WO2019021854A1 - モータ、送風機及び冷蔵庫 - Google Patents
モータ、送風機及び冷蔵庫 Download PDFInfo
- Publication number
- WO2019021854A1 WO2019021854A1 PCT/JP2018/026438 JP2018026438W WO2019021854A1 WO 2019021854 A1 WO2019021854 A1 WO 2019021854A1 JP 2018026438 W JP2018026438 W JP 2018026438W WO 2019021854 A1 WO2019021854 A1 WO 2019021854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator core
- bobbin
- resin mold
- insertion hole
- motor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/141—Stator cores with salient poles consisting of C-shaped cores
- H02K1/143—Stator cores with salient poles consisting of C-shaped cores of the horse-shoe type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/062—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/0094—Structural association with other electrical or electronic devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/52—Fastening salient pole windings or connections thereto
- H02K3/521—Fastening salient pole windings or connections thereto applicable to stators only
- H02K3/524—Fastening salient pole windings or connections thereto applicable to stators only for U-shaped, E-shaped or similarly shaped cores
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/08—Insulating casings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
- H02K5/225—Terminal boxes or connection arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/068—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
- F25D2317/0681—Details thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2211/00—Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
- H02K2211/03—Machines characterised by circuit boards, e.g. pcb
Definitions
- the present disclosure relates to a motor, a blower and a refrigerator.
- the present disclosure relates to a motor for driving an impeller of a fan mounted on a refrigerator.
- Motors are used in various electrical devices.
- a motor is used for the air blower mounted in a refrigerator etc.
- the motor used for the blower includes, for example, a stator and a rotor that is rotated by the stator.
- the rotor has a shaft that is its center of rotation.
- the blower further includes an impeller attached to a shaft of the rotor, and the stator rotates the rotor to blow air.
- FIG. 19 is a cross-sectional view of a conventional fan 100 disclosed in Patent Document 1. As shown in FIG.
- the conventional blower 100 disclosed in Patent Document 1 includes a rotor 101 as a motor, a stator core 102 for rotating the rotor 101, and a teeth portion (excitation portion) of the stator core 102 as a bobbin 103. And a circuit board 105 on which electronic components for controlling energization of the coil 104 are mounted.
- the bobbin 103, the coil 104, the circuit board 105, and a part of the stator core 102 around them are covered with a resin mold 106. Further, an impeller 107 is attached to a shaft 108 of the rotor 101. In the blower 100, as the impeller 107 rotates in conjunction with the rotation of the rotor 101, air is sucked into the casing as shown by the arrows in FIG. The air drawn into the casing is exhausted from the casing through the outlet formed on the left side in the figure. Thereby, the blower 100 can blow air.
- An object of this indication is to provide a motor etc. which can control generating of a rare short of a coil covered with resin mold.
- one aspect of a motor according to the present disclosure includes a bobbin having an insertion hole, a coil wound around the bobbin, a stator core having an excitation portion inserted into the insertion hole, and a stator core And a resin mold for covering the bobbin, the coil, and the stator core.
- the first open end of the insertion hole is provided with an exposed portion having an exposed surface exposed from the resin mold. The exposed portion is located between the stator core and the resin mold.
- one aspect of the blower according to the present disclosure includes a motor and an impeller attached to a shaft of a rotor.
- one aspect of a refrigerator includes a blower, a control unit that controls the blower, and a refrigerator or freezer, and the blower sends cold air to the refrigerator or freezer.
- the occurrence of a rare short of a coil covered with a resin mold can be suppressed.
- FIG. 1 is an external perspective view of a motor according to a first embodiment.
- FIG. 2 is a front view of the motor according to the first embodiment.
- FIG. 3 is a side view of the motor according to the first embodiment.
- FIG. 4 is an exploded perspective view of the motor according to the first embodiment.
- FIG. 5 is a view showing a state where resin molding of a motor in a region V surrounded by a broken line in FIG. 4 is omitted.
- FIG. 6 is a diagram showing a state in which the stator core in FIG. 5 is disassembled into a first segment core and a second segment core.
- FIG. 7 is an enlarged perspective view of an essential part of the motor according to the first embodiment.
- FIG. 1 is an external perspective view of a motor according to a first embodiment.
- FIG. 2 is a front view of the motor according to the first embodiment.
- FIG. 3 is a side view of the motor according to the first embodiment.
- FIG. 4 is an exploded perspective view of the
- FIG. 8 is an enlarged sectional view of an essential part of the motor according to the first embodiment.
- FIG. 9 is a schematic view showing an example of a refrigerator mounted with a blower using the motor according to the first embodiment.
- FIG. 10 is a diagram showing a state in which water droplets adhere to the surface of the stator core of the motor according to the first embodiment.
- FIG. 11 is an enlarged sectional view of an essential part of a motor of a comparative example.
- FIG. 12 is an enlarged sectional view of an essential part of a motor in a region XII surrounded by a broken line in FIG.
- FIG. 13 is an enlarged sectional view of an essential part of a motor according to a second embodiment.
- FIG. 14 is an enlarged sectional view of an essential part of a motor according to a third embodiment.
- FIG. 15 is a side sectional view of a motor according to a third embodiment.
- FIG. 16 is another side cross-sectional view of the motor according to the third embodiment.
- FIG. 17 is an enlarged sectional view of an essential part of a motor according to a modification.
- FIG. 18 is another principal part expanded sectional view of the motor concerning a modification.
- FIG. 19 is a cross-sectional view of the conventional blower disclosed in Patent Document 1. As shown in FIG.
- FIG. 1 is an external perspective view of a motor 1 according to a first embodiment.
- FIG. 2 is a front view of the motor 1 according to the first embodiment.
- FIG. 3 is a side view of the motor 1 according to the first embodiment.
- FIG. 4 is an exploded perspective view of the motor 1 according to the first embodiment.
- FIG. 5 is a view showing a state in which the resin mold 60 of the motor 1 is omitted in a region V surrounded by a broken line in FIG.
- FIG. 6 is a view showing a state in which stator core 10 is disassembled into first segment core 11 and second segment core 12 in FIG.
- the coil 40 is shown in figure as an integral body.
- the circuit board 50 is indicated by a broken line.
- a motor 1 As shown in FIGS. 1 to 6, a motor 1 according to the present embodiment includes a stator core 10, a rotor 20 rotatably disposed relative to the stator core 10, a bobbin 30 having an insertion hole 31, and a bobbin 30. , A circuit board 50, a resin mold 60, and a bearing unit 70.
- the stator core 10 is an iron core constituting a stator (stator) for generating a magnetic force for rotating the rotor 20.
- the stator core 10 has a first segment core 11 and a second segment core 12 connected to the first segment core 11.
- Each of the first segment core 11 and the second segment core 12 is a laminate of a plurality of (for example, 12) electromagnetic steel plates, but is not limited to this and may be a bulk body made of a magnetic material .
- the first segment core 11 is configured to surround the rotor 20. Specifically, as shown in FIG. 5 and FIG. 6, the first segment core 11 has an insertion hole 11a into which the rotor 20 is inserted.
- the plan view shape of the insertion hole 11a is substantially circular.
- the first segment core 11 may be further configured by a pair of segment cores divided into two left and right.
- the first segment core 11 has legs 11 b.
- the first segment core 11 has two legs 11 b.
- the two legs 11 b are provided so as to protrude downward in the drawing from both end portions in the width direction of the first segment core 11 (FIG. 6).
- the second segment core 12 has a recess 12 a connected to the tip (connecting portion) of the leg 11 b of the first segment core 11.
- two recesses 12 a are provided at positions corresponding to the legs 11 b of the first segment core 11.
- the recess 12a of the second segment core 12 and the tip of the leg 11b of the first segment core 11 are shaped to fit each other, and for example, the shape in plan view is circular.
- the second segment core 12 is an elongated I-shaped core. As described later, the coil 40 is wound around the second segment core 12 via the bobbin 30. The second segment core 12 is inserted into the insertion hole 31 of the bobbin 30 as an excitation portion of the stator core 10.
- the rotor 20 is a rotor that is rotated by the magnetic force of the stator core 10 and is surrounded by the stator core 10.
- the rotor 20 is rotatably disposed in the insertion hole 11 a of the first segment core 11 in the stator core 10.
- a minute air gap exists between the outer surface of the rotor 20 and the inner surface of the insertion hole 11 a of the stator core 10.
- the rotor 20 shown in FIG. 4 has a configuration in which a pair of N pole and S pole exist along the rotation direction.
- the rotor 20 is configured of a rotor main body 21 in which a plastic magnet material is molded in a cylindrical shape, and a shaft 22 penetrating the center of the rotor main body 21.
- the rotor 20 may have a configuration in which a plurality of N poles and S poles repeatedly exist along the rotation direction. Further, the rotor 20 is configured of a rotor main body 21 having a magnetic force and a shaft 22 penetrating the center of the rotor main body 21.
- the rotor body 21 is composed of a rotor core (iron core) made of a magnetic material and a plurality of permanent magnets fixed to the rotor core.
