WO2021200427A1 - 中空糸膜および中空糸膜の製造方法 - Google Patents

中空糸膜および中空糸膜の製造方法 Download PDF

Info

Publication number
WO2021200427A1
WO2021200427A1 PCT/JP2021/012122 JP2021012122W WO2021200427A1 WO 2021200427 A1 WO2021200427 A1 WO 2021200427A1 JP 2021012122 W JP2021012122 W JP 2021012122W WO 2021200427 A1 WO2021200427 A1 WO 2021200427A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
cellulosic
stock solution
solvent
Prior art date
Application number
PCT/JP2021/012122
Other languages
English (en)
French (fr)
Inventor
泰樹 寺島
一成 丸井
浩太郎 山根
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022512003A priority Critical patent/JP7396464B2/ja
Priority to CN202180020949.6A priority patent/CN115297954A/zh
Publication of WO2021200427A1 publication Critical patent/WO2021200427A1/ja
Priority to JP2023197595A priority patent/JP2024015003A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate

Definitions

  • the present invention relates to a hollow fiber membrane and a method for producing a hollow fiber membrane.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2012-81533
  • Patent Document 2 International Publication No. 2016/136294
  • Patent Document 3 Japanese Patent Laid-Open No. 2018-506161
  • the hollow fiber membrane When the hollow fiber membrane is used for membrane separation treatment such as the reverse osmosis (RO) method, there is a problem that the amount of water permeated by the hollow fiber membrane decreases with time. When the amount of water permeated through the hollow fiber membrane decreases with time, there arises a problem that the operating energy required for the membrane separation process increases with time.
  • RO reverse osmosis
  • the strength of the hollow fiber membrane is generally improved, physical changes over time are suppressed, and the effect of suppressing a decrease in the amount of permeated water over time is suppressed. There is expected.
  • An object of the present invention is to provide a hollow fiber membrane having excellent both water permeability and maintenance rate of the water permeability.
  • a hollow fiber membrane containing a cellulosic ester and cellulosic nanofibers (2) The hollow fiber membrane according to (1), wherein the ratio of the amount of the cellulosic nanofibers to the total amount of the cellulose ester and the cellulosic nanofibers is 0.01 to 10% by mass. (3) The hollow fiber membrane according to (1) or (2), wherein the cellulosic nanofiber has a fiber width (fiber diameter) of 1 to 200 nm. (4) A method for producing a hollow fiber membrane containing a cellulosic ester and cellulosic nanofibers.
  • a hollow fiber membrane which is a hollow fiber type semipermeable membrane, is obtained by discharging a spinning stock solution from a nozzle into a coagulating liquid via an aerial traveling portion and pulling out a coagulated product of the spinning stock solution from the coagulating liquid.
  • the spinning stock solution contains cellulosic ester, cellulosic nanofibers, solvent and non-solvent.
  • a manufacturing method in which the spinning stock solution is kneaded before the spinning step.
  • the spinning stock solution prepared by mixing the cellulose ester, the powder of the cellulosic nanofiber, the solvent and the non-solvent is kneaded or kneaded.
  • the spinning stock solution prepared by mixing the cellulose ester and the non-solvent with the slurry obtained by dispersing the powder of the cellulosic nanofibers in the solvent is kneaded or kneaded.
  • the production method according to (4), wherein the spinning stock solution prepared by mixing the cellulose ester and the solvent with a slurry obtained by dispersing the powder of the cellulosic nanofibers in the non-solvent is kneaded.
  • the ratio of the amount of the cellulosic nanofibers to the total amount of the cellulosic ester and the cellulosic nanofibers in the spinning stock solution is 0.01 to 10% by mass, according to (4) or (5). Manufacturing method.
  • the hollow fiber membrane of the present embodiment is a hollow fiber type semipermeable membrane.
  • Hollow fiber membranes contain cellulosic esters and cellulosic nanofibers.
  • Cellulose ester examples include cellulose acetate (cellulose triacetate, cellulose monoacetate, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate, etc.), cellulose phthalate, cellulose succinate and the like.
  • the cellulose ester is preferably cellulose acetate.
  • Cellulose acetate has the characteristics of being resistant to chlorine, which is a bactericidal agent, and capable of suppressing the growth of microorganisms.
  • Cellulose acetate is preferably cellulose triacetate from the viewpoint of durability.
  • Cellulose-based nanofibers are obtained, for example, by subdividing (defibrating) naturally-derived celluloses derived from wood, plants, etc. into nanometer-order sizes.
  • a method for defibrating for example, at least one of a mechanical pulverization method and a chemical subdivision method can be used.
  • Chemical subdivision methods include, for example, TEMPMO (2,2,6,6-tetramethylpiperidin-1-oxyl radical) oxidation, phosphate esterification, carbosikimethylation, sulfonation, zantate formation, and enzymatic treatment. And so on.
  • TEMPMO 2,2,6,6-tetramethylpiperidin-1-oxyl radical
  • oxidation for example, phosphate esterification, carbosikimethylation, sulfonation, zantate formation, and enzymatic treatment.
  • a commercial product of CNF a product such as a powder of CNF or a gel obtained by dispersing CNF in water or
  • Cellulose-based nanofibers include cellulosic resins (cellulose or cellulose derivatives).
  • the cellulose derivative include cellulose esters, cellulose ethers, and mixtures thereof.
  • the cellulose ester include cellulose acetate (cellulose triacetate, cellulose monoacetate and cellulose diacetate), cellulose phthalate, cellulose succinate and the like.
  • the cellulose ether include methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose and the like.
  • the ratio of the amount of CNF to the total amount of cellulose ester and CNF is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, still more preferably 0.01 to 0.01 to It is 3% by mass, most preferably 0.01 to 1% by mass.
  • the CNF content is calculated by the following formula.
  • CNF ratio (mass%) [amount of CNF] / ([amount of cellulose ester] + [amount of CNF]) x 100 If the CNF ratio is too low, the strength of the hollow fiber membrane will be low. On the other hand, if the CNF ratio is too high, the fractionation property (salt removal rate) of the hollow fiber membrane becomes low.
  • the fiber width (fiber diameter) of CNF is preferably 1 to 200 nm, more preferably 1 to 50 nm.
  • the fiber width of CNF is measured by SEM (scanning electron microscope), TEM (transmission electron microscope), SPM (scanning probe electron microscope), E-SEM (environmentally controlled scanning electron microscope), cryo-SEM, etc. can.
  • the fiber length of CNF is preferably 100 ⁇ m or less, more preferably 20 nm to 10 ⁇ m.
  • the fiber length of CNF is measured by SEM (scanning electron microscope), TEM (transmission electron microscope), SPM (scanning probe electron microscope), E-SEM (environmentally controlled scanning electron microscope), cryo-SEM, etc. can.
  • the inner diameter of the hollow fiber membrane is preferably 30 ⁇ m or more and 300 ⁇ m or less, and more preferably 35 ⁇ m or more and 260 ⁇ m or less.
  • the thickness of the hollow fiber membrane (whole membrane) is preferably 20 to 200 ⁇ m, more preferably 30 to 150 ⁇ m.
  • the film thickness can be calculated by (outer diameter-inner diameter) / 2.
  • the hollow ratio of the hollow fiber membrane is preferably 10 to 65%, more preferably 12 to 55%.
  • the hollow ratio is the ratio of the area of the hollow portion in the cross section of the hollow fiber membrane, and is represented by "hollow portion cross-sectional area / (membrane cross-sectional area + hollow portion cross-sectional area) x 100 (%)".
  • the average pore diameter of the hollow fiber membrane (the average pore diameter of the fine pores of the entire membrane) is preferably 2 nm or less. Examples of the method for measuring the average pore size include a differential scanning calorimetry (DSC) method.
