RU2650170C1 - Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной - Google Patents
Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной Download PDFInfo
- Publication number
- RU2650170C1 RU2650170C1 RU2017118570A RU2017118570A RU2650170C1 RU 2650170 C1 RU2650170 C1 RU 2650170C1 RU 2017118570 A RU2017118570 A RU 2017118570A RU 2017118570 A RU2017118570 A RU 2017118570A RU 2650170 C1 RU2650170 C1 RU 2650170C1
- Authority
- RU
- Russia
- Prior art keywords
- membrane
- fluoroplastic
- acetone
- copolymer
- hydrocarbon
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 238000001914 filtration Methods 0.000 title abstract description 7
- 229920006359 Fluoroplast Polymers 0.000 title description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000012224 working solution Substances 0.000 claims abstract description 47
- 229920002313 fluoropolymer Polymers 0.000 claims abstract description 32
- 239000000243 solution Substances 0.000 claims abstract description 32
- 229920001577 copolymer Polymers 0.000 claims abstract description 30
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 22
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 22
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 9
- 238000001704 evaporation Methods 0.000 claims abstract description 7
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000007664 blowing Methods 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 abstract description 4
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000004811 fluoropolymer Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MUTDXQJNNJYAEG-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(dimethylamino)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)N(C)C MUTDXQJNNJYAEG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003251 chemically resistant material Substances 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/04—Tubular membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Изобретение относится к области фильтрации. Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной включает растворение фторопласта в легколетучем растворителе, смешение полученного раствора с порообразователем с получением рабочего раствора, нанесением его на внутреннюю поверхность открытопористой трубки, испарение растворителя, приводящее к отверждению фторопласта с образованием полупроницаемой мембраны. Рабочий раствор содержит в качестве порообразователя жидкий легколетучий предельный углеводород, в качестве фторопласта - сополимер трифторэтилена с винилиденфторидом, в качестве растворителя - ацетон при следующем соотношении компонентов, мас %: сополимер трифторэтилена с винилиденфторидом 15-25, углеводород 8-30, полиэтиленгликоль 0-20, ацетон – остальное. Испарение смеси ацетона с углеводородом проводят выдувкой. Технический результат: получение стабильных концентрированных растворов сополимера, что обеспечивает более благоприятные условия изготовления и улучшение качества фильтрующих элементов. 1 табл., 17 пр.
Description
Изобретение относится к области изготовления мембранной техники, используемой для разделения, концентрирования и очистки компонентов жидких технологических смесей или сточных вод фильтрацией.
В современной практике для разделения, концентрирования и очистки компонентов жидких смесей широко применяют микро- и ультрафильтрацию. Для больших объемов жидких сред, содержащих взвеси и/или имеющих высокую вязкость, используют мембранные модули трубчатого типа. Длина трубок обычно составляет 1-3 м. Мембрана в них чаще всего находится на внутренней поверхности трубки и выполняется из химически стойких материалов. Для этих целей широко применяют фторопласты, которые обладают хорошей термостойкостью, устойчивостью в кислых, щелочных средах, к растворам солей, окислителей и к действию гнилостных микроорганизмов. Труднее всего получать микрофильтры с размером пор более 0,3 мкм. Обусловлено это тем, что для их получения используют разбавленные растворы полимеров, но такие растворы имеют низкую вязкость, поэтому при нанесении их на вертикально расположенную трубку происходит их самостекание. В результате получается разнотолщинная мембрана по длине трубки. Кроме того, низковязкий раствор проникает глубоко в стенку трубки и далее выходит на ее наружную поверхность, образуя и здесь более плотный слой мембраны. Большая толщина мембраны и плотный слой на наружной поверхности трубки создают дополнительное гидравлическое сопротивление потоку фильтрата, что отрицательно сказывается на производительности по фильтрату мембранного фильтрующего элемента. Более того, при отверждении мембранообразующего полимера из разбавленного раствора образуется сильнонапряженная структура полимерной матрицы, причем усилие направлено к центру трубки. Это часто приводит к отрыву мембраны от трубки с образованием вздутий или трещин, то есть к дефекту мембраны, причем это легче реализуется в местах с большей толщиной нанесенного слоя рабочего раствора мембранообразующего полимера.
