WO2020177798A1 - Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang - Google Patents

Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang Download PDF

Info

Publication number
WO2020177798A1
WO2020177798A1 PCT/DE2020/100035 DE2020100035W WO2020177798A1 WO 2020177798 A1 WO2020177798 A1 WO 2020177798A1 DE 2020100035 W DE2020100035 W DE 2020100035W WO 2020177798 A1 WO2020177798 A1 WO 2020177798A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
hybrid module
carrier
clutch
separating clutch
Prior art date
Application number
PCT/DE2020/100035
Other languages
English (en)
French (fr)
Inventor
Dirk Hofstetter
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN202080017571.XA priority Critical patent/CN113543997A/zh
Priority to EP20705882.7A priority patent/EP3934927A1/de
Priority to US17/432,157 priority patent/US20220185091A1/en
Publication of WO2020177798A1 publication Critical patent/WO2020177798A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0661Hydraulically actuated multiple lamellae clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0692Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric with two clutches arranged axially without radial overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/28Automatic clutches actuated by fluid pressure
    • F16D43/284Automatic clutches actuated by fluid pressure controlled by angular speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid module for a drive train of a motor vehicle, such as a car, truck, bus or other utility vehicle, with a housing, an input shaft that can be rotated relative to the housing and can be connected to an internal combustion engine, an electrical machine, and a rotor of the electrical machine rotatably coupled carrier, a separating clutch acting between the input shaft and the carrier, and a hydraulic actuating unit designed to adjust the separating clutch between a closed position and an open position, the actuating unit having a sliding element which acts on several friction elements of the separating clutch and which slide element to its first axial side encloses a hydraulic pressure chamber with the carrier and is acted upon by a restoring spring unit with an axial restoring force towards its second axial side.
  • a motor vehicle such as a car, truck, bus or other utility vehicle
  • Hybrid modules of the generic type with rotary feedthroughs are known, for example, from WO 2019/015714 A1.
  • the centrifugal forces acting during operation can lead to pressure fluctuations within the pressure chamber.
  • a compensation chamber is usually used to compensate for these pressure fluctuations caused by centrifugal force.
  • the object of the present invention to eliminate the disadvantages known from the prior art and, in particular, to provide a hybrid module which, in spite of (mechanical) centrifugal force compensation, has a compact structure.
  • This is achieved according to the invention in that the restoring spring unit and the pressure chamber are designed and coordinated with one another in such a way that, when the hybrid module is operating, with a rotating carrier up to a speed of at least 3000 rpm, the restoring force generated by the restoring spring is greater than one is generated by a centrifugal force in the pressure chamber, axially opposite to the restoring force acting on the sliding element in the direction of the closed position, axial Ver adjusting force of the pressure chamber.
  • the actuation unit is formed without a compensation chamber.
  • the resetting spring unit which is so strongly designed, has the effect that additional components previously used for putting the compensation chamber can be omitted. This makes the structure much more compact.
  • the return spring unit it has been found to be expedient for use in higher-speed vehicles if the return spring unit and the pressure chamber are designed and coordinated in such a way that in operation, with a rotating carrier, up to a speed of at least 4000 rev / min, preferably at least 6000 rpm, more preferably at least 8000 rpm, particularly preferably at least 10,000 rpm, the restoring force generated by the return spring unit is greater than the axial displacement force of the pressure chamber generated by the centrifugal force in the pressure chamber.
  • the return spring unit has a plurality of spring elements, each of which is preferably implemented as helical compression springs, the highest possible return force can be generated.
  • a hydraulic rotary feedthrough is provided in the carrier which is connected to the pressure chamber and is further connected to a channel system on the housing side.
  • the rotary feedthrough is designed to save space.
  • the actuating collar of the sliding element extends radially outside the pressure chamber is implemented directly as a pressure pot and interacts with the friction elements of the separating clutch. The sliding element is thus made particularly compact axially.
  • the sliding element is formed in one piece from a sheet of metal.
  • the sliding element has an axially projecting guide collar directly, which guide collar is guided displaceably on a mounting base of the carrier, the construction of the actuating unit is further simplified.
  • the mounting base is expediently mounted so that it can rotate further relative to the housing by means of a support bearing.
  • a second device sealing the pressure chamber is received on the carrier in a non-displaceable manner.
  • the separating clutch If, in addition to the separating clutch, there is at least one further clutch axially offset from the separating clutch, it can be further connected to a transmission.
  • the invention also relates to a drive train for a motor vehicle with a hybrid module according to the invention according to at least one of the embodiments described above.
  • a coupling KO separating coupling
  • a rotary leadthrough is implemented without compensation.
  • a return spring (return spring unit) of the separating clutch is particularly well designed.
  • FIG. 1 shows a longitudinal sectional illustration of a hybrid module according to the invention, designed according to a preferred exemplary embodiment, the cut components being shown without hatching.
  • the hybrid module 1 is typically implemented as a combined structural unit made up of an electrical machine 5 (for the sake of clarity, it is only shown on the part of its rotor 6) and at least one, here even three clutches 8, 25a, 25b.
  • the hybrid module 1 is arranged during operation in a drive train 2 of a motor vehicle, which is indicated in principle in FIG. 1.
  • the hybrid module 1 is viewed along a central axis of rotation 28, inserted between an output shaft of an internal combustion engine and several transmission input shafts of a transmission.
  • the presence of the electric machine 5 means that the hybrid module 1 is used to implement the hybrid drive train 2.
  • the hybrid module 1 has an input shaft 4.
  • the input shaft 4 is non-rotatably connected to the output shaft of the internal combustion engine during operation.
  • the input shaft 4 is rotatably mounted relative to a partially shown housing 3 of the hybrid module 1.
  • the input shaft 4 penetrates the housing 3 and protrudes into an interior of the hybrid module 1 / the housing 3.
  • the input shaft 4 is connected to a separating clutch 8.