  • the hollow fiber membrane of the present embodiment is used for a membrane separation treatment in which the hollow fiber membrane is exposed to a high pressure, such as a reverse osmosis (RO) method and a brine concentration (BC) method, and the amount of water permeated by the hollow fiber membrane.
  • a high pressure such as a reverse osmosis (RO) method and a brine concentration (BC) method
  • RO reverse osmosis
  • BC brine concentration
  • a part of the target solution is allowed to flow in one first chamber of the hollow fiber membrane module, and a part of the target solution is allowed to flow in the other second chamber.
  • the solvent (water, etc.) contained in the target solution in the first chamber is transferred to the second chamber via the hollow fiber membrane, and the second chamber is transferred.
  • This is a membrane separation method in which the target solution in one chamber is concentrated and the target solution in the second chamber is diluted.
  • the treatment using the RO method or the BC method is often used as a part of the system combined with other treatments, it is difficult to control the entire system when the amount of water permeated by the hollow fiber membrane decreases with time. May become. Therefore, by using the hollow fiber membrane of the present embodiment, which has a high retention rate of the amount of permeated water, in a system in which the RO method and the BC method are combined with other treatments, it is possible to particularly facilitate the control of the entire system.
  • the hollow fiber membrane of the present embodiment is particularly pressed from the outside of the hollow fiber membrane (that is, when the pressure of the liquid outside the hollow fiber membrane is higher than that inside the hollow fiber membrane). It is possible to suppress a decrease in the amount of permeated water in the hollow fiber membrane over time.
  • the present invention also relates to a method for producing a hollow fiber membrane for obtaining a hollow fiber membrane containing the above-mentioned cellulose ester and cellulosic nanofibers.
  • the method for producing a hollow fiber membrane of the present embodiment includes at least a spinning step described later.
  • the spinning method used in the method for producing a hollow fiber membrane of the present embodiment is a method called "solution spinning", as disclosed in Patent Document 2 (International Publication No. 2016/136294) (melt spinning). ) Is a different spinning method.
  • the spinning dope 10 is discharged from the nozzle 11 into the coagulating liquid 21 via the aerial traveling portion, and the coagulated product of the spinning stock liquid is pulled out from the coagulating liquid.
  • a hollow fiber membrane which is a hollow fiber type semitransparent film, can be obtained.
  • the hollow fiber membrane is pulled out by, for example, rollers 12, 13, 14, and 15.
  • the pulling speed is the surface speed of the roller 13.
  • the spinning stock solution contains a raw material for a hollow fiber membrane (a material containing the cellulose ester and cellulosic nanofibers constituting the above-mentioned hollow fiber membrane), and a solvent and a non-solvent.
  • the solvent is a liquid that can dissolve the cellulose ester
  • the non-solvent is a liquid that does not dissolve the cellulose ester (excluding water).
  • the spinning stock solution may further contain water in addition to the solvent and non-solvent.
  • the concentration of the cellulose ester in the spinning stock solution is preferably 20 to 60% by mass, more preferably 30 to 50% by mass. If the concentration of the cellulose ester is too low, the fractionation property and the strength of the film will be low. On the other hand, if the concentration of the cellulose ester is too high, the water permeability becomes low. Further, if the concentration of the cellulose ester is too high, the viscosity of the spinning stock solution becomes too high, which may make it difficult to carry out spinning.
  • the ratio of the amount of CNF to the total amount of cellulose ester and CNF is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, still more preferably 0.01 to 0.01 to It is 3% by mass, most preferably 0.01 to 1% by mass.
  • the CNF content is calculated by the following formula.
  • CNF ratio (mass%) [CNF charge amount] / ([Cellulose ester charge amount] + [CNF charge amount]) x 100 If the CNF ratio is too low, the strength of the hollow fiber membrane will be low. On the other hand, if the CNF ratio is too high, the fractionation property of the hollow fiber membrane becomes low. Further, if the CNF ratio is too high, the viscosity of the spinning stock solution becomes too high, which may make it difficult to carry out spinning.
  • the mass ratio (S / NS ratio) of the solvent (S) / non-solvent (NS) in the spinning stock solution is preferably 40/60 to 70/30. If the solvent / non-solvent mass ratio in the spinning stock solution becomes too small (the NS ratio becomes too large), the homogeneity of the structure of the membrane cross section increases, but the spinning stability may decrease.
  • the NS ratio is more preferably 50/50 to 70/30.
  • the spinning stock solution is kneaded before the spinning process.
  • “Kneading” means that after mixing the materials of the spinning stock solution, a shearing force in a specific range as described later is applied, and CNF is forcibly dispersed in the spinning stock solution by a high temperature and / or pressure system. Means to let.
  • the dispersibility (dispersion uniformity) of CNF in the undiluted spinning solution is improved, the occurrence of defects in the hollow fiber membrane due to aggregation of CNF and the like is suppressed, and the strength of the hollow fiber membrane is increased. It is expected to improve and improve the maintenance rate of water permeability.
  • the kneading step is carried out using, for example, a planetary mixer, an extruder, a kneader (pressurized kneader, double-armed kneader, etc.) and the like.
  • the temperature at which the spinning stock solution is kneaded is preferably 150 to 200 ° C., more preferably 160 to 190 ° C. in consideration of the solubility of the cellulose ester and the modification by heat.
  • the shear rate at the time of kneading is preferably 500 to 3500 sec -1 and more preferably 500 to 2000 sec -1 in consideration of improvement in the degree of kneading and thermal deterioration due to shearing.
  • the order of addition and mixing method of the polymer containing the cellulose ester which is the constituent material of the hollow fiber membrane, the cellulosic nanofiber (CNF), the polymer when mixing the solvent and the non-solvent, the CNF and the like are not particularly limited.
  • CNF may be added to a polymer, solvent and non-solvent kneaded product, or a slurry obtained by dispersing CNF in a solvent or non-solvent may be added to the polymer-containing kneaded product.
  • CNFs having large fiber lengths or large clusters are also preferable to remove CNFs having large fiber lengths or large clusters from the undiluted spinning solution by filtering after the final kneading of the undiluted spinning solution.
  • the dispersibility (dispersion uniformity) of CNF in the undiluted spinning solution is further improved, the occurrence of defects in the hollow fiber membrane due to aggregation of CNF and the like is suppressed, the strength of the hollow fiber membrane is further improved, and the water permeability is further improved. It is expected that the maintenance rate will be further improved.
  • the coagulant preferably contains a solvent and a non-solvent (excluding water).
  • the coagulating liquid may further contain water in addition to the solvent and the non-solvent.
  • concentration of the coagulating liquid is preferably 30 to 70% by mass, and more preferably 33 to 50% by mass.
  • the temperature of the coagulating liquid is preferably 10 to 30 ° C. In this case, the structural homogeneity of the hollow fiber membrane in the film thickness direction can be improved.
  • Example 1 The hollow fiber membrane of Example 1 was manufactured under the following conditions by the method for producing a hollow fiber membrane described in the embodiment.
  • CTA Cellulose triacetate
  • LT35 Cellulose ester concentration: 41.2% by mass (in spinning stock solution)
