WO2019015714A1 - Hybridmodul mit drehdurchführung - Google Patents

Hybridmodul mit drehdurchführung Download PDF

Info

Publication number
WO2019015714A1
WO2019015714A1 PCT/DE2018/100615 DE2018100615W WO2019015714A1 WO 2019015714 A1 WO2019015714 A1 WO 2019015714A1 DE 2018100615 W DE2018100615 W DE 2018100615W WO 2019015714 A1 WO2019015714 A1 WO 2019015714A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
actuating
oil
hybrid module
separating
Prior art date
Application number
PCT/DE2018/100615
Other languages
English (en)
French (fr)
Inventor
Andreas Trinkenschuh
Steffen Lehmann
Dirk Hofstetter
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US16/631,373 priority Critical patent/US11396226B2/en
Priority to DE112018003654.5T priority patent/DE112018003654A5/de
Priority to CN201880047107.8A priority patent/CN110914088A/zh
Priority to EP18745492.1A priority patent/EP3655273A1/de
Priority to KR1020207001102A priority patent/KR20200030056A/ko
Priority to JP2019560752A priority patent/JP7038736B2/ja
Publication of WO2019015714A1 publication Critical patent/WO2019015714A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0661Hydraulically actuated multiple lamellae clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/08Serially-arranged clutches interconnecting two shafts only when all the clutches are engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid module for a drive train of a motor vehicle, having a dual clutch having a first partial clutch (K1) and a second partial clutch (K2) for selectively transmitting torque of a first drive unit, in particular an electric machine, to an output shaft, and a separating clutch (K0) for coupling a second drive unit, in particular an internal combustion engine, to the drive train and for transmitting torque of the second drive unit to the output shaft.
  • K1 first partial clutch
  • K2 a second partial clutch
  • K0 for coupling a second drive unit, in particular an internal combustion engine
  • WO 2017/088869 A1 discloses a hybrid module for a motor vehicle for coupling an internal combustion engine, having a separating clutch by means of which the internal combustion engine can be separated from a drive train of the motor vehicle and by means of which torque can be brought from the internal combustion engine to the drive train an electric motor connectable to the driveline for torque transmission via a master clutch, a disconnect clutch actuation system for actuating actuation of the disconnect clutch and a main clutch actuation system for actuating actuation of the main clutch, characterized in that both actuation systems are interposed between the disconnect clutch and the main clutch are arranged.
  • a hybrid module is known inter alia from the non-prepublished application DE 10 2017 104 487. This discloses a hybrid module for a drive train of a motor vehicle, having a stator and a rotor having an electric machine, a torsion part having at least one torsional vibration damper, and an integrated and formed as a double clutch coupling a rotor receiving rotor carrier is connected directly via a permanent rotational connection with the at least one rotary member, wherein the rotor carrier forms a coupling component of at least one partial coupling of the coupling device.
  • an improved hybrid module is to be developed, which is able to transmit high actuating forces for actuating the couplings, and at the same time space-optimized and inexpensive to produce.
  • the object of the invention is achieved in a generic device according to the invention that in the hybrid module at least one rotary feedthrough is provided, on the one hand for guiding actuating oil, which is designed for actuating the separating clutch, or on the other hand is designed for guiding cooling oil, for cooling the separating clutch and / or the double clutch is designed.
  • a rotary feedthrough for guiding actuating oil which is designed for actuating the separating clutch, the first partial clutch and / or the second partial clutch, is present both for the separating clutch and for the first partial clutch and the second partial clutch.
  • the rotary feedthrough for guiding actuating oil for actuating the separating clutch in a housing and a rotor flange which is fixedly connected to a rotor carrier for supporting the first drive unit is formed.
  • the rotary feedthrough can be implemented integrally in existing components without far-reaching structural changes.
  • the rotor flange has a receptacle for a rotor position sensor which is designed to indicate the position of the rotor when detected by a rotor position sensor.
  • the rotor flange can be used to support the actuating forces of the first part clutch.
  • the separating clutch is designed as a multi-disc clutch, wherein an inner disc carrier or an outer disc carrier is firmly connected to the rotor flange.
  • the power flow of the actuating forces can thereby be designed to be self-contained.
  • the other of the inner disk carrier and the outer disk carrier prefferably be connected to the second drive unit in order to enable torque transmission.
  • at least one oil-filled centrifugal oil compensation space is present, which is configured such that the oil pressure in the centrifugal oil compensation space exerts a force in the axial direction on one for actuating the separating clutch, the first partial clutch and / or the second partial clutch axially displaceable actuator applies, which counteracts an actuating force of the actuating oil for actuating the separating clutch, the first part clutch and / or the second part clutch.
  • the oil pressure in the centrifugal oil compensating space corresponds to an operating oil pressure in a pressure space filled with actuating oil for operating the separating clutch, the first part-coupling and / or the second part-coupling.
  • actuating oil for operating the separating clutch, the first part-coupling and / or the second part-coupling.
  • the rotary leadthrough for guiding actuating oil for actuating the separating clutch is formed by a through hole in the rotor flange, which is connected via a radially circumferential groove to an actuating oil feed in the housing. Since the rotor flange rotates relative to the housing, it is necessary to form on one of the two components a circumferential groove, so that the through hole in the rotor flange is connected in any rotational position via the groove with the actuating oil supply in the housing.
  • the groove is connected via a through hole in a sleeve with the actuating oil supply in the housing.
  • the actuating oil can be guided by the housing through a housing interior, since the Sleeve which serves as a seal carrier, the actuating oil supply seals against the housing interior.
  • a counterpressure element for supporting an actuating force for actuating the separating clutch, the first partial clutch and / or the second partial clutch is fixedly connected to the rotor flange.
  • the counter-pressure element is designed to support the actuating force of the separating clutch as a support screw, retaining ring or bayonet ring.
  • Clutch carrier of the clutch on a support bearing is supported, and when the actuating forces that arise when operating the clutch, via an actuator, the clutch and the clutch carrier in self-contained run so that the operating forces bypass the support bearing.
  • the first and the second rolling bearing may be designed as needle bearings.
  • a counterpressure element for clutch discs is present when the disconnect clutch is actuated, which is designed to receive the actuating forces and which is connected to the clutch carrier, such as an inner disc carrier or an outer disc carrier.
  • the counter-pressure element is designed as a support screw, a retaining ring or a bayonet ring.
  • the counter-pressure element can be produced inexpensively and at the same time perform the function of a counter-pressure plate for supporting the actuating forces.
  • a favorable embodiment is characterized in that the counter-pressure element is connected via a toothing with the coupling carrier.
  • an external toothing is formed on the counterpressure element and an internal toothing is formed on the coupling carrier, for example the inner plate carrier.
  • the counterpressure element can be connected in a rotationally fixed manner to the coupling carrier.
  • the counter-pressure element is designed and arranged such that it defines the support bearing in the axial direction.
  • the counter-pressure element thus simultaneously serves as an axial stop for the support bearing, so that advantageously fewer components have to be used.
  • the actuation forces are supported by the separating clutch via the counter-pressure element on a rotor flange fixedly connected to the coupling carrier, so that the force flow of the actuating forces is self-contained and the housing bypasses.
  • the actuating forces must therefore not be supported by the rotating components, such as the clutch carrier, the rotor flange or the counter-pressure element on the support bearing on the housing, since the actuator for actuating the separating clutch is not mounted in the housing, but in the rotor flange.