  • the separating clutch 8, which is realized here as a multi-plate clutch, namely friction plate steering clutch, has a first clutch component 29a, which rotates is firmly connected to the input shaft 4.
  • a pot-shaped lamellar carrier 30 of the separating clutch 8 is fastened directly rotating test on the input shaft 4 be.
  • the first clutch component 29a of the separating clutch 8 has, in addition to the disk carrier 30, a plurality of first friction elements 10a which are rotatably mounted on the disk carrier 30 but are axially displaceable relative to one another.
  • the carrier 7 forms a sleeve-shaped torque transmission region 31, on the radial outer side 32 of which the rotor 6 of the electrical machine 5 is received directly.
  • the torque transmission area 31 has an internal toothing 33, which internal toothing 33 forms the second clutch component 29b directly.
  • the first friction elements 10a and the second friction elements 10b of the separating clutch 8 are typically arranged alternately to one another in the axial direction. Consequently, the first friction elements 10a and the second friction elements 10b are arranged axially at the same height as the torque transmission region 31 / the rotor 6 and radially within the torque transmission region 31. In an open position of the separating clutch 8, the friction elements 10a, 10b are rotationally decoupled from one another; in a closed position of the separating clutch 8, the friction elements 10a, 10b are pressed against one another with a frictional connection.
  • a hydraulic actuation unit 9 is provided, which is implemented according to the embodiment of the invention.
  • the actuation unit 9 is equipped with a sliding element 11.
  • the sliding element 11 is received directly on the carrier 7 and is thus coupled to it in a rotationally fixed manner.
  • the Schiebeele element 1 1 is formed in one piece from a sheet metal.
  • the sliding element 11 forms a piston area 34 on a radial inside, which piston area 34 in a receiving space 35 of the carrier 7, with the formation of a sealed hydraulic pressure chamber 13 is performed.
  • the receiving space 35 is implemented in particular as an annular circumferential recess.
  • the sliding element 11 faces towards its first axial side 12a the region of the Trä gers 7 forming the receiving space 35 and includes the pressure space 13 with it.
  • a remindstellfe derritt 14 acts directly on the sliding element 11.
  • the sliding element 11 has a radially inner side of the piston area 34 egg NEN axially protruding guide collar 19.
  • the guide collar 19 is immediacy bar on a mounting base 21 of the carrier 7, which also extends in the axial direction Rich out.
  • the bearing base 21 is in turn implemented here in the form of a roller bearing, namely ball bearings, relative to the housing 3 by means of a support bearing 27.
  • the bearing base 21 is penetrated by a radial connecting channel 36 which connects directly to a hydraulic channel system 16 of the hous ses 3 and together with this forms a rotary leadthrough 17.
  • a hydraulic medium can consequently be fed to the pressure chamber 13 or removed from it during operation in order to adjust the separating clutch 8.
  • Fig. 1 an open position of the separating clutch 8 is implemented.
  • hydraulic pressure is applied to the pressure chamber 13 and as soon as this pressure exceeds a restoring force generated by the restoring spring unit 14, the sliding element 11 is moved in such a way that it frictionally presses the Rei elements 10a, 10b against one another.
  • the sliding element 11 is equipped radially outside the Kol ben Schemees 34 and the pressure chamber 13 with an actuating collar 18, which also protrudes axially.
  • the actuating collar 18 serves directly as Pressure pot and acts in this embodiment on an end arranged second Rei belement 10b of the clutch 8 adjusting.
  • This second friction element 10b arranged at the end is also referred to as a pressure plate.
  • the restoring spring unit 14 and the pressure chamber 13 are formed and coordinated with one another in such a way that when the hybrid module 1 is in operation, with the carrier 7 rotating up to a speed of 10000 rpm, the restoring force generated by the restoring spring unit 14 is greater than that generated by a centrifugal force generated in the pressure chamber 13, axially opposite to the restoring force acting on the sliding element 11, axial adjustment force of the pressure chamber 13 is.
  • the sliding element 11 below a speed of 10,000 rpm and in the absence of additional pressurization of the pressure chamber 13 with hydraulic pressure, the sliding element 11 thus remains in a position / rest position corresponding to the open position of the separating clutch 8, as shown in FIG.
  • the second axial side 12b can thus be converted freely from a compensation chamber. There is thus no compensation chamber implemented in the entire actuation unit 9.
  • the return spring unit 14 is shown in Fig. 1 only on the part of a spring element 15 in the form of a helical compression spring. In principle, according to further embodiments, it is also advantageous if the return spring unit 14 has a plurality of spring elements 15. These several spring elements 15 are preferably arranged distributed in the circumferential direction Rich. However, it is also advantageous if several spring elements 15 are combined in a common spring assembly and, for example, a first spring element designed as a helical compression spring is located within a further second spring element, also designed as a helical compression spring. The formation of a plate spring as the spring element 15 is also implemented in further embodiments according to the invention. The spring element 15 is supported according to FIG.
  • a centering element 37 which is firmly supported on the carrier 7, is supported via a securing ring 38 which is received directly on the carrier 7.
  • a first seal 22 is axially fixed in a recess 23 of the bearing base 21 in the carrier 7, namely in the mounting base 21.
  • This first seal 22 serves to seal a first ra-media gap, between the bearing base 21 and the guide collar 19, to a radial inside of the pressure chamber 13 out.
  • a further second seal 24 is applied directly to the sliding element 11 in this embodiment. This second seal 24 serves to seal a second radial gap between the carrier 7 and the sliding element 11, towards a radial outside of the pressure chamber 13.
  • two clutches 25a, 25b each forming a partial clutch of a double clutch 26, are provided in the hybrid module 1, so that the hybrid module 1 as a whole has a triple clutch.
  • the two partial clutches 25a, 25b are each inserted between the carrier 7 and a transmission input shaft of a transmission, not shown here for the sake of clarity.
  • the first partial clutch 25a is inserted between the carrier 7 and a first transmission input shaft and the second partial clutch 25b between the carrier 7 and a second transmission input shaft.