Известны способы получения микро- и ультрафильтрационных фторопластовых мембран на основе поливинилиденфторида или сополимера тетрафторэтилена с винилиденфторидом путем растворения этих полимеров в метилпирролидоне, диметилацетамиде, диметилсульфоксиде или в ацетоне, смешение полученного раствора с порообразователями (глицерин, муравьиная кислота, алифатический спирт, поливинилпирролидон, полиэтиленгликоль или другие), нанесение полученного рабочего раствора на подложку и отверждение фторопласта (в воде, спирте или в их смесях или испарением легколетучего растворителя с образованием полупроницаемой мембраны (патент Японии №4-20649, ИСМ в. 11, №21/93, патент РФ 2206376, патент РФ 2119817, патент США 5376273, патент США 7226541, патент США 4203848, патент США 5489406, патент США 5013339, патент США 6126826, WO 02/102500).
Однако по указанным способам микрофильтры получают только при использовании рабочих растворов с массовой долей фторопласта менее 12%. Такие растворы имеют низкую (2-8 пуаз) вязкость и поэтому создают трудности при получении качественных трубчатых микрофильтров из-за сильного самостекания и проникновения через стенку открытопористой трубки. В местах большего скопления раствора из-за самостекания образуются вздутия мембраны с отрывом ее от трубки. Проникновение рабочего раствора через стенку трубки увеличивает гидродинамическое сопротивление потоку фильтрата, что ведет к ухудшению технических свойств фильтрующего элемента. К тому же мембраны, полученные из разбавленных растворов, имеют меньшую механическую прочность, в том числе менее устойчивую структуру к гидравлическим давлениям при эксплуатации фильтрующих элементов.
Наиболее близким по технической сущности к заявленному изобретению является способ получения трубчатых микрофильтров с фторопластовой мембраной, включающий растворение сополимера тетрафторэтилена с винилиденфторидом в ацетоне, смешение полученного раствора с полиэтиленгликолем с получением рабочего раствора, нанесение рабочего раствора на внутреннюю поверхность открытопористой трубки, испарение ацетона выдувкой в одну ступень при температуре помещения, приводящее к отверждению фторопласта с образованием полупроницаемой мембраны, отличающийся тем, что рабочий раствор содержит полиэтиленгликоль и имеет соотношение компонентов, мас. %: сополимер тетрафторэтилена с винилиденфторидом 12-25, полиэтиленгликоль 10-20, ацетон - остальное (патент РФ 2432987), а основную часть полиэтиленгликоля из мембраны вымывают водой.
Однако использование полиэтиленгликоля в качестве порообразователя вызывает пенообразование рабочего раствора, такие растворы трудно обезвоздушиваются, что может привести к дефектности мембраны в трубчатом фильтрующем элементе. Полиэтиленгликоль вызывает также сильное структурирование рабочих растворов. При высокой концентрации сополимера и полиэтиленгликоля рабочие растворы имеют очень высокую вязкость, что создает трудности при формовании мембраны на поверхности трубки. Сильно структурированные рабочие растворы при малейшем изменении условий легко превращаются в студни. Это может иметь место, например, при поглощении паров воды из воздуха во время изготовления мембраны. Полученные по известному способу трубчатые фильтрующие элементы являются микрофильтрами и имеют всегда гидрофилизованную за счет остатков полиэтиленгликоля фторопластовую мембрану. Остатки полиэтиленгликоля в мембране вымываются во время эксплуатации фильтрующего элемента. При этом могут изменяться технические характеристики фильтрующего элемента и загрязняться фильтрат, что может быть нежелательным и даже недопустимым в случае, если фильтрат является целевым продуктом.