  • a rotary leadthrough for guiding actuating oil which is designed to actuate the separating clutch, is present in the rotor flange is. This allows the actuator to be placed in the rotor flange rather than a conventional slave cylinder in the housing, with the actuating force applied via an actuator bearing.
  • the power flow of the actuating forces is thus advantageously closed in itself, so that the actuating forces are supported on firmly connected to the rotor flange components.
  • the rotor flange is slidably mounted in the region of the rotary feedthrough for actuating the separating clutch. As a result, it is advantageously possible to ensure a supply of fluid from the housing into the rotating rotor flange.
  • FIG. 1 is a longitudinal sectional view of a hybrid module according to the invention
  • Fig. 2 is an equivalent to Fig. 1 representation of the hybrid module and a path for
  • FIG. 3 shows an equivalent representation of the hybrid module to FIG. 1 and the path for the actuating oil for actuating a separating clutch in the housing and a rotor flange
  • Fig. 4 is an equivalent to Fig. 1 representation of the hybrid module and a path for
  • FIG. 5 shows an enlarged view of a detail from FIG. 4.
  • the figures are merely schematic in nature and are for the sole purpose of understanding the invention. The same elements are identified by the same reference numerals.
  • the hybrid module 1 shows a hybrid module 1 according to the invention for a drive train of a motor vehicle.
  • the hybrid module 1 has a double clutch 2, which has a first partial clutch 3 and a second partial clutch 4.
  • first split clutch 3 When the first split clutch 3 is closed, torque of a first drive unit 5, which is formed as an electric machine 6, is transmitted to a first output shaft 7.
  • second sub-clutch 4 When the second sub-clutch 4 is closed, the torque of the first drive unit 5 is transmitted to a second output shaft 8.
  • the hybrid module 1 also has a separating clutch 9, which can connect a second drive unit, which is designed as an internal combustion engine, to the drive train so that torque of the second drive unit is transmitted to the first output shaft 7 or to the second output shaft 8.
  • a first actuating oil rotary leadthrough 10 which guides actuating oil for actuating the separating clutch 9 through a housing 1 1 of the hybrid module 1 into a first pressure chamber 12.
  • the actuating oil is passed through a channel 13 in the housing 1 1.
  • a rotor flange 14 is arranged, which is fixedly connected to a rotor carrier 15.
  • a rotor 16 of the electric machine 6 is stored.
  • the actuating oil for the separating clutch 9 is passed through a sleeve 17 and through the first actuating oil rotary union 10, which is formed in the rotor flange 14, in the first pressure chamber 12.
  • the sleeve 17 serves as a seal holder 18, which holds a seal 19 for sealing the first actuating oil rotary union 10 with respect to a housing interior 20.
  • the first actuating oil rotary leadthrough 10 in the rotor flange 14 is formed as a through hole 21 between the first pressure space 12 and a through hole 22 in the sleeve 17, the through hole 21 being connected to the through hole 22 in the sleeve 17 via a radially circumferential groove 23 ,
  • a first actuating element 24 is displaced in the axial direction counter to the restoring force of a first spring element 25, so that clutch plates 26 of the clutch formed as a multi-plate clutch 27 9 are compressed.
  • the first spring element 25 is arranged in a first centrifugal oil compensation chamber 30 which is filled with oil in order to prevent inadvertent actuation of the separating clutch 9 by residual actuating oil in the first pressure chamber 12, which is forced radially outwardly by a centrifugal force ,
  • the first actuating element 24 thus separates the first pressure chamber 12 and the first centrifugal oil compensation chamber 30 from one another in the axial direction.
  • a counter-pressure element 31 which is designed as a support screw 32.
  • the support screw 32 has an external thread, via which it is rotatably connected to a formed on the rotor flange 14 internal thread.
  • a second actuating element 38 By filling the second pressure chamber 36, a second actuating element 38 is displaced in the axial direction counter to the restoring force of a second spring element 39, so that clutch plates 40 of the first separating clutch 3 designed as a multi-disc clutch 41 are compressed.
  • torque of an outer disk carrier 42 connected to the rotor carrier 15 and thus to the first drive unit 5 is transmitted to an inner disk carrier 43, which is fixedly connected to the first output shaft 7.
  • the second spring element 39 is in one second centrifugal oil compensating space 44 is arranged, which is filled with oil, to avoid unintentional actuation of the first part of the clutch 3 by residual actuating oil in the second pressure chamber 36, which is forced by a centrifugal force in the radial outward direction.
  • the second actuating element 38 thus separates the second pressure chamber 36 and the second centrifugal oil compensation chamber 44 in the axial direction.
  • the clutch plates 40 are pressed against a counter-pressure element which is integrally formed on the rotor flange 14.
  • a third actuating element 45 is displaced in the axial direction counter to the restoring force of a third spring element 46 so that clutch plates 47 of the second separating clutch 4 designed as a multi-disc clutch 48 are compressed.
  • torque of an outer disk carrier 49 connected to the rotor carrier 15 and thus to the first drive unit 5 is transmitted to an inner disk carrier 50, which is fixedly connected to the second output shaft 8.
  • the third spring member 46 is disposed in a third centrifugal oil compensating space 51 filled with oil to prevent inadvertent actuation of the second sub-clutch 4 by residual actuating oil in the third pressure chamber 37 forced radially outwards by centrifugal force avoid.
  • the third actuating element 45 thus separates the third pressure chamber 37 and the third centrifugal oil compensation chamber 51 from one another in the axial direction.
  • the clutch plates 47 are pressed against a counter-pressure element which is fixedly connected to the rotor carrier 15.
  • a rotor position sensor 53 is arranged, which is designed to detect the position of a fixed to the rotor flange 14 rotor encoder 54.
  • the rotor 16 together with the separating clutch 9, the first partial clutch 3 and the second partial clutch 4 by means of a support bearing 55 via the rotor flange 14 in the housing 1 1, in particular a housing intermediate wall 56, and by means of a first roller bearing 57 and a second roller bearing 58 via the housing portion 35, so a clutch housing 59, mounted on the second output shaft 8.
  • the first and the second rolling bearing 57, 58 are formed as needle bearings.
  • FIGS. 2 and 3 show the path of the actuating oil for actuating the disconnect clutch 9.
  • the actuating oil is passed through the channel 13 in the housing 1 1, through the through hole 22 in the sleeve 17, through the circumferential groove 23 in the rotor flange 14 first actuating oil rotary feedthrough 10 is guided in the rotor flange 14 in the first pressure chamber 12 in order to displace the first actuating element 24 against the restoring force of the first spring element 25.
  • the clutch plates 26 are compressed and the clutch 9 is closed.
  • the actuation force is transmitted via the support screw 32 to the inner disk carrier 29 connected to the rotor flange 14, so that the support bearing 55 is excluded from the force flow of the actuating force.
  • FIGS. 4 and 5 show the path of the cooling oil used for cooling the separating clutch 9 and for filling the centrifugal oil compensating space 30.
  • the cooling oil is passed through the outer disk carrier 28, through the housing 1 1 in the housing interior 20 and from there via the cooling oil rotary union 52 in the rotor flange 14 and the inner disk carrier 29 to the separating clutch 9 and in the centrifugal oil compensation chamber 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • General Details Of Gearings (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Die Erfindung betrifft ein Hybridmodul (1) für einen Antriebsstrang eines Kraftfahrzeugs, mit einer Doppelkupplung (2), die eine erste Teilkupplung (3) und eine zweite Teilkupplung (4) zum selektiven Übertragen von Drehmoment einer ersten Antriebseinheit (5, 6) an eine Abtriebswelle (7, 8) aufweist, und einer Trennkupplung (9) zum Koppeln einer zweiten Antriebseinheit und zum Übertragen von Drehmoment der zweiten Antriebseinheit an die Abtriebswelle (7, 8), wobei wenigstens eine Drehdurchführung (10, 33, 34, 52) vorhanden ist, die einerseits zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung (9) ausgelegt ist, oder andererseits zum Führen von Kühlöl, das zum Kühlen der Trennkupplung (9) und/oder der Doppelkupplung (2) ausgelegt ist, ausgebildet ist.