  • the separating clutch 8 with its friction elements 10a, 10b is arranged in the radial direction at the same height as a plurality of friction elements 39a, 39b of the first partial clutch 25a.
  • a plurality of friction elements 40a, 40b of the second partial clutch 25b are arranged radially within the friction elements 39a, 39b of the first partial clutch 25a and the friction elements 10a, 10b of the separating clutch 8.
  • the first and second friction elements 40a, 40b of the second partial clutch 25b are also arranged in the axial direction at the same height as the rotor 6.
  • the structure of the first and second partial clutches 25a, 25b corresponds to the usual structure of a friction disk clutch, as it is already implemented by the separating clutch 8.
  • the partial clutches 25a, 25b are actuated via a further clutch actuation system 20, which in turn has a subunit for each partial clutch 25a, 25b.
  • the clutch actuation system 20 is arranged at least partially radially inside the friction elements 40a, 40b of the second partial clutch 25b.
  • a possibility is given to reduce the axial installation space and to dispense with a separate speed compensation of the clutch K0 (separating clutch 8).
  • a return spring return spring unit 14
  • a return spring is designed to be particularly strong.
  • the usual, previously implemented compensation with compensation chamber works as follows:
  • the clutch K0 is actuated via a pressure pot (sliding element 1 1).
  • the required force is generated by oil pressure in the pressure chamber 13.
  • the oil pressure is provided by the transmission hydraulics.
  • a return spring 14 has the effect that the pressure pot 11 only moves from a certain oil pressure and that the clutch 8 closes.
  • the clutch 8 begins to rotate, the oil in the pressure chamber 13 also rotates.
  • the centrifugal forces acting there generate a so-called centrifugal oil pressure in the pressure chamber 13, which also acts on the pressure pot 11. If this centrifugal oil pressure is greater than the restoring force of the restoring spring 14, the clutch 8 begins to close without this being intended.
  • the compensation chamber / compensation space has so far been located on the rear side 12b of the pressure pot 11.
  • the compensation chamber is limited by a seal carrier.
  • the compensation space is filled with pressureless oil.
  • the return springs 15 are reinforced and thus the remindstellfe derkraft is greater than the force resulting from the centrifugal oil pressure in the pressure chamber 13. Or the number of return springs 15 is increased so that the return spring force is also greater than the force resulting from the centrifugal oil pressure in the pressure chamber 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Die Erfindung betrifft ein Hybridmodul (1) für einen Antriebsstrang (2) eines Kraftfahrzeuges, mit einem Gehäuse (3), einer relativ zu dem Gehäuse (3) verdrehbaren, mit einer Verbrennungskraftmaschine verbindbaren Eingangswelle (4), einer elektrischen Maschine (5), einem mit einem Rotor (6) der elektrischen Maschine (5) drehgekoppelten Träger (7), einer zwischen der Eingangswelle (4) und dem Träger (7) wirkend eingesetzten Trennkupplung (8) sowie einer zum Verstellen der Trennkupplung (8) zwischen einer geschlossenen Stellung und einer geöffneten Stellung ausgebildeten, hydraulischen Betätigungseinheit (9), wobei die Betätigungseinheit (9) ein auf mehrere Reibelemente (10a, 10b) der Trennkupplung (8) verschiebend einwirkendes Schiebeelement (11) aufweist, welches Schiebeelement (11) zu seiner ersten axialen Seite (12a) hin mit dem Träger (7) einen hydraulischen Druckraum (13) einschließt und zu seiner zweiten axialen Seite (12b) hin von einer Rückstellfedereinheit (14) mit einer axialen Rückstellkraft beaufschlagt ist, wobei die Rückstellfedereinheit (14) und der Druckraum (13) derart ausgebildet und aufeinander abgestimmt sind, dass in einem Betrieb des Hybridmoduls (1), bei rotierendem Träger (7) bis zu einer Drehzahl von mindestens 3000 U/min, die durch die Rückstellfedereinheit (14) erzeugte Rückstellkraft größer als eine durch eine Fliehkraft in dem Druckraum (13) erzeugte, axial entgegengesetzt zur Rückstellkraft auf das Schiebeelement (11) in Richtung der geschlossenen Stellung wirkende, axiale Verstellkraft des Druckraums (13) ist. Zudem betrifft die Erfindung einen Antriebsstrang (2) mit diesem Hybridmodul (1).

Description

Hybridmodul mit Trennkupplung und Betätiqunqseinheit ohne Kompensation;
sowie Antriebsstranq
Die Erfindung betrifft ein Hybridmodul für einen Antriebsstrang eines Kraftfahrzeuges, wie eines Pkws, Lkws, Busses oder sonstigen Nutzfahrzeuges, mit einem Gehäuse, einer relativ zu dem Gehäuse verdrehbaren, mit einer Verbrennungskraftmaschine verbindbaren Eingangswelle, einer elektrischen Maschine, einem mit einem Rotor der elektrischen Maschine drehgekoppelten Träger, einer zwischen der Eingangswelle und dem Träger wirkend eingesetzten Trennkupplung sowie einer zum Verstellen der Trennkupplung zwischen einer geschlossenen Stellung und einer geöffneten Stellung ausgebildeten, hydraulischen Betätigungseinheit, wobei die Betätigungseinheit ein auf mehrere Reibelemente der Trennkupplung verschiebend einwirkendes Schiebeele ment aufweist, welches Schiebeelement zu seiner ersten axialen Seite hin mit dem Träger einen hydraulischen Druckraum einschließt und zu seiner zweiten axialen Seite hin von einer Rückstellfedereinheit mit einer axialen Rückstellkraft beaufschlagt ist.
Gattungsgemäße Hybridmodule mit Drehdurchführungen sind bspw. aus der WO 2019/015714 A1 bekannt. Bei den bekannten Drehdurchführungen kann es durch die im Betrieb wirkenden Fliehkräfte zu Druckschwankungen innerhalb des Druckraums kommen. Zum Ausgleich dieser fliehkraftbedingten Druckschwankungen wird üblicher weise eine Kompensationskammer eingesetzt.