- the permanent magnet may be embedded inside the rotor core or attached to the side surface of the rotor core. For example, a magnet insertion hole can be formed in the rotor core, and a permanent magnet can be embedded inside the magnet insertion hole.
- the rotor core is, for example, a laminate of a plurality of electromagnetic steel plates fixed to one another, but is not limited to this and may be a bulk body made of a magnetic material.
- the permanent magnet is, for example, a bonded magnet, a ceramic magnet, a metal magnet or the like.
- the shaft 22 of the rotor 20 is a rotation axis of the rotor 20. That is, the rotor 20 rotates around the shaft 22 as a rotation center.
- the shaft 22 is a rotation output shaft that rotates in conjunction with the rotation of the rotor main body 21.
- the shaft 22 is formed of, for example, a metal rod.
- the rotor 20 is held by a bearing unit 70.
- the bearing unit 70 rotatably supports one end of the shaft 22 of the rotor 20 by a bearing or the like.
- the bobbin 30 is a stator bobbin attached to the stator core 10.
- An insertion hole 31 is provided in the bobbin 30, and a second segment core 12 which is an excitation portion of the stator core 10 is inserted into the insertion hole 31. That is, the bobbin 30 is attached to the second segment core 12.
- the bobbin 30 is a coil bobbin around which the coil 40 is wound.
- the bobbin 30 is made of an insulator such as a resin material.
- the bobbin 30 is made of, for example, a thermoplastic resin.
- the material of the bobbin 30 is not limited to the thermoplastic resin as long as it has an insulating property.
- a thermoplastic resin polybutylene terephthalate (Poly Butylene Terephtalate), nylon (Nylon), polyethylene terephthalate (Polyethylene Terephtalate), ABS resin (Acrylonitrile Butadiene Styrene, ABS resin), etc. can be used.
- the bobbin 30 is a hollow member having the insertion hole 31 as an internal space.
- a flange portion 32 is provided at the open end portion 36 of the insertion hole 31 of the bobbin 30.
- the flange portion 32 is provided at each of the open end portions 36 of the insertion hole 31.
- one end of the opening end portion 36 is a first opening end portion 36a, and the other end opposite to the first opening end portion 36a is a second opening end. It is referred to as part 36b. It goes without saying that the same function and effect can be obtained by applying the configuration applied to the first open end 36 a to the second open end 36 b.
- the bobbin 30 further includes an exposed portion 33 having an exposed surface 33 a exposed from the resin mold 60.
- the exposed portion 33 is provided at the open end portion 36 of the insertion hole 31 of the bobbin 30.
- the coil 40 is a winding coil wound around a bobbin 30 mounted on the stator core 10.
- the coil 40 is a coil wire material such as an enameled copper wire. By energizing the coil 40, a magnetic flux is generated in the stator core 10 with the second segment core 12 as a starting point.
- the material of the core wire portion of the coil 40 is not limited to one containing copper as a main component, and may be one containing a metal material other than copper such as aluminum as a main component, or a conductive material other than a metal material as a main component It may be taken as
- the bobbin winding body is configured by winding the single-phase coil 40 around the bobbin 30.
- the excitation structure is configured by inserting the second segment core 12 into the bobbin winding body.
- a part of the bobbin 30 is provided with a pair of lead terminals 34.
- One end of the coil 40 is connected to one of the pair of lead terminals 34.
- the other end of the coil 40 is connected to the other of the pair of lead terminals 34.
- the circuit board 50 is a printed wiring board on which a pattern wiring made of a conductive material such as copper is formed in a predetermined shape. On the circuit board 50, an electronic component (not shown) for controlling energization of the coil 40 is mounted.
- the circuit board 50 is connected to the lead terminals 34 of the bobbin 30 and one end of the power supply line 80 by soldering, and is also connected to a connector 81 for holding the power supply line 80.
- the power supply line 80 is, for example, a lead line.
- the other end of the power supply line 80 is connected to an external power supply.
- the external power supply supplies power to the circuit board 50 via the power supply line 80.
- the external power source may be either an AC power source or a DC power source.
- the resin mold 60 is a resin molded body molded into a predetermined shape.
- the resin mold 60 is made of an insulating resin material.
- a thermosetting resin or a thermoplastic resin can be used as the resin mold 60.
- the thermosetting resin for example, unsaturated polyester resin, phenol resin or epoxy resin can be used.
- the thermoplastic resin for example, a polyethylene terephthalate resin or a polybutylene terephthalate resin can be used.
- the resin mold 60 covers a portion of the bobbin 30, the coil 40 and the stator core 10.
- the resin mold 60 is fixed to the stator core 10 in a state of covering the bobbin 30, the coil 40, and a part of the stator core 10.
- the resin mold 60 also covers the circuit board 50. By covering the coil 40 and the circuit board 50 with the resin mold 60, the coil 40 and the circuit board 50 can be protected.
- the coil 40 and the circuit board 50 are completely covered with the resin mold 60, but a part of the stator core 10 is covered with the resin mold 60.
- the bobbin 30 is substantially covered by the resin mold 60, but a portion is exposed from the resin mold 60.
- FIG. 7 is an enlarged perspective view of an essential part of the motor 1 according to the first embodiment.
- FIG. 8 is an enlarged sectional view of an essential part of the motor 1. The cross-sectional parts of FIG. 7 and FIG. 8 are the same.
- the open end portion 36 of the insertion hole 31 of the bobbin 30 is provided with an exposed portion 33 having an exposed surface 33 a exposed from the resin mold 60.
- the exposed portion 33 is provided at each of the open end portions 36 a and 36 b on both sides of the insertion hole 31.
- the exposed portion 33 is located between the stator core 10 and the resin mold 60. Specifically, the exposed portion 33 is located between the second segment core 12 and the resin mold 60.
- the exposed portion 33 is configured as a projecting portion (protrusion) in which a part of the bobbin 30 is protruded.
- the exposed portion 33 protrudes outward from the flange portion 32 along the hole axis C direction of the insertion hole 31 of the bobbin 30.
- the exposed portion 33 has a structure in which the entire periphery of the edge portion of the opening of the insertion hole 31 of the bobbin 30 is annularly protruded. More specifically, the exposed portion 33 is a rectangular frame provided on the outer surface of the flange portion 32.
- the exposed surface 33 a of the exposed portion 33 is located on the same plane as the surface of the portion 60 a surrounding the exposed portion 33 in the resin mold 60. Therefore, the exposed surface 33a of the exposed portion 33 is an annular flat surface. Specifically, the exposed surface 33a is a frame-like plane surrounding the second segment core 12 having a rectangular cross section.
- the motor 1 configured as described above, when the coil 40 is energized, a field current flows through the coil 40 to excite the second segment core 12 (excitation portion), thereby generating a magnetic flux.
- the magnetic flux generated in the second segment core 12 is transmitted to the first segment core 11 and a magnetic flux is generated throughout the stator core 10.
- a rotating magnetic field of two poles of south pole and north pole is generated.
- the rotor 20 is rotated by the rotating magnetic field of the stator core 10. That is, the magnetic force generated by the interaction between the magnetic flux of the stator core 10 and the magnetic flux generated from the permanent magnet of the rotor 20 becomes torque for rotating the rotor 20, and the rotor 20 rotates.
- the motor 1 configured in this way can be used for a fan as a fan motor.
- a fan can be obtained by housing the motor 1 in which the impeller (rotor) is attached to the tip of the shaft 22 of the rotor 20 in a casing.
- Such a blower can be used for electrical equipment, such as a refrigerator or an air conditioner, for example.
- a blower inside storage fan
- a blower is used to cool the compressor.
- FIG. 9 is a schematic view showing an example of the refrigerator 2 equipped with the blower 3 using the motor 1 according to the first embodiment.
- the refrigerator 2 includes a blower 3 using the motor 1, a control unit 4 that controls the blower 3, and a refrigerator compartment 5.
- the blower 3 sends cold air cooled by the cooler using the impeller 6 to the refrigerator compartment 5.
- the control unit 4 controls the blower 3 to stop or start blowing by the blower 3.
- the control unit 4 may adjust the amount of air blown by the blower 3 by controlling the blower 3.
- the control unit 4 particularly controls the motor 1.
- the cold air may be sent to the freezing chamber instead of the refrigerating chamber 5, or may be sent to both the freezing chamber 5 and the freezing chamber.
- the refrigerator 2 of this embodiment is provided with the fan 3, the control part 4 which controls the fan 3, and the refrigerator compartment 5 or a freezer compartment.
- the blower 3 sends cold air to the refrigerator compartment 5 or the freezer compartment.
- FIG. 10 is a diagram showing a state in which water droplets 90 adhere to the surface of stator core 10 of motor 1 according to the first embodiment.
- FIG. 11 is an enlarged sectional view of an essential part of a motor 1X of the comparative example.
- 12 is an enlarged sectional view of an essential part of the motor 1 according to Embodiment 1 in a region XII surrounded by a broken line in FIG.
- the motor 1 is disposed, for example, such that the shaft 22 of the rotor 20 is in the horizontal direction. That is, the surface of the stator core 10 is in the vertical direction.
