for thermally induced phase separation, and does not contain a poor solvent.
  • the good solvent can heat and dissolve the cellulose triacetate (the solid content concentration when the good solvent and the cellulose triacetate are mixed) and while cooling to room temperature (20 to 30 ° C.) Can be separated into
  • the good solvent is selected from 1,3-butanediol, 1,4-butanediol, 1,2-butanediol, 2,3-butanediol, and 2,2-dimethyl-1,3-propanediol One or more are preferable.
  • the heating and melting temperature is different depending on the type of the good solvent, and the heating and melting temperature is preferably in the range of 150 to 220.degree.
  • the heating and melting temperature is preferably in the range of 150 to 220.degree.
  • heating to at least 170 ° C. (170-220 ° C.) is preferable.
  • the second film-forming solution of the present invention is a film-forming solution containing cellulose triacetate having a degree of acetyl substitution of 2.7 or more, a good solvent for thermally induced phase separation, and a poor solvent for thermally induced phase separation. is there.
  • the good solvent can heat and dissolve the cellulose triacetate (a solid content concentration when the good solvent and the cellulose triacetate are mixed).
  • the poor solvent can not dissolve the above-mentioned cellulose triacetate (solid content concentration of 25% by mass when the above-mentioned poor solvent and the above-mentioned cellulose triacetate are mixed) at 160 ° C. or lower.
  • the good solvent and the poor solvent can be phase-separated while the heated and dissolved cellulose triacetate solution is cooled to room temperature (20 to 30 ° C.) It is a thing.
  • the good solvent is one or more selected from sulfolane, dimethylsulfoxide (DMSO), tetramethylurea, tetrahydrofurfuryl alcohol, N-ethyltoluenesulfonamide, triethyl phosphate, trimethyl phosphate, and dimethyl succinate Can be mentioned.
  • the poor solvent examples include 1,3-butanediol, 1,4-butanediol, 1,2-butanediol, 2,3-butanediol, 2,2-dimethyl-1,3-propanediol, 1,5 -Pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, triethylene glycol, 2,5-dimethyl-2,5-hexanediol, dipropylene glycol, diethyl maleate, tetraethylene glycol , 2-Methyl-2,4-pentanediol, propylene glycol diacetate, glycerol triacetate (triacetin), dipropylene glycol methyl ether, diethylene glycol monobutyl ether, 1,4-butanediol diacetate, 2-ethyl-1,3- Hexanediol, 1,3-butylene glycol
  • the good solvent and the poor solvent can be heated and dissolved in a range of 150 to 220 ° C., and the cellulose triacetate (solid content concentration 25% by mass when the good solvent, the commodity solvent and the cellulose triacetate are mixed) is 150 to 220 ° C.
  • the combined cellulose triacetate solutions are combined in consideration of phase separation while cooling to room temperature (20-30.degree. C.).
  • 1,3-butanediol or 2,2-dimethyl-1,3-propanediol which can be used as a good solvent in the first film-forming solution can be used as a poor solvent.
  • 1,3-butanediol is used as a poor solvent, cellulose triacetate is combined with a good solvent (eg, sulfolane) which can be dissolved by heating at a temperature lower than 190 ° C., preferably 180 ° C. or lower.
  • cellulose triacetate is combined with a good solvent (eg, sulfolane) which can be dissolved by heating at a temperature lower than 170 ° C., preferably 160 ° C. or lower .
  • a good solvent eg, sulfolane
  • the mixing ratio in the total amount of the good solvent and the poor solvent is preferably 5 to 40% by mass, 60 to 95% by mass of the good solvent, 10 to 30% by mass of the good solvent, and the poor
  • the solvent is more preferably 70 to 90% by mass, the good solvent 15 to 25% by mass, and the poor solvent 75 to 85% by mass.
  • the method for producing a separation membrane of the present invention is a production method for obtaining a separation membrane by a thermally induced phase separation method using the above-mentioned first membrane-forming solution.
  • cellulose triacetate and the above-mentioned good solvent are mixed and dissolved by heating to obtain a first film-forming solution.
  • the heating and melting temperature is a temperature at which the cellulose triacetate (solid content concentration when the above-mentioned good solvent and the above-mentioned cellulose triacetate are mixed are 25% by mass) can be heated and dissolved in a good solvent to be used. .
  • phase separation is performed to form a separation membrane.
  • the separation membrane is a hollow fiber membrane
  • the method described in the examples can be applied, the internal coagulation liquid (core liquid) can use a poor solvent, and the external coagulation liquid can use a poor solvent or water. be able to.
  • the separation membrane is a flat membrane
  • a method of discharging a first membrane-forming solution in the form of a flat membrane toward the liquid from above the liquid surface of the coagulation liquid (poor solvent or water) and cooling may be applied. it can.
  • the separation membrane is washed to remove the good solvent to obtain a target separation membrane.
  • the separation membrane obtained by the method for producing the first separation membrane does not contain a macrovoid structure, and has a uniform sponge structure with an average pore diameter of 0.01 ⁇ m to 1 ⁇ m.
  • the macrovoid structure refers to a structure having pores with a pore diameter of 20 ⁇ m or more in the separation membrane.
  • the method for producing a separation membrane of the present invention is a production method for obtaining a separation membrane by a thermally induced phase separation method using the above-mentioned second membrane-forming solution.
  • cellulose triacetate, the good solvent and the poor solvent are mixed and dissolved by heating to obtain a second film-forming solution.