Description

Hybridmodul mit Drehdurchführung
Die Erfindung betrifft ein Hybridmodul für einen Antriebsstrang eines Kraftfahrzeugs, mit einer Doppelkupplung, die eine erste Teilkupplung (K1 ) und eine zweite Teilkupp- lung (K2) zum selektiven Übertragen von Drehmoment einer ersten Antriebseinheit, insbesondere einer Elektromaschine, an eine Abtriebswelle aufweist, und einer Trennkupplung (K0) zum Koppeln einer zweiten Antriebseinheit, insbesondere einer Verbrennungskraftmaschine, an den Antriebsstrang und zum Übertragen von Drehmoment der zweiten Antriebseinheit an die Abtriebswelle. Wenn also die erste Teil- kupplung geschlossen ist, wird das Drehmoment von der ersten Antriebseinheit an eine erste Abtriebswelle weitergegeben, während das Drehmoment von der ersten Antriebseinheit an eine zweite Abtriebswelle weitergegeben wird, wenn die zweite Teilkupplung geschlossen ist. Die zweite Antriebseinheit kann über die Trennkupplung an den Antriebsstrang schaltbar, d.h. an- und abkoppelbar, weitergegeben werden.
Aus dem Stand der Technik sind bereits solche Hybridmodule mit einer Doppelkupplung und einer Trennkupplung bekannt. Zum Beispiel offenbart die WO 2017/088 869 A1 ein Hybridmodul für ein Kraftfahrzeug zum Ankoppeln einer Verbrennungskraftmaschine, mit einer Trennkupplung, mittels der die Verbrennungskraftmaschine von ei- nem Antriebsstrang des Kraftfahrzeugs trennbar ist und mittels welcher Drehmoment von der Verbrennungskraftmaschine zum Antriebsstrang verbringbar ist, mit einem Elektromotor, der zum Drehmomentübertragen über eine Hauptkupplung mit dem Antriebsstrang verbindbar ist, wobei ein Trennkupplungsbetätigungssystem zum Hervorrufen einer Betätigung der Trennkupplung eingesetzt ist und ein Hauptkupplungsbetä- tigungssystem zum Hervorrufen einer Betätigung der Hauptkupplung eingesetzt ist, dadurch gekennzeichnet, dass beide Betätigungssysteme zwischen der Trennkupplung und der Hauptkupplung angeordnet sind.
Ein Hybridmodul ist unter anderem auch aus der nicht vorveröffentlichten Anmeldung DE 10 2017 104 487 bekannt. Diese offenbart ein Hybridmodul für einen Antriebsstrang eines Kraftfahrzeugs, mit einer einen Stator und einen Rotor aufweisenden elektrischen Maschine, einem zumindest ein Drehteil aufweisenden Drehschwingungsdämpfer, sowie einer integrierten und als Doppelkupplung ausgebildeten Kupp- lungseinrichtung, wobei ein den Rotor aufnehmender Rotorträger direkt über eine permanente Drehverbindung mit dem zumindest einen Drehteil verbunden ist, wobei der Rotorträger einen Kupplungsbestandteil zumindest einer Teilkupplung der Kupplungseinrichtung ausbildet.
Der Stand der Technik hat jedoch immer den Nachteil, dass hohe Anpresskräfte bzw. Betätigungskräfte für eine Drehmomentübertragung erforderlich sind. Dies hat zur Folge, dass bei einer Kupplungsbetätigung über einen herkömmlichen Kupplungs- nehmerzylinder (CSC, Clutch Slave Cylinder) ein Betätigungslager, also ein Ein- oder Ausrücklager, des Nehmerzylinders für die hohen Betätigungskräfte ausgelegt sein muss. Außerdem muss dann ein Stützlager zum Lagern der ersten Antriebseinheit, insbesondere eines Rotors der ersten Antriebseinheit, zusätzlich zu den Lagerkräften die Betätigungskräfte abstützen.
Es ist also die Aufgabe der Erfindung, die Nachteile aus dem Stand der Technik zu vermeiden oder wenigstens zu verringern. Insbesondere soll ein verbessertes Hybridmodul entwickelt werden, das in der Lage ist, hohe Betätigungskräfte zum Betätigen der Kupplungen zu übertragen, und gleichzeitig bauraumoptimiert und kostengünstig herstellbar ist.
Die Aufgabe der Erfindung wird bei einer gattungsgemäßen Vorrichtung erfindungsgemäß dadurch gelöst, dass in dem Hybridmodul wenigstens eine Drehdurchführung vorhanden ist, die einerseits zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung ausgelegt ist, oder andererseits zum Führen von Kühlöl ausgebildet ist, das zum Kühlen der Trennkupplung und/oder der Doppelkupplung ausgelegt ist.
Dies hat den Vorteil, dass hohe Betätigungskräfte übertragen werden können, die nicht zusätzlich zu den Lagerkräften von dem Stützlager zum Lagern des Rotors abgestützt werden müssen, sondern ein in sich geschlossener Kreis der Betätigungs- kräfte gebildet wird. Gleichzeitig wird die Funktionalität der Kupplungen durch eine integrale Ölkühlung sichergestellt. Vorteil hafte Ausführungsformen werden in den Unteransprüchen beansprucht und werden nachfolgend näher erläutert.
Zudem ist es zweckmäßig, wenn sowohl für die Trennkupplung als auch für die erste Teilkupplung und die zweite Teilkupplung je eine Drehdurchführung zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung, der ersten Teilkupplung und/oder der zweiten Teilkupplung ausgelegt ist, vorhanden ist. So können die Vorteile einer Betätigung durch Zuführung von Betätigungsöl über die Drehdurchführung gleichermaßen für die Doppelkupplung als auch für die Trennkupplung genutzt wer- den.
Auch ist es von Vorteil, wenn die Drehdurchführung zum Führen von Betätigungsöl zum Betätigen der Trennkupplung in einem Gehäuse und einem Rotorflansch, der fest mit einem Rotorträger zum Lagern der ersten Antriebseinheit verbunden ist, ausgebil- det ist. So kann die Drehdurchführung integral in bereits vorhandenen Bauteilen ohne weitereichende konstruktive Änderungen umgesetzt werden.
Auch ist es bevorzugt, wenn der Rotorflansch eine Aufnahme für einen Rotorlagegeber aufweist, der ausgelegt ist, um bei Erfassung durch einen Rotorlagegebersensor die Position des Rotors anzugeben.
Auch kann der Rotorflansch zur Abstützung der Betätigungskräfte der ersten Teilkupplung verwendet werden.
Weiterhin ist es vorteilhaft, wenn die Trennkupplung als eine Lamellenkupplung ausgebildet ist, wobei ein Innenlamellenträger oder ein Außenlamellenträger fest mit dem Rotorflansch verbunden ist. Vorteilhafterweise kann der Kraftfluss der Betätigungskräfte dadurch in sich geschlossen ausgestaltet werden.