- water droplets 90 may adhere to the surface of the stator core 10 of the motor 1.
- a blower is used to send cold air cooled by a cooler to a refrigerator compartment.
- the drive of the motor is stopped and the air blowing by the blower is stopped.
- the temperature around the motor 1 rises and dew condensation occurs, and water droplets 90 are generated on the surface of the stator core 10 as shown in FIG.
- the generated water droplets 90 slide down the surface of the stator core 10 and reach the interface between the stator core 10 and the resin mold 60.
- water enters from the interface between the stator core 10 and the resin mold 60 as indicated by the arrow by capillary action. Furthermore, the water which has entered may travel along the interface between the flange portion 32 and the resin mold 60 by capillary action and may reach the coil 40 covered with the resin mold 60. As a result, the water causes a rare short of the coil 40.
- exposed portion 33 exposed from resin mold 60 is provided so as to be located between stator core 10 and resin mold 60. Therefore, there is no interface between the bobbin 30 and the resin mold 60 between the stator core 10 and the resin mold 60.
- the motor 1 includes the bobbin 30 having the insertion hole 31, the coil 40 wound around the bobbin 30, the stator core 10 having the excitation portion inserted in the insertion hole 31, and the stator core A rotor 20 rotatably disposed with respect to 10, and a resin mold 60 covering the bobbin 30, the coil 40 and the stator core 10 are provided.
- the first open end 36 a of the insertion hole 31 is provided with an exposed portion 33 having an exposed surface 33 a exposed from the resin mold 60.
- the exposed portion 33 is located between the stator core 10 and the resin mold 60.
- the bobbin 30 has the flange portion 32 at the first open end portion 36 a, and the exposed portion 33 extends from the flange portion 32 along the hole axis C direction of the insertion hole 31 of the bobbin 30. It protrudes outward.
- the approach path of water from the surface of the resin mold 60 or the exposed surface 33 a to the coil 40 can be made longer, so that the water can be further prevented from reaching the coil 40.
- the exposed surface 33 a is located on the same plane as the surface of the portion 60 a surrounding the exposed portion 33 in the resin mold 60.
- the exposed surface 33a is annular.
- the exposed portion 33 can be provided so as to surround the entire circumference of the first open end portion 36 a of the insertion hole 31 of the bobbin 30. Therefore, between the members existing between the stator core 10 and the resin mold 60 Water can be further suppressed from entering the interface.
- the circuit board 50 on which the electronic component for controlling the energization of the coil 40 is mounted is provided, and the circuit board 50 is covered with the resin mold 60.
- the coil 40 and the circuit board 50 can be protected by the resin mold 60.
- the coil 40 and the circuit board 50 can be insulated and protected, and deterioration due to moisture or oxygen in the air can be suppressed.
- stator core 10 includes first segment core 11 and second segment core 12 connected to first segment core 11, and first segment core 11 is a rotor.
- the second segment core 12 is an excitation unit.
- the second segment core 12 (excitation unit) is excited to generate a magnetic flux
- the magnetic flux is transmitted to the first segment core 11 to generate a rotating magnetic field in the first segment core 11.
- the rotor 20 disposed so as to be surrounded by the first segment core 11 can be rotated.
- FIG. 13 is an enlarged sectional view of an essential part of a motor 1A according to a second embodiment.
- the exposed surface 33a of the exposed portion 33 of the bobbin 30 is a uniform flat surface.
- the exposed surface 33a of the exposed portion 33A of the bobbin 30A includes a concave surface.
- the exposed portion 33 ⁇ / b> A is provided with a recess 33 b that is recessed from the surface of the resin mold 60.
- the inner surface of the recess 33b of the exposed portion 33A is an inclined surface 33c which is a part of the exposed surface 33a.
- the distance between the inclined surface 33 c of the recess 33 b and the surface of the stator core 10 is smaller as it recedes from the surface of the resin mold 60.
- the cross-sectional shape of the recessed portion of the recess 33b is a right triangle.
- the recess 33 b can be formed by chamfering the corner of the exposed portion 33 in the first embodiment and cutting out the corner of the exposed portion 33.
- the first open end 36a of the insertion hole 31 of the bobbin 30A is provided with the exposed portion 33A having the exposed surface 33a exposed from the resin mold 60. .
- the exposed portion 33A is located between the stator core 10 and the resin mold 60.
- the interface between the resin mold 60 and the bobbin 30A does not exist between the interface between the stator core 10 and the resin mold 60. Therefore, even when water infiltrates from the interface between the members existing between stator core 10 and resin mold 60, the water can be prevented from reaching coil 40. Therefore, even in the present embodiment, the occurrence of the rare short circuit of the coil 40 can be suppressed. Therefore, a highly reliable motor 1A can be realized.
- the exposed portion 33A is provided with a recess 33b that is recessed from the surface of the resin mold 60.
- the inner surface of the recess 33 b is the inclined surface 33 c, and the distance between the inclined surface 33 c and the surface of the stator core 10 is smaller as it recedes from the surface of the resin mold 60.
- FIG. 14 is an enlarged sectional view of an essential part of a motor 1B according to a third embodiment.
- FIG. 15 is a side sectional view of the motor 1B.
- FIG. 16 is another side sectional view of the motor 1B.
- the surface of the stator core 10 is in close contact with the inner surface of the insertion hole 31 of the bobbin 30.
- a gap G (groove) is provided between the surface of the stator core 10 and the inner surface of the insertion hole 31 of the bobbin 30B. . That is, the gap G is provided as a space layer between the stator core 10 and the bobbin 30B.
- the gap G extends from the first open end 36 a of the insertion hole 31 toward the opposite second open end (36 b) of the insertion hole 31 as shown in FIG. 14. In the present embodiment, the gap G is provided over the entire length of the insertion hole 31.
- a protrusion 35 is provided inside the bobbin 30B.
- Four protrusions 35 are provided to abut the four surfaces of the second segment core 12 in the upper, lower, left, and right directions.
- the bobbin 30B is fixed to the stator core 10, particularly to the second segment core 12, while maintaining the circumferential gap G between the stator core 10 and the bobbin 30B. It can be held.
- a gap G1 is provided inside the bobbin 30E.
- Four gaps G1 are provided to be in contact with the four surfaces of the second segment core 12 in the upper, lower, left, and right directions.
- the bobbin 30E is fixed to the stator core 10, in particular, to the second segment core 12 while maintaining the circumferential gap G1 between the stator core 10 and the bobbin 30E. It can be held.
- the area where the gap G contacts the cross-section stator core 10, particularly the second segment core 12, is wide. Therefore, according to this configuration, when magnetic force is generated in the stator core 10 and heat is taken, water adhering to the stator core 10 can be evaporated quickly.
- the area where the gap G1 contacts the cross sectional stator core 10, particularly the second segment core 12, is narrow. Therefore, according to this configuration, the water led to the gap G1 can pass through the gap G1 at an early stage due to the capillary phenomenon or the like.
- the first open end 36a of the insertion hole 31 of the bobbin 30B is provided with the exposed portion 33 having the exposed surface 33a exposed from the resin mold 60. .
- the exposed portion 33 is located between the stator core 10 and the resin mold 60.
- the interface between the resin mold 60 and the bobbin 30B does not exist between the interface between the stator core 10 and the resin mold 60. Therefore, even when water infiltrates from the interface between the members existing between stator core 10 and resin mold 60, the water can be prevented from reaching coil 40. Therefore, even in the present embodiment, the occurrence of the rare short circuit of the coil 40 can be suppressed. Therefore, a highly reliable motor 1B can be realized.
- a second opening end of opening end portion 36 is located on the opposite side of insertion hole 31 from first opening end 36a. Gaps G and G1 extending toward the portion 36b are provided.
- the gaps G and G1 are provided over the entire length of the insertion hole 31.
- the exposed surface 33a of the exposed portion 33 provided on the bobbin 30 is positioned on the same plane as the surface of the portion surrounding the exposed portion of the resin mold 60.
- the present invention is not limited to this, and the exposed surface 33a of the exposed portion 33 may be located outward from the surface of the resin mold 60 as shown in FIG. Further, as shown in FIG. 18, it may be located inward from the surface of the resin mold 60.
- FIG. 17 is an enlarged sectional view of an essential part of a motor according to a modification.
- FIG. 18 is another principal part expanded sectional view of the motor concerning a modification.
- the exposed portion 33 is formed to project beyond the surface of the resin mold 60. That is, in FIG. 17, the amount of protrusion (height) of the exposed portion 33 (protrusion) is larger than that in FIG. 12.
- the exposed portion 33 is formed to be recessed from the surface of the resin mold 60.
- the exposed surface 33a of the exposed portion 33 is annular, but the present invention is not limited to this. If at least a part of the bobbin 30 is exposed at the interface between the stator core 10 and the bobbin 30, the exposed portion 33 may infiltrate water droplets adhering to the surface of the stator core 10 into the bobbin 30. It can be suppressed.
- the motor according to the first to third embodiments is used for a cooling fan
- the present invention is not limited to this, and can be used for various electric devices.