  • the heating and melting temperature is a temperature at which cellulose triacetate (25 mass% of solid content when the good solvent, the product solvent and the cellulose triacetate are mixed) can be heated and dissolved while mixing the good solvent and the poor solvent to be used. And a range of 150 to 220 ° C. is preferable.
  • phase separation is performed to form a separation membrane.
  • the second step can be carried out in the same manner as the second step of the first separation membrane production method.
  • the separation membrane is washed to remove the good solvent and the poor solvent to obtain a target separation membrane.
  • the separation membrane obtained by the method for producing a second separation membrane does not contain a macrovoid structure and has a uniform sponge structure with an average pore diameter of 0.01 to 1 ⁇ m.
  • the pure water permeation rate of the hollow fiber membrane is 10 to 3000 L / (M 2 ⁇ h ⁇ 0.1 MPa) is preferable, and when it is a hollow fiber membrane or hollow fiber support membrane for gas separation, the pure water permeation rate is 0 to 10 L / (m 2 ⁇ h ⁇ 0.1 MPa) Is preferred.
  • the tensile strength of these hollow fiber membranes is preferably 4 to 14 MPa.
  • One end of the hollow fiber membrane is sealed, and the external surface area of the hollow fiber membrane excluding the sealing portion is determined.
  • Test example 2 (measurement method of "tensile strength” and judgment method of chlorine resistance) The measurement was carried out at a tensile speed of 20 mm / min using a small table-top test machine (EZ-Test manufactured by Shimadzu Corporation), sandwiching the hollow fiber membranes in a wet state one by one so that the distance between chucks was 5 cm. Based on the value of the "tensile strength" of the hollow fiber membrane which was not immersed in 500 ppm sodium hypochlorite aqueous solution, the time when the value falls below 90% of a standard value was calculated. The “tensile strength” of each measurement time was plotted, and a calibration curve was prepared to determine the time when the temperature was below 90% of the reference value. “Tensile strength” was taken as the average value of eight except for the highest value and the lowest value of "tensile strength” measured ten in the same sample.
  • Example 1 20% by mass of cellulose triacetate (TAC) (degree of acetyl substitution 2.87) manufactured by Daicel Corporation, 16% by mass of sulfolane (good solvent), 64% by mass of 1,3-butanediol (poor solvent) The solution was heated and dissolved at 180 ° C. and used for the film forming solution of the present invention.
  • TAC cellulose triacetate
  • a hollow fiber membrane was manufactured by a thermally induced phase separation method using the above-mentioned membrane forming solution and the hollow fiber membrane manufacturing apparatus shown in FIG.
  • the film forming solution maintained at the discharge temperature (170 ° C.) shown in Table 1 in the dope tank 3 having a volume of about 500 ml is discharged from the double pipe nozzle 6 using the metering pump 4 of the apparatus shown in FIG.
  • the core liquid (1,3-butanediol) was discharged from the liquid line 5. Thereafter, the solution was introduced into a coagulating tank 7 containing 1,3-butanediol at 20 ° C. and cooled, and then the solvent was removed by a washing tank 10 containing water to obtain a hollow fiber membrane.
  • the obtained hollow fiber membrane had an outer diameter of 1.0 mm and an inner diameter of 0.66 mm.
  • FIG. 2 (a) to 2 (c) show photographs of a scanning electron microscope (SEM) (Nippon Electron Ltd.) of the cross section of the hollow fiber membrane of Example 1.
  • SEM scanning electron microscope
  • the pure water transmission rate of the hollow fiber membrane of Example 1 was 952 L / (m 2 ⁇ h ⁇ 0.1 MPa), the tensile strength was 5.3 MPa, and the chlorine resistance was 160 hours.
  • Examples 2 to 5 Using the membrane-forming solution obtained by heating and dissolving the components shown in Table 1 at a temperature shown in Table 1, the hollow fiber membranes of Examples 2 to 5 were prepared in the same manner as in Example 1 under the spinning conditions described in Table 1. Manufactured. The pure water permeation amount, tensile strength and average pore diameter of each hollow fiber membrane are shown in Table 2.
  • the obtained hollow fiber membrane was stored in a wet state without drying the water, and the pure water permeation amount, the tensile strength and the chlorine resistance were measured.
  • the pure water transmission rate of Comparative Example 1 was 580 L / (m 2 ⁇ h ⁇ 0.1 MPa), the tensile strength was 3.8 MPa, and the chlorine resistance was 120 hours.
  • the SEM photograph of the hollow fiber membrane cross section of the comparative example 1 was shown in FIG.
  • the cross-sectional structure of the hollow fiber membrane of the example does not include the macrovoid structure and has a uniform sponge structure in the range of 0.01 to 0.4 ⁇ m in average pore diameter
  • the difference from the cross-sectional structure of the hollow fiber membrane of Comparative Example 1 was obvious. From these results, when the separation membrane is produced by the thermally induced phase separation method using the membrane formation solution of the present invention, selection of good solvent, selection of good solvent and poor solvent, heating and melting temperature, and discharge temperature are adjusted. Thus, it was confirmed that a liquid separation membrane or a gas separation membrane of cellulose triacetate having an acetyl group substitution degree of 2.7 or more could be obtained.
  • the separation membrane obtained from the membrane formation solution of the present invention is a liquid separation membrane, a gas separation membrane, and a support membrane constituting them in various fields such as water purification facilities, sewage treatment facilities, gas separation facilities and the like. And can be used as separation function membranes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