Целью настоящего изобретения является разработка способа получения трубчатых фильтрующих элементов с фторопластовой мембраной с устранением отмеченных недостатков.
Поставленная цель достигается тем, что в известном способе получения микрофильтров с фторопластовой мембраной, включающем растворение фторопласта в легколетучем растворителе, смешение полученного раствора с порообразователем с получением рабочего раствора, нанесение рабочего раствора на внутреннюю поверхность открытопористой трубки, испарение растворителя, приводящее к отверждению фторопласта с образованием полупроницаемой мембраны, рабочий раствор содержит жидкий легколетучий предельный углеводород при следующем соотношении компонентов, мас. %: сополимер трифторэтилена с винилиденфторидом 15-25, углеводород 8-30, полиэтиленгликоль 0-20, ацетон - остальное, а испарение смеси ацетона с углеводородом проводят выдувкой.
Принципиальное отличие заявленного способа получения трубчатых фильтрующих элементов с фторопластовой мембраной от известного заключается в использовании жидкого легколетучего предельного углеводорода в качестве порообразователя при приготовлении рабочего раствора сополимера тетрафторэтилена с винилиденфторидом в ацетоне.
Жидкий легколетучий предельный углеводород позволяет получать непенящиеся, легко обезвоздушиваемые, неструктурированные концентрированные (до 25 мас.%) рабочие растворы на основе сополимера тетрафторэтилена с винилиденфторидом в ацетоне с удовлетворительной вязкостью, стабильные при хранении. Углеводород, будучи легколетучим продуктом, обусловливает получение фильтрующих элементов с чистой гидрофобной фторопластовой мембраной, без всяких остатков нерастворителя в мембране.
Оказалось, что жидкие легколетучие предельные углеводороды хорошо совмещаются не только с раствором сополимера тетрафторэтилена с винилиденфторидом в ацетоне, но и с добавкой в этот раствор полиэтиленгликоля, что позволяет получать при надобности и трубчатые фильтрующие элементы с гидрофилизованной фторопластовой мембраной по предлагаемому способу.
Высокая концентрация сополимера в рабочем растворе по заявляемому способу получения трубчатых фильтрующих элементов с фторопластовой мембраной обеспечивает получение мембраны с менее напряженной структурой, а достаточно высокая вязкость рабочего раствора препятствует его самостеканию во время полива раствора на поверхность открытопористой трубки и глубокому проникновению его в стенку открытопористой трубки с выходом на ее наружную поверхность. В результате получают более однородную мембрану по толщине на всей длине трубки с малым гидравлическим сопротивлением по току фильтрата из-за меньшей общей толщины мембраны и отсутствия слоя на наружной поверхности трубки. Получаемые по заявляемому способу трубчатые фильтрующие элементы имеют более высокую водопроницаемость, чем по известному способу.
Применение жидкого легколетучего предельного углеводорода в качестве добавки в рабочий раствор при получении трубчатого фильтрующего элемента с фторопластовой мембраной не обусловлено известностью его свойств. Достижение результата стало возможным благодаря обнаруженному авторами свойству этого продукта:
совмещаться с сополимером тетрафторэтилена с винилиденфторидом, ацетоном и со смесью ацетона с полиэтиленгликолем и давать качественные рабочие растворы при указанных выше соотношениях компонентов;
давать стабильные концентрированные рабочие растворы сополимера с приемлемой вязкостью для получения трубчатых фильтрующих элементов как с микрофильтрационной, так и ультрафильтрационной мембраной, причем она может быть гидрофобной или гидрофилизованной при добавке в рабочий раствор полиэтиленгликоля.
Опытным путем установлено, что только указанное выше сочетание компонентов в рабочем растворе позволяет получать качественные трубчатые фильтрующие элементы с фторопластовой мембраной. Другие фторопласты (поливинилиденфторид, сополимер трифторхлорэтилена с винилиденфторидом) не пригодны для получения фильтрующих элементов по заявляемому способу, так как они не совмещаются при указанном сочетании компонентов.
