WO2021106726A1 - 多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法 - Google Patents

多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法 Download PDF

Info

Publication number
WO2021106726A1
WO2021106726A1 PCT/JP2020/043089 JP2020043089W WO2021106726A1 WO 2021106726 A1 WO2021106726 A1 WO 2021106726A1 JP 2020043089 W JP2020043089 W JP 2020043089W WO 2021106726 A1 WO2021106726 A1 WO 2021106726A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
resin layer
porous resin
membrane according
polymer
Prior art date
Application number
PCT/JP2020/043089
Other languages
English (en)
French (fr)
Inventor
慧 加藤
雅美 尾形
修治 古野
芳機 西口
俊 志村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020568355A priority Critical patent/JPWO2021106726A1/ja
Publication of WO2021106726A1 publication Critical patent/WO2021106726A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material

Definitions

  • the present invention relates to a porous membrane, a composite membrane, and a method for producing a porous membrane or a composite membrane.
  • porous membranes such as microfiltration membranes and ultrafiltration membranes have been used in various fields such as water treatment fields such as water purification or wastewater treatment, medical fields such as blood purification, and food industry fields.
  • the porous membranes used in various ways may impair the stability of operation if the water permeability is reduced (fouling) due to the accumulation, adhesion, blockage, etc. of the substance to be separated.
  • a porous membrane having high water permeability and low fouling is required.
  • a bactericidal agent such as sodium hypochlorite is added to the membrane module part, or the membrane is coated with acid, alkali, chlorine, surfactant, etc. Clean itself.
  • the porous membrane is required to have chemical durability (chemical resistance). Furthermore, in tap water production, pathogenic microorganisms resistant to chlorine, such as cryptosporidium derived from livestock manure, could not be treated at the water purification plant and were mixed into the treated water since the 1990s. There is. In order to prevent such accidents, the porous membrane is required to have sufficient separation characteristics and high physical durability so that raw water does not mix with the treated water.
  • Patent Document 1 discloses a technique for improving low fouling property by controlling the pore size distribution of a porous membrane made of a polymer containing a polyvinylidene fluoride resin.
  • Patent Document 2 discloses a technique for expanding the pore size of a porous membrane and improving water permeability by selecting a long-chain branched fluoropolymer as the polyvinylidene fluoride-based resin contained in the porous membrane.
  • an object of the present invention is to provide a porous membrane capable of achieving both excellent low fouling property and water permeability and having high chemical resistance.
  • the present invention is characterized by the following [1] to [15].
  • [1] It has a porous resin layer containing a polymer containing a polyvinylidene fluoride resin as a main component, and has a porous resin layer.
  • the polyvinylidene fluoride-based resin contains a branched polyvinylidene fluoride-based resin.
  • the porous resin layer has an average pore diameter of 0.01 to 0.1 ⁇ m on the surface, and macrovoids having a minor axis of 50 ⁇ m or more are present in the porous resin layer.
  • a composite membrane comprising the porous membrane according to any one of the above [1] to [10] and another layer.
  • a porous membrane in which both excellent low fouling property and water permeability are achieved while ensuring high chemical resistance by containing a polymer containing a polyvinylidene fluoride resin as a main component can be obtained. Can be provided.
  • FIG. 1 is an enlarged image of a porous membrane exemplifying a “three-dimensional network structure”.
  • FIG. 2 is a schematic view showing an example of a water treatment apparatus using the porous membrane or the composite membrane of the present invention.
  • the mass-based ratio (percentage, parts, etc.) is the same as the weight-based ratio (percentage, parts, etc.).
  • the porous membrane of the present invention has a porous resin layer containing a polymer containing a polyvinylidene fluoride-based resin as a main component (hereinafter, may be referred to as a "specific polymer"), and is used as the polyvinylidene fluoride-based resin.
  • the value of a for the polymer (specific polymer), which contains a branched polyvinylidene fluoride resin and is determined from the relationship of the following formula 1, is 0.27 to 0.39, and the value of b is It needs to be 0.22 to 0.60.
  • ⁇ S 2 > 1/2 bM w a ...
  • Equation 1 ⁇ S 2 > 1/2 means the radius of gyration of the polymer, and M w means the absolute molecular weight.
  • the radius of gyration ⁇ S 2 > 1/2 becomes moderately small with respect to the absolute molecular weight M w of the specific polymer, and the specific polymer is formed when the porous resin layer is formed. Is easy to move to the surface layer of the porous resin layer. As a result, it is presumed that the polymer density of the surface layer of the porous resin layer is increased, and the porous film (porous resin layer) exhibits excellent low fouling property.
  • the value of a is 0.27 or more, ⁇ S 2 > 1/2 becomes moderately large with respect to M w , and the specific polymers are likely to be moderately entangled with each other.
  • the value of a is preferably 0.29 or more.
  • the value of a is preferably 0.33 or less, more preferably 0.32 or less.
  • the value of b for the specific polymer needs to be 0.22 to 0.60 in order to further enhance the low fouling property by homogenizing the polymer density of the surface layer due to the entanglement of the specific polymers.
  • the value of b is preferably 0.43 or more.
  • the value of b is preferably 0.50 or less.
  • the polyvinylidene fluoride-based resin refers to a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer.
  • the vinylidene fluoride copolymer means a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and another fluoromonomer or the like. Examples of such a fluorine-based monomer include vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride.
  • the vinylidene fluoride copolymer may be copolymerized with ethylene or the like other than the above-mentioned fluorine-based monomer to the extent that the effect of the present invention is not impaired.
  • the weight average molecular weight of the polyvinylidene fluoride resin is too large, the water permeability of the porous membrane (porous resin layer) decreases, and if it is too small, the low fouling property of the porous membrane (porous resin layer) decreases. Therefore, 50,000 to 1,000,000 is preferable.
  • the weight average molecular weight is preferably 100,000 or more, more preferably 150,000 or more.
  • the weight average molecular weight is preferably 900,000 or less, more preferably 800,000 or less.
  • the porous membrane of the present invention needs to have a porous resin layer containing a polymer containing a polyvinylidene fluoride-based resin as a main component.
  • the main component is polyvinylidene fluoride resin
  • the ratio of the polyvinylidene fluoride resin to the polymer (specific polymer) constituting the porous resin layer is 50% by mass or more.
  • the above ratio is preferably 55% by mass or more, and more preferably 60% by mass or more in order to ensure high chemical resistance.
  • the above values a and b are measured by a gel permeation chromatograph (hereinafter, "GPC") equipped with a multi-angle light scattering detector (hereinafter, “MALS”) and a differential refractometer (hereinafter, "RI"). It can be determined based on the relationship between the radius of gyration ⁇ S 2 > 1/2 measured by a certain GPC-MALS and the absolute molecular weight M w.
  • the measurement by GPC-MALS is performed by dissolving the polymer constituting the porous resin layer in a solvent. A salt may be added to the solvent in order to improve the solubility of the polymer.
  • NMP N-methyl-2-pyrrolidone
  • Equation 1 The relationship between the radius of gyration ⁇ S 2 > 1/2 and the absolute molecular weight M w measured by GPC-MALS is as shown in Equation 1 below by a method commonly used in polymer research called a conformation plot.
  • the values of a and b can be determined by approximating to. Such a technique is common, for example, as described in "Size Exclusion Chromatography” (Sadao Mori, Kyoritsu Shuppan Co., Ltd., First Edition, 1992).
  • the conformation plot may be approximated by a log-log graph of Equation 1 and a linear approximation by applying the least squares method within the measurement range of the detector.
  • ⁇ S 2 > 1/2 bM w a ... (Equation 1)
  • the ratio of the branched polyvinylidene fluoride resin to the polyvinylidene fluoride resin of the present invention is 10 to 100 mass by mass. % Is preferable, and 25 to 100% by mass is more preferable.
  • the weight average molecular weight of the branched polyvinylidene fluoride resin is preferably 50,000 to 1,000,000, more preferably 100,000 to 900,000. , 150,000 to 800,000 are more preferable.
  • the "branched polyvinylidene fluoride-based resin” refers to a polyvinylidene fluoride-based resin having a value of 0.41 or less.
  • the porous film of the present invention requires that the average pore size of the surface of the porous resin layer is in the range of 0.01 to 0.1 ⁇ m. And.
  • the average pore size of the surface of the porous resin layer is preferably 0.02 ⁇ m or more, more preferably 0.03 ⁇ m or more.
  • the average pore size of the surface of the porous resin layer is preferably 0.08 ⁇ m or less, more preferably 0.06 ⁇ m or less, still more preferably 0.04 ⁇ m or less.
  • the average pore size on the surface of the porous resin layer is measured as follows.
  • the surface of the porous resin layer was observed at a magnification of 10,000 times using a scanning electron microscope (hereinafter referred to as SEM), and the diameter when the pores were assumed to be circular was calculated as the pore diameter from the area of each pore. Then, the average value thereof can be used as the average pore size of the surface.
  • SEM scanning electron microscope
  • the porous membrane of the present invention requires that a macrovoid having a minor axis of 50 ⁇ m or more is present in the porous resin layer in order to reduce the flow resistance when permeated water flows through the porous membrane.
  • the macrovoid is a large void having a minor axis of 10 ⁇ m or more existing in the porous resin layer.
  • the minor axis indicates the diameter in the direction parallel to the surface of the porous resin layer.
  • the porous resin layer has a macrovoid having a minor axis of 70 ⁇ m or more, and more preferably a macrovoid having a minor axis of 80 ⁇ m or more is present.
  • the porous membrane of the present invention in order to reduce the flow resistance when permeated water flows in the porous membrane and to develop high water permeability, at least a part of macrovoids is within 5 ⁇ m from the surface of the porous resin layer. It is preferably present in the region.