Der Nachteil dieser Kompensationskammer besteht jedoch darin, dass ein relativ gro ßer axialer Bauraum in Anspruch genommen wird.
Es ist daher die Aufgabe der vorliegenden Erfindung, die aus dem Stand der Technik bekannten Nachteile zu beheben und insbesondere ein Hybridmodul zur Verfügung zu stellen, das trotz (mechanischem) Fliehkraftausgleich einen kompakten Aufbau auf weist. Dies wird erfindungsgemäß dadurch gelöst, dass die Rückstellfedereinheit und der Druckraum derart ausgebildet und aufeinander abgestimmt sind, dass in einem Be trieb des Hybridmoduls, bei rotierendem Träger bis zu einer Drehzahl von mindestens 3000 U/min, die durch die Rückstellfeder erzeugte Rückstellkraft größer als eine durch eine Fliehkraft in dem Druckraum erzeugte, axial entgegengesetzt zur Rückstellkraft auf das Schiebeelement in Richtung der geschlossenen Stellung wirkende, axiale Ver stellkraft des Druckraums ist. Somit wird die Betätigungseinheit ohne Kompensations kammer ausgebildet.
Die derart stark ausgebildete Rückstellfedereinheit bewirkt, dass bisher für das Um setzen der Kompensationskammer verwendete Zusatzbauteile weggelassen werden können. Dadurch wird der Aufbau deutlich kompakter.
Weitere vorteilhafte Ausführungen sind mit den Unteransprüchen beansprucht und nachfolgend näher erläutert.
Hinsichtlich der Ausbildung der Rückstellfedereinheit hat es sich als zweckmäßig für den Einsatz in höher drehenden Fahrzeugen herausgestellt, wenn die Rückstellfeder einheit und der Druckraum derart ausgebildet und aufeinander abgestimmt sind, dass in dem Betrieb, bei rotierendem Träger bis zu einer Drehzahl von mindestens 4000 U/min, bevorzugt mindestens 6000 U/min, weiter bevorzugt mindestens 8000 U/min, besonders bevorzugt mindestens 10000 U/min die durch die Rückstellfedereinheit er zeugte Rückstellkraft größer als die durch die Fliehkraft in dem Druckraum erzeugte axiale Verstellkraft des Druckraums ist.
Weist die Rückstellfedereinheit mehrere Federelemente, die vorzugsweise jeweils als Schraubendruckfedern umgesetzt sind, auf, kann eine möglichst hohe Rückstellkraft erzeugt werden.
Des Weiteren ist es von Vorteil, wenn in dem Träger eine an dem Druckraum ange schlossene sowie mit einem gehäuseseitigen Kanalsystem weiter verbundene hydrau lische Drehdurchführung vorgesehen ist. Dadurch ist die Drehdurchführung platzspa rend ausgebildet. Vorteilhaft ist es des Weiteren, wenn ein radial außerhalb des Druckraums verlaufen der Betätigungskragen des Schiebeelementes unmittelbar als Drucktopf umgesetzt ist und mit den Reibelementen der Trennkupplung zusammenwirkt. Das Schiebeelement ist somit axial besonders kompakt ausgebildet.
Auch ist es zweckmäßig, wenn das Schiebeelement einteilig aus einem Metallblech ausgeformt ist.
Weist das Schiebeelement unmittelbar einen axial vorspringenden Führungskragen auf, welcher Führungskragen auf einem Lagerungssockel des Trägers verschiebbar geführt ist, wird der Aufbau der Betätigungseinheit weiter vereinfacht.
Der Lagerungssockel ist zweckmäßigerweise mittels eines Stützlagers weiter zu dem Gehäuse drehbar gelagert.
Ist eine den Druckraum abdichtende erste Dichtung in einer Ausnehmung innerhalb des Trägers axialfest aufgenommen, wird eine noch platzsparendere Anordnung er möglicht.
Des Weiteren ist es von Vorteil, wenn eine den Druckraum abdichtende zweite Dich tung an dem Träger verschiebefest aufgenommen ist.
Ist neben der Trennkupplung zumindest eine weitere Kupplung axial versetzt zu der Trennkupplung vorhanden, kann diese mit einem Getriebe weiter verbunden werden.
Des Weiteren betrifft die Erfindung einen Antriebsstrang für ein Kraftfahrzeug mit ei nem erfindungsgemäßen Hybridmodul nach zumindest einer der zuvor beschriebenen Ausführungen.
In anderen Worten ausgedrückt, ist somit erfindungsgemäß eine Kupplung KO (Trenn kupplung) mit Drehdurchführung ohne Kompensation umgesetzt. Um ein unbeabsich tigtes Schließen der Trennkupplung bei erhöhter Geschwindigkeit und einem damit verbundenen Anstieg der Zentrifugalkräfte in einem Druckraum zu vermeiden, ist eine Rückstellfeder (Rückstellfedereinheit) der Trennkupplung besonders stark ausgebil det.
Die Erfindung wird nun nachfolgend anhand von einer Figur näher erläutert.
Es zeigt die einzige Fig. 1 eine Längsschnittdarstellung eines erfindungsgemäßen, nach einem bevorzugten Ausführungsbeispiel ausgeführten Hybridmoduls, wobei die geschnittenen Bauteile ohne Schraffur gezeigt sind.
Die Figur ist lediglich schematischer Natur und dient daher lediglich dem Verständnis der Erfindung.