中空糸膜、平膜などの分離膜の製造用として適した造膜溶液の提供。アセチル基置換度が2.7以上である三酢酸セルロース、熱誘起相分離用の良溶剤、および熱誘起相分離用の貧溶剤を含む造膜溶液であって、前記良溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を加熱溶解させることができるものであり、前記貧溶剤が、前記三酢酸セルロースを前記良溶剤の加熱溶解温度までは溶解させることができないものであり、前記良溶剤と前記貧溶剤の両方を含むことで、加熱溶解させた三酢酸セルロース溶液を室温(20~30℃)まで冷却する間に相分離させることができるものであり、前記良溶剤と前記貧溶剤の合計量中の混合割合が、前記良溶剤が5~40質量%、前記貧溶剤が60~95質量%である、造膜溶液。

Description

造膜溶液とそれを使用した分離膜の製造方法
 本発明は、中空糸膜や平膜の製造用である造膜溶液と、それを使用した分離膜の製造方法に関する。
背景技術
 中空糸膜や平膜などを使用した分離膜が各種技術分野において汎用されており、膜素材としても親水性のもの、疎水性のものなどが数多く知られている。中でも酢酸セルロースを膜素材とするものは、親水性や耐塩素性が優れ、生分解性であることから、分離膜として非常に優れているものである。
 中国特許第102824859号明細書(CN 102824859 B)には中空繊維ナノ濾過膜の製造方法の発明が記載されており、膜素材の一つとして酢酸セルロースが含まれている。中国特許第103831023号明細書(CN 103831023 B)には、酢酸セルロース中空繊維ナノ濾過膜の製造方法の発明が記載されている。
 この中で、熱誘起相分離法(TIPS法)の高温溶媒としてサリチル酸メチル、サリチル酸エチル、安息香酸メチル、安息香酸エチル、炭酸ジフェニル、ジエチレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン、エチレンカーボネート、フェニルアセトン、ベンゾフェノン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、1,2-プロパンジオール、1,3‐プロパンジオール、ベンジルアルコール、フタル酸ジメチル、フタル酸ジエチルおよびフタル酸ジブチルが示されている。これらの高温溶媒は、アセチル基置換度が2.7以上である三酢酸セルロースの熱誘起相分離法(TIPS法)の溶剤として用いることはできない。
 化学工学論文集Vol.35(2009) No.1 P117-121(熱誘起相分離法により作製されたセルロースアセテート誘導体中空糸膜の膜特性に及ぼす両親媒性添加剤効果)には、酢酸セルロースの一部をブチリル基で修飾したセルロースアセテートブチレートを膜素材として用い、熱誘起相分離法(TIPS法)により中空糸膜を作製している。
発明の概要
 本発明は、熱誘起相分離法により造膜できる造膜溶液と、それを使用した分離膜の製造方法を提供することを課題とする。
 本発明は、アセチル基置換度が2.7以上である三酢酸セルロースと熱誘起相分離用の良溶剤を含む造膜溶液であって、
 前記良溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を加熱溶解させることができ、かつ室温(20~30℃)まで冷却する間に相分離できるものである、造膜溶液と、それを使用した分離膜の製造方法を提供する。
 また本発明は、アセチル基置換度が2.7以上である三酢酸セルロース、熱誘起相分離用の良溶剤、および熱誘起相分離用の貧溶剤を含む造膜溶液であって、
 前記良溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を加熱溶解させることができるものであり、
 前記貧溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を160℃では溶解させることができないものであり、
 前記良溶剤と前記貧溶剤の両方を含むことで、加熱溶解させた三酢酸セルロース溶液を室温(20~30℃)まで冷却する間に相分離させることができるものであり、
 前記良溶剤と前記貧溶剤の合計量中の混合割合が、前記良溶剤が5~40質量%、前記貧溶剤が60~95質量%である、造膜溶液と、それを使用した分離膜の製造方法を提供する。
 本発明の造膜溶液を使用した熱誘起相分離法により、高強度、高透過性、高阻止性能、耐ファウリング性能に優れた、アセチル基置換度が2.7以上である三酢酸セルロースの液体分離膜、気体分離膜およびそれらを構成する支持体膜や分離機能膜を得ることができる。