  • CNF Commercially available CNF powder (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., I-2SX)
  • CNF ratio ratio of CTA and CNF amount to total CNF amount: 1.0% by mass
  • Solvent N-methylpyrrolidone (NMP)
  • NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • Benzoic acid [0.3% by mass]
  • the above CNF powder was mixed with other materials, and the mixed material (spinning stock solution) was kneaded to prepare a spinning stock solution to be used in the spinning process.
  • the kneading was carried out under the conditions of a temperature of 185 ° C. and a shear rate of 1500 to 1700 [1 / sec], and the kneading residence time of the stock solution was adjusted to 30 minutes.
  • Dissolution temperature of spinning stock solution 185 ° C
  • Discharge temperature of spinning stock solution 158 ° C
  • Nozzle for discharge Three-piece nozzle (Nozzle cross-sectional area: 0.05 mm 2 ) [The cross-sectional area of the nozzle is the cross-sectional area of the spinning stock solution discharge hole at the tip of the nozzle. ]
  • Pulling speed 40m / min
  • composition of coagulant Solvent (S): NMP Non-solvent (NS): EG Concentration of water coagulant [(mass of S + mass of NS) / mass of coagulant]: 45% The S / NS ratio is the same as the undiluted spinning solution.
  • Example 2 As shown in Table 1, the CNF addition concentration, the cellulose ester species, the S / NS ratio of the raw material solution, the kneading temperature, the shear rate during kneading, and the coagulation bath temperature were changed. In Example 7, the ratio of LT35 / LT75 was 88/12.
  • the hollow fiber membranes of Examples 2 to 11 were produced in the same manner as in Example 1 except for the above. (In Table 1, the left-pointing arrow means that it is the same as the left column.)
  • Comparative Example 1 No CNF was added to the undiluted spinning solution.
  • the hollow fiber membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except for the above points.
  • Comparative Examples 2 to 4 As shown in Table 1, the CNF addition concentration, the S / NS ratio of the raw material solution, and the kneading temperature were changed.
  • the hollow fiber membranes of Comparative Examples 2 to 4 were produced in the same manner as in Comparative Example 1 except for the above.
  • the hollow fiber membranes For the outer and inner diameters of the hollow fiber membranes, pass an appropriate number of hollow fiber membranes through a hole with a diameter of 3 mm opened in the center of the slide glass so that the hollow fiber membranes do not fall out, and hollow them with a razor along the upper and lower surfaces of the slide glass. It is obtained by cutting the filament membrane to obtain a hollow fiber membrane cross-section sample, and then measuring the minor axis and the major axis of the hollow fiber membrane cross section using a projector (Nikon PROFILE PROJECTOR V-12).
  • the dimensions of the outer surface of the hollow fiber membrane in the XX and YY directions are measured for each hollow fiber membrane cross section, and the arithmetic mean value of these values is calculated as the outer diameter of one hollow fiber membrane cross section.
  • the dimensions of the hollow portion in the XX and YY directions were measured for each hollow fiber membrane cross section, and the arithmetic mean value was taken as the inner diameter of one hollow fiber membrane cross section.
  • the 10 cross sections including the maximum and minimum were measured in the same manner, and the average values were taken as the inner diameter and the outer diameter.
  • Table 1 shows the measurement results of the outer diameter and inner diameter of the hollow fiber membrane.
  • the strong elongation was measured using a thread tension tester (A & D Co., Ltd. Tencilon (model No. RTC1210A)). Using a cell of full scale 5000 g (200 g in the condition setting), a single yarn having a total length of about 15 cm was fixed to the chuck (distance between chucks: 5 cm), and the lower chuck was lowered at a speed of 50 mm / min.
  • the strong elongation was measured using a wet hollow fiber membrane under the conditions of a temperature of 20 ° C. and a humidity of 65%. The measurement results are shown in Table 1. In addition, each of the Example and the Comparative Example was measured 5 times, and the average value thereof is shown in Table 1.
  • the yield elongation is suppressed and the yield strength is improved as compared with the comparative example, and the ratio of the yield strength (gf / piece) / yield elongation (%) (that is, the unit).
  • the required stress per elongation increases, indicating that the strength in the reversible yield region is improved.
  • the breaking elongation is suppressed and the breaking strength is improved, the breaking strength (gf / piece) / breaking elongation (%) (that is, the stress / elongation ratio at the breaking point) becomes large, and the hollow fiber membrane It is shown that the hollow fiber membrane has a small change in shape and is more difficult to break.
  • FIG. 7 graphically shows the relationship between the breaking strength and FR 4 (the amount of permeated water after 4 years under pressure-resistant acceleration conditions) for Examples and Comparative Examples.
  • the range above the line that divides the example and the comparative example shown in FIG. 7 is a range that satisfies the following relational expression (see the bottom two lines of Table 1). That is, the embodiment satisfies the following relational expression.
  • the permeation performance of a predetermined value or higher can be maintained.
  • the hollow fiber membranes were bundled in a U shape, inserted into a plastic sleeve, and then a thermosetting resin was injected into the sleeve, cured, and sealed.
  • An opening surface of the hollow fiber membrane was obtained by cutting the end portion of the hollow fiber membrane cured with a thermosetting resin, and an evaluation module 30 having a film area based on an outer diameter of 0.16 m 2 was produced (Fig.). 6).
  • the RO performance of the evaluation module 30 was evaluated using a membrane performance test device including an evaluation liquid tank 40, a supply pump 42, a shell 31, a flow rate adjustment valve 43, a pressure adjustment valve 44, and the like as shown in FIG.
  • the m value was obtained as follows. Further, the permeated water amount was continuously measured for up to 100 hours, and the change in the permeated water amount was confirmed.
  • the coefficient of variation of the permeated water amount ( ⁇ m value) indicates the slope of the change in the permeated water amount according to the elapsed time.
  • Permeated water volume after 4 years under pressure-resistant acceleration conditions (FR 4 ) FR 0 x MF
  • ⁇ Staining test> A staining test was performed on Example 3 and Comparative Example 2. Specifically, in the film performance test apparatus of FIG. 6, a fluorescent dye (molecular weight 570) manufactured by Nacalai Tesque Co., Ltd. was added to the evaluation liquid 41 in the evaluation liquid tank 40, and RO evaluation operation was performed for 1 hour under the above standard conditions. Was carried out. In addition, by this dyeing test, the part where a partial defect of a film occurs is dyed.
  • FIGS. 2 and 3 are the microscope photographs of the hollow fiber membranes of Example 3 and Comparative Example 2 after the dyeing test.
  • FIG. 2 is the hollow fiber membrane obtained in Example 3
  • FIG. 3 is the hollow fiber membrane obtained in Comparative Example 2.
  • FIGS. 4 and 4 are photographs corresponding to FIGS. 2 (a) and 2 (b)
  • FIGS. 5 (a) to 5 (c) correspond to FIGS. 3 (a) to 3 (c). It is a photograph. From the photograph shown in FIG. 5, it can be seen that the hollow fiber membrane is broken at the portion dyed by the dyeing test.
  • Example 3 the salt removal rate of Example 3 was 99.9% (salt permeability of 0.1%), and the salt removal rate of Comparative Example 2 was 95.0% (salt permeability of 5%). rice field. From this result, in Comparative Example 2, the amount of salt permeated was large, and this also suggests that the dispersibility of CNF is poor, so that a partial defect may occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