  • the distance of the macrovoid from the surface is more preferably 4 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the porosity occupied by the macrovoid in the region within 15 ⁇ m from the surface of the porous resin layer of the present invention is preferably 15% or more. , 25% or more, more preferably 40% or more.
  • the size of the macrovoid is preferably kept to 300 ⁇ m or less. Further, the distance from the surface of the porous resin layer to the macrovoid is preferably limited to 1 ⁇ m or more from the surface. The porosity occupied by macrovoids in the region within 15 ⁇ m from the surface of the porous resin layer is preferably limited to 80% or less.
  • the ratio of the minor axis of the macrovoid to the average pore diameter of the surface of the porous resin layer of the present invention is preferably 700 or more, preferably 1000 or more. Is more preferable.
  • the size of the macrovoid existing in the porous resin layer can be determined by observing the cross section in the direction perpendicular to the surface of the porous resin layer with SEM.
  • SEM For the distance of macrovoids from the surface and the porosity occupied by macrovoids, use a confocal laser scanning microscope to make the porous resin layer dyed with a fluorescent substance perpendicular to the surface of the porous resin layer and the axial direction of the laser beam.
  • the area of 200 ⁇ m ⁇ 200 ⁇ m as a surface parallel to the surface was observed at 0.2 ⁇ m intervals from the surface to 40 ⁇ m, and the obtained images were joined to form a three-dimensional image of the porous resin layer.
  • a cross-sectional image in the direction perpendicular to the surface can be extracted and obtained.
  • the porous resin layer preferably has a three-dimensional network structure in order to further enhance low fouling property by homogenizing the polymer density of the surface layer by entanglement of specific polymers.
  • the "three-dimensional network structure” refers to a structure in which the polymer constituting the porous resin layer of the present invention spreads three-dimensionally in a network pattern, as shown in FIG.
  • the three-dimensional network structure has pores and voids partitioned by the polymer forming the network.
  • the porous resin layer is preferably made of a polymer containing a polyvinylidene fluoride resin as a main component.
  • the porous resin layer may contain other components as long as the effects of the present invention are not impaired. Examples of other components include a solvent and a pore-forming agent contained in a polymer solution described later. These components may be contained in the porous resin layer because they may not be completely removed even if they are washed after the formation of the porous resin layer.
  • the composite membrane of the present invention is characterized by comprising the porous membrane of the present invention and another layer.
  • the other layer is not particularly limited as long as it is a component capable of overlapping with the porous film and forming a layered form.
  • the other layer described above is preferably a support.
  • the "support” is one that supports the porous membrane and gives strength to the composite membrane.
  • the material of the support is not particularly limited, such as an organic material and an inorganic material, but organic fibers are preferable from the viewpoint of easy weight reduction.
  • the material is more preferably such as a woven fabric or a non-woven fabric made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers and polyethylene fibers. Among them, the material is preferably a non-woven fabric which is relatively easy to control the density, easy to manufacture, and inexpensive.
  • the thickness of the support is preferably in the range of 50 ⁇ m to 1 mm.
  • the thickness of the support is most preferably in the range of 70-500 ⁇ m.
  • the thickness of the porous resin layer in the porous membrane or the composite membrane is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, still more preferably 100 ⁇ m or more.
  • the thickness of the porous resin layer is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less. If the porous resin layer is too thin, the support may be exposed, and dirt components may adhere to the support to increase the filtration pressure, or the filtration performance may not be sufficiently restored even after cleaning. Further, if the porous resin layer is too thick, the amount of water permeation may decrease.
  • a part of the resin forming the porous resin layer penetrates at least the surface layer portion of the support and forms a composite layer with the support at least in the surface layer portion.
  • the porous film is firmly fixed to the support by the so-called anchor effect, and the porous film can be prevented from peeling off from the support.
  • the porous membrane or composite membrane of the present invention has a pure water permeability of 0.1 m 3 / m 2 / hr or more at 25 ° C. and 5 kPa because the operating pressure can be lowered and the progress of fouling can be suppressed. It is preferably 0.5 m 3 / m 2 / hr or more, and more preferably 0.5 m 3 / m 2 / hr or more.
  • porous membrane or composite membrane of the present invention can typically be produced by a method as described below.
  • the porous membrane or composite membrane of the present invention can be produced, for example, by a method including the following steps (1) and (2).
  • a polymer solution adjusting step in which a polymer containing a polyvinylidene fluoride-based resin as a main component, a pore-forming agent and a solvent are used to dissolve the polymer containing the polyvinylidene fluoride-based resin as a main component to obtain a polymer solution.
  • a step of forming a porous resin layer by coagulating the polymer solution in a coagulation bath containing a non-solvent to form a porous resin layer.
  • the production method includes the above steps (1) and (2), and in (2) the porous resin layer forming step.
  • a method of forming a porous resin layer on at least one surface of the support can be mentioned. That is, first, a film of a stock solution (polymer solution) containing the above-mentioned resin (polymer containing polyvinylidene fluoride-based resin as a main component), a pore-forming agent and a solvent is formed on the surface of the above-mentioned support, and the film thereof is formed.
  • the support is impregnated with the undiluted solution.
  • the support is immersed in a coagulation bath containing a non-solvent to solidify the resin and form a porous resin layer on the surface of the support. It is also preferable that the stock solution further contains a non-solvent.
  • the temperature of the stock solution is usually preferably selected in the range of 15 to 120 ° C. from the viewpoint of film forming property.
  • the density of the support is preferably 0.7 g / cm 3 or less, more preferably 0.6 g / cm 3 or less.
  • the density of the support is preferably 0.3 g / cm 3 or more.
  • the density referred to here is an apparent density and can be obtained from the area, thickness and weight of the support.
  • the pore-forming agent has the effect of making the resin layer porous by being extracted when immersed in a coagulation bath.
  • the pore-forming agent is preferably one having high solubility in a coagulation bath.
  • inorganic salts such as calcium chloride and calcium carbonate can be used.
  • polyoxyalkylenes such as polyethylene glycol (PEG) and polypropylene glycol, water-soluble polymers such as polyvinyl alcohol, polyvinyl butyral and polyacrylic acid, glycerin, surfactants and the like can be used.
  • the pore-forming agent can be arbitrarily selected, but a polymer containing PEG as a main component or a surfactant is preferable.
  • a polyvinylidene fluoride-based resin having a value of a determined from the relationship of the above formula 1 of 0.27 to 0.39 and a value of b of 0.22 to 0.60 is a specific polymer.
  • the pore-forming agent it is particularly preferable to use a polymer containing PEG as a main component having a weight average molecular weight of 10,000 or more, or a surfactant having a polyoxyalkylene structure, a fatty acid ester structure and a hydroxyl group. ..
  • macrovoids are likely to be present in a region within 5 ⁇ m from the surface of the porous resin layer.
  • "mainly composed” means that the component is contained in an amount of 50% by weight or more.
  • surfactant having a polyoxyalkylene structure, a fatty acid ester structure and a hydroxyl group examples include polyethylene glycol monooleate, polyethylene glycol monostearate, polyoxyethylene sorbitan monolaurate (Tween 20), and polyoxyethylene sorbitan monostearate (polyoxyethylene sorbitan monostearate). Tween 60), polyoxyethylene sorbitan monooleate (Tween 80) and the like.
  • the above-mentioned surfactants include polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monostearate (Tween 60), and mono.
  • Polyoxyethylene sorbitan oleate (Tween 80) is preferred.
  • the solvent dissolves the resin.
  • the solvent acts on the resin and the pore-forming agent to encourage them to form a porous resin layer.
  • NMP, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, methyl ethyl ketone and the like can be used.
  • DMAc, DMF, and DMSO which have high resin solubility, can be preferably used.
  • the non-solvent is a liquid that does not dissolve the resin.
  • the non-solvent acts to control the rate of solidification of the resin and control the size of pores and macrovoids.
  • water or alcohols such as methanol and ethanol can be used. Among them, water or methanol is preferable as the non-solvent from the viewpoint of ease of wastewater treatment and price.
  • the non-solvent may be a mixture containing these.
  • a polymer containing a polyvinylidene fluoride resin as a main component, a pore-forming agent and a solvent are used to dissolve the polymer containing the polyvinylidene fluoride resin as a main component to obtain a polymer solution (stock solution).
  • stock solution contains a non-solvent.
  • the resin is preferably in the range of 5 to 30% by weight
  • the pore-forming agent is preferably in the range of 0.1 to 15% by weight
  • the solvent is preferably in the range of 40 to 94.9% by weight
  • the non-solvent is in the range of 0 to 20% by weight.
  • the amount of resin is extremely small, the strength of the porous membrane (porous resin layer) is low, and if it is too large, the water permeability may be lowered.
  • the resin content in the undiluted solution is more preferably in the range of 8 to 20% by weight.
  • the amount of the pore-forming agent is too small, the water permeability may decrease, and if it is too large, the strength of the porous film (porous resin layer) may decrease. Further, if the amount is extremely large, it may remain in the porous resin layer and elute during use, resulting in deterioration of the water quality of the permeated water or fluctuation of the water permeability.
  • a more preferable range of the content of the pore-forming agent in the stock solution is 0.5 to 10% by weight. Further, if the amount of the solvent is too small, the undiluted solution tends to gel, and if the amount is too large, the strength of the porous film (porous resin layer) may decrease.
  • the solvent content in the stock solution is more preferably in the range of 60 to 90% by weight.