実施例で使用した中空糸膜の製造装置の概念図。 (a)は実施例1で得られた中空糸膜の半径方向断面の走査型電子顕微鏡(SEM)写真(60倍)、(b)は(a)の外表面側の拡大SEM写真(50,000倍)、(c)は(a)の内表面側の拡大SEM写真(50,000倍)。 (a)は比較例1で得られた中空糸膜の半径方向断面の走査型電子顕微鏡(SEM)写真(60倍)、(b)は(a)の外表面側の拡大SEM写真(50,000倍)、(c)は(a)の内表面側の拡大SEM写真(50,000倍)。
発明を実施するための形態
 <第1の造膜溶液>
 本発明の第1の造膜溶液は、アセチル基置換度が2.7以上である三酢酸セルロースと熱誘起相分離用の良溶剤を含む造膜溶液であり、貧溶剤は含んでいない。
 前記良溶剤は、前記三酢酸セルロース(前記良溶剤と前記三酢酸セルロースを混合したときの固形分濃度25質量%)を加熱溶解させることができ、かつ室温(20~30℃)まで冷却する間に相分離できるものである。
 前記良溶剤としては、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、及び2,2-ジメチル-1,3-プロパンジオールから選ばれる1種以上が好ましい。
 前記加熱溶解温度は、良溶剤の種類により異なるものであり、前記加熱溶解温度は、150~220℃の範囲が好ましい。前記良溶剤として1,3-ブタンジオールを使用して三酢酸セルロースを溶解させて造膜溶液を得るときは、少なくとも190℃(190~220℃)に加熱することが好ましく、前記良溶剤として2,2-ジメチル-1,3-プロパンジオールを使用して三酢酸セルロースを溶解させて造膜溶液を得るときは、少なくとも170℃(170~220℃)に加熱することが好ましい。
 <第2の造膜溶液>
 本発明の第2の造膜溶液は、アセチル基置換度が2.7以上である三酢酸セルロース、熱誘起相分離用の良溶剤、および熱誘起相分離用の貧溶剤を含む造膜溶液である。
 前記良溶剤は、前記三酢酸セルロース(前記良溶剤と前記三酢酸セルロースを混合したときの固形分濃度25質量%)を加熱溶解させることができるものである。
 前記貧溶剤は、前記三酢酸セルロース(前記貧溶剤と前記三酢酸セルロースを混合したときの固形分濃度25質量%)を160℃以下では溶解させることができないものである。
 前記良溶剤と前記貧溶剤は、前記良溶剤と前記貧溶剤の両方を含むことで、加熱溶解させた三酢酸セルロース溶液を室温(20~30℃)まで冷却する間に相分離させることができるものである。
 前記良溶剤としては、スルホラン、ジメチルスルホキシド(DMSO)、テトラメチル尿素、テトラヒドロフルフリルアルコール、N-エチルトルエンスルホンアミド、リン酸トリエチル、リン酸トリメチル、及びコハク酸ジメチルから選ばれる1種以上のものを挙げることができる。
 前記貧溶剤としては、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、トリエチレングリコール、2,5-ジメチル-2,5-ヘキサンジオール、ジプロピレングリコール、マレイン酸ジエチル、テトラエチレングリコール、2-メチル-2,4-ペンタンジオール、プロピレングリコールジアセテート、グリセロールトリアセテート(トリアセチン)、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノブチルエーテル、1,4-ブタンジオールジアセテート、2-エチル-1,3-ヘキサンジオール、1,3-ブチレングリコールジアセテート、ジプロピレングリコールn-プロピルエーテル、トリプロピレングリコール、フタル酸ジ-n-ブチル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、α-ターピネオール、フタル酸ジメチル、乳酸エチルアセテート、フマル酸ジ-n-ブチル、メンタノール、セバシン酸ジ-n-ブチル、ジエチレングリコールモノアセテート、ジプロピレングリコールメチルエーテルアセテート、ターピニルアセテート、ジヒドロターピニルアセテート、トリプロピレングリコール-メチル-n-プロピルエーテル、ジプロピレングリコール-メチル-n-イソペンチルエーテル、ジプロピレングリコール-メチル-n-プロピルエーテル、フタル酸ジアリル、フタル酸ジエチル、フタル酸ビス(2-メトキシエチル)、アジピン酸ジメチル、アジピン酸ジエチル、リン酸トリブチル、クエン酸トリエチル、o-アセチルクエン酸トリエチル、コハク酸ジエチル、セバシン酸ビス(2-エチルヘキシル)、フマル酸ジエチル、及びフマル酸ジイソブチルから選ばれる1種以上を挙げることができる。
 良溶剤と貧溶剤は、三酢酸セルロース(前記良溶剤と前記品溶剤と前記三酢酸セルロースを混合したときの固形分濃度25質量%)が150~220℃の範囲で加熱溶解でき、かつ加熱溶解させた三酢酸セルロース溶液を室温(20~30℃)まで冷却する間に相分離させることを考慮して組み合わせる。