- the technology of the present disclosure can be applied to various electric devices such as a motor, a blower, and a refrigerator.
- the technology of the present disclosure is useful for a motor or the like used in an environment in which water droplets easily adhere to the surface of the stator core.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
モータは、挿入孔を有するボビンと、ボビンに巻回されたコイルと、挿入孔に挿入された励磁部を有するステータコアと、ステータコアに対して回転可能に配置されたロータと、ボビン、コイル及びステータコアを覆う樹脂モールドとを備える。挿入孔の第1の開口端部には、樹脂モールドから露出する露出面を有する露出部が設けられる。露出部は、ステータコアと樹脂モールドとの間に位置する。
Description
本開示は、モータ、送風機及び冷蔵庫に関する。特に、本開示は、冷蔵庫に搭載される送風機のインペラを駆動するためのモータに関する。
モータは、種々の電気機器に用いられている。例えば、モータは、冷蔵庫等に搭載される送風機に用いられる。送風機に用いられるモータは、例えば、ステータと、ステータによって回転するロータと、を含む。ロータは、その回転中心となるシャフトを有する。送風機は、ロータのシャフトに取り付けられたインペラをさらに含み、ステータによってロータを回転させることで送風する。
図19は、特許文献1に開示された従来の送風機100の断面図である。
図19に示すように、特許文献1に開示された従来の送風機100は、モータとして、ロータ101と、ロータ101を回転させるためのステータコア102と、ステータコア102のティース部(励磁部)にボビン103を介して巻回されたコイル104と、コイル104への通電を制御する電子部品が実装された回路基板105とを備える。
ボビン103、コイル104、回路基板105、及びこれらの周辺のステータコア102の一部は、樹脂モールド106によって覆われている。また、ロータ101のシャフト108にはインペラ107が取り付けられている。送風機100では、ロータ101の回転に連動してインペラ107が回転することによって、図19の矢印に示すように、ケーシング内に空気が吸引される。ケーシング内に吸引された空気は、図中、左側に形成された排出口を介して、ケーシングから排出される。これにより、送風機100は、送風することができる。
しかしながら、従来のモータの構成では、ステータコアと樹脂モールドとの界面から水が浸入し、その水が樹脂モールドで覆われたコイルにまで到達してコイルのレアショートを引き起こすおそれがある。
本開示は、このような問題を解決するためになされたものである。本開示は、樹脂モールドで覆われたコイルのレアショートの発生を抑制できるモータ等を提供することを目的とする。
上記目的を達成するために、本開示に係るモータの一態様は、挿入孔を有するボビンと、ボビンに巻回されたコイルと、挿入孔に挿入された励磁部を有するステータコアと、ステータコアに対して回転可能に配置されたロータと、ボビン、コイル及びステータコアを覆う樹脂モールドとを備える。挿入孔の第1の開口端部には、樹脂モールドから露出する露出面を有する露出部が設けられる。露出部は、ステータコアと樹脂モールドとの間に位置する。
また、本開示に係る送風機の一態様は、モータと、ロータのシャフトに取り付けられたインペラと、を備える。
また、本開示に係る冷蔵庫の一態様は、送風機と、送風機を制御する制御部と、冷蔵室あるいは冷凍室と、を備え、送風機は、冷蔵室あるいは冷凍室に冷気を送る。
本開示によって、樹脂モールドで覆われたコイルのレアショートの発生を抑制することができる。
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
(実施の形態1)
実施の形態1に係るモータ1について、図1~図6を用いて説明する。図1は、実施の形態1に係るモータ1の外観斜視図である。図2は、実施の形態1に係るモータ1の正面図である。図3は、実施の形態1に係るモータ1の側面図である。図4は、実施の形態1に係るモータ1の分解斜視図である。図5は、図4の破線で囲まれる領域Vにおけるモータ1の樹脂モールド60を省略した状態を示す図である。図6は、図5において、ステータコア10を第1のセグメントコア11と第2のセグメントコア12とに分解した状態を示す図である。なお、図5及び図6において、コイル40は、一体物として図示している。また、図6において、回路基板50は、破線で示している。
実施の形態1に係るモータ1について、図1~図6を用いて説明する。図1は、実施の形態1に係るモータ1の外観斜視図である。図2は、実施の形態1に係るモータ1の正面図である。図3は、実施の形態1に係るモータ1の側面図である。図4は、実施の形態1に係るモータ1の分解斜視図である。図5は、図4の破線で囲まれる領域Vにおけるモータ1の樹脂モールド60を省略した状態を示す図である。図6は、図5において、ステータコア10を第1のセグメントコア11と第2のセグメントコア12とに分解した状態を示す図である。なお、図5及び図6において、コイル40は、一体物として図示している。また、図6において、回路基板50は、破線で示している。
図1~図6に示すように、本実施の形態に係るモータ1は、ステータコア10と、ステータコア10に対して回転可能に配置されたロータ20と、挿入孔31を有するボビン30と、ボビン30に巻回されたコイル40と、回路基板50と、樹脂モールド60と、軸受ユニット70とを備える。
ステータコア10は、ロータ20を回転させるための磁力を発生させるためのステータ(固定子)を構成する鉄心である。本実施の形態において、ステータコア10は、第1のセグメントコア11と、第1のセグメントコア11に連結された第2のセグメントコア12とを有する。第1のセグメントコア11及び第2のセグメントコア12はそれぞれ、複数(例えば12枚)の電磁鋼板の積層体であるが、これに限らず、磁性材料によって構成されたバルク体であってもよい。
第1のセグメントコア11は、ロータ20を囲むように構成されている。具体的には、図5及び図6に示すように、第1のセグメントコア11は、ロータ20が嵌挿される嵌挿孔11aを有する。嵌挿孔11aの平面視形状は、実質的な円形である。なお、第1のセグメントコア11は、さらに左右に2つに分割された一対のセグメントコアによって構成されていてもよい。
第1のセグメントコア11は、脚部11bを有する。本実施の形態において、第1のセグメントコア11は、2つの脚部11bを有する。2つの脚部11bは、第1のセグメントコア11の幅方向の両端部から、図中下方に向かって突出するように設けられている(図6)。
第2のセグメントコア12は、第1のセグメントコア11の脚部11bの先端部(連結部)に連結される凹部12aを有する。本実施の形態において、凹部12aは、第1のセグメントコア11の脚部11bに対応する位置に、2つ設けられている。第2のセグメントコア12の凹部12aと第1のセグメントコア11の脚部11bの先端部とは、互いに嵌まり合う形状であり、例えば平面視形状が円形である。
第2のセグメントコア12は、長尺状のI型コアである。後述するように、第2のセグメントコア12には、ボビン30を介してコイル40が巻回される。第2のセグメントコア12は、ステータコア10の励磁部として、ボビン30の挿入孔31に挿入される。
ロータ20は、ステータコア10による磁力によって回転する回転子であり、ステータコア10に囲まれている。ロータ20は、ステータコア10における第1のセグメントコア11の嵌挿孔11aに、回転可能に配置されている。ロータ20の外面とステータコア10の嵌挿孔11aの内面との間には、微小なエアギャップが存在する。
図4に示されるロータ20は、回転方向に沿って一組のN極及びS極が存在する構成となっている。一例として、ロータ20は、プラスチックマグネット材がシリンダー状に成型されたロータ本体21と、ロータ本体21の中心を貫通するシャフト22とによって構成される。
なお、ロータ20は、回転方向に沿ってN極及びS極が複数繰り返して存在する構成としてもよい。さらに、ロータ20は、磁力を有するロータ本体21と、ロータ本体21の中心を貫通するシャフト22とによって構成される。ロータ本体21は、磁性材料からなるロータコア(鉄心)と、ロータコアに固定された複数の永久磁石とによって構成される。永久磁石は、ロータコアの内部に埋め込まれていてもよく、ロータコアの側表面に取り付けられていてもよい。例えば、ロータコアに磁石挿入穴を形成し、磁石挿入穴の内部に永久磁石を埋め込むことができる。ロータコアは、例えば互いに固定された複数の電磁鋼板の積層体であるが、これに限らず、磁性材料によって構成されたバルク体であってもよい。永久磁石は、例えば、ボンド磁石、セラミック磁石及び金属磁石等である。
ロータ20のシャフト22は、ロータ20の回転軸である。つまり、ロータ20は、シャフト22を回転中心として回転する。シャフト22は、ロータ本体21の回転に連動して回転する回転出力軸である。シャフト22は、例えば金属棒によって構成される。
ロータ20は、軸受ユニット70によって保持されている。軸受ユニット70は、ロータ20のシャフト22の一方の端部をベアリング等によって回転自在に支持している。
図5及び図6に示すように、ボビン30は、ステータコア10に取り付けられたステータ用ボビンである。ボビン30には挿入孔31が設けられており、挿入孔31には、ステータコア10の励磁部である第2のセグメントコア12が挿入される。つまり、ボビン30は、第2のセグメントコア12に取り付けられている。
ボビン30は、コイル40が巻回されるコイルボビンである。ボビン30は、樹脂材料等の絶縁物によって構成されている。本実施の形態において、ボビン30は、例えば熱可塑性樹脂によって構成されている。しかし、ボビン30の材料は、絶縁性を有していれば、熱可塑性樹脂に限られない。なお、例えば、熱可塑性樹脂として、ポリブチレンテレフタレート(Poly Butylene Terephtalate)、ナイロン(Nylon)、ポリエチレンテレフタレート(Polyethylene Terephthalate)、ABS樹脂(Acrylonitrile Butadiene Styrene,ABS resin)などが使用できる。