  • the solvent is preferably in the range of 40 to 94.8% by weight, and the non-solvent is preferably in the range of 0.1 to 20% by weight. More preferably, the solvent is in the range of 40-94.4% by weight and the non-solvent is in the range of 0.5 to 15% by weight.
  • the porous resin layer forming step it is preferable to solidify the above-mentioned polymer solution (stock solution) in a coagulation bath containing a non-solvent to form a porous resin layer.
  • a non-solvent or a mixed solution containing a non-solvent and a solvent can be used.
  • the non-solvent is preferably at least 80% by weight when a non-solvent is used as the stock solution. If the amount is too small, the solidification rate of the resin becomes slow, the pore diameter on the surface becomes large, and macrovoids are less likely to be generated.
  • the proportion of the non-solvent in the coagulation bath is more preferably in the range of 85 to 100% by weight.
  • the content of the non-solvent in the coagulation bath is preferably smaller than that in the case of using a non-solvent in the stock solution, and is preferably at least 60% by weight.
  • the solidification rate of the resin becomes high and the surface of the porous resin layer becomes dense, and macrovoids are generated inside, but fine cracks occur on the surface of the porous resin layer. I have something to do.
  • a more preferred range of non-solvent content is 60-99% by weight.
  • the temperature of the coagulation bath is usually selected within the range of 15 to 80 ° C. preferable. A more preferred temperature range is 20-60 ° C.
  • the undiluted solution film on the support can be performed by applying the undiluted solution to the support or by immersing the support in the undiluted solution.
  • it may be applied to one side of the support or to both sides.
  • a support having a density of 0.7 g / cm 3 or less because the support is appropriately impregnated with the stock solution.
  • the cleaning method can be appropriately selected depending on the type of solvent and pore-forming agent, and is not particularly limited, and examples thereof include a method of immersing in hot water at 60 to 100 ° C. for 1 to 10 minutes.
  • (I) Average pore size of the surface of the porous resin layer The surface of the porous resin layer in the porous film or composite film is observed using SEM (Hitachi High-Technologies Corporation; S-5500) under the following observation conditions. , The areas of 300 randomly selected holes were measured, respectively. From the area of each hole, the diameter when it was assumed that the hole was a circle was calculated as the hole diameter, and the average value thereof was taken as the average hole diameter on the surface. Acceleration voltage: 5kV Observation magnification: 10,000 times Image processing software: ImageJ (Wayne Rasband, National Institutes of Health)
  • a short-diameter porous film or composite film of macrovoids of the porous resin layer was prepared by a frozen ultrathin section method to prepare a sample for cross-section measurement, and SEM (manufactured by Hitachi High-Tech Co., Ltd .; S-5500) was used.
  • the minor axis of the macrovoid was calculated from the size of the macrovoid observed under the following observation conditions. Acceleration voltage: 5kV Observation magnification: 500 times Observation area: 256 ⁇ m ⁇ 192 ⁇ m
  • measurement was performed for arbitrary 10 visual fields, the minor axis of the observed macrovoid was measured, and the average value was taken as the minor axis of the macrovoid of the porous resin layer.
  • the obtained polymer solution was connected to GPC-MALS (column: manufactured by Showa Denko KK; Shodex KF-806M ⁇ 8.0 mm ⁇ 30 cm in series, differential refractometer: manufactured by Waitt Technology; Optilab) under the following conditions.
  • rEX, MALS: manufactured by Wyatt Technology; DAWN HeLEOS was injected and measured.
  • the injected polymer solution was eluted from the column in the range of 27-43 minutes.
  • Solvent NMP with 0.1M lithium chloride added Flow velocity: 0.5 mL / min Injection volume: 0.3 mL
  • Equation 3 is the amount of change in the refractive index of the polymer solution with respect to the change in the polymer concentration, that is, the increase in the refractive index.
  • K 4 ⁇ 2 ⁇ n 0 2 ⁇ (dn / dc) 2 / ( ⁇ 4 ⁇ N 0 ) ⁇ ⁇ ⁇ (Equation 3)
  • n 0 Refractive index of solvent
  • dn / dc Refractive index increment
  • Wavelength of incident light in vacuum
  • N 0 Avogadro's number
  • Equation 4 The value of the radius of gyration ⁇ S 2> 1/2 at each elution time t i was calculated from the slope of the formula 4.
  • Equation 1 was used as a log-log graph, and the least square
  • the 2 further includes a blower 5, a suction pump 6, a water inlet 7 to be treated, and a water outlet 8 to be treated.
  • the water to be treated that has passed through the element 2 is taken out as permeated water 9.
  • activated sludge with a concentration of 7,000 mg / L is placed in the water tank to be treated and the operation is performed with a permeation flux of 0.9 m / d while supplying air from the air diffuser at 20 L / min, the differential pressure between the membranes was observed over time, and the average differential pressure increase rate (kPa / d) per day was calculated when the operation was performed for 10 days. It can be evaluated that the smaller the average differential pressure increase rate, the lower the fouling property of the porous membrane or the composite membrane.
  • Example 1 50% by mass of branched polyvinylidene fluoride 1 (branched PVDF1, weight average molecular weight 730,000) and 50% by mass of linear polyvinylidene fluoride (linear PVDF, weight average molecular weight 280,000) are mixed to form "PVDF".
  • PEG 20,000 weight average molecular weight 20,000
  • DMF solvent
  • pure water as a non-solvent
  • a in the above formula 1 is 0.38
  • the value of b is 0.24
  • the average pore diameter of the surface of the porous resin layer is 0.050 ⁇ m
  • the minor axis of the macrovoid is 74 ⁇ m
  • the surface of the porous resin layer was 4.4 ⁇ m, and both the pure water permeability, which is an index of water permeability, and the differential pressure increase rate, which is an index of low fouling, showed excellent values.
  • Example 2 The porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 1 except that the branched polyvinylidene fluoride 2 (branched PVDF2, weight average molecular weight 164,000) was set as “PVDF”.
  • the results of evaluating the obtained composite membrane are shown in Table 1.
  • the value of a in the above formula 1 is 0.33
  • the value of b is 0.42
  • the average pore diameter of the surface of the porous resin layer is 0.048 ⁇ m
  • the minor axis of the macrovoid is 59 ⁇ m
  • the porous resin layer The distance of the macrovoid from the surface of the above was 4.8 ⁇ m, and both the pure water permeability and the differential pressure increase rate showed excellent values.
  • Example 3 The porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 1 except that the branched PVDF1 was designated as “PVDF”.
  • the results of evaluating the obtained composite membrane are shown in Table 1.
  • the value of a in the above formula 1 is 0.31
  • the value of b is 0.47
  • the average pore diameter of the surface of the porous resin layer is 0.041 ⁇ m
  • the minor axis of the macrovoid is 92 ⁇ m
  • the porous resin layer The distance of the macrovoid from the surface of the above was 2.8 ⁇ m, and both the pure water permeability and the differential pressure increase rate showed excellent values.
  • Example 4 The porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 3 except that polyoxyethylene sorbitan monolaurate (Tween 20) was used as the pore-forming agent.
  • Table 1 The results of evaluating the obtained composite membrane are shown in Table 1.
  • the value of a in the above formula 1 is 0.31
  • the value of b is 0.47
  • the average pore diameter of the surface of the porous resin layer is 0.053 ⁇ m
  • the minor axis of the macrovoid is 97 ⁇ m
  • the porous resin layer The distance of the macrovoid from the surface of the above was 3.0 ⁇ m, and both the pure water permeability and the differential pressure increase rate showed excellent values.
  • Example 5 The porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 3 except that polyoxyethylene sorbitan monostearate (Tween 60) was used as the pore-forming agent.
  • Table 1 The results of evaluating the obtained composite membrane are shown in Table 1.
  • the value of a in the above formula 1 is 0.31
  • the value of b is 0.47
  • the average pore diameter of the surface of the porous resin layer is 0.063 ⁇ m
  • the minor axis of the macrovoid is 80 ⁇ m
  • the porous resin layer The distance of the macrovoid from the surface of the above was 2.6 ⁇ m, and both the pure water permeability and the differential pressure increase rate showed excellent values.
  • the porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 1 except that the linear PVDF was designated as “PVDF”.
  • the results of evaluating the obtained composite membrane are shown in Table 2.
  • the value of a in the above formula 1 is 0.42
  • the value of b is 0.16
  • the average pore diameter of the surface of the porous resin layer is 0.082 ⁇ m
  • the minor axis of the macrovoid is 32 ⁇ m
  • the surface of the porous resin layer The distance from the macrovoid to the macrovoid was 7.7 ⁇ m, and the differential pressure rise rate was inferior to the result of the example.
  • Example 2 The porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 1 except that PEG400 (weight average molecular weight 400) was used as the pore-forming agent.
  • the results of evaluating the obtained composite membrane are shown in Table 2.
  • the value of a in the above formula 1 is 0.38
  • the value of b is 0.24
  • the average pore diameter of the surface of the porous resin layer is 0.053 ⁇ m
  • the minor axis of the macrovoid is 31 ⁇ m
  • the surface of the porous resin layer The distance from the macrovoid to the macrovoid was 11.1 ⁇ m, and the differential pressure rise rate was inferior to that of the results of the examples.
  • the porous resin layer formed a composite film having a three-dimensional network structure in the same manner as in Example 1 except that PEG 4,000 (weight average molecular weight 4,000) was used as the pore-forming agent.
  • the results of evaluating the obtained composite membrane are shown in Table 2.
  • the value of a in the above formula 1 is 0.38
  • the value of b is 0.24
  • the average pore diameter of the surface of the porous resin layer is 0.052 ⁇ m
  • the minor axis of the macrovoid is 47 ⁇ m
  • the surface of the porous resin layer The distance from the macrovoid to the macrovoid was 7.5 ⁇ m, and the differential pressure rise rate was inferior to the result of the example.
  • porous resin layer had voids having a minor axis of 5 ⁇ m, macrovoids having a minor axis of 10 ⁇ m or more did not exist. Both the pure water permeability and the differential pressure increase rate were inferior to the results of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、ポリフッ化ビニリデン系樹脂を主成分とするポリマーを含む多孔質樹脂層を有し、前記ポリフッ化ビニリデン系樹脂として、分岐ポリフッ化ビニリデン系樹脂を含み、前記多孔質樹脂層は、表面の平均孔径が0.01~0.1μmであり、前記多孔質樹脂層に短径50μm以上のマクロボイドが存在し、GPC-MALS(多角度光散乱検出器を備えたゲル浸透クロマトグラフ)で測定した回転半径〈S2〉1/2とポリマーの絶対分子量Mwから、下記式1で近似して決定される、前記ポリマーについてのaの値が、0.27~0.39であり、かつ、bの値が、0.22~0.60である多孔質膜に関する。 〈S2〉1/2=bMw a ・・・(式1)