セルロースエステルおよびセルロース系ナノファイバーを含む、中空糸膜。

Description

中空糸膜および中空糸膜の製造方法
 本発明は、中空糸膜および中空糸膜の製造方法に関する。
 特許文献1(特開2012-81533号公報)、特許文献2(国際公開第2016/136294号)および特許文献3(特表2018-506161号公報)には、セルロースアセテート以外のセルロース系樹脂とセルロース系ナノファイバーとを含む中空糸膜が開示されている。
特開2012-81533号公報 国際公開第2016/136294号 特表2018-506161号公報
 中空糸膜が逆浸透(RO)法等の膜分離処理に用いられる場合において、中空糸膜の透過水量が経時的に減少するという問題がある。中空糸膜の透過水量が経時的に減少すると、膜分離処理に必要な運転エネルギーが経時的に増大するといった問題が生じる。
 中空糸膜を構成するポリマー材料にセルロース系ナノファイバーを添加することにより、一般に中空糸膜の強度が向上し、経時的な物理的変化が抑制され、透過水量の経時的な減少を抑制する効果が期待される。
 本発明は、透水性能とその透水性能の維持率との両方に優れた中空糸膜を提供することを目的とする。
 (1) セルロースエステルおよびセルロース系ナノファイバーを含む、中空糸膜。
 (2) 前記セルロースエステルおよび前記セルロース系ナノファイバーの総量に対する前記セルロース系ナノファイバーの量の比率は、0.01~10質量%である、(1)に記載の中空糸膜。
 (3) 前記セルロース系ナノファイバーの繊維幅(繊維径)は1~200nmである、(1)または(2)に記載の中空糸膜。
 (4) セルロースエステルおよびセルロース系ナノファイバーを含む中空糸膜の製造方法であって、
 紡糸原液をノズルから空中走行部を経て凝固液中に吐出して、前記紡糸原液の凝固物を前記凝固液中から曳き出すことにより、中空糸型の半透膜である中空糸膜を得る、紡糸工程を含み、
 前記紡糸原液は、セルロースエステル、セルロース系ナノファイバー、溶媒および非溶媒を含み、
 前記紡糸工程の前に前記紡糸原液を混練する、製造方法。
 (5) 前記セルロースエステル、前記セルロース系ナノファイバーの粉体、前記溶媒および前記非溶媒を混合してなる前記紡糸原液が混練されるか、
 前記セルロース系ナノファイバーの粉体を前記溶媒に分散させてなるスラリーを、前記セルロースエステルおよび前記非溶媒と混合してなる前記紡糸原液が混練されるか、または、
 前記セルロース系ナノファイバーの粉体を前記非溶媒に分散させてなるスラリーを、前記セルロースエステルおよび前記溶媒と混合してなる前記紡糸原液が混練される、(4)に記載の製造方法。
 (6) 前記紡糸原液において、前記セルロースエステルおよび前記セルロース系ナノファイバーの総量に対する前記セルロース系ナノファイバーの量の比率は、0.01~10質量%である、(4)または(5)に記載の製造方法。
 (7) 前記紡糸原液中のセルロースエステルの濃度は、20~60質量%である、(4)~(6)のいずれかに記載の製造方法。
 (8) 前記紡糸原液を混練するときの温度は、150~200℃である、(4)~(7)のいずれかに記載の製造方法。
 (9) 前記紡糸原液を混練するときのせん断速度は、500~3500sec-1である、(4)~(8)のいずれかに記載の製造方法。
 (10) 前記紡糸原液において、前記セルロース系ナノファイバーの繊維幅(繊維径)は1~200nmである、(4)~(9)のいずれかに記載の製造方法。
 (11) (4)~(10)のいずれかに記載の製造方法により製造される、セルロースエステルおよびセルロース系ナノファイバーを含む、中空糸膜。
 本発明によれば、透水性能とその透水性能の維持率との両方に優れた中空糸膜を提供することができる。
中空糸膜の製造方法の一例を説明するための模式図である。 染色試験後の実施例3の中空糸膜のマイクロスコープ写真である。 染色試験後の比較例2の中空糸膜のマイクロスコープ写真である。 強伸度の測定における破断後の実施例3の中空糸膜のマイクロスコープ写真である。 強伸度の測定における破断後の比較例2の中空糸膜のマイクロスコープ写真である。 膜性能試験装置の一例を説明するための模式図である。 実施例および比較例について、破断強度とFRとの関係を示すグラフである。
 本発明の実施形態について、図面を参照して説明する。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 <中空糸膜>
 本実施形態の中空糸膜は、中空糸型の半透膜である。
 中空糸膜は、セルロースエステルおよびセルロース系ナノファイバーを含む。
 (セルロースエステル)
 セルロースエステルとしては、例えば、酢酸セルロース(三酢酸セルロース、一酢酸セルロース、二酢酸セルロース、酢酸酪酸セルロース、酢酸プロピオン酸セルロースなど)、フタル酸セルロース、コハク酸セルロースなどが挙げられる。
 セルロースエステルは、好ましくは酢酸セルロースである。酢酸セルロースは、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロースは、耐久性の点から、好ましくは三酢酸セルロースである。
 (セルロース系ナノファイバー)
 セルロース系ナノファイバー(CNF)は、例えば、木材、植物等に由来する天然由来のセルロースをナノメートルオーダーのサイズに細分化(解繊)することで得られる。
 解繊を行う方法としては、例えば、機械的な粉砕法および化学的な細分化法の少なくともいずれかを用いることができる。化学的な細分化法としては、例えば、TEPMO(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)酸化、リン酸エステル化、カルボシキメチル化、スルホン化、ザンテート化、酵素処理などが挙げられる。
 CNFの市販品としては、CNFの粉体、CNFが水または有機溶剤に分散してなるゲルなどの製品を購入することができる。
 セルロース系ナノファイバー(以下、「CNF」と略す場合がある)は、セルロース系樹脂(セルロースまたはセルロース誘導体)を含む。
 セルロース誘導体としては、例えば、セルロースエステル、セルロースエーテル、それらの混合物などが挙げられる。
 セルロースエステルとしては、例えば、酢酸セルロース(三酢酸セルロース、一酢酸セルロースおよび二酢酸セルロース)、フタル酸セルロース、コハク酸セルロースなどが挙げられる。
 セルロースエーテルとしては、例えば、メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースなどが挙げられる。