Mit Fig. 1 ist ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Hyb ridmoduls 1 veranschaulicht. Das Hybridmodul 1 ist auf typische Weise als eine kom binierte Baueinheit aus einer elektrischen Maschine 5 (der Übersichtlichkeit halber le diglich seitens ihres Rotors 6 dargestellt) und zumindest einer, hier gar drei Kupplun gen 8, 25a, 25b realisiert. Das Hybridmodul 1 ist im Betrieb in einem in Fig. 1 prinzipi ell angedeuteten Antriebsstrang 2 eines Kraftfahrzeuges angeordnet. Insbesondere ist das Hybridmodul 1 entlang einer zentralen Drehachse 28 betrachtet, zwischen einer Ausgangswelle einer Verbrennungskraftmaschine und mehreren Getriebeeingangs wellen eines Getriebes eingesetzt. Das Hybridmodul 1 dient durch das Vorhandensein der elektrischen Maschine 5 zur Umsetzung des hybriden Antriebsstranges 2.
Das Hybridmodul 1 weist eine Eingangswelle 4 auf. Die Eingangswelle 4 ist im Betrieb mit der Ausgangswelle der Verbrennungskraftmaschine drehfest verbunden. Die Ein gangswelle 4 ist relativ zu einem teilweise dargestellten Gehäuse 3 des Hybridmoduls 1 verdrehbar gelagert. Die Eingangswelle 4 durchdringt das Gehäuse 3 und ragt in ein Inneres des Hybridmoduls 1 / des Gehäuses 3 hinein. In einem innerhalb des Hyb ridmoduls 1 angeordneten Bereich ist die Eingangswelle 4 mit einer Trennkupplung 8 verbunden. Die Trennkupplung 8, die hier als Lamellenkupplung, nämlich Reiblamel lenkupplung, realisiert ist, weist einen ersten Kupplungsbestandteil 29a auf, der dreh- fest mit der Eingangswelle 4 verbunden ist. Hierzu ist ein topfartig ausgebildeter La mellenträger 30 der Trennkupplung 8 unmittelbar drehtest an der Eingangswelle 4 be festigt. Der erste Kupplungsbestandteil 29a der Trennkupplung 8 weist neben dem La mellenträger 30 mehrere auf dem Lamellenträger 30 drehtest, jedoch axial relativ zu einander verschieblich aufgenommene erste Reibelemente 10a auf.
Ein mit dem ersten Kupplungsbestandteil 29a wahlweise verbindbarer zweiter Kupp lungsbestandteil 29b der Trennkupplung 8 ist an einem zentralen Träger 7, der relativ zu dem Gehäuse 3 verdrehbar gelagert ist, aufgenommen. Der Träger 7 bildet einen hülsenförmigen Drehmomentübertragungsbereich 31 aus, zu dessen radialer Außen seite 32 unmittelbar der Rotor 6 der elektrischen Maschine 5 aufgenommen ist. Der Drehmomentübertragungsbereich 31 weist eine Innenverzahnung 33 auf, welche In nenverzahnung 33 den zweiten Kupplungsbestandteil 29b unmittelbar mit ausbildet.
An der Innenverzahnung 33 sind mehrere zweite Reibelemente 10b der Trennkupp lung 8 unmittelbar drehfest sowie relativ zueinander axial verschieblich aufgenommen.
Die ersten Reibelemente 10a und die zweiten Reibelemente 10b der Trennkupplung 8 sind auf typische Weise in axialer Richtung wechselweise zueinander angeordnet. Folglich sind die ersten Reibelemente 10a sowie die zweiten Reibelemente 10b axial auf einer gleichen Höhe mit dem Drehmomentübertragungsbereich 31 / dem Rotor 6 sowie radial innerhalb des Drehmomentübertragungsbereiches 31 angeordnet. In ei ner geöffneten Stellung der Trennkupplung 8 sind die Reibelemente 10a, 10b vonei nander drehentkoppelt, in einer geschlossenen Stellung der Trennkupplung 8 sind die Reibelemente 10a, 10b unter reibkraftschlüssigem Verbund aneinander angedrückt.
Zur Betätigung der Trennkupplung 8 zwischen ihrer geöffneten Stellung und ihrer ge schlossenen Stellung ist eine hydraulische Betätigungseinheit 9 vorhanden, die nach der erfindungsgemäßen Ausführung umgesetzt ist. Die Betätigungseinheit 9 ist mit ei nem Schiebeelement 1 1 ausgestattet. Das Schiebeelement 1 1 ist unmittelbar an dem Träger 7 aufgenommen und somit drehfest mit diesem gekoppelt. Das Schiebeele ment 1 1 ist aus einem Metallblech einteilig ausgeformt. Das Schiebeelement 1 1 bildet zu einer radialen Innenseite einen Kolbenbereich 34 aus, welcher Kolbenbereich 34 in einem Aufnahmeraum 35 des Trägers 7, unter Ausbildung eines abgedichteten hyd raulischen Druckraums 13 geführt ist. Der Aufnahmeraum 35 ist insbesondere als eine ringförmig umlaufende Ausnehmung realisiert. Das Schiebeelement 1 1 ist zu seiner ersten axialen Seite 12a hin dem den Aufnahmeraum 35 bildenden Bereich des Trä gers 7 zugewandt und schließt mit diesem den Druckraum 13 ein. Auf einer, der ers ten axialen Seite 12a abgewandten, zweiten axialen Seite 12b wirkt eine Rückstellfe dereinheit 14 unmittelbar auf das Schiebeelement 1 1 ein. Diese relativ zu dem Träger 7 fest abgestützte Rückstellfedereinheit 14 beaufschlagt das Schiebeelement 1 1 ent gegen einer in dem Druckraum 13 erzeugten Druckkraft / Betätigungskraft / Verstell kraft.
Das Schiebeelement 1 1 weist zu einer radialen Innenseite des Kolbenbereiches 34 ei nen axial abstehenden Führungskragen 19 auf. Der Führungskragen 19 ist unmittel bar auf einem Lagerungssockel 21 des Trägers 7, der sich ebenfalls in axialer Rich tung erstreckt, geführt. Der Lagerungssockel 21 ist wiederum mittels eines Stützlagers 27 hier in Form eines Wälzlagers, nämlich Kugellagers umgesetzt, relativ zu dem Ge häuse 3 gelagert. Der Lagerungssockel 21 ist durch einen radialen Verbindungskanal 36 durchdrungen, der unmittelbar an ein hydraulisches Kanalsystem 16 des Gehäu ses 3 anschließt und zusammen mit diesem eine Drehdurchführung 17 ausbildet.