Description

多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法
 本発明は、多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法に関する。
 近年、精密ろ過膜や限外ろ過膜等の多孔質膜は、浄水又は排水処理等の水処理分野、血液浄化等の医療分野、食品工業分野等、様々な分野で利用されている。
 上述のように多様に用いられる多孔質膜は、分離対象物質の堆積、付着、閉塞等による透水性の低下(ファウリング)がおこると運転の安定性に支障をきたすことがある。この場合、曝気洗浄の曝気量を多くしたり薬品洗浄頻度を多くしたりする必要があり、高運転コストにつながるため、高透水性で低ファウリングの多孔質膜が求められている。また、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄したりする。このため、多孔質膜には化学的耐久性(耐薬品性)が求められる。さらに、水道水製造では、家畜の糞尿などに由来するクリプトスポリジウムなどの、塩素に対して耐性のある病原性微生物が浄水場で処理しきれず、処理水に混入する事故が1990年代から顕在化している。このような事故を防ぐため、多孔質膜には、原水が処理水に混入しないよう十分な分離特性と高い物理的耐久性が要求されている。
 そこで、これらの要求性能の中で特に化学的耐久性、物理的耐久性を満足するために、ポリフッ化ビニリデン系樹脂を用いた多孔質膜が使用されるようになってきている。例えば特許文献1には、ポリフッ化ビニリデン系樹脂を含むポリマーからなる多孔質膜の孔径分布を制御して、低ファウリング性を向上させる技術が開示されている。また特許文献2においては、多孔質膜が含むポリフッ化ビニリデン系樹脂として長鎖分岐フルオロポリマーを選択することで、多孔質膜の孔径を拡大して透水性を向上させる技術が開示されている。
日本国特許第5310658号公報 日本国特表2016-510688号公報
 しかしながら、低ファウリング性又は透水性の向上を図った、従来のポリフッ化ビニリデン系樹脂を含むポリマーからなる多孔質膜では、トレードオフの関係にある双方の性能を両立させることはできず、そのどちらか一方が犠牲となることが問題視されてきた。
 そこで本発明は、優れた低ファウリング性と透水性とを両立することが可能であり、かつ、高い耐薬品性を有する、多孔質膜を提供することを目的とする。
 上記課題を解決するため、本発明は、次の[1]~[15]を特徴とするものである。
[1]ポリフッ化ビニリデン系樹脂を主成分とするポリマーを含む多孔質樹脂層を有し、
 前記ポリフッ化ビニリデン系樹脂として、分岐ポリフッ化ビニリデン系樹脂を含み、
 前記多孔質樹脂層は、表面の平均孔径が0.01~0.1μmであり、前記多孔質樹脂層に短径50μm以上のマクロボイドが存在し、
 GPC-MALS(多角度光散乱検出器を備えたゲル浸透クロマトグラフ)で測定した回転半径〈S1/2とポリマーの絶対分子量Mから、下記式1で近似して決定される、前記ポリマーについてのaの値が、0.27~0.39であり、かつ、bの値が、0.22~0.60である多孔質膜。
 〈S1/2=bM    ・・・(式1)
[2]前記aの値が、0.29~0.33であり、かつ前記bの値が、0.43~0.50である、前記[1]に記載の多孔質膜。
[3]前記マクロボイドが短径70μm以上である、前記[1]又は[2]に記載の多孔質膜。
[4]前記マクロボイドの少なくとも一部が前記多孔質樹脂層の表面から5μm以内の領域に存在する、前記[1]~[3]のいずれか一に記載の多孔質膜。
[5]前記マクロボイドの少なくとも一部が前記多孔質樹脂層の表面から4μm以内の領域に存在する、前記[1]~[4]のいずれか一に記載の多孔質膜。
[6]前記多孔質樹脂層の表面から15μm以内の領域で前記マクロボイドが占める空隙率が15%以上である、前記[1]~[5]のいずれか一に記載の多孔質膜。
[7]前記多孔質樹脂層の表面から15μm以内の領域で前記マクロボイドが占める空隙率が25%以上である、前記[1]~[6]のいずれか一に記載の多孔質膜。
[8]前記多孔質樹脂層が界面活性剤を含む、前記[1]~[7]のいずれか一に記載の多孔質膜。
[9]前記界面活性剤が、ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する、前記[8]に記載の多孔質膜。
[10]前記多孔質樹脂層が三次元網目構造を有する、前記[1]~[9]のいずれか一に記載の多孔質膜。
[11]前記[1]~[10]のいずれか一に記載の多孔質膜と、他の層と、を備える、複合膜。
[12]前記他の層が、支持体である、前記[11]に記載の複合膜。
[13]前記[1]~[10]のいずれか一に記載の多孔質膜又は前記[11]若しくは[12]に記載の複合膜の製造方法であって、
 (1)ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、重量平均分子量10,000以上のポリエチレングリコールを主成分とする重合体と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液を得る、ポリマー溶液調整工程と、(2)前記ポリマー溶液を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成する多孔質樹脂層形成工程とを備える、多孔質膜又は複合膜の製造方法。
[14]前記[1]~[10]のいずれか一に記載の多孔質膜又は前記[11]若しくは[12]に記載の複合膜の製造方法であって、
 (1)ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、界面活性剤と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液を得る、ポリマー溶液調整工程と、(2)前記ポリマー溶液を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成する多孔質樹脂層形成工程とを備える、多孔質膜又は複合膜の製造方法。
[15]前記界面活性剤がポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する、前記[14]に記載の多孔質膜又は複合膜の製造方法。
 本発明によれば、ポリフッ化ビニリデン系樹脂を主成分とするポリマーを含むことによる高い耐薬品性を確保しつつ、優れた低ファウリング性及び透水性の双方が達成された、多孔質膜を提供することができる。
図1は、「三次元網目構造」を例示する、多孔質膜の拡大画像である。 図2は、本発明の多孔質膜又は複合膜を用いた水処理装置の一例を示す模式図である。
 以下に、本発明の実施形態について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。本明細書において、質量基準の割合(百分率、部など)は、重量基準の割合(百分率、部など)と同じである。 
(多孔質膜)
 本発明の多孔質膜は、ポリフッ化ビニリデン系樹脂を主成分とするポリマー(以下、「特定ポリマー」と称することがある。)を含む多孔質樹脂層を有し、上記ポリフッ化ビニリデン系樹脂として、分岐ポリフッ化ビニリデン系樹脂を含み、下記式1の関係から決定される、上記ポリマー(特定ポリマー)についてのaの値が、0.27~0.39であり、かつ、bの値が、0.22~0.60であることを必要とする。
 〈S1/2=bM    ・・・(式1)
 ここで〈S1/2はポリマーの回転半径、Mは絶対分子量を意味する。高度に分岐したポリフッ化ビニリデン系樹脂を用いることで、上述のa、bの範囲を満たすことができる。
 aの値が0.39以下であることで、特定ポリマーの絶対分子量Mに対して回転半径〈S1/2が適度に小さくなり、多孔質樹脂層が形成される際に特定ポリマーが多孔質樹脂層の表層へと移動しやすくなる。これにより、多孔質樹脂層の表層のポリマー密度が上昇し、多孔質膜(多孔質樹脂層)が優れた低ファウリング性を発現するものと推測される。一方で、aの値が0.27以上であることで、Mに対して〈S1/2が適度に大きくなり、特定ポリマー同士が適度に絡み合いやすくなる。これにより、表層のポリマー密度が均質となって、さらに高い低ファウリング性が発現するものと推測される。さらに多孔質樹脂層の表層のポリマー密度の上昇に伴って、内層のポリマー密度は低下するため、優れた低ファウリング性と同時に、高い透水性が発現するものと推測される。aの値は、0.29以上が好ましい。また、aの値は0.33以下が好ましく、0.32以下がより好ましい。
 上記特定ポリマーについてのbの値は、特定ポリマー同士の絡み合いによる表層のポリマー密度の均質化によって、さらに低ファウリング性を高めるため、0.22~0.60である必要がある。また、bの値は0.43以上が好ましい。bの値は0.50以下が好ましい。
 本発明において、ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデン単独重合体又はフッ化ビニリデン共重合体をいう。ここでフッ化ビニリデン共重合体とは、フッ化ビニリデン残基構造を有するポリマーをいい、典型的には、フッ化ビニリデンモノマーと、それ以外のフッ素系モノマー等との共重合体である。そのようなフッ素系モノマーとしては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン又は三フッ化塩化エチレンが挙げられる。フッ化ビニリデン共重合体は、本発明の効果を損なわない程度に、上記フッ素系モノマー以外のエチレン等が共重合されていても構わない。
 ポリフッ化ビニリデン系樹脂の重量平均分子量は、大きすぎると多孔質膜(多孔質樹脂層)の透水性が低下し、小さすぎると多孔質膜(多孔質樹脂層)の低ファウリング性が低下するため、5万~100万が好ましい。多孔質膜が、薬液洗浄に晒される水処理用途に供される場合、重量平均分子量は10万以上が好ましく、15万以上がより好ましい。また、重量平均分子量は90万以下が好ましく、80万以下がより好ましい。