 また、第1の造膜溶液で良溶剤として使用できる1,3-ブタンジオールまたは2,2-ジメチル-1,3-プロパンジオールを貧溶剤として使用することができる。
 1,3-ブタンジオールを貧溶剤として使用するときは、三酢酸セルロースを190℃よりも低い温度、好ましくは180℃以下で加熱溶解できる良溶剤(例えば、スルホラン)と組み合わせる。2,2-ジメチル-1,3-プロパンジオールを貧溶剤として使用するときは、三酢酸セルロースを170℃よりも低い温度、好ましくは160℃以下で加熱溶解できる良溶剤(例えば、スルホラン)と組み合わせる。
 前記良溶剤と前記貧溶剤の合計量中の混合割合は、前記良溶剤が5~40質量%、前記貧溶剤が60~95質量%が好ましく、前記良溶剤が10~30質量%、前記貧溶剤が70~90質量%がより好ましく、前記良溶剤が15~25質量%、前記貧溶剤が75~85質量%が更に好ましい。
 <第1の分離膜の製造方法>
 本発明の分離膜の製造方法は、上記した第1の造膜溶液を使用して、熱誘起相分離法により分離膜を得る製造方法である。
 第1工程にて、三酢酸セルロースと前記良溶剤を混合し加熱溶解させて、第1の造膜溶液を得る。加熱溶解温度は、使用する良溶剤で三酢酸セルロース(前記良溶剤と前記三酢酸セルロースを混合したときの固形分濃度25質量%)を加熱溶解できる温度であり、150~220℃の範囲が好ましい。
 次に第2工程にて、第1工程で得た加熱状態の第1の造膜溶液を室温(20~30℃)まで冷却する間に、相分離させて分離膜を形成させる。分離膜が中空糸膜の場合は実施例に記載の方法を適用することができ、内部凝固液(芯液)は貧溶剤を使用することができ、外部凝固液は貧溶剤または水を使用することができる。分離膜が平膜の場合は、第1の造膜溶液を凝固液(貧溶剤または水)の液面の上方から液中に向かって平膜状に吐出させて冷却する方法を適用することができる。
 次に第3工程にて、前記分離膜を洗浄して前記良溶剤を除去し、目的とする分離膜を得る。
 第1分離膜の製造方法で得られた分離膜は、マクロボイド構造を含まず、平均孔径0.01μm~1μmの均一なスポンジ構造を有しているものである。本発明においてマクロボイド構造は、分離膜において孔径20μm以上の空孔を有する構造をいう。
 <第2の分離膜の製造方法>
 本発明の分離膜の製造方法は、上記した第2の造膜溶液を使用して、熱誘起相分離法により分離膜を得る製造方法である。
 第1工程にて、三酢酸セルロース、前記良溶剤および前記貧溶剤を混合し加熱溶解させて、第2の造膜溶液を得る。加熱溶解温度は、使用する良溶剤および前記貧溶剤を混合した状態で三酢酸セルロース(前記良溶剤と前記品溶剤と前記三酢酸セルロースを混合したときの固形分25質量%)を加熱溶解できる温度であり、150~220℃の範囲が好ましい。
 次に第2工程にて、第1工程で得た加熱状態の第2の造膜溶液を室温(20~30℃)まで冷却する間に、相分離させて分離膜を形成させる。第2工程は、第1の分離膜の製造方法の第2工程と同様に実施することができる。
 次に第3工程にて、前記分離膜を洗浄して前記良溶剤と前記貧溶剤を除去し、目的とする分離膜を得る。第2分離膜の製造方法で得られた分離膜は、マクロボイド構造を含まず、平均孔径0.01~1μmの均一なスポンジ構造を有しているものである。
 本発明の第1の分離膜の製造方法と第2の分離膜の製造方法により得られた分離膜が液体分離用の中空糸膜であるとき、中空糸膜の純水透過速度は10~3000L/(m2・h・0.1MPa)が好ましく、気体分離用の中空糸膜あるいは中空糸状の支持体膜であるときは、純水透過速度は0~10L/(m2・h・0.1MPa)であることが好ましい。また、これらの中空糸膜の引張強さ(実施例に記載の測定方法)は4~14MPaが好ましい。
実施例
 (1)中空糸膜の純水透水量(純水透過速度)の測定
 中空糸膜の片端を封止し、封止部を除いた中空糸膜の外表面積を求め、中空糸膜の他端からP1(=0.1MPa)の圧力をかけ純水を供給し、測定時間内に中空糸膜を透過する純水量と中空糸膜封止側の内部圧力P2を測定した。純水圧力(P1+P2)/2と測定値から、単位純水圧力(=0.1MPa)、単位時間(=1h)、単位中空糸膜外面積(=1m2)当りの純水透過量(純水透過速度)を算出した。
 (2)中空糸膜の引張強さの測定
 小型卓上試験機(島津製作所製EZ-Test)を用いて、チャック間距離5cmになるようウェット状態の中空糸膜を一本ずつ挟んで、引張り速度20mm/minで測定を実施し、測定値と中空糸膜の断面積から引張強さを求めた。
 試験例1(中空糸膜耐塩素性試験)