Auch ist es zweckmäßig, wenn der andere des Innenlamellenträgers und des Außen- lamellenträgers mit der zweiten Antriebseinheit verbunden ist, um eine Drehmomentübertragung zu ermöglichen. Ferner ist es zweckmäßig, wenn zumindest ein mit Öl gefüllter Fliehöl- Kompensationsraum vorhanden ist, der so ausgebildet ist, dass der Öldruck in dem Fliehöl-Kompensationsraum eine Kraft in Axialrichtung auf ein zum Betätigen der Trennkupplung, der ersten Teilkupplung und/oder der zweiten Teilkupplung axial verlagerbares Betätigungselement aufbringt, die einer Betätigungskraft des Betätigungsöl zum Betätigen der Trennkupplung, der ersten Teilkupplung und/oder der zweiten Teilkupplung entgegenwirkt. Dadurch wird in einfacher Weise vermieden, dass eine der Kupplung unbeabsichtigt werden kann, dadurch dass in einem Druckraum zurückge- bliebenes Betätigungsöl durch die Rotation hervorgerufene Fliehkraft nach radial außen drückt. Das Öl in dem Fliehöl-Kompensationsraum wirkt also dieser unerwünschten Kraft in der Axialrichtung entgehen.
Außerdem ist es bevorzugt, dass der Öldruck in dem Fliehöl-Kompensationsraum ei- nem Betätigungsöldruck in einem Druckraum, der zum Betätigen der Trennkupplung, der ersten Teilkupplung und/oder der zweiten Teilkupplung mit Betätigungsöl gefüllt wird, entspricht. Dadurch wird ein Gleichgewicht zwischen dem Fliehöl- Kompensationsraum und dem mit Betätigungsöl befüllten/zu befüllenden Druckraum hergestellt, so dass das Betätigungselement nur durch Aufbringen des Betätigungsöl- drucks verlagert wird.
Zudem ist es von Vorteil, wenn die Drehdurchführung zum Führen von Betätigungsöl zum Betätigen der Trennkupplung durch ein Durchgangsloch in dem Rotorflansch, das über eine radial umlaufende Nut mit einer Betätigungsölzuführung in dem Gehäu- se verbunden ist, ausgebildet ist. Da sich der Rotorflansch relativ zu dem Gehäuse dreht, ist es notwendig an einem der beiden Bauteile eine umlaufende Nut auszubilden, damit das Durchgangsloch in dem Rotorflansch in jeder rotatorischen Stellung über die Nut mit der Betätigungsölzuführung in dem Gehäuse verbunden ist.
Auch ist es vorteilhaft, wenn die Nut über ein Durchgangsloch in einer Hülse mit der Betätigungsölzuführung in dem Gehäuse verbunden ist. Dadurch kann das Betätigungsöl von dem Gehäuse durch einen Gehäuseinnenraum geführt werden, da die Hülse, die als Dichtungsträger dient, die Betätigungsölzuführung gegenüber dem Gehäuseinnenraum abdichtet.
Weiterhin ist es bevorzugt, wenn ein Gegendruckelement zum Abstützen einer Betäti- gungskraft zum Betätigen der Trennkupplung, der ersten Teilkupplung und/oder der zweiten Teilkupplung fest mit dem Rotorflansch verbunden ist. So kann ein in sich geschlossener Kraftfluss der Betätigungskräfte sichergestellt werden, so dass die Betätigungskräfte nicht durch zur Lagerung der Kupplungen oder des Rotors verwendeter Lager abgestützt werden müssen.
Außerdem ist es von Vorteil, wenn das Gegendruckelement zum Abstützen der Betätigungskraft der Trennkupplung als Stützschraube, Sicherungsring oder Bajonettring ausgebildet ist.
Auch ist es von Vorteil, wenn das Hybridmodul ein Gehäuse aufweist, das einen
Kupplungsträger der Trennkupplung über ein Stützlager abstützt, und wenn die Betätigungskräfte, die beim Betätigen der Trennkupplung entstehen, über ein Betätigungselement, die Trennkupplung und den Kupplungsträger in sich geschlossen so verlaufen, dass die Betätigungskräfte das Stützlager umgehen. Dies hat den Vorteil, dass hohe Betätigungskräfte übertragen werden können, die nicht zusätzlich zu den Lagerkräften von dem Stützlager zum Lagern des Rotors abgestützt werden müssen, sondern ein in sich geschlossener Kreis der Betätigungskräfte gebildet wird.
Zudem ist es vorteilhaft, wenn ein Rotor der ersten Antriebseinheit sowie die Trenn- kupplung, die erste Teilkupplung und die zweite Teilkupplung in Axialrichtung und in Radialrichtung über das etwa als Kugellager ausgebildete Stützlager in dem Gehäuse und über ein erstes Wälzlager und ein zweites Wälzlager auf der Abtriebswelle gelagert sind.
Dabei können das erste und das zweite Wälzlager in einer bevorzugten Ausführungsform als Nadellager ausgebildet sein. Ferner ist es zweckmäßig, wenn ein Gegendruckelement für Kupplungsscheiben beim Betätigen der Trennkupplung vorhanden ist, das ausgelegt ist, um die Betätigungskräfte aufzunehmen, und das mit dem Kupplungsträger, etwa einem Innenlamellen- träger oder einem Außenlamellenträger, verbunden ist.
Auch ist es von Vorteil, wenn das Gegendruckelement als eine Stützschraube, ein Sicherungsring oder ein Bajonettring ausgebildet ist. Dadurch kann das Gegendruckelement kostengünstig hergestellt werden und gleichzeitig die Funktion einer Gegendruckplatte zur Abstützung der Betätigungskräfte wahrnehmen.
Weiterhin zeichnet sich ein günstiges Ausführungsbeispiel dadurch aus, dass das Gegendruckelement über eine Verzahnung mit dem Kupplungsträger verbunden ist. Insbesondere ist es bevorzugt, wenn an dem Gegendruckelement eine Außenverzahnung und an dem Kupplungsträger, etwa dem Innenlamellenträger, eine Innenverzah- nung ausgebildet ist. Dadurch kann das Gegendruckelement drehfest mit dem Kupplungsträger verbunden werden.
Zudem ist es zweckmäßig, wenn das Gegendruckelement so ausgebildet und angeordnet ist, dass es das Stützlager in Axialrichtung festlegt. Dadurch dient das Gegen- druckelement also gleichzeitig als ein Axialanschlag für das Stützlager, so dass vorteilhafterweise weniger Bauteile eingesetzt werden müssen.
Außerdem ist es vorteilhaft, wenn die Betätigungskräfte von der Trennkupplung über das Gegendruckelement an einem mit dem Kupplungsträger fest verbundenen Rotor- flansch abgestützt werden, so dass der Kraftfluss der Betätigungskräfte in sich geschlossen ist und das Gehäuse umgeht. Die Betätigungskräfte müssen also nicht von den rotierenden Bauteilen, wie der Kupplungsträger, der Rotorflansch oder des Gegendruckelements über das Stützlager an dem Gehäuse abgestützt werden, da die Betätigungsvorrichtung zum Betätigen der Trennkupplung nicht in dem Gehäuse, sondern in dem Rotorflansch gelagert ist.