 本発明の多孔質膜は、ポリフッ化ビニリデン系樹脂を主成分とするポリマーを含む多孔質樹脂層を有することが必要である。「ポリフッ化ビニリデン系樹脂を主成分とする」とは、多孔質樹脂層を構成するポリマー(特定ポリマー)に占めるポリフッ化ビニリデン系樹脂の割合が、50質量%以上であることをいう。上記割合は、高い耐薬品性を確保するため、55質量%以上であることが好ましく、60質量%以上であることがより好ましい。
 上記のa及びbの値は、多角度光散乱検出器(以下、「MALS」)および示差屈折率計(以下、「RI」)を備えた、ゲル浸透クロマトグラフ(以下、「GPC」)であるGPC-MALSにより測定される、回転半径〈S1/2と、絶対分子量Mとの関係に基づき、決定することができる。GPC-MALSによる測定は、多孔質樹脂層を構成するポリマーを、溶媒に溶解して行う。溶媒には、ポリマーの溶解性を向上させるため、塩を添加しても構わない。ポリフッ化ビニリデン系樹脂についてGPC-MALSによる測定をする場合において、溶媒としては、例えば、0.1mol/Lの塩化リチウムを添加した、N-メチル-2-ピロリドン(以下、「NMP」)を用いることが好ましい。
 GPC-MALSにより測定される、回転半径〈S1/2と、絶対分子量Mとの関係について、コンフォメーションプロットと呼ばれる、ポリマーの研究において一般的に用いられる手法によって下記式1のように近似することで、上記a及びbの値を決定することができる。このような手法は例えば「サイズ排除クロマトグラフィー」(森定雄著、共立出版株式会社、初版、1992年)に記載されているように一般的である。なお、コンフォメーションプロットの近似は、検出器の測定範囲内となる範囲で、式1を両対数グラフとし、最小二乗法を適用して直線近似すればよい。
 〈S1/2=bM    ・・・(式1)
 上記特定ポリマーについてのaの値を0.27~0.39の範囲により簡便に調整するため、本発明のポリフッ化ビニリデン系樹脂に占める分岐したポリフッ化ビニリデン系樹脂の割合は、10~100質量%が好ましく、25~100質量%がより好ましい。
 また、aの値を0.27~0.39の範囲により簡便に調整するため、分岐ポリフッ化ビニリデン系樹脂の重量平均分子量は、5万~100万が好ましく、10万~90万がより好ましく、15万~80万がさらに好ましい。
 ここで「分岐ポリフッ化ビニリデン系樹脂」とは、上記のaの値が、0.41以下のポリフッ化ビニリデン系樹脂をいう。
 本発明の多孔質膜は、表層のポリマー密度を高め、優れた低ファウリング性を発現させるため、多孔質樹脂層の表面の平均孔径が0.01~0.1μmの範囲であることを必要とする。多孔質樹脂層の表面の平均孔径は、0.02μm以上が好ましく、0.03μm以上がさらに好ましい。また、多孔質樹脂層の表面の平均孔径は0.08μm以下が好ましく、0.06μm以下がより好ましく、0.04μm以下がさらに好ましい。
 多孔質樹脂層の表面の平均孔径は以下のように測定される。
 多孔質樹脂層の表面を1万倍の倍率で走査型電子顕微鏡(以下、SEM)を用いて観察し、各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を、表面の平均孔径とすることができる。
 本発明の多孔質膜は、透過水が多孔質膜内を流れるときの流動抵抗を低減するために、多孔質樹脂層に短径50μm以上のマクロボイドが存在することを必要とする。ここで、マクロボイドとは、多孔質樹脂層に存在する、短径が10μm以上の大きな空隙のことである。短径とは、多孔質樹脂層表面と平行方向における直径を示す。本発明において、多孔質樹脂層に短径70μm以上のマクロボイドが存在することが好ましく、短径80μm以上のマクロボイドが存在することがより好ましい。
 本発明の多孔質膜は、透過水が多孔質膜内を流れるときの流動抵抗を低減し、高い透水性を発現させるため、マクロボイドの少なくとも一部が多孔質樹脂層の表面から5μm以内の領域に存在することが好ましい。表面からマクロボイドの距離は、4μm以内であることがより好ましく、3μm以内であることがさらに好ましい。
 透過水が多孔質膜内を流れるときの流動抵抗を低減するために、本発明の多孔質樹脂層の表面から15μm以内の領域でマクロボイドが占める空隙率は、15%以上であることが好ましく、25%以上であることがより好ましく、40%以上であることがさらに好ましい。
 一方、多孔質膜の強度の観点から、マクロボイドの大きさは、300μm以下にとどめるのが好ましい。また、多孔質樹脂層の表面からマクロボイドまでの距離は、表面から1μm以上にとどめるのが好ましい。多孔質樹脂層の表面から15μm以内の領域でマクロボイドが占める空隙率は、80%以下にとどめるのが好ましい。
 透過水が多孔質膜内を流れるときの流動抵抗を低減するために、本発明の多孔質樹脂層表面の平均孔径に対するマクロボイドの短径の比率は、700以上であることが好ましく、1000以上であることがより好ましい。
 ここで、多孔質樹脂層に存在するマクロボイドの大きさは、多孔質樹脂層の表面に対し垂直な方向の断面をSEMで観察することによって求めることができる。
 表面からマクロボイドの距離やマクロボイドが占める空隙率は、共焦点レーザー顕微鏡を用いて、蛍光物質で染色した多孔質樹脂層を、多孔質樹脂層表面とレーザー光の軸方向が垂直になるように設置し、表面と平行な面として200μm×200μmの範囲を、表面から40μmまでの領域を0.2μm毎に観察し、得られた画像を繋ぎ合わせた三次元画像から、多孔質樹脂層の表面に垂直方向の断面画像を抽出して求めることができる。
 本発明の多孔質膜において、多孔質樹脂層は、特定ポリマー同士の絡み合いによる表層のポリマー密度の均質化によって、さらに低ファウリング性を高めるため、三次元網目構造を有することが好ましい。ここで「三次元網目構造」とは、図1に示すように、本発明の多孔質樹脂層を構成するポリマーが、三次元的に、網目状に広がっている構造をいう。三次元網目構造は、網目を形成するポリマーに仕切られた、細孔及びボイドを有する。
 多孔質樹脂層は、ポリフッ化ビニリデン系樹脂を主成分とするポリマーからなることが好ましい。ただし多孔質樹脂層は、本発明の効果を阻害しない範囲で他の成分を含んでもよい。他の成分としては、例えば、後述するポリマー溶液に含まれる溶媒や開孔剤が挙げられる。これらの成分は、多孔質樹脂層の形成後、洗浄しても完全に除去できない場合があるため多孔質樹脂層に含まれることがある。
(複合膜)
 本発明の複合膜は、本発明の多孔質膜と、他の層と、を備えることを特徴とする。
 上記の他の層は、多孔質膜と重なり層状を形成することが可能な構成要素であれば特に限定はされない。上記の他の層は、支持体であることが好ましい。ここで「支持体」とは、多孔質膜を支持して複合膜に強度を与えるものである。支持体の材質としては、有機材料、無機材料等、特に限定はされないが、軽量化しやすい点から、有機繊維が好ましい。材質は、さらに好ましくは、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維などの有機繊維からなる織布や不織布のようなものである。なかでも、材質は、密度の制御が比較的容易であり、製造も容易で安価な不織布が好ましい。
 支持体の厚みは、薄すぎると複合膜としての強度を保ちにくくなり、また、極端に厚いと透水性が低下しがちになるので、50μm~1mmの範囲にあるのが好ましい。支持体の厚みは、最も好ましくは、70~500μmの範囲である。
 多孔質膜又は複合膜における多孔質樹脂層の厚みは、50μm以上が好ましく、80μm以上がより好ましく、100μm以上がさらに好ましい。また、多孔質樹脂層の厚みは500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。多孔質樹脂層が薄すぎると支持体が露出し、汚れ成分が支持体に付着してろ過圧が上昇したり、洗浄してもろ過性能が十分に回復しなかったりする場合がある。また、多孔質樹脂層が厚すぎると透水量が低下することがある。
 多孔質樹脂層を形成している樹脂の一部は、支持体の少なくとも表層部に入り込み、その少なくとも表層部において支持体との複合層を形成していることが好ましい。支持体に樹脂が入り込むことで、いわゆるアンカー効果によって多孔質膜が支持体に堅固に定着され、多孔質膜が支持体から剥がれるのを防止できるようになる。
 本発明の多孔質膜又は複合膜は、運転圧力を低くできる点やファウリングの進行を抑制できる点から、25℃、5kPaにおける純水透水性が、0.1m/m/hr以上であることが好ましく、0.5m/m/hr以上であることがより好ましい。
(多孔質膜又は複合膜の製造方法)
 上述した本発明の多孔質膜又は複合膜は、典型的には、以下において説明するような方法によって製造することができる。
 本発明の多孔質膜又は複合膜は、例えば、次の(1)及び(2)の工程を含む方法により製造できる。
 (1)ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、開孔剤と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液を得る、ポリマー溶液調整工程。
 (2)前記ポリマー溶液を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成する多孔質樹脂層形成工程。
 また、本発明の複合膜において、他の層が支持体である場合の製造方法としては、例えば、上記(1)及び(2)の工程を含み、(2)多孔質樹脂層形成工程において、支持体の少なくとも一方の表面に多孔質樹脂層を形成する方法が挙げられる。
 すなわち、まず、前述した支持体の表面に、上述した樹脂(ポリフッ化ビニリデン系樹脂を主成分とするポリマー)と開孔剤と溶媒とを含む原液(ポリマー溶液)の被膜を形成するとともに、その原液を支持体に含浸させる。しかる後、該支持体を、非溶媒を含む凝固浴に浸漬して樹脂を凝固させるとともに支持体の表面に多孔質樹脂層を形成する。原液に、さらに非溶媒を含むことも好ましい。原液の温度は、製膜性の観点から、通常、15~120℃の範囲内で選定することが好ましい。
 支持体の密度は、0.7g/cm以下が好ましく、より好ましくは0.6g/cm以下である。支持体の密度がこの範囲であれば、多孔質樹脂層を形成する樹脂を受け入れ、支持体と樹脂との適度な複合層を形成するのに適している。しかしながら、極端に低密度になると複合膜としての強度が低下しがちになるので、支持体の密度は0.3g/cm以上であるのが好ましい。ここでいう密度とは、見かけ密度であり、支持体の面積、厚さと重量から求めることができる。