 実施例1、比較例1の中空糸膜(内径/外径=0.8/1.3mm,長さ1m)をそれぞれ50本使用した。有効塩素濃度12質量%の次亜塩素酸ナトリウム水溶液を純水で希釈し、500ppm次亜塩素酸ナトリウム水溶液の試験液に用いた。有効塩素濃度は、柴田科学製ハンディ水質計AQUAB,型式AQ-102を使用し測定した。50本の中空糸膜を試験液となる液温が約25℃の500ppm次亜塩素酸ナトリウム水溶液1Lを入れた蓋付ポリ容器に完全に浸かるように浸漬した。また、1~3日毎に10本の中空糸を蓋付ポリ容器から取り出し、水道水で水洗後、水分を拭き取り湿った状態のまま引張強さを測定した。
 試験例2(「引張強さ」の測定と耐塩素性の判断方法)
 小型卓上試験機(島津製作所製EZ‐Test)を用いて、チャック間距離5cmになるようウェット状態の中空糸膜を一本ずつ挟んで、引張り速度20mm/minで測定を実施した。500ppm次亜塩素酸ナトリウム水溶液に浸漬させていない中空糸膜の「引張強さ」の値を基準として、その値が基準値の90%を下回る際の時間を求めた。各測定時間の「引張強さ」をプロットし、検量線を作成することで、基準値の90%を下回る際の時間を求めた。「引張り強さ」は、同じサンプルで10本測定した「引張強さ」の最高値と最低値を除いた8本の平均値とした。
 実施例1
 株式会社ダイセル製の三酢酸セルロース(TAC)(アセチル置換度2.87)20質量%、スルホラン(良溶剤)16質量%、1,3-ブタンジオール(貧溶剤)64質量%を表1に示す温度(180℃)で加熱溶解させて、本発明の造膜溶液に用いた。
 上記造膜溶液と図1に示す中空糸膜の製造装置を使用して、熱誘起相分離法により中空糸膜を製造した。図1に示す装置の定量ポンプ4を用い、容量約500mlのドープタンク3内の表1に示す吐出温度(170℃)に維持された造膜溶液を二重管ノズル6から吐出させると共に、芯液ライン5から芯液(1,3-ブタンジオール)を吐出させた。その後、20℃の1,3-ブタンジオールの入った凝固槽7に導いて冷却した後、水の入った洗浄槽10で脱溶剤して、中空糸膜を得た。得られた中空糸膜は、外径1.0mm、内径0.66mmであった。
 図2(a)~(c)に実施例1の中空糸膜断面の走査型電子顕微鏡(SEM)(日本電子(株))写真を示した。中空糸膜の断面は均質的なスポンジ構造であり、外表面層、内表面層、内部層の空孔の平均孔径は0.4μmであった。
 実施例1の中空糸膜の純水透過速度は、952L/(m2・h・0.1MPa)、引張強さは5.3MPa、耐塩素性は160時間であった。
 実施例2~5
 表1に示す成分を表1に示す温度で加熱溶解して得た造膜溶液を用い、表1に記載した紡糸条件で、実施例1と同様にして実施例2~5の中空糸膜を製造した。それぞれの中空糸膜の純水透過量、引張り強さおよび平均孔径を表2に示した。
 比較例1
 実施例1と同じ三酢酸セルロースを使用し、非溶媒相分離法を用いて中空糸膜(内径/外径=0.8/1.3mm)を製造した。製膜溶液は、三酢酸セルロース/DMSO=18/82(質量%)を使用した。製膜方法は、次のとおりである。製膜溶液を105℃で十分に溶解させ、これを二重菅型紡糸口金の外側から、圧力0.4MPa、吐出温度85℃で吐出させ、内管から内部凝固液として水を吐出させた。その後、水の入った凝固槽水槽に導き、DMSOを水に溶解させることにより中空糸膜を凝固させ、それを巻き取ることで中空糸膜を得た。
 得られた中空糸膜は、水分を乾燥させないウェット状態のまま保管し、純水透過量、引張り強さおよび耐塩素性を測定した。
 比較例1の純水透過量は580L/(m2・h・0.1MPa)、引張り強さは、3.8MPa、耐塩素性は120時間であった。図4に比較例1の中空糸膜断面のSEM写真を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2から、実施例の中空糸膜の断面構造は、マクロボイド構造を含まず、平均孔径0.01~0.4μmの範囲の均一なスポンジ構造を有しているものであり、比較例1の中空糸膜の断面構造との違いは明らかであった。これらの結果から、本発明の造膜溶液を使用して熱誘起相分離法により分離膜を製造するとき、良溶剤の選択、良溶剤と貧溶剤の選択、加熱溶解温度、吐出温度を調整することで、アセチル基置換度が2.7以上である三酢酸セルロースの液体分離膜または気体分離膜を得られることが確認できた。
産業上の利用可能性
 本発明の造膜溶液から得られた分離膜は、浄水施設、汚水処理施設、気体分離施設などの各種分野における液体分離膜、気体分離膜およびそれらを構成する支持体膜や分離機能膜として利用することができる。
符号の説明
 1 撹拌機
 2 液体仕込みライン
 3 ドープタンク
 4 定量ポンプ
 5 芯液ライン
 6 二重管ノズル
 7 凝固槽
 8 中空糸膜
 9 ローラーガイド
 10 洗浄槽