В качестве растворителя фторопласта в заявляемом способе получения трубчатых фильтрующих элементов может быть только ацетон, другие легколетучие растворители (метиленхлорид, этилацетат) не пригодны для получения рабочих растворов.
Растворение фторопласта по предлагаемому способу проводят при перемешивании при температурах не выше 45°С, преимущественно при температуре помещения.
Жидкий легколетучий предельный углеводород должен иметь температуру кипения не выше 100°С (гексан, гептан, уайт-спирит, преимущественно бензин марки «Галоша»), его приливают в раствор фторопласта в ацетоне в чистом виде или в смеси с ацетоном, постепенно при перемешивании.
Открытопористые трубки, на внутреннюю поверхность которых наносят рабочий раствор, могут иметь длину до 3 м, внутренний диаметр 6-25 мм, толщину стенки 1-1,5 мм, пористость 15-30%, средний размер пор 5-10 мкм. Материал, из которого изготавливают открытопористые трубки - стеклопластик, органопластик или углепластик. Полив рабочего раствора на внутреннюю поверхность трубки осуществляют при скоростях 1-8 см/с.
Отверждение фторопласта в отлитом слое рабочего раствора осуществляют выдувкой смеси ацетона с углеводородом при температуре помещения.
Сопоставительный анализ показывает, что заявляемое изобретение отличается новизной технического решения.
Заявляемый способ получения трубчатых фильтрующих элементов с фторопластовой мембраной характеризуется сочетанием в рабочем растворе трех или четырех компонентов при следующем их соотношении, мас. %: сополимер трифторэтилена с винилиденфторидом 15-25, углеводород 8-30, полиэтиленгликоль 0-20, ацетон - остальное. Такое сочетание компонентов не известно из других источников, не выявлены решения, имеющие совпадающие с отличительными признаками заявляемого решения.
Экспериментальным путем было установлено, что только такое соотношение указанных компонентов в рабочем растворе обеспечивает получение стабильных рабочих растворов и качественных трубчатых фильтрующих элементов с фторопластовой мембраной на их основе.
Известное сочетание в рабочем растворе сополимера тетрафторэтилена с винилиденфторидом, ацетона, изопропилового спирта и воды (патент РФ 2119817) дает низковязкие (2-8 пуаз) малоустойчивые рабочие растворы сополимера, пригодные для получения только плоских микрофильтрационных мембран при поливе рабочего раствора на пористую подложку, расположенную на непористой опоре, но не годятся для получения трубчатых фильтрующих элементов из-за самостекания. Такие рабочие растворы имеют низкую (максимально 11,5 мас. %) концентрацию мембранообразующего полимера, при отверждении его в мембране создаются большие внутренние напряжения в полимерной матрице мембраны. Наличие чрезвычайно жесткого нерастворителя-порообразователя (в данном случае воды) в рабочем растворе приводит к его нестабильности при хранении и при изменении температурных режимов, что приводит к гелеобразованию рабочего раствора и распада его на фазы. По указанному способу получают фильтрующие элементы только микрофильтры с гидрофобной фторопластовой мембраной.
Известное сочетание в рабочем растворе сополимера тетрафторэтилена с винилиденфторидом, ацетона и полиэтиленгликоля (патент РФ 24329987) дает рабочие растворы удовлетворительной вязкости. Однако такие рабочие растворы при изготовлении сильно пенятся и трудно обезвоздушиваются, что может приводить к дефектам мембраны. Кроме того, они сильно структурируются, особенно при повышенной концентрации сополимера и/или полиэтиленгликоля. Кроме того, высокая способность полиэтиленгликоля поглощать пары воды из воздуха создает определенные трудности в процессе изготовления трубчатых фильтрующих элементов.