 セルロースエステルおよびCNFの総量に対するCNFの量の比率(CNF比率)は、好ましくは0.01~10質量%であり、より好ましくは0.01~5質量%であり、さらに好ましくは0.01~3質量%であり、最も好ましくは0.01~1質量%である。なお、CNF含有率は、下記式により算出される。
 CNF比率(質量%)=[CNFの量]/([セルロースエステルの量]+[CNFの量])×100
 CNF比率が低すぎると、中空糸膜の強度が低くなる。一方、CNF比率が高すぎると、中空糸膜の分画性(塩除去率)が低くなる。
 CNFの繊維幅(繊維径)は、好ましくは1~200nmであり、より好ましくは1~50nmである。なお、CNFの繊維幅は、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)、SPM(走査型プローブ電子顕微鏡)、E-SEM(環境制御型走査電子顕微鏡)、クライオSEMなどによって測定できる。
 CNFの繊維長は、好ましくは100μm以下であり、より好ましくは20nm~10μmである。なお、CNFの繊維長は、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)、SPM(走査型プローブ電子顕微鏡)、E-SEM(環境制御型走査電子顕微鏡)、クライオSEMなどによって測定できる。
 (中空糸膜の形状等)
 中空糸膜の内径は、好ましくは30μm以上300μm以下であり、より好ましくは35μm以上260μm以下である。
 中空糸膜(膜全体)の厚みは、好ましくは20~200μmであり、より好ましくは30~150μmである。なお、膜厚は(外径-内径)/2で算出できる。
 中空糸膜の中空率は、好ましくは10~65%であり、より好ましくは12~55%である。なお、中空率は、中空糸膜の横断面における中空部の面積の割合であり、「中空部断面積/(膜部断面積+中空部断面積)×100(%)」で表される。
 中空糸膜の平均孔径(膜全体の微細孔の平均孔径)は、2nm以下であることが好ましい。平均孔径の測定方法としては、例えば、示差走査熱量測定(DSC)法が挙げられる。
 本実施形態の中空糸膜は、逆浸透(RO)法、ブラインコンセントレーション(BC)法等の特に中空糸膜が高圧に曝される膜分離処理に用いられる場合に、中空糸膜の透過水量の経時的な減少を抑制する効果が発揮される。これにより、当該中空糸膜を用いた膜分離処理に必要な運転エネルギーの経時的な増大が抑制される。
 なお、BC法とは、例えば、特開2018-65114号公報に記載されるような、中空糸膜モジュールの一方の第1室に対象溶液の一部を流し、他方の第2室に対象溶液の他の一部を流して、第1室内の対象溶液を加圧することで、第1室内の対象溶液に含まれる溶媒(水など)を中空糸膜を介して第2室内に移行させ、第1室内の対象溶液を濃縮し、第2室内の対象溶液を希釈する膜分離方法である。
 また、RO法やBC法を用いた処理は、他の処理と組み合わせたシステムの一部として用いられることが多いため、中空糸膜の透過水量が経時的に減少すると、システム全体の制御が困難になる場合がある。このため、透過水量維持率が高い本実施形態の中空糸膜を、RO法やBC法が他の処理と組み合わせられたシステムに用いることにより、特にシステム全体の制御を容易にすることができる。
 また、本実施形態の中空糸膜は、特に、中空糸膜の外側から加圧される場合(すなわち、中空糸膜の内側より中空糸膜の外側の液の圧力の方が高い場合)に、中空糸膜の透過水量の経時的な減少を抑制することができる。
 <中空糸膜の製造方法>
 本発明は、上記のセルロースエステルおよびセルロース系ナノファイバーを含む中空糸膜を得るための中空糸膜の製造方法にも関する。
 本実施形態の中空糸膜の製造方法は、少なくとも後述の紡糸工程を含む。
 なお、本実施形態の中空糸膜の製造方法において用いられる紡糸方法は、「溶液紡糸」と呼ばれる方法であり、特許文献2(国際公開第2016/136294号)に開示されるような(溶融紡糸)とは異なる紡糸方法である。
 〔紡糸工程〕
 図1を参照して、紡糸工程では、紡糸原液(spinning dope)10をノズル11から空中走行部を経て凝固液21中に吐出して、紡糸原液の凝固物を凝固液中から曳き出すことにより、中空糸型の半透膜である中空糸膜が得られる。中空糸膜の曳き出し等は、例えば、ローラー12,13,14,15により行われる。なお、曳き出し速度は、ローラー13の表面速度である。
 (紡糸原液)
 紡糸原液(スピニングドープ)は、中空糸膜の原材料(上述の中空糸膜を構成するセルロースエステルおよびセルロース系ナノファイバーを含む材料)と、溶媒および非溶媒と、を含む。溶媒は、セルロースエステルを溶解可能な液体であり、非溶媒は、セルロースエステルを溶解しない液体(水を除く)である。なお、紡糸原液は、溶媒と非溶媒に加えて、さらに水を含んでいてもよい。
 紡糸原液中のセルロースエステルの濃度は、好ましくは20~60質量%であり、より好ましくは30~50質量%である。
 セルロースエステルの濃度が低すぎると、分画性や膜の強度が低くなる。一方、セルロースエステルの濃度が高すぎると、透水性が低くなる。また、セルロースエステルの濃度が高すぎると、紡糸原液の粘度が高くなり過ぎて、紡糸の実施が困難になる場合がある。
 セルロースエステルおよびCNFの総量に対するCNFの量の比率(CNF比率)は、好ましくは0.01~10質量%であり、より好ましくは0.01~5質量%であり、さらに好ましくは0.01~3質量%であり、最も好ましくは0.01~1質量%である。なお、CNF含有率は、下記式により算出される。
 CNF比率(質量%)=[CNFの仕込み量]/([セルロースエステルの仕込み量]+[CNFの仕込み量])×100
 CNF比率が低すぎると、中空糸膜の強度が低くなる。一方、CNF比率が高すぎると、中空糸膜の分画性が低くなる。また、CNF比率が高すぎると、紡糸原液の粘度が高くなり過ぎて、紡糸の実施が困難になる場合がある。
 紡糸原液中の溶媒(S)/非溶媒(NS)の質量比(S/NS比)は、好ましくは40/60~70/30である。紡糸原液中の溶媒/非溶媒の質量比が小さくなりすぎる(NSの比率を大きくしすぎる)と、膜断面の構造の均質性が高まるが、紡糸安定性が低下することがあるため、S/NS比は、より好ましくは50/50~70/30である。
 (混練)
 本実施の形態において、紡糸原液は、紡糸工程の前に混練される。「混練」とは、紡糸原液の材料を混合した後、さらに、後述するような特定の範囲のせん断力を付与し、高温および/または加圧系にて強制的にCNFを紡糸原液中に分散させることを意味する。このような混練を実施することで、紡糸原液中でのCNFの分散性(分散均一性)が向上し、CNFの凝集等による中空糸膜の欠陥の発生が抑制され、中空糸膜の強度が向上し、透水性能の維持率の向上が期待される。