Über das Kanalsystem 16 sowie die Drehdurchführung 17 samt dem Verbindungska nal 36 ist folglich im Betrieb ein hydraulisches Mittel dem Druckraum 13 zuführbar bzw. aus diesem abführbar, um die Trennkupplung 8 zu verstellen.
In Fig. 1 ist eine geöffnete Stellung der Trennkupplung 8 umgesetzt. Zum Schließen der Trennkupplung 8 wird der Druckraum 13 mit hydraulischem Druck beaufschlagt und sobald dieser Druck eine durch die Rückstellfedereinheit 14 erzeugte Rückstell kraft überschreitet, wird das Schiebeelement 1 1 derart verschoben, dass es die Rei belemente 10a, 10b gegeneinander reibschlüssig verpresst.
Wie des Weiteren zu erkennen, ist das Schiebeelement 1 1 radial außerhalb des Kol benbereiches 34 sowie des Druckraums 13 mit einem Betätigungskragen 18, der ebenfalls axial vorsteht, ausgestattet. Der Betätigungskragen 18 dient unmittelbar als Drucktopf und wirkt in dieser Ausführung auf ein endseitig angeordnetes zweites Rei belement 10b der Trennkupplung 8 verstellend ein. Dieses endseitig angeordnete zweite Reibelement 10b ist auch als Anpressplatte bezeichnet.
Erfindungsgemäß sind die Rückstellfedereinheit 14 und der Druckraum 13 derart aus gebildet und aufeinander abgestimmt, dass in einem Betrieb des Hybridmoduls 1 , bei rotierendem Träger 7 bis zu einer Drehzahl von 10000 U/min, die durch die Rückstell federeinheit 14 erzeugte Rückstellkraft größer als eine durch eine Fliehkraft in dem Druckraum 13 erzeugte, axial entgegengesetzt zu der Rückstellkraft auf das Schiebe element 1 1 wirkende, axiale Verstellkraft des Druckraums 13 ist. Unterhalb einer Drehzahl von 10000 U/min sowie bei fehlender zusätzlicher Druckbeaufschlagung des Druckraums 13 mit einem Hydraulikdruck bleibt das Schiebeelement 1 1 somit in einer der geöffneten Stellung der Trennkupplung 8 korrespondierenden Stellung / Ruhestel lung, wie sie in Fig. 1 gezeigt ist. Somit kann die zweite axiale Seite 12b frei von einer Kompensationskammer umgesetzt werden. Es ist somit in der gesamten Betätigungs einheit 9 keine Kompensationskammer umgesetzt.
Die Rückstellfedereinheit 14 ist in Fig. 1 lediglich seitens eines Federelementes 15 in Form einer Schraubendruckfeder abgebildet. Prinzipiell ist es gemäß weiteren Ausfüh rungen auch von Vorteil, wenn die Rückstellfedereinheit 14 mehrere Federelemente 15 aufweist. Diese mehreren Federelemente 15 sind vorzugsweise in Umfangsrich tung verteilt angeordnet. Es ist jedoch auch vorteilhaft, wenn mehrere Federelemente 15 in einem gemeinsamen Federpaket zusammengefasst werden und bspw. ein ers tes als Schraubendruckfeder ausgebildetes Federelement innerhalb eines weiteren, ebenfalls als Schraubendruckfeder ausgebildeten, zweiten Federelementes angeord net ist. Auch die Ausbildung einer Tellerfeder als das Federelement 15 ist in weiteren erfindungsgemäßen Ausführungen umgesetzt. Das Federelement 15 ist gemäß Fig. 1 zu seiner ersten Ende hin an den Schiebeelementen 1 1 abgestützt und zu seinem zweiten Ende axialfest an dem Träger 7, nämlich an dem Lagerungssockel 21 , abge stützt. Hierzu ist ein fest an dem Träger 7 abgestütztes Zentrierelement 37 über einen Sicherungsring 38, der unmittelbar an dem Träger 7 aufgenommen ist, abgestützt. Zur Abdichtung des Druckraums 13 ist in dem Träger 7, nämlich in dem Lagerungsso ckel 21 , eine erste Dichtung 22 in einer Ausnehmung 23 des Lagerungssockels 21 axialfest aufgenommen. Diese erste Dichtung 22 dient zur Abdichtung eines ersten ra dialen Spaltes, zwischen dem Lagerungssockel 21 und dem Führungskragen 19, zu einer radialen Innenseite des Druckraums 13 hin. Eine weitere zweite Dichtung 24 ist in dieser Ausführung unmittelbar an dem Schiebeelement 1 1 aufgebracht. Diese zweite Dichtung 24 dient zur Abdichtung eines zweiten radialen Spaltes zwischen dem Träger 7 und dem Schiebeelement 1 1 , zu einer radialen Außenseite des Druckraums 13 hin.
Neben der Trennkupplung 8 sind zwei, jeweils eine Teilkupplung einer Doppelkupp lung 26 ausbildenden Kupplungen 25a, 25b in dem Hybridmodul 1 vorgesehen, so- dass das Hybridmodul 1 gesamtheitlich eine Dreifachkupplung aufweist. Die beiden Teilkupplungen 25a, 25b sind jeweils zwischen dem Träger 7 und einer hier der Über sichtlichkeit halber nicht weiter dargestellten Getriebeeingangswelle eines Getriebes eingesetzt. Die erste Teilkupplung 25a ist zwischen dem Träger 7 und einer ersten Getriebeeingangswelle und die zweite Teilkupplung 25b zwischen dem Träger 7 und einer zweiten Getriebeeingangswelle wirkend eingesetzt.