ボビン30は、挿入孔31を内部空間とする中空部材である。ボビン30の挿入孔31の開口端部36にはフランジ部32が設けられている。本実施の形態において、フランジ部32は、挿入孔31の開口端部36の各々に設けられている。なお、以下の説明において、説明をわかり易くするために、開口端部36の一方を第1の開口端部36aとし、第1の開口端部36aの反対側に位置するものを第2の開口端部36bとする。当然のことながら、第1の開口端部36aについて施した構成を第2の開口端部36bに施しても、同様の作用効果を得ることができる。フランジ部32を設けることで、ボビン30の筒部に巻回されたコイル40の巻き崩れを抑制することができる。
詳細は後述するが、ボビン30は、さらに、樹脂モールド60から露出する露出面33aを有する露出部33を含む。露出部33は、ボビン30の挿入孔31の開口端部36に設けられている。
コイル40は、ステータコア10に装着されたボビン30に巻回された巻線コイルである。コイル40は、エナメル銅線等のコイル線材である。コイル40に通電することで、第2のセグメントコア12を起点として、ステータコア10に磁束が発生する。コイル40の芯線部の材質は、銅を主成分とするものに限らず、アルミニウム等の銅以外の金属材料を主成分とするものであってもよいし、金属材料以外の導電材料を主成分とするものであってもよい。
本実施の形態では、ボビン30に単相のコイル40を巻回することによってボビン巻線体が構成されている。このボビン巻線体に第2のセグメントコア12を挿入することで励磁構造体が構成されている。ボビン30の一部には一対のリード端子34が設けられている。一対のリード端子34の一方には、コイル40の一方の端部が接続されている。一対のリード端子34の他方には、コイル40他方の端部が接続されている。
回路基板50は、例えば銅等の導電材料からなるパターン配線が所定形状で形成されたプリント配線基板である。回路基板50には、コイル40への通電を制御する電子部品(不図示)が実装されている。回路基板50には、ボビン30のリード端子34及び電源線80の一方の端部が半田接続されているとともに、電源線80を保持するコネクタ81が接続されている。電源線80は、例えばリード線である。電源線80の他方の端部は、外部電源に接続される。外部電源は、電源線80を介して回路基板50に電力を供給する。外部電源は、交流電源及び直流電源のいずれであってもよい。
図1~図4に示されるように、樹脂モールド60は、所定の形状に成形された樹脂成形体である。樹脂モールド60は、絶縁性の樹脂材料によって構成される。具体的には、樹脂モールド60としては、熱硬化性樹脂又は熱可塑性樹脂を用いることができる。この場合、熱硬化性樹脂としては、例えば、不飽和ポリエステル系樹脂、フェノール系樹脂又はエポキシ系樹脂等を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂又はポリブチレンテレフタレート系樹脂等を用いることができる。
樹脂モールド60は、ボビン30、コイル40及びステータコア10の一部を覆っている。樹脂モールド60は、ボビン30、コイル40及びステータコア10の一部を覆った状態で、ステータコア10に固定されている。樹脂モールド60は、さらに、回路基板50も覆っている。樹脂モールド60でコイル40及び回路基板50を覆うことによって、コイル40及び回路基板50を保護することができる。コイル40及び回路基板50は、樹脂モールド60で完全に覆われているが、ステータコア10は、その一部が樹脂モールド60で覆われている。ボビン30は、樹脂モールド60によってほぼ覆われているが、一部分は樹脂モールド60から露出している。
以下、このようなボビン30と樹脂モールド60との関係について、図1~図6を参照しつつ、図7及び図8を用いて詳細に説明する。図7は、実施の形態1に係るモータ1の要部拡大断面斜視図である。図8は、同モータ1の要部拡大断面図である。図7と図8の断面部分は同じである。
図7及び図8に示すように、ボビン30の挿入孔31の開口端部36には、樹脂モールド60から露出する露出面33aを有する露出部33が設けられている。本実施の形態において、露出部33は、挿入孔31の両側の各々の開口端部36a、36bに設けられている。
ボビン30の挿入孔31の開口端部36において、露出部33は、ステータコア10と樹脂モールド60との間に位置している。具体的には、露出部33は、第2のセグメントコア12と樹脂モールド60との間に位置している。
露出部33は、ボビン30の一部を突出させた突出部(突起)として構成されている。露出部33は、ボビン30の挿入孔31の孔軸C方向に沿って、フランジ部32から外方に向かって突出している。具体的には、露出部33は、ボビン30の挿入孔31の開口の縁部分全周を環状に突出させた構造である。より具体的には、露出部33は、フランジ部32の外表面に設けられた矩形状の枠体である。
また、露出部33の露出面33aは、樹脂モールド60のうち露出部33を囲う部分60aの表面と同一平面上に位置している。したがって、露出部33の露出面33aは、環状の平面である。具体的には、露出面33aは、断面が矩形状の第2のセグメントコア12を囲む額縁状の平面である。
以上のように構成されるモータ1では、コイル40に通電すると、コイル40に界磁電流が流れて、第2のセグメントコア12(励磁部)が励磁されて、磁束が発生する。第2のセグメントコア12で発生した磁束は、第1のセグメントコア11に伝達し、ステータコア10全体に磁束が生じる。ステータコア10には、S極及びN極の2極の回転磁界が生成される。ロータ20は、ステータコア10の回転磁界によって回転する。つまり、ステータコア10の磁束とロータ20の永久磁石から生じる磁束との相互作用によって生じた磁力が、ロータ20を回転させるトルクとなり、ロータ20が回転する。
このように構成されるモータ1は、ファンモータとして、送風機に用いられることができる。この場合、ロータ20のシャフト22の先端部にインペラ(回転翼)が取り付けられたモータ1をケーシングに収納することによって、送風機を得ることができる。
このような送風機は、例えば冷蔵庫又は空気調和機等の電気機器に用いられることができる。例えば、冷蔵庫では、冷気循環用として送風機(庫内用ファン)が用いられる。圧縮機の冷却用として送風機が用いられる。
以下、モータ1が用いられた送風機の適用例について、図9を用いて説明する。図9は、実施の形態1に係るモータ1を用いた送風機3が搭載された冷蔵庫2の一例を示す模式図である。
図9に示すように、冷蔵庫2は、モータ1を用いた送風機3と、送風機3を制御する制御部4と、冷蔵室5とを備えている。冷蔵庫2において、送風機3は、インペラ6を用いて冷却器で冷却された冷気を冷蔵室5に送る。制御部4は、送風機3を制御することによって、送風機3による送風を停止したり開始したりする。制御部4は、送風機3を制御することで、送風機3による送風量を調整してもよい。制御部4は、特に、モータ1を制御する。なお、冷気を、冷蔵室5に代えて冷凍室に送ってもよく、冷蔵室5と冷凍室の両方に送ってもよい。
以上のように、本実施の形態の冷蔵庫2は、送風機3と、送風機3を制御する制御部4と、冷蔵室5あるいは冷凍室と、を備えている。送風機3は、冷蔵室5あるいは冷凍室に冷気を送る。
次に、図10~図12を用いて、実施の形態1に係るモータ1の作用効果について、比較例のモータと比較して説明する。図10は、実施の形態1に係るモータ1のステータコア10の表面に水滴90が付着した状態を示す図である。図11は、比較例のモータ1Xの要部拡大断面図である。図12は、図8の破線で囲まれる領域XIIにおける実施の形態1に係るモータ1の要部拡大断面図である。
図10に示すように、モータ1は、例えば、ロータ20のシャフト22が水平方向となるように配置される。つまり、ステータコア10の表面が鉛直方向になっている。
図10に示すように、モータ1のステータコア10の表面に水滴90が付着する場合がある。例えば、冷蔵庫には、冷却器で冷却された冷気を冷蔵室に送るために送風機が用いられている。冷蔵庫において、冷却器の霜取りを行う際、又は、冷蔵庫の扉が開いているときには、モータの駆動を止めて送風機による送風を停止する。送風機による送風が停止すると、モータ1の周辺の温度が上昇して結露が生じ、図10に示すように、ステータコア10の表面に水滴90が発生する。
発生した水滴90は、ステータコア10の表面を伝って滑り落ちて、ステータコア10と樹脂モールド60との界面にまで到達する。このとき、図11における比較例のモータ1Xでは、毛細管現象によって、矢印で示すように、ステータコア10と樹脂モールド60との界面から水が浸入する。さらに、浸入した水が毛細管現象によってフランジ部32と樹脂モールド60との界面を伝って進み、樹脂モールド60で覆われるコイル40にまで到達することがある。この結果、水によってコイル40のレアショートが引き起こされる。
これに対して、本実施の形態におけるモータ1では、図12に示すように、樹脂モールド60から露出する露出部33がステータコア10と樹脂モールド60との間に位置するように設けられている。したがって、ステータコア10と樹脂モールド60との間に、ボビン30と樹脂モールド60との界面が存在しない。
これにより、ステータコア10の表面に付着した水滴90がステータコア10の表面を伝って滑り落ちてステータコア10とボビン30との界面にまで到達し、毛細管現象によりボビン30内に水が浸入したとしても、図12の矢印で示すように、ボビン30内に浸入した水は、ステータコア10とボビン30との界面に沿って浸入していくが、コイル40には到達しない。
つまり、露出部33を設けることによって、ステータコア10の表面に水滴90が付着したとしても、ボビン30と樹脂モールド60との界面から水が浸入することを回避することができる。これにより、ボビン30と樹脂モールド60との界面を伝ってコイル40に水が到達してしまうことを抑制できる。したがって、コイル40のレアショートの発生を抑制できる。
以上のように、本実施の形態におけるモータ1は、挿入孔31を有するボビン30と、ボビン30に巻回されたコイル40と、挿入孔31に挿入された励磁部を有するステータコア10と、ステータコア10に対して回転可能に配置されたロータ20と、ボビン30、コイル40及びステータコア10を覆う樹脂モールド60と、を備える。挿入孔31の第1の開口端部36aには、樹脂モールド60から露出する露出面33aを有する露出部33が設けられている。露出部33は、ステータコア10と樹脂モールド60との間に位置している。
この構成により、ステータコア10と樹脂モールド60との間において、樹脂モールド60とボビン30との界面が存在しなくなる。これにより、ステータコア10と樹脂モールド60との間に存在する部材間の界面から水が浸入した場合であっても、コイル40まで水が到達することを抑制できる。したがって、コイル40のレアショートの発生を抑制できる。よって、信頼性の高いモータ1を実現できる。