Указанным способом можно получать фильтрующие элементы только с гидрофилизованной мембраной, из которой могут вымываться остатки полиэтиленгликоля и загрязнять фильтрат, что может изменять технические характеристики фильтрующего элемента в процессе эксплуатации и быть неприемлемым в случае, если фильтрат является целевым продуктом.
Несовпадение технических свойств с точки зрения положительного эффекта заявляемого способа и известных объектов свидетельствует о том, что в результате налицо новая совокупность признаков решения, приводящая к возникновению нового свойства, обеспечивающего достижение положительного эффекта, что позволяет признать заявляемый способ получения трубчатого фильтрующего элемента с фторопластовой мембраной соответствующим критерию «существенные отличия» и условию изобретательного уровня.
Заявленное техническое решение иллюстрируется следующими примерами.
Примеры 1-15. В колбу с мешалкой для приготовления 100 г рабочего раствора приливают 48-77 г ацетона (ГОСТ 2768-84) и при перемешивании добавляют 15-25 г сополимера тетрафторэтилена с винилиденфторидом (ГОСТ 25428-82) производства ООО «Завод полимеров КЧХК». Содержимое колбы перемешивают при температуре помещения до полного растворения сополимера. К полученному раствору при перемешивании постепенно приливают из капельной воронки 8-30 г бензина марки «Галоша» (ТУ 0251-007-57859009-2015), или 8 г гексана (пример 7,8), или 8 г уайт-спирита (пример 9), а при получении фильтрующих элементов с гидрофилизованной мембраной кроме бензина (пример 10-14) или уайт-спирита (пример 15) добавляют 4-20 г полиэтиленгликоля с молекулярной массой 400 (ТУ 2483-167-05757587-2000) производства ООО «Завод синтанолов». Содержимое колбы продолжают перемешивать при температуре помещения дополнительно 60 мин, затем переливают в фильтр, фильтруют и обезвоздушивают. Полученные растворы имеют динамическую вязкость 15-485 пуаз, легко фильтруются и обезвоздушиваются. В герметично закрытой емкости при температуре помещения они могут храниться без изменения свойств более месяца. Эти растворы с помощью самоцентрирующего формователя при скорости 1-8 см/с наносят на внутреннюю поверхность вертикально расположенной открытопористой стеклопластиковой трубки (длина 1-2 м, внутренний диаметр 13,5 мм, толщина стенки 1,2 мм, пористость 25%, средний размер пор 10 мкм) слоем толщиной 350-550 мкм. Трубку переворачивают в горизонтальное положение и вращают со скоростью 40 оборотов/мин. К концу трубки подводят рукав, из которого в течение 80 с при температуре помещения подают воздух 50 дм3/мин для испарения смеси ацетона с углеводородом, что приводит к отверждению сополимера с образованием из него полупроницаемой мембраны. Проверяют качество нанесенной мембраны, полученные фильтрующие элементы испытывают на водопроницаемость. Результаты в таблице.
Примеры 16,17 (согласно прототипу). Для приготовления 100 г рабочего раствора в колбу заливают 70 г (пример 16) или 65 г ацетона (пример 17) и при перемешивании добавляют 15 г (пример 16) или 25 г (пример 17) сополимера трифторэтилена с винилиденфторидом. После растворения сополимера к нему при перемешивании постепенно приливают из капельной воронки по 15 г полиэтиленгликоля. Содержимое колбы перемешивают дополнительно 60 мин, затем переливают в фильтр, фильтруют и обезвоздушивают. Получаемые растворы пенятся, долго обезвоздушиваются и имеют динамическую вязкость 55 пуаз (пример 16) и 370 пуаз (пример 17), при меньшей концентрации порообразователя имеют более высокую вязкость, при контакте с воздухом (что может иметь место при фильтровании раствора и формовании из него мембраны) из-за поглощения паров воды быстро структурируются, образуя гели. Структурирование растворов проявляется и при длительном хранении. С помощью самоцентрирующего формователя при скорости 12 см/с их наносят на внутреннюю поверхность вертикально расположенной открытопористой стеклопластиковой трубки (длина 2 м, внутренний диаметр 13,5 мм, толщина стенки 1,2 мм, пористость 25%, средний размер пор 10 мкм) слоем толщиной 400 мкм. Трубку переводят в горизонтальное положение и вращают со скоростью 40 оборотов/мин. К концу трубки подводят рукав, из которого в течение 80 с при температуре помещения подают воздух 50 дм3/мин для испарения ацетона, что приводит к отверждению сополимера с образованием из него полупроницаемой мембраны. Проверяют качество нанесенной на трубку мембраны и испытывают полученный фильтрующий элемент на водопроницаемость. Результаты приведены в таблице.