 開孔剤は、凝固浴に浸漬された際に抽出されて、樹脂層を多孔質にする作用を持つものである。開孔剤は、凝固浴への溶解性の高いものであるのが好ましい。例えば、塩化カルシウム、炭酸カルシウムなどの無機塩を用いることができる。また、ポリエチレングリコール(PEG)、ポリプロピレングリコールなどのポリオキシアルキレン類や、ポリビニルアルコール、ポリビニルブチラール、ポリアクリル酸などの水溶性高分子、グリセリン、界面活性剤等を用いることができる。開孔剤は、任意に選択することができるが、PEGを主成分とする重合体、又は界面活性剤が好ましい。中でも、上記式1の関係から決定されるaの値が、0.27~0.39であり、かつ、bの値が、0.22~0.60であるポリフッ化ビニリデン系樹脂を特定ポリマーとして用いる場合、開孔剤としては、重量平均分子量が10,000以上のPEGを主成分とする重合体、又はポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する界面活性剤を用いることが特に好ましい。これらを開孔剤として用いることで、マクロボイドが多孔質樹脂層の表面から5μm以内の領域に存在しやすくなる。なお、ここで「主成分とする」とは、当該成分を50重量%以上含むことをいう。
 ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する界面活性剤としては、例えば、モノオレイン酸ポリエチレングリコール、モノステアリン酸ポリエチレングリコール、モノラウリン酸ポリオキシエチレンソルビタン(Tween20)、モノステアリン酸ポリオキシエチレンソルビタン(Tween60)、モノオレイン酸ポリオキシエチレンソルビタン(Tween80)等が挙げられる。マクロボイドを多孔質樹脂層の表面から5μm以内の領域に存在しやすくするために、上記界面活性剤としてはモノラウリン酸ポリオキシエチレンソルビタン(Tween20)、モノステアリン酸ポリオキシエチレンソルビタン(Tween60)、モノオレイン酸ポリオキシエチレンソルビタン(Tween80)が好ましい。
 溶媒は、樹脂を溶解するものである。溶媒は、樹脂および開孔剤に作用してそれらが多孔質樹脂層を形成するのを促す。溶媒としては、NMP、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、メチルエチルケトンなどを用いることができる。なかでも、樹脂の溶解性の高いNMP、DMAc、DMF、DMSOを好ましく用いることができる。
 非溶媒は、樹脂を溶解しない液体である。非溶媒は、樹脂の凝固の速度を制御して細孔やマクロボイドの大きさを制御するように作用する。非溶媒としては、水や、メタノール、エタノールなどのアルコール類を用いることができる。なかでも、非溶媒は、廃水処理の容易さや価格の点から水やメタノールが好ましい。非溶媒は、これらを含む混合物であってもよい。
 ポリマー溶液調整工程において、ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、開孔剤と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液(原液)を得ることが好ましい。原液は非溶媒を含むことも好ましい。原液において、樹脂は5~30重量%、開孔剤は0.1~15重量%、溶媒は40~94.9重量%、非溶媒は0~20重量%の範囲内にあるのが好ましい。樹脂が極端に少ないと多孔質膜(多孔質樹脂層)の強度が低くなり、多すぎると透水性が低下することがある。原液中の樹脂含有量は、より好ましくは8~20重量%の範囲内である。また、開孔剤は、少なすぎると透水性が低下し、多すぎると多孔質膜(多孔質樹脂層)の強度が低下したりすることがある。また、極端に多いと多孔質樹脂層中に残存して使用中に溶出し、透過水の水質が悪化したり、透水性が変動したりすることがある。原液中の開孔剤含有量の、より好ましい範囲は、0.5~10重量%である。さらに、溶媒は、少なすぎると原液がゲル化しやすくなり、多すぎると多孔質膜(多孔質樹脂層)の強度が低下することがある。原液中の溶媒含有量は、より好ましくは、60~90重量%の範囲である。
 原液に非溶媒を添加すると、多孔質樹脂層表面の細孔の大きさが均一になり易いため好ましい。また、マクロボイドの大きさの制御も制御しやすくなる。ただし、原液中の非溶媒の割合が多すぎると原液のゲル化が起こりやすくなる。原液において、溶媒は40~94.8重量%、非溶媒は0.1~20重量%の範囲内にあるのが好ましい。より好ましくは、溶媒が40~94.4重量%、非溶媒が、0.5~15重量%の範囲である。
 多孔質樹脂層形成工程において、上述のポリマー溶液(原液)を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成することが好ましい。凝固浴は、非溶媒、又は非溶媒と溶媒とを含む混合液を用いることができる。凝固浴において、非溶媒は、原液に非溶媒を用いる場合には、少なくとも80重量%とするのが好ましい。少なすぎると樹脂の凝固速度が遅くなり、表面の孔径が大きくなったり、マクロボイドが生成されにくくなったりする。原液に非溶媒を用いる場合、凝固浴における非溶媒の割合は、より好ましくは85~100重量%の範囲である。
 一方、原液に非溶媒を用いない場合には、原液に非溶媒を用いる場合よりも、凝固浴中の非溶媒の含有量を少なくすることが好ましく、少なくとも60重量%とするのが好ましい。非溶媒が多いと、樹脂の凝固速度が速くなって多孔質樹脂層の表面は緻密になり、内部にはマクロボイドを生成するようになるが、多孔質樹脂層の表面に微細な亀裂が発生することがある。この場合、非溶媒の含有量のより好ましい範囲は、60~99重量%である。凝固浴中の溶媒の含有量を調整することにより、多孔質樹脂層表面の孔径やマクロボイドの大きさを制御することができる。なお、凝固浴の温度は、あまり高いと凝固速度が速すぎるようになり、逆に、あまり低いと凝固速度が遅すぎるようになるので、通常、15~80℃の範囲内で選定することが好ましい。より好ましい温度範囲は、20~60℃である。
 他の層が支持体である複合膜を形成する場合は、多孔質樹脂層形成工程において、支持体の少なくとも一方の表面に多孔質樹脂層を形成することが好ましい。支持体への原液の被膜の形成は、支持体に原液を塗布することによったり、支持体を原液に浸漬することによったりすることができる。原液を塗布する場合には、支持体の片面に塗布しても構わないし、両面に塗布しても構わない。このとき、原液の組成にもよるが、密度が0.7g/cm以下である支持体を使用していると、支持体に対する原液の適度な含浸が行われるため好ましい。
 多孔質樹脂層形成工程の後、溶媒や開孔剤を除去するための洗浄工程を設けることが好ましい。洗浄の方法は溶媒や開孔剤の種類に応じて適宜選択でき、特に限定されないが、例えば60~100℃の熱水に1~10分間浸漬する方法が挙げられる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。
 (i)多孔質樹脂層表面の平均孔径
 多孔質膜又は複合膜における、多孔質樹脂層の表面について、SEM(株式会社日立ハイテク製;S-5500)を用いて、下記の観察条件で観察し、無作為に選択した孔300個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を表面の平均孔径とした。
 加速電圧:5kV
 観察倍率:1万倍
 画像処理ソフト:ImageJ(Wayne Rasband,National  Institutes of Health)
 (ii)多孔質樹脂層のマクロボイドの短径
 多孔質膜又は複合膜を凍結超薄切片法にて断面測定用サンプルを作成し、SEM(株式会社日立ハイテク製;S-5500)を用いて、下記の観察条件で観察されるマクロボイドの大きさからマクロボイドの短径を算出した。
 加速電圧:5kV
 観察倍率:500倍
 観察領域:256μm×192μm
 なお、任意の10視野について測定を行い、観察されたマクロボイドの短径を測定し、平均値を多孔質樹脂層のマクロボイドの短径とした。
 (iii)多孔質樹脂層の表面からマクロボイドの距離
 多孔質膜又は複合膜を、蛍光物質(3,3,3’,3’-テトラメチル-1,1’-ビス(4-スルホブチル)インドカルボシアニンナトリウム)で染色し、共焦点レーザー顕微鏡(オリンパス株式会社製;FV3000)を用いて、多孔質樹脂層表面とレーザー光の軸方向が垂直になるように設置し、表面と平行な面として200μm×200μmの範囲を、表面から40μmまでの領域を0.2μm毎に観察した。得られた画像を繋ぎ合わせた三次元画像から、多孔質樹脂層の表面に垂直方向の断面画像を5枚抽出し、表面からマクロボイドの距離を測定した。
 なお、各画像で任意の10点について測定を行い、合計50点の平均値を、表面からのマクロボイドの距離とした。
 (iv)多孔質樹脂層の表面から15μm以内の領域でマクロボイドが占める空隙率
 多孔質膜又は複合膜を、蛍光物質(3,3,3’,3’-テトラメチル-1,1’-ビス(4-スルホブチル)インドカルボシアニンナトリウム)で染色し、共焦点レーザー顕微鏡(オリンパス株式会社製;FV3000)を用いて、多孔質樹脂層表面とレーザー光の軸方向が垂直になるように設置し、表面と平行な面として200μm×200μmの範囲を、表面から40μmまでの領域を0.2μm毎に観察した。得られた画像を繋ぎ合わせた三次元画像から、多孔質樹脂層の表面に垂直方向の断面画像を抽出し、表面から15μmまでの面積S1を算出した。観察された断面画像を樹脂からなる構造部と細孔部とで二値化処理し、多孔質樹脂層の表面から15μm以内を占めるマクロボイドの面積S2を算出した。下記式2から空隙率(%)を算出した。
 (空隙率)=S2/S1×100  ・・・(式2)
 なお、任意の5枚の画像を測定し、その平均値を空隙率とした。
 (v)多孔質樹脂層を構成するポリマー(特定ポリマー)についてのa値及びb値