Claims (7)

  1.  アセチル基置換度が2.7以上である三酢酸セルロースと熱誘起相分離用の良溶剤を含む造膜溶液であって、
     前記良溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を加熱溶解させることができ、かつ室温(20~30℃)まで冷却する間に相分離できるものである、造膜溶液。
  2.  前記良溶剤が、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、及び2,2-ジメチル-1,3-プロパンジオールから選ばれる1種以上である、請求項1記載の造膜溶液。
  3.  アセチル基置換度が2.7以上である三酢酸セルロース、熱誘起相分離用の良溶剤、および熱誘起相分離用の貧溶剤を含む造膜溶液であって、
     前記良溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を加熱溶解させることができるものであり、
     前記貧溶剤が、前記三酢酸セルロース(固形分濃度25質量%)を160℃では溶解させることができないものであり、
     前記良溶剤と前記貧溶剤の両方を含むことで、加熱溶解させた三酢酸セルロース溶液を室温(20~30℃)まで冷却する間に相分離させることができるものであり、
     前記良溶剤と前記貧溶剤の合計量中の混合割合が、前記良溶剤が5~40質量%、前記貧溶剤が60~95質量%である、造膜溶液。
  4.  前記良溶剤が、スルホラン、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロフルフリルアルコール、N-エチルトルエンスルホンアミド、リン酸トリエチル、リン酸トリメチル、コハク酸ジメチルから選ばれるものである、請求項3記載の造膜溶液。
  5.  請求項1または2記載の造膜溶液を使用して分離膜を得る分離膜の製造方法であり、
     前記分離膜が、マクロボイド構造を含まず、平均孔径0.01μm~1μmの均一なスポンジ構造を有しているものであり、
     前記三酢酸セルロースと前記良溶剤を混合し加熱して前記造膜溶液を得る工程、
     次に、前記加熱された造膜溶液を室温(20~30℃)まで冷却する間に、相分離させて分離膜を形成させる工程、
     次に、前記分離膜を洗浄して前記良溶剤を除去する工程を有している、分離膜の製造方法。
  6.  請求項3または4記載の造膜溶液を使用して分離膜を得る分離膜の製造方法であり、
     前記分離膜が、マクロボイド構造を含まず、平均孔径0.01μm~1μmの均一なスポンジ構造を有しているものであり、
     前記三酢酸セルロース、前記良溶剤および前記貧溶剤を混合し加熱して前記造膜溶液を得る工程、
     次に、前記加熱された造膜溶液を室温(20~30℃)まで冷却する間に、相分離させて分離膜を形成させる工程、
     次に、前記分離膜を洗浄して前記良溶剤と前記貧溶剤を除去する工程を有している、分離膜の製造方法。
  7.  前記分離膜が中空糸膜であり、前記中空糸膜の純水透過速度が10~3000L/(m2・h・0.1MPa)であり、かつ引張強さが4~14MPaである、請求項5または6記載の分離膜の製造方法。
PCT/JP2018/027614 2017-07-25 2018-07-24 造膜溶液とそれを使用した分離膜の製造方法 WO2019022045A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/633,903 US20210086140A1 (en) 2017-07-25 2018-07-24 Solution for manufacturing membrane and method for manufacturing separation membrane using same
CN201880045209.6A CN110831690B (zh) 2017-07-25 2018-07-24 造膜溶液和使用了该造膜溶液的分离膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-143196 2017-07-25
JP2017143196A JP7026344B2 (ja) 2017-07-25 2017-07-25 造膜溶液とそれを使用した分離膜の製造方法

Publications (1)

Publication Number Publication Date
WO2019022045A1 true WO2019022045A1 (ja) 2019-01-31

Family

ID=65041226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027614 WO2019022045A1 (ja) 2017-07-25 2018-07-24 造膜溶液とそれを使用した分離膜の製造方法