 混練工程は、例えば、プラネタリーミキサー、エクストルーダー、ニーダー(加圧式ニーダー、双腕式ニーダーなど)等を用いて実施される。
 紡糸原液を混練するときの温度は、セルロースエステルの溶解性と熱による変性を考慮し、好ましくは150~200℃であり、より好ましくは160~190℃である。
 混練時のせん断速度は、混練度の向上とせん断による熱劣化を考慮し、好ましくは500~3500sec-1であり、より好ましくは500~2000sec-1である。
 中空糸膜の構成材料となるセルロースエステルを含むポリマー、セルロース系ナノファイバー(CNF)、溶媒および非溶媒を混合する際のポリマー、CNF等の添加順序や混合方法は、特に限定されない。
 例えば、ポリマー、溶媒および非溶媒の混練物にCNFを添加してもよく、また、溶媒または非溶媒中にCNFを分散させてなるスラリーを、ポリマーを含む混練物に添加してもよい。
 なお、紡糸原液の最終的な混練の後に、フィルタリングによって紡糸原液から繊維長の大きいCNFもしくは大きなクラスターを除去することも好ましい。これにより、紡糸原液中でのCNFの分散性(分散均一性)がさらに向上し、CNFの凝集等による中空糸膜の欠陥の発生が抑制され、中空糸膜の強度がさらに向上し、透水性能の維持率のさらなる向上が期待される。
 (凝固液)
 凝固液は、好ましくは溶媒と非溶媒(水を除く)とを含む。なお、この場合、凝固液は、溶媒と非溶媒に加えて、さらに水を含んでいてもよい。凝固液中の溶媒および非溶媒の総量の比率(以下、「凝固液の濃度」と記す場合がある)は、好ましくは30~70質量%であり、より好ましくは33~50質量%である。
 また、凝固液の温度は、好ましくは10~30℃である。この場合、中空糸膜の膜厚方向の構造均質性を高めることができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 〔実施例1〕
 実施形態で説明した中空糸膜の製造方法により、以下の条件で実施例1の中空糸膜が製造された。
 (紡糸原液の組成)
 セルロースエステル:三酢酸セルロース(CTA)(LT35、ダイセル社製)
 セルロースエステル濃度:41.2質量%(紡糸原液中)
 CNF:市販のCNFの粉体(第一工業製薬株式会社製、I-2SX)
 CNF比率(CTAとCNFの総量に対するCNFの量の比率):1.0質量%
 溶媒:N-メチルピロリドン(NMP)
 非溶媒:エチレングリコール(EG)
 〔溶媒/非溶媒(S/NS)比= 55/45〕
 安息香酸〔0.3質量%〕
 (紡糸原液の調製)
 上記のCNFの粉末を他の材料と共に混合し、混合された材料(紡糸原液)を混練することで、紡糸工程で用いる紡糸原液を調製した。
 混練は、温度:185℃、せん断速度:1500~1700〔1/sec〕の条件で、原液の混練滞留時間を30分に調整して実施した。
 (紡糸工程の条件)
 紡糸原液の溶解温度:185℃
 紡糸原液の吐出温度:158℃
 吐出用のノズル:三分割ノズル(ノズルの断面積:0.05mm
 〔ノズルの断面積とは、ノズルの先端部分における紡糸原液吐出孔の断面積である。〕
 空中走行部(AG)滞留時間:0.06秒
 凝固液の温度:18℃
 曳き出し速度:40m/分
 (凝固液の組成)
  溶媒(S):NMP
  非溶媒(NS):EG
  水
  凝固液の濃度〔(Sの質量+NSの質量)/凝固液の質量〕:45%
  S/NS比は、紡糸原液と同じ。
 〔後処理工程の条件〕
熱水処理の条件
  温度 98℃
  時間 20分
塩漬(塩アニール)処理の条件
  食塩水の濃度 4.5質量%
  食塩水の温度 82℃
  時間 20分
 〔実施例2~11〕
 表1に示されるように、CNF添加濃度、セルロースエステル種、原料溶液のS/NS比、混練温度、混練時のせん断速度、凝固浴温度が変更された。なお、実施例7において、LT35/LT75の比は、88/12とした。それ以外は実施例1と同様にして、実施例2~11の中空糸膜が製造された。(尚、表1において、左向き矢印は、左の欄と同じであることを意味する。)
 〔比較例1〕
 紡糸原液において、CNFを添加しなかった。それ以外の点は実施例1と同様にして、比較例1の中空糸膜を得た。
 〔比較例2~4〕
 表1に示されるように、CNF添加濃度、原料溶液のS/NS比、混練温度が変更された。それ以外は比較例1と同様にして、比較例2~4の中空糸膜が製造された。
 <外径および内径の測定>
 実施例1~11および比較例1~4の中空糸膜について、内径および外径を以下の方法で測定した。
 中空糸膜の外径および内径は、中空糸膜をスライドグラスの中央に開けられた直径3mmの孔に中空糸膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面に沿ってカミソリにより中空糸膜をカットし、中空糸膜断面サンプルを得た後、投影機(Nikon PROFILE PROJECTOR V-12)を用いて中空糸膜断面の短径、長径を測定することにより得られる。
 外径については、中空糸膜断面1個につき中空糸膜外表面のX-X方向とY-Y方向の寸法を測定し、それらの値の算術平均値を中空糸膜断面1個の外径とした。また、内径については、中空糸膜断面1個につき中空部のX-X方向とY-Y方向の寸法を測定し、算術平均値を中空糸膜断面1個の内径とした。なお、最大および最小を含む10断面について同様に測定を行い、平均値を内径および外径とした。
 中空糸膜の外径および内径の測定結果は表1に示される。
 <強伸度の測定>
 実施例1~11および比較例1~4の中空糸膜について、以下の方法で強伸度(降伏強度、破断強度、降伏伸度および破断伸度)を測定した。
 強伸度の測定は、糸引っ張り試験機(エー・アンド・デイ社製テンシロン(モデルNo.RTC1210A))を用いて実施した。
 フルスケール5000g(条件設定では200g)のセルを使用し、全長約15cmの単糸をチャック(チャック間距離:5cm)に固定し、50mm/分の速度で下側チャックを下降させた。
 チャート紙に印されたS-Sカーブから、中空糸膜の破断点の単糸あたりの荷重(破断強度)、伸度(破断伸度)および降伏点の単糸あたりの荷重(降伏強度)、伸度(降伏伸度)を読み取った。具体的には、特開2011-212638号公報の[0061]に示される方法を用いて荷重および伸度を得た。