 蒸留水中に浸漬した多孔質膜又は複合膜を、クライオスタット(Leica社製;Jung CM3000)を用いて-20℃で凍結し、多孔質樹脂層の切片(複合膜においては、表面部の多孔質樹脂層の切片)を採取して、25℃で1晩、真空乾燥した。真空乾燥後の5mgの多孔質樹脂層に、5mLの0.1M塩化リチウム添加NMPを加え、50℃で約2時間撹拌した。得られたポリマー溶液を、以下の条件でGPC-MALS(カラム:昭和電工株式会社製;Shodex KF-806M φ8.0mm×30cm 2本を直列に接続、示差屈折率計:Wyatt Technology社製;Optilab rEX、MALS:Wyatt Technology社製;DAWN HeLEOS)に注入して測定した。注入したポリマー溶液は、27~43分間の範囲でカラムから溶出した。
 カラム温度 : 50℃
 検出器温度 : 23℃
 溶媒 : 0.1M塩化リチウム添加NMP
 流速 : 0.5mL/min
 注入量 : 0.3mL
 RIから得られた、溶出時間tのときのポリマー濃度c、MALSから得られた、溶出時間tのときの過剰レーリー比Rθiから、sin(θ/2)と(K×c/Rθi1/2とのプロットを行い(Berry plot又はZimm plot;下記式4)、その近似式のθ→0の値から、各溶出時間tにおける絶対分子量Mwiを算出した。ここで、Kは光学定数であり、下記式3から算出される。なお式3におけるdn/dcは、ポリマー濃度の変化に対するポリマー溶液の屈折率の変化量、すなわち屈折率増分であるが、ポリフッ化ビニリデン系樹脂を主成分とするポリマーを測定対象とし、かつ上記の溶媒を用いる場合には、屈折率増分として-0.050mL/gの値を適用することができる。
 K=4π×n ×(dn/dc)/(λ×N)  ・・・(式3)
  n : 溶媒の屈折率
  dn/dc : 屈折率増分
  λ : 入射光の真空中での波長
  N : アボガドロ数
 また、各溶出時間tにおける回転半径〈S1/2の値は、下記式4の傾きから算出した。
 (Kc/Rθi1/2=Mwi -1/2{1+1/6(4πn/λ)〈S〉sin(θ/2)}   ・・・(式4)
 式4から算出される、各溶出時間tにおける絶対分子量Mwiをx軸にとって、かつ、各溶出時間tにおける回転半径〈S1/2をy軸にとってプロットし、検出器の測定範囲内となるように分子量14~100万の範囲で、上記の式1で近似して、多孔質樹脂層を構成するポリマー(特定ポリマー)についてのaの値及びbの値を求めた。なお、近似は式1を両対数グラフとし、最小二乗法を適用して直線近似した。
 (vi)多孔質膜又は複合膜の純水透水性
 多孔質膜を直径50mmの円形に切り出し、円筒型のろ過ホルダー(アドバンテック東洋株式会社製、ウルトラホルダーUHP-43K)にセットし、蒸留水を25℃で、圧力5kPaで5分間予備透過させた後、続けて透過させて透過水を3分間採取し、単位時間(h)及び単位膜面積(m)当たりの数値に換算して算出した。なお、多孔質膜に加えて支持体を備える複合膜については、支持体を含めた複合膜全体について評価を行った。
 (vii)多孔質膜又は複合膜の差圧上昇速度
 多孔質膜又は複合膜を用い、上部にろ過水取出口を有する縦320mm、横220mm、厚み5mmの支持枠の両面にプラスチックネットを介して多孔質膜又は複合膜を貼り付け、エレメントを得た。このエレメント2を、縦500mm、横150mm、高さ700mmであるモジュール1に入れ、底部に散気装置3を有する被処理水槽4に収容した(図2)。図2に示す水処理装置は、さらにブロア5、吸引ポンプ6、被処理水入口7、及び被処理水出口8を備える。エレメント2を通過した被処理水は透過水9として取り出される。
 被処理水槽に濃度が7,000mg/Lの活性汚泥を入れ、散気装置から空気を20L/分で供給しつつ、透過流束0.9m/dで運転を行った際に膜間差圧を経時的に観察し、10日間運転を行った際の、1日あたりの平均差圧上昇速度(kPa/d)を算出した。平均差圧上昇速度が小さい程、多孔質膜又は複合膜がより低ファウリング性であると評価できる。
(実施例1) 
 50質量%の分岐ポリフッ化ビニリデン1(分岐PVDF1、重量平均分子量73万)と、50質量%の直鎖ポリフッ化ビニリデン(直鎖PVDF、重量平均分子量28万)とを混合して「PVDF」として、開孔剤としてPEG20,000(重量平均分子量20,000)、溶媒としてDMF、非溶媒として純水を加えて90℃の温度下で十分に攪拌し、次に示す組成比のポリマー溶液を調製した。
 PVDF:17重量%
 PEG20,000:9重量%
 DMF:70重量%
 純水:4重量%
 次いで、密度0.6g/cmのポリエステル繊維製不織布を支持体として、その表面に、調製したポリマー溶液を塗布した。塗布後、直ちに20℃の純水中に5分間浸漬して多孔質樹脂層を形成した。さらに90℃の熱水に2分間浸漬して溶媒であるDMFおよび開孔剤であるPEGを洗い流して、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表1に示す。上記式1におけるaの値は0.38、bの値は0.24であり、多孔質樹脂層の表面の平均孔径は0.050μm、マクロボイドの短径は74μm、多孔質樹脂層の表面からマクロボイドの距離は4.4μmであり、透水性能の指標である純水透水性と、低ファウリング性の指標である差圧上昇速度とは、いずれも優れた値を示した。
 (実施例2)
 分岐ポリフッ化ビニリデン2(分岐PVDF2、重量平均分子量16.4万)を「PVDF」とした以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表1に示す。上記式1におけるaの値は0.33、bの値は0.42であり、多孔質樹脂層の表面の平均孔径は0.048μm、マクロボイドの短径は59μmであり、多孔質樹脂層の表面からマクロボイドの距離は4.8μmであり、純水透水性と差圧上昇速度とは、いずれも優れた値を示した。
 (実施例3)
 分岐PVDF1を「PVDF」とした以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表1に示す。上記式1におけるaの値は0.31、bの値は0.47であり、多孔質樹脂層の表面の平均孔径は0.041μm、マクロボイドの短径は92μmであり、多孔質樹脂層の表面からマクロボイドの距離は2.8μmであり、純水透水性と差圧上昇速度とは、いずれも優れた値を示した。
 (実施例4)
 開孔剤としてモノラウリン酸ポリオキシエチレンソルビタン(Tween20)を用いた以外は実施例3と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表1に示す。上記式1におけるaの値は0.31、bの値は0.47であり、多孔質樹脂層の表面の平均孔径は0.053μm、マクロボイドの短径は97μmであり、多孔質樹脂層の表面からマクロボイドの距離は3.0μmであり、純水透水性と差圧上昇速度とは、いずれも優れた値を示した。
 (実施例5)
 開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン(Tween60)を用いた以外は実施例3と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表1に示す。上記式1におけるaの値は0.31、bの値は0.47であり、多孔質樹脂層の表面の平均孔径は0.063μm、マクロボイドの短径は80μmであり、多孔質樹脂層の表面からマクロボイドの距離は2.6μmであり、純水透水性と差圧上昇速度とは、いずれも優れた値を示した。
 (比較例1)
 直鎖PVDFを「PVDF」とした以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。 
 得られた複合膜を評価した結果を、表2に示す。上記式1におけるaの値は0.42、bの値は0.16であり、多孔質樹脂層の表面の平均孔径は0.082μm、マクロボイドの短径は32μm、多孔質樹脂層の表面からマクロボイドの距離は7.7μmであり、差圧上昇速度は、実施例の結果と比較して劣るものであった。
 (比較例2)
 開孔剤としてPEG400(重量平均分子量400)を用いた以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表2に示す。上記式1におけるaの値は0.38、bの値は0.24であり、多孔質樹脂層の表面の平均孔径は0.053μm、マクロボイドの短径は31μm、多孔質樹脂層の表面からマクロボイドの距離は11.1μmであり、差圧上昇速度は、実施例の結果と比較して劣るものであった。
 (比較例3)
 開孔剤としてPEG4,000(重量平均分子量4,000)を用いた以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 得られた複合膜を評価した結果を、表2に示す。上記式1におけるaの値は0.38、bの値は0.24であり、多孔質樹脂層の表面の平均孔径は0.052μm、マクロボイドの短径は47μm、多孔質樹脂層の表面からマクロボイドの距離は7.5μmであり、差圧上昇速度は、実施例の結果と比較して劣るものであった。
 (比較例4)
 分岐PVDF1を「PVDF」として、溶媒としてDMF、非溶媒として純水を加えて90℃の温度下で十分に攪拌し、次に示す組成比のポリマー溶液を調製した以外は実施例1と同様にして、多孔質樹脂層が三次元網目構造を有する複合膜を形成した。
 PVDF:17.0重量%
 DMF:79重量%
 純水:4重量%
 得られた複合膜を評価した結果を、表2に示す。上記式1におけるaの値は0.31、bの値は0.47であり、多孔質樹脂層の表面の平均孔径は0.036μmであった。また、多孔質樹脂層には短径5μmの空隙が存在したものの、短径10μm以上のマクロボイドは存在しなかった。純水透水性と差圧上昇速度とは、いずれも実施例の結果と比較して劣るものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年11月29日出願の日本特許出願(特願2019-216109及び特願2019-216110)並びに2020年6月23日出願の日本特許出願(特願2020-107428)に基づくものであり、その内容はここに参照として取り込まれる。
 1 モジュール
 2 エレメント
 3 散気装置
 4 被処理水槽
 5 ブロア
 6 吸引ポンプ
 7 被処理水入口
 8 被処理水出口
 9 透過水