Country Status (4)

Country Link
US (1) US20210086140A1 (ja)
JP (2) JP7026344B2 (ja)
CN (1) CN110831690B (ja)
WO (1) WO2019022045A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297954A (zh) * 2020-03-31 2022-11-04 东洋纺株式会社 中空纤维膜及中空纤维膜的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291543A (ja) * 1985-10-17 1987-04-27 Fuji Photo Film Co Ltd 多層の微孔性膜の製造方法
JPH01159023A (ja) * 1988-06-10 1989-06-22 Toyobo Co Ltd 酸素ガス選択透過膜
JPH08269383A (ja) * 1995-03-31 1996-10-15 Nippon Paint Co Ltd 造膜用組成物
JP2003320227A (ja) * 2002-05-01 2003-11-11 Daicel Chem Ind Ltd 酢酸セルロース系半透膜
WO2014208603A1 (ja) * 2013-06-28 2014-12-31 東レ株式会社 複合分離膜および分離膜エレメント

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189903A (ja) * 1983-04-09 1984-10-27 Kanegafuchi Chem Ind Co Ltd 中空糸状フイルタ−およびその製法
JPS60141733A (ja) * 1983-12-29 1985-07-26 Fuji Photo Film Co Ltd 微孔性シ−トの製造方法
JP4903072B2 (ja) * 2007-03-23 2012-03-21 富士フイルム株式会社 セルロースエステル微細多孔質膜の製造方法および製造装置
CN106661263B (zh) * 2014-07-22 2020-07-10 株式会社大赛璐 多孔性纤维素介质的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291543A (ja) * 1985-10-17 1987-04-27 Fuji Photo Film Co Ltd 多層の微孔性膜の製造方法
JPH01159023A (ja) * 1988-06-10 1989-06-22 Toyobo Co Ltd 酸素ガス選択透過膜
JPH08269383A (ja) * 1995-03-31 1996-10-15 Nippon Paint Co Ltd 造膜用組成物
JP2003320227A (ja) * 2002-05-01 2003-11-11 Daicel Chem Ind Ltd 酢酸セルロース系半透膜
WO2014208603A1 (ja) * 2013-06-28 2014-12-31 東レ株式会社 複合分離膜および分離膜エレメント

Also Published As

Publication number Publication date
CN110831690A (zh) 2020-02-21
US20210086140A1 (en) 2021-03-25
JP7026344B2 (ja) 2022-02-28
JP2019022876A (ja) 2019-02-14
JP7228205B2 (ja) 2023-02-24
JP2022002848A (ja) 2022-01-11
CN110831690B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
EP3441133B1 (en) Semipermeable membrane
WO2019066061A1 (ja) 多孔質中空糸膜及びその製造方法
JP7228205B2 (ja) 造膜溶液とそれを使用した分離膜の製造方法
KR101161709B1 (ko) 아세틸화된 알킬 셀룰로오스를 이용한 다공성 중공사막 및 이의 제조 방법
KR101269574B1 (ko) 열유도 상 분리법을 이용하여 제조된 아세틸화된 알킬 셀룰로스 분리막과 이의 제조방법
US20130248441A1 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
CN107638815B (zh) 一种醋酸纤维素非对称膜及其应用
KR102139208B1 (ko) 내오염성 중공사막의 제조방법 및 상기 방법으로 제조된 내오염성 중공사막
KR101675455B1 (ko) 내염소성이 우수한 분리막의 제조방법 및 상기 방법으로 제조된 내염소성 분리막
JP2013031832A (ja) 多孔質膜の製造方法および精密ろ過膜
JP4803697B2 (ja) 多孔質膜の製造方法
JP7369577B2 (ja) ポリスルホン多孔質中空糸膜の製造法
KR101984893B1 (ko) 바이오가스 고질화용 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법
KR102306426B1 (ko) 아세틸화 알킬 셀룰로스와 폴리올레핀케톤의 복합 중공사막
CN101530752A (zh) 一种加热致相分离制取聚醚砜微孔膜的方法
WO2012105335A1 (ja) 炭素膜用製膜原液およびこれを用いた炭素中空糸膜の製造方法
KR102399330B1 (ko) 아세틸화 알킬 셀룰로오스 분리막 및 그의 제조방법
JP2006257216A (ja) ポリフッ化ビニリデン系樹脂溶液、および多孔質膜の製造方法
JP2023139484A (ja) 酢酸セルロース系中空糸膜、前記酢酸セルロース系中空糸膜の製造用の造膜溶液、酢酸セルロース系中空糸膜の製造方法
WO2021200427A1 (ja) 中空糸膜および中空糸膜の製造方法
JP2018069149A (ja) 分離膜およびその製造方法
WO2021106726A1 (ja) 多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法
RU2650170C1 (ru) Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной
TWI410272B (zh) 醋酸纖維素中空纖維膜及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838953

Country of ref document: EP

Kind code of ref document: A1