Auch ist es bevorzugt, wenn eine Drehdurchführung zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung ausgelegt ist, in dem Rotorflansch vorhanden ist. Dadurch wird ermöglicht, dass die Betätigungsvorrichtung in der Rotorflansch angeordnet wird, und nicht wie bei einem herkömmlichen Nehmerzylinder in dem Gehäuse, wobei die Betätigungskraft über ein Betätigungslager aufgebracht wird.
In einem günstigen Ausführungsbeispiel kann die Drehdurchführung das Betätigungs- öl in einen Druckraum, der zwischen dem Rotorflansch und dem Betätigungselement ausgebildet ist, führen, wobei das Betätigungselement so ausgelegt ist, dass es bei Druckbeaufschlagen des Druckraums mit Betätigungsöl in Axialrichtung zum Betätigen der Trennkupplung verlagert wird. Der Kraftfluss der Betätigungskräfte bleibt also vorteilhafterweise in sich geschlossen, so dass sich die Betätigungskräfte an fest mit dem Rotorflansch verbundenen Bauteilen abstützen.
Zudem ist es vorteilhaft, wenn der Rotorflansch im Bereich der Drehdurchführung zum Betätigen der Trennkupplung gleitend gelagert ist. Dadurch kann vorteilhafterweise eine Fluidzuführung von dem Gehäuse in den rotierenden Rotorflansch sichergestellt werden.
Die Erfindung wird nachfolgend mit Hilfe von Zeichnungen erläutert. Es zeigen:
Fig. 1 eine Längsschnittdarstellung eines erfindungsgemäßen Hybridmoduls,
Fig. 2 eine zur Fig. 1 äquivalente Darstellung des Hybridmoduls und einen Pfad für
Betätigungsöl zum Betätigen einer Trennkupplung in einem Gehäuse,
Fig. 3 eine zur Fig. 1 äquivalente Darstellung des Hybridmoduls und den Pfad für das Betätigungsöl zum Betätigen einer Trennkupplung in dem Gehäuse und einem Rotorflansch,
Fig. 4 eine zur Fig. 1 äquivalente Darstellung des Hybridmoduls und einen Pfad für
Kühlöl zum Kühlen der Trennkupplung, und
Fig 5 eine vergrößerte Darstellung eines Ausschnitts aus Fig. 4. Die Figuren sind lediglich schematischer Natur und dienen ausschließlich dem Verständnis der Erfindung. Die gleichen Elemente sind mit denselben Bezugszeichen gekennzeichnet.
Fig. 1 zeigt ein erfindungsgemäßes Hybridmodul 1 für einen Antriebsstrang eines Kraftfahrzeugs. Das Hybridmodul 1 weist eine Doppelkupplung 2 auf, die eine erste Teilkupplung 3 und eine zweite Teilkupplung 4 besitzt. Wenn die erste Teilkupplung 3 geschlossen ist, wird Drehmoment einer ersten Antriebseinheit 5, die als eine Elekt- romaschine 6 ausgebildet ist, an eine erste Abtriebswelle 7 übertragen. Wenn die zweite Teilkupplung 4 geschlossen ist, wird das Drehmoment der ersten Antriebseinheit 5 an eine zweite Abtriebswelle 8 übertragen. Das Hybridmodul 1 weist auch eine Trennkupplung 9 auf, die eine zweite Antriebseinheit, die als eine Verbrennungskraftmaschine ausgebildet ist, dem Antriebsstrang zuschalten kann, so dass Drehmoment der zweiten Antriebseinheit an die erste Abtriebswelle 7 oder an die zweite Abtriebswelle 8 übertragen wird.
In dem Hybridmodul 1 ist eine erste Betätigungsöl-Drehdurchführung 10 vorhanden, die Betätigungsöl zum Betätigen der Trennkupplung 9 durch ein Gehäuse 1 1 des Hyb- ridmoduls 1 in einen ersten Druckraum 12 führt. Zum Betätigen der Trennkupplung 9 wird das Betätigungsöl durch einen Kanal 13 in dem Gehäuse 1 1 geführt. In dem Gehäuse 1 1 ist ein Rotorflansch 14 angeordnet, der mit einem Rotorträger 15 fest verbunden ist. Über den Rotorträger 15 wird ein Rotor 16 der Elektromaschine 6 gelagert. Von dem Kanal 13 in dem Gehäuse 1 1 wird das Betätigungsöl für die Trennkupplung 9 durch eine Hülse 17 und durch die erste Betätigungsöl-Drehdurchführung 10, die in dem Rotorflansch 14 ausgebildet ist, in den ersten Druckraum 12 geleitet. Die Hülse 17 dient als ein Dichtungshalter 18, der eine Dichtung 19 zum Abdichten der ersten Betätigungsöl-Drehdurchführung 10 gegenüber einem Gehäuseinnenraum 20 hält. Die erste Betätigungsöl-Drehdurchführung 10 in dem Rotorflansch 14 ist als ein Durchgangsloch 21 zwischen dem ersten Druckraum 12 und einem Durchgangsloch 22 in der Hülse 17 ausgebildet, wobei das Durchgangsloch 21 über eine radial umlaufenden Nut 23 mit dem Durchgangsloch 22 in der Hülse 17 verbunden ist. Wenn der erste Druckraum 12 mit Betätigungsöl gefüllt wird, wird ein erstes Betätigungselement 24 in Axialrichtung entgegen der Rückstellkraft eines ersten Federelements 25 verlagert, so dass Kupplungsscheiben 26 der als Lamellenkupplung 27 ausgebildeten Trennkupplung 9 zusammengedrückt werden. Dadurch wird Drehmoment eines mit der zweiten Antriebseinheit verbundenen Außenlamellenträgers 28 an einen Innenlamellenträger 29, der fest mit dem Rotorflansch 14 und dem Rotorträger 15 verbunden ist, weitergegeben. Das erste Federelement 25 ist in einem ersten Fliehöl- Kompensationsraum 30 angeordnet, der mit Öl gefüllt ist, um eine unbeabsichtigtes Betätigen der Trennkupplung 9 durch Rest-Betätigungsöl in dem ersten Druckraum 12, das durch eine Fliehkraft in Radialrichtung nach außen gedrückt wird, zu vermeiden. Das erste Betätigungselement 24 trennt also in Axialrichtung den ersten Druckraum 12 und den ersten Fliehöl-Kompensationsraum 30 voneinander.
Bei Betätigung der Trennkupplung 9 werden die Kupplungsscheiben 26 gegen ein Gegendruckelement 31 , das als eine Stützschraube 32 ausgebildet ist, gedrückt. Die Stützschraube 32 weist ein Außengewinde auf, über das sie mit einem an dem Rotorflansch 14 ausgebildeten Innengewinde drehfest verbunden ist.