また、本実施の形態において、ボビン30は、第1の開口端部36aにフランジ部32を有し、露出部33は、ボビン30の挿入孔31の孔軸C方向に沿ってフランジ部32から外方に向かって突出している。
この構成とすれば、樹脂モールド60の表面あるいは露出面33aからコイル40に到達するまでの水の進入経路を長くすることができるため、より一層、コイル40に水が到達することを抑制できる。
また、本実施の形態において、露出面33aは、樹脂モールド60のうち露出部33を囲う部分60aの表面と同一平面上に位置する。
この構成により、ステータコア10の表面を伝って露出部33付近にまで水滴が滑り落ちてきたとしても、その水滴は、露出部33で留まることなく通過しやすい。これにより、ステータコア10と樹脂モールド60との間に存在する部材間の界面から水が浸入することを一層抑制できる。さらに、露出面33aと、樹脂モールド60のうち露出部33を囲う部分60aの表面とを同一平面上に位置することで、ボビン30に露出部33を設けたとしても、露出部33を目立たなくすることもできる。
また、本実施の形態において、露出面33aは、環状である。
この構成により、ボビン30の挿入孔31の第1の開口端部36aの全周を囲むように露出部33を設けることができるので、ステータコア10と樹脂モールド60との間に存在する部材間の界面から水が浸入することを一層抑制できる。
また、本実施の形態において、コイル40への通電を制御する電子部品が実装された回路基板50を備え、回路基板50は、樹脂モールド60で覆われている。
これにより、コイル40のみならず回路基板50も樹脂モールド60で保護することができる。例えば、樹脂モールド60でコイル40及び回路基板50を覆うことによって、コイル40及び回路基板50を絶縁保護したり、空気中の水分や酸素による劣化を抑制したりできる。
また、本実施の形態において、ステータコア10は、第1のセグメントコア11と、第1のセグメントコア11に連結された第2のセグメントコア12とを有し、第1のセグメントコア11は、ロータ20を囲むように構成されており、第2のセグメントコア12は、励磁部である。
この構成により、第2のセグメントコア12(励磁部)が励磁されて磁束が発生すると、第1のセグメントコア11に磁束が伝達して、第1のセグメントコア11に回転磁界が生成される。これにより、第1のセグメントコア11に囲まれるように配置されたロータ20を回転させることができる。
(実施の形態2)
次に、実施の形態2に係るモータ1Aについて、図13を用いて説明する。図13は、実施の形態2に係るモータ1Aの要部拡大断面図である。
次に、実施の形態2に係るモータ1Aについて、図13を用いて説明する。図13は、実施の形態2に係るモータ1Aの要部拡大断面図である。
実施の形態1におけるモータ1では、ボビン30の露出部33の露出面33aは、一様な平坦面である。しかし、本実施の形態におけるモータ1Aでは、図13に示すように、ボビン30Aの露出部33Aの露出面33aには、凹面が含まれている。
具体的には、図13に示すように、露出部33Aには、樹脂モールド60の表面から窪む凹部33bが設けられている。本実施の形態において、露出部33Aの凹部33bの内面は、露出面33aの一部である傾斜面33cとなっている。そして、凹部33bの傾斜面33cとステータコア10の表面との距離は、樹脂モールド60の表面から後退するほど小さくなっている。例えば、凹部33bの切り欠き状に窪んだ部分の断面形状は、直角三角形である。凹部33bは、実施の形態1における露出部33の角部に面取りを施して露出部33の角部を切り欠くことによって形成することができる。
以上のように、本実施の形態におけるモータ1Aでも、ボビン30Aの挿入孔31の第1の開口端部36aには、樹脂モールド60から露出する露出面33aを有する露出部33Aが設けられている。露出部33Aは、ステータコア10と樹脂モールド60との間に位置している。
これにより、ステータコア10と樹脂モールド60との界面の間において、樹脂モールド60とボビン30Aとの界面が存在しなくなる。したがって、ステータコア10と樹脂モールド60との間に存在する部材間の界面から水が浸入した場合においても、水がコイル40まで到達することを抑制できる。したがって、本実施の形態でも、コイル40のレアショートの発生を抑制できる。よって、信頼性の高いモータ1Aを実現できる。
本実施の形態では、露出部33Aには、樹脂モールド60の表面から窪む凹部33bが設けられている。
この構成により、ボビン30Aの挿入孔31の第1の開口端部36a周辺の水滴が、凹部33bからボビン30Aとステータコア10との間に浸入しやすくなる。結果として、樹脂モールド60とボビン30Aとの界面が存在する周辺部分、つまり、ボビン30Aの挿入孔31の第1の開口端部36a付近には、水滴が溜まりにくくなる。これにより、樹脂モールド60とボビン30Aとの界面から水が浸入することを抑制できる。よって、コイル40のレアショートが発生することを一層抑制できる。したがって、より信頼性の高いモータ1Aを実現できる。
また、本実施の形態において、凹部33bの内面は、傾斜面33cであり、傾斜面33cとステータコア10の表面との距離は、樹脂モールド60の表面から後退するほど小さくなっている。
この構成により、ボビン30Aの挿入孔31の第1の開口端部36a周辺の水滴を凹部33bに導きやすくできる。したがって、ボビン30Aとステータコア10との間にさらに水滴を引き込みやすくできる。これにより、樹脂モールド60とボビン30Aとの界面から水が浸入することを一層抑制できる。よって、コイル40のレアショートが発生することをより一層抑制できる。
(実施の形態3)
実施の形態3に係るモータ1Bについて、図14から図16を用いて説明する。図14は、実施の形態3に係るモータ1Bの要部拡大断面図である。図15は、同モータ1Bの側断面図である。図16は、同モータ1Bの他の側断面図である。
実施の形態3に係るモータ1Bについて、図14から図16を用いて説明する。図14は、実施の形態3に係るモータ1Bの要部拡大断面図である。図15は、同モータ1Bの側断面図である。図16は、同モータ1Bの他の側断面図である。
実施の形態1におけるモータ1では、ステータコア10の表面とボビン30の挿入孔31の内面とは密着している。しかし、本実施の形態におけるモータ1Bでは、図14から図16に示すように、ステータコア10の表面とボビン30Bの挿入孔31の内面との間には、隙間G(溝)が設けられている。つまり、ステータコア10とボビン30Bとの間の空間層として隙間Gが設けられている。
隙間Gは、図14に示すように、挿入孔31の第1の開口端部36aから挿入孔31の反対側の第2の開口端部(36b)に向かって延在している。本実施の形態において、隙間Gは、挿入孔31の全長にわたって設けられている。
本実施の形態では、図15に示すように、ボビン30Bの内側に突起35が設けられている。突起35は、第2のセグメントコア12の上下左右の4つ面に当接するように、4つ設けられている。このように、ボビン30Bの内側に突起35を設けることによって、ステータコア10とボビン30Bとの間における周方向の隙間Gを維持しつつ、ボビン30Bをステータコア10、特に、第2のセグメントコア12に保持させることができる。
本実施の形態では、図16に示すように、ボビン30Eの内側に隙間G1が設けられている。隙間G1は、第2のセグメントコア12が有する上下左右の4つ面と接するように、4つ設けられている。このように、ボビン30Eの内側に隙間G1を設けることによって、ステータコア10とボビン30Eとの間における周方向の隙間G1を維持しつつ、ボビン30Eをステータコア10、特に、第2のセグメントコア12に保持させることができる。
つまり、図15に示すように、孔軸Cと交差する断面方向(図15に示す断面方向)において、隙間Gと断面ステータコア10、特に、第2のセグメントコア12とが接する面積は広い。よって、本構成とすれば、ステータコア10に磁力が生じて熱を帯びたとき、ステータコア10に付着している水が、早期に蒸発することができる。
一方、図16に示すように、孔軸Cと交差する断面方向(図16に示す断面方向)において、隙間G1と断面ステータコア10、特に、第2のセグメントコア12とが接する面積は狭い。よって、本構成とすれば、隙間G1に導かれた水は、毛細管現象等により、隙間G1を早期に通過することができる。
以上のように、本実施の形態におけるモータ1Bでも、ボビン30Bの挿入孔31の第1の開口端部36aには、樹脂モールド60から露出する露出面33aを有する露出部33が設けられている。露出部33は、ステータコア10と樹脂モールド60との間に位置している。
これにより、ステータコア10と樹脂モールド60との界面の間において、樹脂モールド60とボビン30Bとの界面が存在しなくなる。したがって、ステータコア10と樹脂モールド60との間に存在する部材間の界面から水が浸入した場合においても、水がコイル40まで到達することを抑制できる。したがって、本実施の形態でも、コイル40のレアショートの発生を抑制できる。よって、信頼性の高いモータ1Bを実現できる。
本実施の形態では、ステータコア10の表面と挿入孔31の内面との間には、開口端部36のうち第1の開口端部36aから挿入孔31の反対側に位置する第2の開口端部36bに向かって延在する隙間G、G1が設けられている。
この構成により、ボビン30B、30Eの挿入孔31の第1の開口端部36a周辺の水滴が、隙間G、G1からボビン30B、30Eとステータコア10との間に浸入しやすくなる。結果として、樹脂モールド60とボビン30B、30Eとの界面が存在する周辺部分、つまり、ボビン30B、30Eの挿入孔31の第1の開口端部36a付近には、水滴が溜まりにくくなる。これにより、樹脂モールド60とボビン30B、30Eとの界面から水が浸入することを抑制できる。よって、コイル40のレアショートが発生することを一層抑制できる。したがって、より信頼性の高いモータ1Bを実現できる。本実施の形態において、隙間G、G1は、挿入孔31の全長にわたって設けられている。
この構成により、隙間G、G1に浸入した水が隙間G、G1内に滞留することを抑制することができる。これにより、さらに信頼性の高いモータ1Bを実現できる。
(変形例)
以上、本開示に係るモータ、送風機及び冷蔵庫等について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
以上、本開示に係るモータ、送風機及び冷蔵庫等について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