Auch sei dabei anzumerken, dass die Trennkupplung 8 mit ihren Reibelementen 10a, 10b in radialer Richtung auf gleicher Höhe mit mehreren Reibelementen 39a, 39b der ersten Teilkupplung 25a angeordnet ist. Die ersten und zweiten Reibelemente 39a,
39b der ersten Teilkupplung 25a sind zudem in axialer Richtung auf gleicher Höhe mit dem Rotor 6 / dem Drehmomentübertragungsbereich 31 angeordnet.
Radial innerhalb der Reibelemente 39a, 39b der ersten Teilkupplung 25a sowie der Reibelemente 10a, 10b der Trennkupplung 8 sind mehrere Reibelemente 40a, 40b der zweiten Teilkupplung 25b angeordnet. Die ersten und zweiten Reibelemente 40a, 40b der zweiten Teilkupplung 25b sind ebenfalls in axialer Richtung auf gleicher Höhe mit dem Rotor 6 angeordnet. Der Aufbau der ersten und zweiten Teilkupplungen 25a, 25b entspricht dem üblichen Aufbau einer Reiblamellenkupplung, wie sie bereits durch die Trennkupplung 8 realisiert ist. Die Teilkupplungen 25a, 25b sind über ein weiteres Kupplungsbetätigungssystem 20, das je Teilkupplung 25a, 25b wiederum eine Teileinheit aufweist, betätigt. Das Kupp lungsbetätigungssystem 20 ist zumindest teilweise radial innerhalb der Reibelemente 40a, 40b der zweiten Teilkupplung 25b angeordnet.
In anderen Worten ausgedrückt, wird erfindungsgemäß eine Möglichkeit gegeben, den Axialbauraum zu reduzieren und auf eine separate Drehzahlkompensation der Kupplung K0 (Trennkupplung 8) zu verzichten. Als Gegenmaßnahme ist eine Rück stellfeder (Rückstellfedereinheit 14) besonders stark ausgelegt.
Die übliche, bisher umgesetzte Kompensation mit Kompensationskammer funktioniert wie folgt: Die Kupplung K0 wird über einen Drucktopf (Schiebeelement 1 1 ) betätigt.
Die erforderliche Kraft wird durch Öldruck im Druckraum 13 erzeugt. Der Öldruck wird von der Getriebehydraulik bereitgestellt. Eine Rückstellfeder 14 bewirkt, dass sich der Drucktopf 1 1 erst ab einem bestimmten Öldruck bewegt und die Kupplung 8 schließt. Beginnt sich die Kupplung 8 zu drehen, rotiert auch das Öl im Druckraum 13. Die da bei wirkenden Fliehkräfte erzeugen einen sogenannten Fliehöldruck im Druckraum 13, welcher zusätzlich auf den Drucktopf 1 1 wirkt. Wird dieser Fliehöldruck größer als die Rückstellkraft der Rückstellfeder 14, beginnt sich die Kupplung 8 zu schließen ohne, dass dies gewollt ist. Um dies zu verhindern, befindet sich auf der Rückseite 12b des Drucktopfs 1 1 bisher die Kompensationskammer / der Kompensationsraum. Die Kom pensationskammer wird durch einen Dichtungsträger begrenzt. Der Kompensations raum wird mit drucklosem Öl befüllt. Bei rotierender Kupplung 8 wirken die im Kom pensationsraum entstehenden Fliehöldrücke den im Druckraum 13 entstehenden Flie höldrücke entgegen und es erfolgt eine vollständige oder zumindest teilweise Kom pensation der Kräfte, welche auf den Drucktopf 1 1 wirken. Dies bewirkt, dass sich der Drucktopf 1 1 gar nicht oder erst bei wesentlich höheren Drehzahlen anfängt zu bewe gen. Erfindungsgemäß wird auf eine separate Fliehölkompensation verzichtet. D. h. , der bisherige Dichtungsträger und somit der gesamte Kompensationsraum entfallen; auch entfällt die Ölzuführung zum Kompensationsraum. Der Entfall dieser Elemente führt zu einer Reduzierung des axialen Bauraumbedarfs. Die Betätigung der Kupplung K0 bleibt nach der erfindungsgemäßen Ausbildung wie oben beschrieben. Erfindungs- gemäß werden konkret die Rückstellfedern 15 verstärkt und damit ist die Rückstellfe derkraft größer als die aus dem Fliehöldruck in dem Druckraum 13 resultierende Kraft. Oder es wird die Anzahl der Rückstellfedern 15 erhöht, damit die Rückstellfederkraft ebenfalls größer als die aus dem Fliehöldruck in dem Druckraum 13 resultierende Kraft ist.