In dem Hybridmodul 1 ist eine zweite Betätigungsöl-Drehdurchführung 33 zum Führen von Betätigungsöl zur Betätigung der ersten Teilkupplung 3 und eine dritte Betätigungsöl-Drehdurchführung 34 zum Führen von Betätigungsöl zur Betätigung der zweiten Teilkupplung 4 vorhanden. Das Betätigungsöl für die beiden Teilkupplungen 3, 4 wird durch einen Gehäuseabschnitt 35 des Hybridmoduls 1 in einen zweiten Druckraum 36 und einer dritten Druckraum 37 geführt. Die Betätigung der beiden Teilkupp- lungen 3, 4 erfolgt analog zur Betätigung der Trennkupplung 9.
Durch Befüllen des zweiten Druckraums 36 wird ein zweites Betätigungselement 38 in Axialrichtung entgegen der Rückstellkraft eines zweiten Federelements 39 verlagert, so dass Kupplungsscheiben 40 der als Lamellenkupplung 41 ausgebildeten ersten Trennkupplung 3 zusammengedrückt werden. Dadurch wird Drehmoment eines mit dem Rotorträger 15 und damit mit der ersten Antriebseinheit 5 verbundenen Außenlamellenträgers 42 an einen Innenlamellenträger 43, der fest mit der ersten Abtriebswelle 7 verbunden ist, weitergegeben. Das zweite Federelement 39 ist in einem zweiten Fliehöl-Kompensationsraum 44 angeordnet, der mit Öl gefüllt ist, um eine unbeabsichtigtes Betätigen der ersten Teilkupplung 3 durch Rest-Betätigungsöl in dem zweiten Druckraum 36, das durch eine Fliehkraft in Radialrichtung nach außen gedrückt wird, zu vermeiden. Das zweite Betätigungselement 38 trennt also in Axialrich- tung den zweiten Druckraum 36 und den zweiten Fliehöl-Kompensationsraum 44 voneinander. Bei Betätigung der ersten Teilkupplung 3 werden die Kupplungsscheiben 40 gegen ein Gegendruckelement, das integral an dem Rotorflansch 14 ausgebildet ist, gedrückt.
Durch Befüllen des dritten Druckraums 37 wird ein drittes Betätigungselement 45 in Axialrichtung entgegen der Rückstellkraft eines dritten Federelements 46 verlagert, so dass Kupplungsscheiben 47 der als Lamellenkupplung 48 ausgebildeten zweiten Trennkupplung 4 zusammengedrückt werden. Dadurch wird Drehmoment eines mit dem Rotorträger 15 und damit mit der ersten Antriebseinheit 5 verbundenen Außen- lamellenträgers 49 an einen Innenlamellenträger 50, der fest mit der zweiten Abtriebswelle 8 verbunden ist, weitergegeben. Das dritte Federelement 46 ist in einem dritten Fliehöl-Kompensationsraum 51 angeordnet, der mit Öl gefüllt ist, um eine unbeabsichtigtes Betätigen der zweiten Teilkupplung 4 durch Rest-Betätigungsöl in dem dritten Druckraum 37, das durch eine Fliehkraft in Radialrichtung nach außen gedrückt wird, zu vermeiden. Das dritte Betätigungselement 45 trennt also in Axialrichtung den dritten Druckraum 37 und den dritten Fliehöl-Kompensationsraum 51 voneinander. Bei Betätigung der zweiten Teilkupplung 4 werden die Kupplungsscheiben 47 gegen ein Gegendruckelement, das fest mit dem Rotorträger 15 verbunden ist, gedrückt.
In dem Rotorflansch 14 und dem Gehäuseabschnitt 35 sind Kühlöl-
Drehdurchführungen 52 ausgebildet, die Kühlöl zu der Trennkupplung 9, der ersten Teilkupplung 3 und der zweiten Teilkupplung 4 und zu den Fliehöl- Kompensationsräumen 30, 44, 51 führen.
An dem Gehäuse 1 1 ist ein Rotorlagegebersensor 53 angeordnet, der ausgelegt ist, um die Position eines an dem Rotorflansch 14 befestigten Rotorgebers 54 zu erfassen. Der Rotor 16 wird zusammen mit der Trennkupplung 9, der ersten Teilkupplung 3 und der zweiten Teilkupplung 4 mittels eines Stützlagers 55 über den Rotorflansch 14 in dem Gehäuse 1 1 , insbesondere einer Gehäusezwischenwand 56, und mittels eines ersten Wälzlagers 57 und eines zweiten Wälzlagers 58 über den Gehäuseabschnitt 35, also ein Kupplungsgehäuse 59, auf der zweiten Abtriebswelle 8 gelagert. Das erste und das zweite Wälzlager 57, 58 sind als Nadellager ausgebildet.
Fign. 2 und 3 zeigen den Pfad des Betätigungsöl zum Betätigen der Trennkupplung 9. Das Betätigungsöl wird durch den Kanal 13 in dem Gehäuse 1 1 , durch das Durch- gangsloch 22 in der Hülse 17, durch die umlaufende Nut 23 in dem Rotorflansch 14, durch die erste Betätigungsöl-Drehdurchführung 10 in dem Rotorflansch 14 in den ersten Druckraum 12 geführt, um das erste Betätigungselement 24 entgegen der Rückstellkraft des ersten Federelements 25 zu verlagern. Dadurch werden die Kupplungsscheiben 26 zusammengedrückt und die Trennkupplung 9 geschlossen. Die Be- tätigungskraft wird über die Stützschraube 32 an den mit dem Rotorflansch 14 verbundenen Innenlamellenträger 29 übertragen, so dass das Stützlager 55 vom Kraft- fluss der Betätigungskraft ausgenommen ist.
Fign. 4 und 5 zeigen den Pfad des Kühlöls, das zum Kühlen der Trennkupplung 9 und zum Befüllen des Fliehöl-Kompensationsraums 30 verwendet wird. Das Kühlöl wird durch den Außenlamellenträger 28, durch das Gehäuse 1 1 in den Gehäuseinnenraum 20 und von dort über die Kühlöl-Drehdurchführung 52 in dem Rotorflansch 14 bzw. dem Innenlamellenträger 29 zu der Trennkupplung 9 hin und in den Fliehöl- Kompensationsraum 30 geführt.
Bezugszeichenliste Hybridmodul
Doppelkupplung
erste Teilkupplung
zweite Teilkupplung
erste Antriebseinheit
Elektromaschine
erste Abtriebswelle
zweite Abtriebswelle
Trennkupplung
erste Betätigungsöl-Drehdurchführung
Gehäuse
erster Druckraum
Kanal
Rotorflansch
Rotorträger
Rotor
Hülse
Dichtungshalter
Dichtung
Gehäuseinnenraum
Durchgangsloch
Durchgangsloch
Nut
erstes Betätigungselement
erstes Federelement
Kupplungsscheibe
Lamellenkupplung
Außenlamellenträger
Innenlamellenträger erster Fliehöl-Kompensationsraum Gegendruckelement
Stützschraube
zweite Betätigungsöl-Drehdurchführung dritte Betätigungsöl-Drehdurchführung Gehäuseabschnitt
zweiter Druckraum
dritter Druckraum
zweites Betätigungselement
zweiten Federelement
Kupplungsscheiben
Lamellenkupplung
Außenlamellenträger
Innenlamellenträger
zweiter Fliehöl-Kompensationsraum drittes Betätigungselement
drittes Federelement
Kupplungsscheiben
Lamellenkupplung
Außenlamellenträger
Innenlamellenträger
dritter Fliehöl-Kompensationsraum Kühlöl-Drehdurchführung
Rotorlagegebersensor
Rotorlagegeber
Stützlager
Gehäusezwischenwand
erstes Wälzlager
zweites Wälzlager
Kupplungsgehäuse