例えば、実施の形態1~3において、ボビン30に設けられた露出部33の露出面33aは、樹脂モールド60のうち露出部を囲う部分の表面と同一平面上に位置することとした。しかし、これに限らず、露出部33の露出面33aは、図17に示すように、樹脂モールド60の表面よりも外方に位置していてもよい。また、図18に示すように、樹脂モールド60の表面よりも内方に位置していてもよい。図17は、変形例に係るモータの要部拡大断面図である。図18は、変形例に係るモータの他の要部拡大断面図である。図17に示されるモータ1Cのボビン30Cでは、露出部33が樹脂モールド60の表面よりも突出するように形成されている。つまり、図17では、図12と比べて、露出部33(突起)の突出量(高さ)が大きくなっている。
図18に示されるモータ1Dのボビン30Dでは、露出部33が樹脂モールド60の表面よりも窪むように形成されている。
実施の形態1~3において、露出部33の露出面33aは環状としたが、これに限らない。露出部33は、ステータコア10とボビン30との界面において、ボビン30の少なくとも一部が露出されるように構成されていれば、ステータコア10の表面に付着した水滴がボビン30内に浸入することを抑制できる。
実施の形態1~3におけるモータは、冷却用の送風機に用いたが、これに限らず、種々の電気機器に用いることができる。
その他、実施の形態1~3に対して当業者が思い付く各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で実施の形態1~3における構成要素及び機能を任意に組み合わせることで実現される形態も、本開示に含まれる。
本開示の技術は、モータ、送風機及び冷蔵庫等の種々の電気機器に利用することができる。特に、本開示の技術は、ステータコアの表面に水滴が付着しやすい環境に用いられるモータ等に有用である。
1、1A、1B、1C、1D、1X モータ
2 冷蔵庫
3 送風機
4 制御部
5 冷蔵室
6 インペラ
10 ステータコア
11 第1のセグメントコア
11a 嵌挿孔
11b 脚部
12 第2のセグメントコア
12a 凹部
20 ロータ
21 ロータ本体
22 シャフト
30、30A、30B、30C、30D、30E ボビン
31 挿入孔
32 フランジ部
33、33A 露出部
33a 露出面
33b 凹部
33c 傾斜面
34 リード端子
35 突起
36 開口端部
36a 第1の開口端部
36b 第2の開口端部
40 コイル
50 回路基板
60 樹脂モールド
60a 露出部を囲う部分
70 軸受ユニット
80 電源線
81 コネクタ
90 水滴
2 冷蔵庫
3 送風機
4 制御部
5 冷蔵室
6 インペラ
10 ステータコア
11 第1のセグメントコア
11a 嵌挿孔
11b 脚部
12 第2のセグメントコア
12a 凹部
20 ロータ
21 ロータ本体
22 シャフト
30、30A、30B、30C、30D、30E ボビン
31 挿入孔
32 フランジ部
33、33A 露出部
33a 露出面
33b 凹部
33c 傾斜面
34 リード端子
35 突起
36 開口端部
36a 第1の開口端部
36b 第2の開口端部
40 コイル
50 回路基板
60 樹脂モールド
60a 露出部を囲う部分
70 軸受ユニット
80 電源線
81 コネクタ
90 水滴
Claims (12)
- 挿入孔を有するボビンと、
前記ボビンに巻回されたコイルと、
前記挿入孔に挿入された励磁部を有するステータコアと、
前記ステータコアに対して回転可能に配置されたロータと、
前記ボビン、前記コイル及び前記ステータコアを覆う樹脂モールドとを備え、
前記挿入孔の第1の開口端部には、前記樹脂モールドから露出する露出面を有する露出部が設けられ、
前記露出部は、前記ステータコアと前記樹脂モールドとの間に位置する、
モータ。 - 前記露出部には、前記樹脂モールドの表面から窪む凹部が設けられている、
請求項1に記載のモータ。 - 前記凹部の内面は、傾斜面であり、
前記傾斜面と前記ステータコアの表面との距離は、前記樹脂モールドの表面から後退するほど小さくなっている、
請求項2に記載のモータ。 - 前記ステータコアの表面と前記挿入孔の内面との間には、前記第1の開口端部から前記挿入孔の反対側の第2の開口端部に向かって延在する隙間が設けられている、
請求項1~3のいずれか1項に記載のモータ。 - 前記隙間は、前記挿入孔の全長にわたって設けられている、
請求項4に記載のモータ。 - 前記ボビンは、前記第1の開口端部にフランジ部を有し、
前記露出部は、前記挿入孔の孔軸方向に沿って前記フランジ部から外方に向かって突出している、
請求項1~5のいずれか1項に記載のモータ。 - 前記露出面は、前記樹脂モールドのうち前記露出部を囲う部分の表面と同一平面上に位置する、
請求項1~6のいずれか1項に記載のモータ。 - 前記露出面は、環状である、
請求項1~7のいずれか1項に記載のモータ。 - さらに、前記コイルへの通電を制御する電子部品が実装された回路基板を備え、
前記回路基板は、前記樹脂モールドで覆われている、
請求項1~8のいずれか1項に記載のモータ。 - 前記ステータコアは、第1のセグメントコアと、前記第1のセグメントコアに連結された第2のセグメントコアとを有し、
前記第1のセグメントコアは、前記ロータを囲むように構成されており、
前記第2のセグメントコアは、前記励磁部である、
請求項1~9のいずれか1項に記載のモータ。 - 請求項1~10のいずれか1項に記載のモータと、
前記ロータのシャフトに取り付けられたインペラとを備える、
送風機。 - 請求項11に記載の送風機と、
前記送風機を制御する制御部と、
冷蔵室あるいは冷凍室と、を備え、
前記送風機は、前記冷蔵室あるいは前記冷凍室に冷気を送る
冷蔵庫。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019532509A JP7336635B2 (ja) | 2017-07-28 | 2018-07-13 | モータ、送風機及び冷蔵庫 |
EP18837186.8A EP3661019B1 (en) | 2017-07-28 | 2018-07-13 | Motor, fan, and refrigerator |
US16/626,583 US20200119599A1 (en) | 2017-07-28 | 2018-07-13 | Motor, fan, and refrigerator |
CN201880048697.6A CN110945749B (zh) | 2017-07-28 | 2018-07-13 | 电动机、风机以及冰箱 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017145991 | 2017-07-28 | ||
JP2017-145991 | 2017-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021854A1 true WO2019021854A1 (ja) | 2019-01-31 |
Family
ID=65039702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026438 WO2019021854A1 (ja) | 2017-07-28 | 2018-07-13 | モータ、送風機及び冷蔵庫 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200119599A1 (ja) |
EP (1) | EP3661019B1 (ja) |
JP (1) | JP7336635B2 (ja) |
CN (1) | CN110945749B (ja) |
WO (1) | WO2019021854A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188540A1 (ja) | 2022-03-30 | 2023-10-05 | パナソニックIpマネジメント株式会社 | モータ及びモータの製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD936008S1 (en) * | 2019-01-30 | 2021-11-16 | Ebm-Papst St. Georgen Gmbh & Co. Kg | Electric motor |
JP1635983S (ja) * | 2019-02-27 | 2019-07-08 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604353A (ja) * | 1983-06-22 | 1985-01-10 | Nippon Telegr & Teleph Corp <Ntt> | 通信制御装置 |
JPH03102481A (ja) * | 1989-09-18 | 1991-04-26 | Nec Corp | 図形表示装置 |
JPH11148484A (ja) | 1997-11-19 | 1999-06-02 | Toshiba Tec Corp | 電動送風機 |
US6414408B1 (en) * | 1992-04-06 | 2002-07-02 | General Electric Company | Integral motor and control |
US20060061224A1 (en) * | 2003-12-08 | 2006-03-23 | A.O. Smith Corporation | Electric machine |
US7687965B2 (en) * | 2006-04-13 | 2010-03-30 | A. O. Smith Corporation | Electric machine, stator assembly for an electric machine, and method of manufacturing the same |
JP2011147264A (ja) * | 2010-01-14 | 2011-07-28 | Toyota Motor Corp | 分割ステータ及びステータ |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3963949A (en) * | 1972-10-26 | 1976-06-15 | General Electric Company | Laminated structure with insulating member formed in situ thereon |
US4071787A (en) * | 1976-06-03 | 1978-01-31 | Gould Inc. | Welded stator for electric motors |
US4132913A (en) * | 1976-11-22 | 1979-01-02 | Gould Inc. | Field-coil bobbin with built-in-one-shot thermal protector |