Claims (15)

  1.  ポリフッ化ビニリデン系樹脂を主成分とするポリマーを含む多孔質樹脂層を有し、
     前記ポリフッ化ビニリデン系樹脂として、分岐ポリフッ化ビニリデン系樹脂を含み、
     前記多孔質樹脂層は、表面の平均孔径が0.01~0.1μmであり、前記多孔質樹脂層に短径50μm以上のマクロボイドが存在し、
     GPC-MALS(多角度光散乱検出器を備えたゲル浸透クロマトグラフ)で測定した回転半径〈S1/2とポリマーの絶対分子量Mから、下記式1で近似して決定される、前記ポリマーについてのaの値が、0.27~0.39であり、かつ、bの値が、0.22~0.60である多孔質膜。
     〈S1/2=bM    ・・・(式1)
  2.  前記aの値が、0.29~0.33であり、かつ前記bの値が、0.43~0.50である、請求項1に記載の多孔質膜。
  3.  前記マクロボイドが短径70μm以上である、請求項1又は2に記載の多孔質膜。
  4.  前記マクロボイドの少なくとも一部が前記多孔質樹脂層の表面から5μm以内の領域に存在する、請求項1~3のいずれか一項に記載の多孔質膜。
  5.  前記マクロボイドの少なくとも一部が前記多孔質樹脂層の表面から4μm以内の領域に存在する、請求項1~4のいずれか一項に記載の多孔質膜。
  6.  前記多孔質樹脂層の表面から15μm以内の領域で前記マクロボイドが占める空隙率が15%以上である、請求項1~5のいずれか一項に記載の多孔質膜。
  7.  前記多孔質樹脂層の表面から15μm以内の領域で前記マクロボイドが占める空隙率が25%以上である、請求項1~6のいずれか一項に記載の多孔質膜。
  8.  前記多孔質樹脂層が界面活性剤を含む、請求項1~7のいずれか一項に記載の多孔質膜。
  9.  前記界面活性剤が、ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する、請求項8に記載の多孔質膜。
  10.  前記多孔質樹脂層が三次元網目構造を有する、請求項1~9のいずれか一項に記載の多孔質膜。
  11.  請求項1~10のいずれか一項に記載の多孔質膜と、他の層と、を備える、複合膜。
  12.  前記他の層が、支持体である、請求項11に記載の複合膜。
  13.  請求項1~10のいずれか一項に記載の多孔質膜又は請求項11若しくは12に記載の複合膜の製造方法であって、
     (1)ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、重量平均分子量10,000以上のポリエチレングリコールを主成分とする重合体と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液を得る、ポリマー溶液調整工程と、(2)前記ポリマー溶液を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成する多孔質樹脂層形成工程とを備える、多孔質膜又は複合膜の製造方法。
  14.  請求項1~10のいずれか一項に記載の多孔質膜又は請求項11若しくは12に記載の複合膜の製造方法であって、
     (1)ポリフッ化ビニリデン系樹脂を主成分とするポリマーと、界面活性剤と溶媒を用い、前記ポリフッ化ビニリデン系樹脂を主成分とするポリマーを溶解させポリマー溶液を得る、ポリマー溶液調整工程と、(2)前記ポリマー溶液を、非溶媒を含む凝固浴中で凝固させて、多孔質樹脂層を形成する多孔質樹脂層形成工程とを備える、多孔質膜又は複合膜の製造方法。
  15.  前記界面活性剤がポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基を有する、請求項14に記載の多孔質膜又は複合膜の製造方法。
PCT/JP2020/043089 2019-11-29 2020-11-18 多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法 WO2021106726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020568355A JPWO2021106726A1 (ja) 2019-11-29 2020-11-18

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019216109 2019-11-29
JP2019-216110 2019-11-29
JP2019216110 2019-11-29
JP2019-216109 2019-11-29
JP2020-107428 2020-06-23
JP2020107428 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021106726A1 true WO2021106726A1 (ja) 2021-06-03

Family

ID=76129271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043089 WO2021106726A1 (ja) 2019-11-29 2020-11-18 多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021106726A1 (ja)
WO (1) WO2021106726A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064240A1 (fr) * 2001-02-16 2002-08-22 Toray Industries, Inc. Film de separation, element de film de separation, module de film de separation, dispositif de traitement d'eaux usees et residuaires, et procede de fabrication de film de separation
JP2004202438A (ja) * 2002-12-26 2004-07-22 Toray Ind Inc 多孔質膜
US20150202576A1 (en) * 2012-12-21 2015-07-23 Lg Electronics Inc. Hollow-fibre membrane having novel structure, and production method therefor
JP2017029934A (ja) * 2015-08-03 2017-02-09 株式会社クラレ 中空糸膜、及び中空糸膜の製造方法
JP2017213515A (ja) * 2016-05-31 2017-12-07 株式会社クラレ 多孔質膜、複合膜、及び多孔質膜の製造方法
JP2018039003A (ja) * 2016-08-31 2018-03-15 東レ株式会社 複合半透膜およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064240A1 (fr) * 2001-02-16 2002-08-22 Toray Industries, Inc. Film de separation, element de film de separation, module de film de separation, dispositif de traitement d'eaux usees et residuaires, et procede de fabrication de film de separation
JP2004202438A (ja) * 2002-12-26 2004-07-22 Toray Ind Inc 多孔質膜
US20150202576A1 (en) * 2012-12-21 2015-07-23 Lg Electronics Inc. Hollow-fibre membrane having novel structure, and production method therefor
JP2017029934A (ja) * 2015-08-03 2017-02-09 株式会社クラレ 中空糸膜、及び中空糸膜の製造方法
JP2017213515A (ja) * 2016-05-31 2017-12-07 株式会社クラレ 多孔質膜、複合膜、及び多孔質膜の製造方法
JP2018039003A (ja) * 2016-08-31 2018-03-15 東レ株式会社 複合半透膜およびその製造方法

Also Published As

Publication number Publication date
JPWO2021106726A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
Ma et al. High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer
JP5732719B2 (ja) 分離膜およびその製造方法
JP6020592B2 (ja) 多孔質中空糸膜及びその製造方法
JP5576866B2 (ja) フッ化ビニリデン系樹脂多孔膜の製造方法
KR101292485B1 (ko) 불소 수지계 고분자 분리막 및 그의 제조 방법
JP2010094670A (ja) ポリフッ化ビニリデン系複合膜およびその製造方法
WO2009104705A1 (ja) 耐ファウリング性に優れる中空糸型限外ろ過膜
WO2019066061A1 (ja) 多孔質中空糸膜及びその製造方法
JP2009082882A (ja) ポリフッ化ビニリデン系複合中空糸膜及びその製造方法
JP2007283287A (ja) ポリフッ化ビニリデン系多孔質分離膜
WO2015053366A1 (ja) 中空状多孔質膜
WO2020262490A1 (ja) 多孔質膜および複合多孔質膜
JP5109263B2 (ja) フッ素樹脂系高分子分離膜およびその製造方法
WO2021106726A1 (ja) 多孔質膜、複合膜及び多孔質膜又は複合膜の製造方法
JP2012187575A (ja) 複合膜及びその製造方法
WO2021241514A1 (ja) 多孔質膜及び複合膜
JP2008168224A (ja) 中空糸多孔質膜及びその製造方法
KR100321459B1 (ko) 폴리아크릴로니트릴계 중공사상 여과막
US20200353420A1 (en) Method of filtration using porous membranes
WO2022249839A1 (ja) 分離膜及びその製造方法
JPH10180058A (ja) 中空糸膜
JP2021186747A (ja) 複合膜及び複合膜の製造方法
WO2024070989A1 (ja) 分離膜、その製造方法、ろ過方法及び膜ろ過装置
JP2020171923A (ja) 多孔質膜
JP2010075851A (ja) 多孔質膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568355

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892985

Country of ref document: EP

Kind code of ref document: A1