 なお、強伸度の測定は、湿潤状態の中空糸膜を用いて、温度20℃、湿度65%の条件下で実施した。
 測定結果を表1に示す。なお、実施例および比較例の各々について、5回ずつ測定を実施し、その平均値を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例は比較例と比べて降伏伸度が抑えられ降伏強度が向上しており、降伏強度(gf/本)/降伏伸度(%)の比率(すなわち、単位伸び当りの必要応力)が大きくなり、可逆的な降伏領域での強度が向上していることを示す。
 また、破断伸度が抑えられ破断強度が向上しており、破断強度(gf/本)/破断伸度(%)(すなわち、破断点での応力/伸度比)が大きくなり、中空糸膜の形状変化が小さくかつ、より破断しにくい中空糸膜であることを示す。
 図7に、実施例および比較例について、破断強度とFR(耐圧性加速条件における4年後の透過水量)との関係をグラフで示す。
 図7に示される実施例と比較例を分断する線より上側の範囲は、下記関係式を満たす範囲である(表1の最も下の2行を参照)。すなわち、実施例は、下記関係式を満たす。
 破断強度[gf/本]/3+FR[L/m/D]≧4.58×10-3×(AN後OD)[μm]
 このように、本発明の中空糸膜においては、破断強度が高められた場合でも、所定以上の透過性能を維持することができる。
 <透過水量の測定>
 実施例1~11および比較例1~4の中空糸膜について、高濃度塩水によるRO性能の確認試験を行った。
 具体的には、まず、中空糸膜をU字状に束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させて封止した。熱硬化性樹脂で硬化させた中空糸膜の端部を切断することで中空糸膜の開口面を得て、外径基準の膜面積が0.16mの評価用モジュール30を作製した(図6)。
 図6に示されるような評価液タンク40、供給ポンプ42、シェル31、流量調整バルブ43、圧力調整バルブ44等を備える膜性能試験装置を用いて、評価用モジュール30のRO性能を評価した。
〔標準条件評価〕
 具体的には、濃度35000ppmの塩化ナトリウム(NaCl)水溶液を、25℃、圧力5.4MPaで中空糸膜の外側に流す条件(標準条件)で、中空糸膜の外側から内側へ向かって水を透過させた。このRO処理を1時間行った。その後、中空糸膜の開口面より膜透過水を採取して、透過水量を測定した。
 この透過水量に基づいて、上記標準条件での単位膜面積当たりの1日当りの透過水量(標準条件透過流束:FRs)を下記式より算出した。
  FRs[L/m/日]=透過水量[L]/膜面積[m]/採取時間[分]×(60[分]×24[時間])
〔耐圧性加速条件評価〕
 次に、標準条件から、耐圧性加速試験条件に条件変更を行い、濃度47300ppmの塩化ナトリウム(NaCl)水溶液を、35℃、圧力6.76MPaで中空糸膜の外側に流す条件で、中空糸膜の外側から内側へ向かって水を透過させた。このRO処理を2時間行い、中空糸膜の開口面より膜透過水を採取、透過水量を測定し、単位膜面積当たりの1日当りの透過水量(耐圧性加速試験条件透過流束:FR0)を下記式より算出した。
  FR[L/m/日]=透過水量[L]/膜面積[m]/採取時間[分]×(60[分]×24[時間])
〔透過水量変化係数(-m値)の計算〕
 m値は、以下のようにして求めた。
 さらに、100時間まで透過水量を連続的に測定し、透過水量の変化を確認した。透過水量変化係数(-m値)は、経過時間に応じた透過水量の変化の傾きを示す。
 -m値は、時間と透過水量の対数値、x=log(経過時間)、y=log(透過水量)の回帰直線式の傾きより算出した(下記式)。
Figure JPOXMLDOC01-appb-M000002
 次に、上記式より、耐圧性加速条件における4年後の透過水量維持率(MF)および耐圧性加速条件における4年後の透過水量を算出した。
 耐圧性加速条件における4年後の透過水量維持率(MF)
        =(4年×365日×24時間/2時間)(-m)=17520(-m)
 耐圧性加速条件における4年後の透過水量(FR
        =FR×MF
 以上の測定等の結果を表1に示す。
 表1に示されるように、実施例1~11では、比較例1~4よりも透水性能と、経年後の透水性能の維持率の両方に優れた中空糸膜が得られた。
 <染色試験>
 実施例3および比較例2について、染色試験を実施した。具体的には、図6の膜性能試験装置において、評価液タンク40内の評価液41に、ナカライテスク社製の蛍光染料(分子量570)を添加し、上記標準条件にて1時間RO評価運転を実施した。なお、この染色試験により、膜の部分的な欠陥が生じた箇所が染色される。
 染色試験後の実施例3および比較例2の中空糸膜のマイクロスコープ写真をそれぞれ図2および図3に示す。なお、図2は実施例3で得られた中空糸膜であり、また、図3は比較例2で得られた中空糸膜である。
 また、実施例3および比較例2について、染色試験後に上記強伸度の測定を実施しときの、破断後の実施例3および比較例2の中空糸膜のマイクロスコープ写真をそれぞれ図4および図5に示す。なお、図4(a),(b)は図2(a),(b)に対応する写真であり、図5(a)~(c)は図3(a)~(c)に対応する写真である。
 図5に示される写真から、染色試験により染色された箇所で、中空糸膜の破断が生じていることが分かる。
 <塩除去率の測定>
 実施例3および比較例2について、塩除去率を測定した。具体的には、上記透過水量の測定で使用された塩化ナトリウム(NaCl)濃度35000ppmの供給水溶液と、上記透過水量の測定で採取された膜透過水と、について、電気伝導率計(東亜ディーケーケー社CM-25R)を用いてNaCl濃度(塩濃度)を測定した。測定結果に基づいて、塩除去率は下記式より算出された。
  塩除去率[%]=(1-膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
 その結果、実施例3の塩除去率は99.9%(塩透過率として0.1%)であり、比較例2の塩除去率は95.0%(塩透過率として5%)であった。この結果から、比較例2においては、塩の透過量が多く、このことからもCNFの分散性が悪いために、部分的な欠陥が生じている可能性が示唆される。
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 紡糸原液、11 ノズル、12,13,14,15 ローラー、16 中空糸膜、21 凝固液、30 評価用モジュール、31 シェル、40 評価液タンク、41 評価液、42 供給ポンプ、43 流量調整バルブ、44 圧力調整バルブ。