Claims

Patentansprüche
Hybridmodul (1 ) für einen Antriebsstrang eines Kraftfahrzeugs, mit einer Doppelkupplung (2), die eine erste Teilkupplung (3) und eine zweite Teilkupplung (4) zum selektiven Übertragen von Drehmoment einer ersten Antriebseinheit (5, 6) an eine Abtriebswelle (7, 8) aufweist, und einer Trennkupplung (9) zum Koppeln einer zweiten Antriebseinheit und zum Übertragen von Drehmoment der zweiten Antriebseinheit an die Abtriebswelle (7, 8), dadurch gekennzeichnet, dass wenigstens eine Drehdurchführung (10, 33, 34, 52) vorhanden ist, die einerseits zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung (9) ausgelegt ist, oder andererseits zum Führen von Kühlöl, das zum Kühlen der Trennkupplung (9) und/oder der Doppelkupplung
(2) ausgelegt ist, ausgebildet ist.
Hybridmodul (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass sowohl für die Trennkupplung (9) als auch für die erste Teilkupplung (3) und die zweite Teilkupplung (4) je eine Drehdurchführung (10, 33, 34) zum Führen von Betätigungsöl, das zum Betätigen der Trennkupplung (9), der ersten Teilkupplung
(3) und/oder der zweiten Teilkupplung (4) ausgelegt ist, vorhanden ist.
Hybridmodul (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Drehdurchführung (10) zum Führen von Betätigungsöl zum Betätigen der Trennkupplung (9) in einem Gehäuse (1 1 ) und einem Rotorflansch (14), der fest mit einem Rotorträger (15) zum Lagern der ersten Antriebseinheit (5, 6) verbunden ist, ausgebildet ist.
4. Hybridmodul (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die Trennkupplung (9) als eine Lamellenkupplung (27) ausgebildet ist, wobei ein Innen- lamellenträger (29) oder ein Außenlamellenträger (28) fest mit dem Rotor- flansch (14) verbunden ist.
5. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest ein mit Öl gefüllter Fliehöl-Kompensationsraum (30, 44, 51 ) vorhanden ist, der so ausgebildet ist, dass der Öldruck in dem Fliehöl- Kompensationsraum (30, 44, 51 ) eine Kraft in Axialrichtung auf ein zum Betätigen der Trennkupplung (9), der ersten Teilkupplung (3) und/oder der zweiten Teilkupplung (4) axial verlagerbares Betätigungselement (24, 38, 45) aufbringt, die einer Betätigungskraft des Betätigungsöl zum Betätigen der Trennkupplung (9), der ersten Teilkupplung (3) und/oder der zweiten Teilkupplung (4) entgegenwirkt.
Hybridmodul (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass der Öldruck in dem Fliehöl-Kompensationsraum (30, 44, 51 ) einem Betätigungsöldruck in einem Druckraum (12, 36, 37), der zum Betätigen der Trennkupplung (9), der ersten Teilkupplung (3) und/oder der zweiten Teilkupplung (4) mit Betätigungsöl gefüllt wird, entspricht.
Hybridmodul (1 ) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Drehdurchführung (10) zum Führen von Betätigungsöl zum Betätigen der Trennkupplung (9) durch ein Durchgangsloch (21 ) in dem Rotorflansch (14), das über eine radial umlaufende Nut (23) mit einer Betätigungsölzufüh- rung (13) in dem Gehäuse (1 1 ) verbunden ist, ausgebildet ist.
Hybridmodul (1 ) nach Anspruch 7, dadurch gekennzeichnet, dass die Nut (23) über ein Durchgangsloch (22) in einer Hülse (17) mit der Betätigungsölzufüh- rung (13) in dem Gehäuse (1 1 ) verbunden ist.
Hybridmodul (1 ) nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass ein Gegendruckelement (31 , 32, 14) zum Abstützen einer Betätigungskraft zum Betätigen der Trennkupplung (9), der ersten Teilkupplung (3) und/oder der zweiten Teilkupplung (4) fest mit dem Rotorflansch (14) verbunden ist.
Hybridmodul (1 ) nach Anspruch 9, dadurch gekennzeichnet, dass das Gegendruckelement (31 , 32) als eine Stützschraube (32), ein Sicherungsring oder ein Bajonettring ausgebildet ist.
PCT/DE2018/100615 2017-07-18 2018-07-05 Hybridmodul mit drehdurchführung WO2019015714A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/631,373 US11396226B2 (en) 2017-07-18 2018-07-05 Hybrid module having a rotary feedthrough
DE112018003654.5T DE112018003654A5 (de) 2017-07-18 2018-07-05 Hybridmodul mit Drehdurchführung
CN201880047107.8A CN110914088A (zh) 2017-07-18 2018-07-05 具有转动贯通部的混合动力模块
EP18745492.1A EP3655273A1 (de) 2017-07-18 2018-07-05 Hybridmodul mit drehdurchführung
KR1020207001102A KR20200030056A (ko) 2017-07-18 2018-07-05 회전자 피드스루를 포함한 하이브리드 모듈
JP2019560752A JP7038736B2 (ja) 2017-07-18 2018-07-05 回転フィードスルーを備えたハイブリッドモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102017116195.3 2017-07-18
DE102017116195 2017-07-18
DE102017127217.8 2017-11-20
DE102017127217.8A DE102017127217A1 (de) 2017-07-18 2017-11-20 Hybridmodul mit Drehdurchführung

Publications (1)

Publication Number Publication Date
WO2019015714A1 true WO2019015714A1 (de) 2019-01-24

Family

ID=64951379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100615 WO2019015714A1 (de) 2017-07-18 2018-07-05 Hybridmodul mit drehdurchführung

Country Status (7)

Country Link
US (1) US11396226B2 (de)
EP (1) EP3655273A1 (de)
JP (1) JP7038736B2 (de)
KR (1) KR20200030056A (de)
CN (1) CN110914088A (de)
DE (3) DE102017127219A1 (de)
WO (1) WO2019015714A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020177799A1 (de) 2019-03-07 2020-09-10 Schaeffler Technologies AG & Co. KG Hybridmodul mit dreifachkupplung sowie antriebsstrang
WO2020177798A1 (de) 2019-03-07 2020-09-10 Schaeffler Technologies AG & Co. KG Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang
CN113439170A (zh) * 2019-02-19 2021-09-24 舍弗勒技术股份两合公司 用于轴线平行的混动模块的具有经旋转引入在变速器侧对三个离合器的操控的三重离合器
US11162542B2 (en) * 2020-03-09 2021-11-02 Schaeffler Technologies AG & Co. KG Clutch piston that applies through compensation dam
FR3123099A1 (fr) * 2021-05-19 2022-11-25 Valeo Embrayages Dispositif de transmission de couple

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116232A1 (de) * 2017-01-13 2018-07-19 Schaeffler Technologies AG & Co. KG Hybridmodul für ein Kraftfahrzeug sowie Antriebsstrang mit Hybridmodul
DE102019133281A1 (de) * 2019-05-27 2020-12-03 Schaeffler Technologies AG & Co. KG Betätigungsvorrichtung für mehrere Schaltkupplungen und elektrisches Antriebssystem
KR20210004281A (ko) * 2019-07-04 2021-01-13 현대자동차주식회사 하이브리드 전기자동차용 동력전달장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018926A1 (de) * 1999-04-26 2000-11-02 Luk Lamellen & Kupplungsbau Antriebsstrang
FR2814121A1 (fr) * 2000-09-19 2002-03-22 Peugeot Citroen Automobiles Sa Groupe motopropulseur pour un vehicule automobile a propulsion hybride
DE102007003107A1 (de) * 2006-01-16 2007-08-02 Borgwarner Inc., Auburn Hills Dreifachkupplung für Hybridantrieb mit Doppelkupplungsgetriebe
DE102007060165A1 (de) * 2007-12-13 2009-06-18 Volkswagen Ag Antriebsstrangmodul für ein Kraftfahrzeug
DE102009059944A1 (de) * 2009-01-19 2010-07-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hybridmodul für einen Antriebsstrang eines Fahrzeuges
DE102009030135A1 (de) * 2009-06-24 2010-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridantriebsstrang
DE102011100256A1 (de) * 2011-04-27 2012-10-31 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang für ein Kraftfahrzeug
DE102012022290A1 (de) * 2012-11-14 2014-05-15 Borgwarner Inc. Drehmomentübertragungsvorrichtung mit einer Kupplungseinrichtung und einer elektrischen Maschine sowie Antriebsstrang für ein Kraftfahrzeug mit einer solchen Drehmomentübertragungsvorrichtung
DE102014014669A1 (de) * 2014-10-02 2016-04-07 Borgwarner Inc. Drehmomentübertragungsvorrichtung und Antriebsstrang mit einer solchen Drehmomentübertragungsvorrichtung für ein Kraftfahrzeug
WO2017088869A1 (de) 2015-11-25 2017-06-01 Schaeffler Technologies AG & Co. KG Hybridmodul mit trenn- und hauptkupplung und dazwischen angeordneten betätigungssystemen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50001452D1 (de) * 2000-10-05 2003-04-17 Ford Global Tech Inc Doppelkupplung für ein Getriebe mit zwei Getriebeeingangswellen
JP2003014090A (ja) * 2001-06-28 2003-01-15 Fuji Heavy Ind Ltd 自動変速機のオイル分離構造
DE50302372D1 (de) * 2003-10-11 2006-04-20 Borgwarner Inc Hydraulische Doppelkupplung
US7784595B2 (en) * 2006-02-13 2010-08-31 Borgwarner Inc. Integrated clutch assembly damper arrangement
DE102008006062A1 (de) 2007-01-29 2009-02-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Nasse Anfahrkupplung für Hybridanwendungen
CN101011942B (zh) * 2007-02-12 2010-05-19 无锡开普动力有限公司 一种混合动力工业车辆
DE102010010922C5 (de) * 2009-08-14 2024-08-08 Borgwarner Inc. Parallele Doppelkupplungseinrichtung und Antriebsstrang mit einer solchen parallelen Doppelkupplungseinrichtung
JP5608464B2 (ja) 2010-08-04 2014-10-15 日本ピラー工業株式会社 ダブルシール構造
DE102011081909A1 (de) * 2010-10-06 2012-04-12 Schaeffler Technologies Gmbh & Co. Kg Doppelkupplung
DE102012024699A1 (de) * 2012-01-13 2013-07-18 Borgwarner Inc. Kupplungsanordnung mit einer Doppelkupplungseinrichtung
DE102014206844A1 (de) * 2014-04-09 2015-10-15 Zf Friedrichshafen Ag Drehmomentübertragungsanordnung
DE112017001268T5 (de) * 2016-03-11 2018-11-29 Borgwarner Inc. Kupplung und Elektromotor
US11336138B2 (en) * 2016-05-09 2022-05-17 Borgwarner Inc. Hybrid rotor module cooling
DE102016216722A1 (de) * 2016-09-05 2018-03-08 Volkswagen Aktiengesellschaft Mehrfach-Kupplung für ein Kraftfahrzeug, insbesondere für einen Hybridantrieb eines Kraftfahrzeugs
KR102451874B1 (ko) * 2016-12-14 2022-10-07 현대자동차 주식회사 하이브리드 전기 자동차용 더블 클러치 장치
DE102017116232A1 (de) 2017-01-13 2018-07-19 Schaeffler Technologies AG & Co. KG Hybridmodul für ein Kraftfahrzeug sowie Antriebsstrang mit Hybridmodul