Из таблицы видно (примеры 1-15), что при использовании жидкого легколетучего предельного углеводорода в массовой доле 8-30% в качестве порообразователя в растворе сополимера тетрафторэтилена с винилиденфторидом в ацетоне получают качественные, легко обезвоздушиваемые рабочие растворы с концентрацией сополимера 15-25 мас.% и вязкостью 15-485 пуаз. При нанесении их на внутреннюю поверхность открытопористой трубки не происходит глубокого затекания их в пористую стенку трубки с выходом раствора на ее наружную поверхность, обеспечивается получение качественных фильтрующих элементов более высокой водопроницаемостью, чем у фильтрующих элементов, получаемых по известному способу (примеры 16 и 17).
Использование предлагаемого способа получения трубчатых фильтрующих элементов с фторопластовой мембраной обеспечивает по сравнению с известными способами следующие преимущества:
- возможность получения большого ассортимента микро- и ультрафильтров по размеру пор из кинетически устойчивых легко обезвоздушиваемых концентрированных рабочих растворов как с гидрофобной, так и с гидрофилизованной мембраной;
- обеспечиваются более благоприятные условия получения фильтрующих элементов с высокой водопроницаемостью.
Claims (1)
- Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной, включающий растворение фторопласта в легколетучем растворителе, смешение полученного раствора с порообразователем с получением рабочего раствора, нанесение его на внутреннюю поверхность открытопористой трубки, испарение растворителя, приводящее к отверждению фторопласта с образованием полупроницаемой мембраны, отличающийся тем, что рабочий раствор содержит в качестве порообразователя жидкий легколетучий предельный углеводород, в качестве фторопласта - сополимер трифторэтилена с винилиденфторидом, в качестве растворителя - ацетон при следующем соотношении компонентов, мас %: сополимер трифторэтилена с винилиденфторидом 15-25, углеводород 8-30, полиэтиленгликоль 0-20, ацетон - остальное, а испарение смеси ацетона с углеводородом проводят выдувкой.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017118570A RU2650170C1 (ru) | 2017-05-30 | 2017-05-30 | Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017118570A RU2650170C1 (ru) | 2017-05-30 | 2017-05-30 | Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2650170C1 true RU2650170C1 (ru) | 2018-04-09 |
Family
ID=61867578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017118570A RU2650170C1 (ru) | 2017-05-30 | 2017-05-30 | Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2650170C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU883100A1 (ru) * | 1979-07-30 | 1981-11-23 | Предприятие П/Я В-2913 | Композици дл получени пористой мембраны |
RU2158625C1 (ru) * | 1999-03-23 | 2000-11-10 | ТОО фирма "Родник" | Способ получения фторполимерных мембран для фильтрации жидкостей |
US20070216057A1 (en) * | 2002-02-12 | 2007-09-20 | Seimens Water Technologies Corp. | Poly(ethylene chlorotrifluoroethylene) membranes |