US4482832A (en) * | 1983-03-31 | 1984-11-13 | Rival Manufacturing Company | Shaded pole motor lamination |
US4600864A (en) * | 1984-02-01 | 1986-07-15 | Sanyo Electric Co., Ltd. | Easily restarted brushless DC motor |
JPS61120252U (ja) * | 1985-01-17 | 1986-07-29 | ||
US5130591A (en) * | 1989-01-19 | 1992-07-14 | Sanyo Electric Co., Ltd. | Shaded pole motor |
JP2555080Y2 (ja) * | 1991-12-12 | 1997-11-19 | 松下電器産業株式会社 | モールドモータ用ボビン |
JP2878910B2 (ja) * | 1992-09-11 | 1999-04-05 | 株式会社東芝 | 電動機のステータ |
US6069428A (en) * | 1998-01-21 | 2000-05-30 | Fasco Industries, Inc. | Brushless DC motor assembly |
KR20010097182A (ko) * | 2000-04-20 | 2001-11-08 | 김춘호 | 스켈리턴형 브러시레스 직류 모터의 스테이터 코어 |
JP5190049B2 (ja) * | 2009-12-11 | 2013-04-24 | 株式会社日立産機システム | 外転型モータ |
US9293958B2 (en) * | 2010-03-04 | 2016-03-22 | Toyota Jidosha Kabushiki Kaisha | Stator |
CN202978463U (zh) * | 2010-03-09 | 2013-06-05 | 松下电器产业株式会社 | 电动机、电动机单元、鼓风机和电气设备 |
US9608482B2 (en) * | 2011-10-28 | 2017-03-28 | Genese Intelligent Technology Co., Ltd. | Motor stator manufacturing method and structure thereof |
TWM435097U (en) * | 2011-10-28 | 2012-08-01 | Herng Shan Electronics Co Ltd | Three-phase motor structure |
JP5910590B2 (ja) * | 2013-08-30 | 2016-04-27 | 株式会社デンソー | ブラシレスモータの回転子 |
WO2015040852A1 (ja) * | 2013-09-17 | 2015-03-26 | パナソニックIpマネジメント株式会社 | ブラシレスdcモータおよびそれを搭載した送風装置 |
KR101560057B1 (ko) * | 2013-11-20 | 2015-10-15 | 뉴모텍(주) | 버스바 결선 구조를 갖는 모터의 스테이터 및 이를 이용한 코일의 병렬 결선 방법 |
JP6952775B2 (ja) * | 2017-06-29 | 2021-10-20 | 三菱電機株式会社 | センサマグネット、モータ、及び空気調和機 |
-
2018
- 2018-07-13 CN CN201880048697.6A patent/CN110945749B/zh active Active
- 2018-07-13 US US16/626,583 patent/US20200119599A1/en active Pending
- 2018-07-13 WO PCT/JP2018/026438 patent/WO2019021854A1/ja active Application Filing
- 2018-07-13 EP EP18837186.8A patent/EP3661019B1/en active Active
- 2018-07-13 JP JP2019532509A patent/JP7336635B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604353A (ja) * | 1983-06-22 | 1985-01-10 | Nippon Telegr & Teleph Corp <Ntt> | 通信制御装置 |
JPH03102481A (ja) * | 1989-09-18 | 1991-04-26 | Nec Corp | 図形表示装置 |
US6414408B1 (en) * | 1992-04-06 | 2002-07-02 | General Electric Company | Integral motor and control |
JPH11148484A (ja) | 1997-11-19 | 1999-06-02 | Toshiba Tec Corp | 電動送風機 |
US20060061224A1 (en) * | 2003-12-08 | 2006-03-23 | A.O. Smith Corporation | Electric machine |
US7687965B2 (en) * | 2006-04-13 | 2010-03-30 | A. O. Smith Corporation | Electric machine, stator assembly for an electric machine, and method of manufacturing the same |
JP2011147264A (ja) * | 2010-01-14 | 2011-07-28 | Toyota Motor Corp | 分割ステータ及びステータ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188540A1 (ja) | 2022-03-30 | 2023-10-05 | パナソニックIpマネジメント株式会社 | モータ及びモータの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200119599A1 (en) | 2020-04-16 |
EP3661019A1 (en) | 2020-06-03 |
CN110945749B (zh) | 2023-01-24 |
JP7336635B2 (ja) | 2023-09-01 |
EP3661019A4 (en) | 2020-07-22 |
CN110945749A (zh) | 2020-03-31 |
EP3661019B1 (en) | 2022-03-09 |
JPWO2019021854A1 (ja) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7093301B2 (ja) | コンシクエントポール型ロータ、電動機、空気調和機、及びコンシクエントポール型ロータの製造方法 | |
US11552515B2 (en) | Rotor, motor, fan, and air conditioner | |
KR102182396B1 (ko) | 전동기, 송풍기, 공기 조화기 및 전동기의 제조 방법 | |
US20180100517A1 (en) | Centrifugal blower and vacuum cleaner | |
JP7336635B2 (ja) | モータ、送風機及び冷蔵庫 | |
JP2006115687A (ja) | ステータユニット及びモータ | |
JP6766535B2 (ja) | ステータユニット、モータ、およびファンモータ | |
JP7395592B2 (ja) | 電動機およびそれを用いた空気調和機 | |
WO2015080077A1 (ja) | 電動機の回転子、電動機、及び空気調和機 | |
KR20190069490A (ko) | 전동기 및 공기 조화기 및 전동기의 제조 방법 | |
WO2015011892A1 (ja) | 冷凍機器用の電動送風機およびこの電動送風機を搭載した冷凍機器 | |
US11909259B2 (en) | Stator, motor, fan, air conditioner, and method for manufacturing stator | |
US11658526B2 (en) | Motor, fan, air conditioning apparatus, and method for manufacturing motor | |
KR20080090027A (ko) | 직류 모터용 회전자 조립체 | |
JP7515104B2 (ja) | ファンモータ | |
EP4425753A1 (en) | Rotor, electric motor, fan, and air conditioner | |
US12009698B2 (en) | Rotor, electric motor, fan, and air conditioner | |
US20240235285A1 (en) | Motor, fan, and air conditioner | |
WO2022249307A1 (ja) | 電動機及び空気調和機 | |
WO2023188540A1 (ja) | モータ及びモータの製造方法 | |
US11984770B2 (en) | Rotor, motor, fan, air conditioning apparatus, and method for manufacturing rotor | |
US20230039239A1 (en) | Consequent pole rotor, motor, fan, and air conditioner | |
KR100803142B1 (ko) | 비엘디씨(bldc) 모터 | |
JP2003032979A (ja) | スイッチトリラクタンスモータ | |
JPWO2022264712A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18837186 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019532509 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018837186 Country of ref document: EP |