Claims (11)

  1.  セルロースエステルおよびセルロース系ナノファイバーを含む、中空糸膜。
  2.  前記セルロースエステルおよび前記セルロース系ナノファイバーの総量に対する前記セルロース系ナノファイバーの量の比率は、0.01~10質量%である、請求項1に記載の中空糸膜。
  3.  前記セルロース系ナノファイバーの繊維幅(繊維径)は1~200nmである、請求項1または2に記載の中空糸膜。
  4.  セルロースエステルおよびセルロース系ナノファイバーを含む中空糸膜の製造方法であって、
     紡糸原液をノズルから空中走行部を経て凝固液中に吐出して、前記紡糸原液の凝固物を前記凝固液中から曳き出すことにより、中空糸型の半透膜である中空糸膜を得る、紡糸工程を含み、
     前記紡糸原液は、セルロースエステル、セルロース系ナノファイバー、溶媒および非溶媒を含み、
     前記紡糸工程の前に前記紡糸原液を混練する、製造方法。
  5.  前記セルロースエステル、前記セルロース系ナノファイバーの粉体、前記溶媒および前記非溶媒を混合してなる前記紡糸原液が混練されるか、
     前記セルロース系ナノファイバーの粉体を前記溶媒に分散させてなるスラリーを、前記セルロースエステルおよび前記非溶媒と混合してなる前記紡糸原液が混練されるか、または、
     前記セルロース系ナノファイバーの粉体を前記非溶媒に分散させてなるスラリーを、前記セルロースエステルおよび前記溶媒と混合してなる前記紡糸原液が混練される、請求項4に記載の製造方法。
  6.  前記紡糸原液において、前記セルロースエステルおよび前記セルロース系ナノファイバーの総量に対する前記セルロース系ナノファイバーの量の比率は、0.01~10質量%である、請求項4または5に記載の製造方法。
  7.  前記紡糸原液中のセルロースエステルの濃度は、20~60質量%である、請求項4~6のいずれか1項に記載の製造方法。
  8.  前記紡糸原液を混練するときの温度は、150~200℃である、請求項4~7のいずれか1項に記載の製造方法。
  9.  前記紡糸原液を混練するときのせん断速度は、500~3500sec-1である、請求項4~8のいずれか1項に記載の製造方法。
  10.  前記紡糸原液において、前記セルロース系ナノファイバーの繊維幅(繊維径)は1~200nmである、請求項4~9のいずれか1項に記載の製造方法。
  11.  請求項4~10のいずれか1項に記載の製造方法により製造される、セルロースエステルおよびセルロース系ナノファイバーを含む、中空糸膜。
PCT/JP2021/012122 2020-03-31 2021-03-24 中空糸膜および中空糸膜の製造方法 WO2021200427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512003A JP7396464B2 (ja) 2020-03-31 2021-03-24 中空糸膜の製造方法
CN202180020949.6A CN115297954A (zh) 2020-03-31 2021-03-24 中空纤维膜及中空纤维膜的制造方法
JP2023197595A JP2024015003A (ja) 2020-03-31 2023-11-21 中空糸膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062847 2020-03-31
JP2020-062847 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200427A1 true WO2021200427A1 (ja) 2021-10-07

Family

ID=77928610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012122 WO2021200427A1 (ja) 2020-03-31 2021-03-24 中空糸膜および中空糸膜の製造方法

Country Status (3)

Country Link
JP (2) JP7396464B2 (ja)
CN (1) CN115297954A (ja)
WO (1) WO2021200427A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208293A (ja) * 2010-03-29 2011-10-20 Shinshu Univ ポリビニルアルコール系コンポジット繊維およびその製造方法
WO2013125681A1 (ja) * 2012-02-24 2013-08-29 東洋紡株式会社 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法
JP2014055381A (ja) * 2012-09-13 2014-03-27 Japan Exlan Co Ltd アクリロニトリル系繊維および該繊維を焼成してなる炭素材料ならびに該材料を含有する電極
WO2018181365A1 (ja) * 2017-03-27 2018-10-04 三菱ケミカル株式会社 多孔質膜、膜モジュール、水処理装置、及び多孔質膜の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010750B (zh) * 1988-10-07 1990-12-12 上海市红星医疗器械材料厂 溶剂法纤维素中空纤维膜
JP3427658B2 (ja) * 1997-02-10 2003-07-22 東洋紡績株式会社 セルロース中空糸膜およびその製造方法
JP2012040521A (ja) * 2010-08-20 2012-03-01 Toray Ind Inc 中空糸膜および中空糸膜の製造方法
WO2016175308A1 (ja) * 2015-04-28 2016-11-03 東レ株式会社 複合中空糸膜およびその製造方法
KR102416988B1 (ko) * 2015-09-30 2022-07-05 도레이 카부시키가이샤 분리막, 셀룰로오스계 수지 조성물 및 분리막의 제조 방법
CN109922876B (zh) * 2016-10-31 2022-06-28 东洋纺株式会社 醋酸纤维素系中空纤维膜
JP7026344B2 (ja) * 2017-07-25 2022-02-28 株式会社ダイセル 造膜溶液とそれを使用した分離膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208293A (ja) * 2010-03-29 2011-10-20 Shinshu Univ ポリビニルアルコール系コンポジット繊維およびその製造方法
WO2013125681A1 (ja) * 2012-02-24 2013-08-29 東洋紡株式会社 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法
JP2014055381A (ja) * 2012-09-13 2014-03-27 Japan Exlan Co Ltd アクリロニトリル系繊維および該繊維を焼成してなる炭素材料ならびに該材料を含有する電極
WO2018181365A1 (ja) * 2017-03-27 2018-10-04 三菱ケミカル株式会社 多孔質膜、膜モジュール、水処理装置、及び多孔質膜の製造方法

Also Published As

Publication number Publication date
JP7396464B2 (ja) 2023-12-12
JPWO2021200427A1 (ja) 2021-10-07
CN115297954A (zh) 2022-11-04
JP2024015003A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
JP4031437B2 (ja) 中空糸精密ろ過膜及びこれらの膜の製造方法
JP6729563B2 (ja) 複合中空糸膜およびその製造方法
JP6699172B2 (ja) 分離膜
JP2001511222A (ja) ポリ(テトラフルオロエチレン)および関連ポリマー類の分散紡糸方法
JP6202231B2 (ja) 分離膜、セルロース系樹脂組成物および分離膜の製造方法
US4980063A (en) Compositions useful for preparing cellulose ester membranes for liquid separations
WO2021200427A1 (ja) 中空糸膜および中空糸膜の製造方法
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JP7228205B2 (ja) 造膜溶液とそれを使用した分離膜の製造方法
EP0008536B1 (en) Process for manufacturing regenerated cellulose hollow fiber
AU715033B2 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JPS605202A (ja) 多孔性セルロ−スエステル系中空繊維およびその製造方法
KR101675455B1 (ko) 내염소성이 우수한 분리막의 제조방법 및 상기 방법으로 제조된 내염소성 분리막
CN109890490B (zh) 醋酸纤维素系非对称中空纤维膜
JP6699751B2 (ja) セルロースアセテート系中空糸膜
WO1995024262A1 (fr) Membrane de purification du sang a base de fibres creuses et son procede de production
WO2018021545A1 (ja) 分離膜およびその製造方法
EP3932529A1 (en) Hollow fiber membrane and method for producing hollow fiber membrane
TWI811826B (zh) 細胞冷凍保存用之中空絲膜
EP4173698A1 (en) Hollow fiber membrane module for cross-flow filtration and operation method thereof
JP2023139484A (ja) 酢酸セルロース系中空糸膜、前記酢酸セルロース系中空糸膜の製造用の造膜溶液、酢酸セルロース系中空糸膜の製造方法
JPS5824163B2 (ja) 中空繊維膜の製造法
JPS59169510A (ja) 異方性中空糸膜
JP2021186748A (ja) 分離膜及びその製造方法
JPH078767A (ja) 中空糸膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779842

Country of ref document: EP

Kind code of ref document: A1