RU2432987C1 (ru) * | 2010-03-25 | 2011-11-10 | Закрытое акционерное общество Научно-технический центр "Владипор" | Способ получения трубчатого микрофильтра с фторполимерной мембраной |
RU2483789C1 (ru) * | 2012-01-16 | 2013-06-10 | Закрытое акционерное общество Научно-технический центр "Владимир" | Способ получения трубчатого фильтрующего элемента с полимерной мембраной |
-
2017
- 2017-05-30 RU RU2017118570A patent/RU2650170C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU883100A1 (ru) * | 1979-07-30 | 1981-11-23 | Предприятие П/Я В-2913 | Композици дл получени пористой мембраны |
RU2158625C1 (ru) * | 1999-03-23 | 2000-11-10 | ТОО фирма "Родник" | Способ получения фторполимерных мембран для фильтрации жидкостей |
US20070216057A1 (en) * | 2002-02-12 | 2007-09-20 | Seimens Water Technologies Corp. | Poly(ethylene chlorotrifluoroethylene) membranes |
RU2432987C1 (ru) * | 2010-03-25 | 2011-11-10 | Закрытое акционерное общество Научно-технический центр "Владипор" | Способ получения трубчатого микрофильтра с фторполимерной мембраной |
RU2483789C1 (ru) * | 2012-01-16 | 2013-06-10 | Закрытое акционерное общество Научно-технический центр "Владимир" | Способ получения трубчатого фильтрующего элемента с полимерной мембраной |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
García-Payo et al. | Preparation and characterization of PVDF–HFP copolymer hollow fiber membranes for membrane distillation | |
JP7014714B2 (ja) | 多孔質膜、及び多孔質膜の製造方法 | |
KR101648843B1 (ko) | 내오염성 중공사막의 제조방법 및 상기 방법으로 제조된 내오염성 중공사막 | |
KR101161709B1 (ko) | 아세틸화된 알킬 셀룰로오스를 이용한 다공성 중공사막 및 이의 제조 방법 | |
KR102309927B1 (ko) | 중공사형 정삼투 분리막 및 이의 제조방법 | |
JP2022002848A (ja) | 造膜溶液とそれを使用した分離膜の製造方法 | |
JPS6138208B2 (ru) | ||
Shirzadeh-Gharacheh et al. | Polyvinylidene fluoride hollow fiber mixed matrix membrane contactor incorporating modified ZSM-5 zeolite for carbon dioxide absorption | |
RU2650170C1 (ru) | Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной | |
JPH08108053A (ja) | 酢酸セルロース中空糸分離膜およびその製造法 | |
KR102139208B1 (ko) | 내오염성 중공사막의 제조방법 및 상기 방법으로 제조된 내오염성 중공사막 | |
JP2015198999A (ja) | 中空糸膜、その製造方法およびそれを用いたモジュール | |
JP2013031832A (ja) | 多孔質膜の製造方法および精密ろ過膜 | |
RU2432987C1 (ru) | Способ получения трубчатого микрофильтра с фторполимерной мембраной | |
KR102306426B1 (ko) | 아세틸화 알킬 셀룰로스와 폴리올레핀케톤의 복합 중공사막 | |
KR102212128B1 (ko) | 역삼투막, 이의 제조방법 및 수처리 모듈 | |
KR101414979B1 (ko) | 아라미드 중공사를 지지체로 구비한 정삼투막 및 그 제조방법 | |
RU2438768C1 (ru) | Способ получения трубчатого фильтрующего элемента с полисульфоновой мембраной | |
RU2192301C1 (ru) | Способ получения мембранных трубчатых фильтрующих элементов | |
CN113195082A (zh) | 用于高压过滤的多孔膜 | |
KR20150087579A (ko) | 폴리아미드 역삼투 분리막의 제조방법 | |
KR101607752B1 (ko) | 무용매 그라프팅에 의한 수처리용 분리막의 제조 방법 | |
RU2206376C2 (ru) | Способ получения мембранных трубчатых фильтрующих элементов | |
KR102524361B1 (ko) | 분리막의 제조방법, 분리막 및 수처리 모듈 | |
JPH06343842A (ja) | 酢酸セルロース中空糸分離膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MZ4A | Patent is void |
Effective date: 20210416 |