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018926A1 (de) * 1999-04-26 2000-11-02 Luk Lamellen & Kupplungsbau Antriebsstrang
FR2814121A1 (fr) * 2000-09-19 2002-03-22 Peugeot Citroen Automobiles Sa Groupe motopropulseur pour un vehicule automobile a propulsion hybride
DE102007003107A1 (de) * 2006-01-16 2007-08-02 Borgwarner Inc., Auburn Hills Dreifachkupplung für Hybridantrieb mit Doppelkupplungsgetriebe
DE102007060165A1 (de) * 2007-12-13 2009-06-18 Volkswagen Ag Antriebsstrangmodul für ein Kraftfahrzeug
DE102009059944A1 (de) * 2009-01-19 2010-07-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hybridmodul für einen Antriebsstrang eines Fahrzeuges
DE102009030135A1 (de) * 2009-06-24 2010-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridantriebsstrang
DE102011100256A1 (de) * 2011-04-27 2012-10-31 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang für ein Kraftfahrzeug
DE102012022290A1 (de) * 2012-11-14 2014-05-15 Borgwarner Inc. Drehmomentübertragungsvorrichtung mit einer Kupplungseinrichtung und einer elektrischen Maschine sowie Antriebsstrang für ein Kraftfahrzeug mit einer solchen Drehmomentübertragungsvorrichtung
DE102014014669A1 (de) * 2014-10-02 2016-04-07 Borgwarner Inc. Drehmomentübertragungsvorrichtung und Antriebsstrang mit einer solchen Drehmomentübertragungsvorrichtung für ein Kraftfahrzeug
WO2017088869A1 (de) 2015-11-25 2017-06-01 Schaeffler Technologies AG & Co. KG Hybridmodul mit trenn- und hauptkupplung und dazwischen angeordneten betätigungssystemen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439170A (zh) * 2019-02-19 2021-09-24 舍弗勒技术股份两合公司 用于轴线平行的混动模块的具有经旋转引入在变速器侧对三个离合器的操控的三重离合器
WO2020177799A1 (de) 2019-03-07 2020-09-10 Schaeffler Technologies AG & Co. KG Hybridmodul mit dreifachkupplung sowie antriebsstrang
WO2020177798A1 (de) 2019-03-07 2020-09-10 Schaeffler Technologies AG & Co. KG Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang
CN113543997A (zh) * 2019-03-07 2021-10-22 舍弗勒技术股份两合公司 具有分离离合器和无补偿致动单元的混合动力模块、以及传动系
US11162542B2 (en) * 2020-03-09 2021-11-02 Schaeffler Technologies AG & Co. KG Clutch piston that applies through compensation dam
FR3123099A1 (fr) * 2021-05-19 2022-11-25 Valeo Embrayages Dispositif de transmission de couple

Also Published As

Publication number Publication date
DE102017127219A1 (de) 2019-01-24
KR20200030056A (ko) 2020-03-19
JP2020518512A (ja) 2020-06-25
JP7038736B2 (ja) 2022-03-18
EP3655273A1 (de) 2020-05-27
US20200215897A1 (en) 2020-07-09
US11396226B2 (en) 2022-07-26
DE112018003654A5 (de) 2020-04-23
CN110914088A (zh) 2020-03-24
DE102017127217A1 (de) 2019-01-24

Similar Documents

Publication Publication Date Title
EP3655273A1 (de) Hybridmodul mit drehdurchführung
EP3661780B1 (de) Hybridmodul mit nadellager umfassender betätigungseinheit; sowie hybridantriebsstrang
DE112009003882B4 (de) Hybridmodul für einen Antriebsstrang eines Fahrzeuges
EP1427948B1 (de) Kombination aus mehrfach-kupplungseinrichtung und elektromaschine
EP2310704B1 (de) Doppelkupplung
EP3558738A1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug
DE102007009964A1 (de) Hydraulische betätigte Doppelkupplung
EP3135522A1 (de) Hybridmodul und verfahren zum übertragen eines drehmomentes in einem triebstrang eines kraftfahrzeuges
EP3558739A1 (de) Antriebsmodul und antriebsanordnung für ein kraftfahrzeug
EP1857700A1 (de) Kopplungsanordnung
DE102009040367A1 (de) Kombinierte Kraftübertragungs- und Antriebseinheit für den Einsatz in Hybridsystemen und Hybridsystem
EP3844414B1 (de) Hybridmodul mit trennkupplung sowie betätigungseinrichtung
WO2018130236A1 (de) Hybridmodul für ein kraftfahrzeug sowie antriebsstrang mit hybridmodul
WO2018171830A1 (de) Antriebsstrangeinheit mit getriebeseitiger lagerung einer dreifachkupplung eines hybridmoduls
WO2018219403A1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug
DE102009032336A1 (de) Drehmomentübertragungseinrichtung
WO2019020142A1 (de) Hybridmodul und antriebsstrang für ein kraftfahrzeug
EP1970239A1 (de) Hybrid-Antriebssystem
WO2020020407A1 (de) Hybridmodul mit bauraumsparender rückstellfeder und ausgleichskammer
EP3759371B1 (de) Kupplungsanordnung sowie diese kupplungsanordnung aufweisende antriebseinheit
EP3883802A1 (de) Hybridmodul sowie antriebsanordnung für ein kraftfahrzeug
DE102013218112A1 (de) Deckelfester Ausrücker für eine Doppelkupplung
WO2020020408A1 (de) Hybridmodul mit durch rotorträger gebildetem betätigungszylinder
WO2021078319A1 (de) Kupplungseinrichtung, hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2020156611A1 (de) Kupplungsanordnung mit stofflich getrenntem lagersitztragelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560752

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018745492

Country of ref document: EP

Effective date: 20200218

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112018003654

Country of ref document: DE