Bezugszeichenliste Hybridmodul
Antriebsstrang
Gehäuse
Eingangswelle
elektrische Maschine
Rotor
Träger
Trennkupplung
Betätigungseinheit
a erstes Reibelement der T rennkupplungb zweites Reibelement der T rennkupplung
Schiebeelement
a erste Seite
b zweite Seite
Druckraum
Rückstellfedereinheit
Federelement
Kanalsystem
Drehdurchführung
Betätigungskragen
Führungskragen
Kupplungsbetätigungssystem
Lagerungssockel
erste Dichtung
Ausnehmung
zweite Dichtung
a erste Teilkupplung
b zweite Teilkupplung
Doppelkupplung
Stützlager
Drehachse a erster Kupplungsbestandteil der Trennkupplungb zweiter Kupplungsbestandteil der Trennkupplung Lamellenträger
Drehmomentübertragungsbereich
Außenseite
Innenverzahnung
Kolbenbereich
Aufnahmeraum
Verbindungskanal
Zentrierelement
Sicherungsring
a erstes Reibelement der ersten Teilkupplungb zweites Reibelement der ersten Teilkupplunga erstes Reibelement der zweiten Teilkupplungb zweites Reibelement der zweiten Teilkupplung

Claims

Patentansprüche
1. Hybridmodul (1 ) für einen Antriebsstrang (2) eines Kraftfahrzeuges, mit einem Gehäuse (3), einer relativ zu dem Gehäuse (3) verdrehbaren, mit einer Ver brennungskraftmaschine verbindbaren Eingangswelle (4), einer elektrischen Maschine (5), einem mit einem Rotor (6) der elektrischen Maschine (5) dreh gekoppelten Träger (7), einer zwischen der Eingangswelle (4) und dem Träger (7) wirkend eingesetzten Trennkupplung (8) sowie einer zum Verstellen der Trennkupplung (8) zwischen einer geschlossenen Stellung und einer geöffne ten Stellung ausgebildeten, hydraulischen Betätigungseinheit (9), wobei die Betätigungseinheit (9) ein auf mehrere Reibelemente (10a, 10b) der Trenn kupplung (8) verschiebend einwirkendes Schiebeelement (11 ) aufweist, wel ches Schiebeelement (11 ) zu seiner ersten axialen Seite (12a) hin mit dem Träger (7) einen hydraulischen Druckraum (13) einschließt und zu seiner zwei ten axialen Seite (12b) hin von einer Rückstellfedereinheit (14) mit einer axia len Rückstellkraft beaufschlagt ist, dadurch gekennzeichnet, dass die Rück stellfedereinheit (14) und der Druckraum (13) derart ausgebildet und aufeinan der abgestimmt sind, dass in einem Betrieb des Hybridmoduls (1 ), bei rotie rendem Träger (7) bis zu einer Drehzahl von mindestens 3000 U/min, die durch die Rückstellfedereinheit (14) erzeugte Rückstellkraft größer als eine durch eine Fliehkraft in dem Druckraum (13) erzeugte, axial entgegengesetzt zur Rückstellkraft auf das Schiebeelement (11 ) in Richtung der geschlossenen Stellung wirkende, axiale Verstellkraft des Druckraums (13) ist.
2. Hybridmodul (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Rück stellfedereinheit (14) und der Druckraum (13) derart ausgebildet und aufeinan der abgestimmt sind, dass in dem Betrieb, bei rotierendem Träger (7) bis zu einer Drehzahl von mindestens 4000 U/min, bevorzugt mindestens 6000 U/min, weiter bevorzugt mindestens 8000 U/min, besonders bevorzugt min destens 10000 U/min die durch die Rückstellfedereinheit (14) erzeugte Rück stellkraft größer als die durch die Fliehkraft in dem Druckraum (13) erzeugte axiale Verstellkraft des Druckraums (13) ist.
3. Hybridmodul (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rückstellfedereinheit (14) mehrere Federelemente (15) aufweist.
4. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem Träger (7) eine an den Druckraum (13) angeschlossene sowie mit einem gehäuseseitigen Kanalsystem (16) weiter verbundene hydraulische Drehdurchführung (17) vorgesehen ist.
5. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein radial außerhalb des Druckraums (13) verlaufender Betätigungskra gen (18) des Schiebeelementes (11 ) unmittelbar als Drucktopf umgesetzt ist und mit den Reibelementen (10a, 10b) der Trennkupplung (8) zusammen wirkt.
6. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Schiebeelement (11 ) unmittelbar einen axial vorspringenden Füh rungskragen (19) aufweist, welcher Führungskragen (19) auf einem Lage rungssockel (21 ) des Trägers (7) verschiebbar geführt ist.
7. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine den Druckraum (13) abdichtende erste Dichtung (22) in einer Aus nehmung (23) innerhalb des Trägers (7) axialfest aufgenommen ist.
8. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine den Druckraum (13) abdichtende zweite Dichtung (24) an dem Trä ger (7) verschiebefest aufgenommen ist.
9. Hybridmodul (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass neben der Trennkupplung (8) zumindest eine weitere Kupplung (25a, 25b) axial versetzt zu der Trennkupplung (8) vorhanden ist.
10. Antriebsstrang (2) für ein Kraftfahrzeug, mit einem Hybridmodul (1 ) nach zu mindest einem der Ansprüche 1 bis 9.
PCT/DE2020/100035 2019-03-07 2020-01-20 Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang WO2020177798A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080017571.XA CN113543997A (zh) 2019-03-07 2020-01-20 具有分离离合器和无补偿致动单元的混合动力模块、以及传动系
EP20705882.7A EP3934927A1 (de) 2019-03-07 2020-01-20 Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang
US17/432,157 US20220185091A1 (en) 2019-03-07 2020-09-10 Hybrid module with separating clutch and actuation unit without compensation; as well as drive train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019105789.2 2019-03-07
DE102019105789 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020177798A1 true WO2020177798A1 (de) 2020-09-10

Family

ID=69630104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100035 WO2020177798A1 (de) 2019-03-07 2020-01-20 Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang

Country Status (5)

Country Link
US (1) US20220185091A1 (de)
EP (1) EP3934927A1 (de)
CN (1) CN113543997A (de)
DE (1) DE102019115904A1 (de)
WO (1) WO2020177798A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138412A1 (en) * 2010-12-01 2012-06-07 Zf Friedrichshafen Ag Control device of a rotating shifting element of an automatic transmission for engine start-stop operation
WO2019015714A1 (de) 2017-07-18 2019-01-24 Schaeffler Technologies AG & Co. KG Hybridmodul mit drehdurchführung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336778A (en) * 1980-02-29 1982-06-29 Delta Systems, Inc. Safety limiter for engine speed
DE10004186B4 (de) * 1999-09-30 2013-03-07 Volkswagen Ag Mehrfach-Kupplungseinrichtung
ATE289014T1 (de) * 1999-12-07 2005-02-15 Magna Drivetrain Ag & Co Kg Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich
JP2008106902A (ja) * 2006-10-27 2008-05-08 Nok Corp シール一体型ピストン
DE102009039223B8 (de) * 2009-08-28 2013-05-08 Getrag Ford Transmissions Gmbh Doppelkupplungsanordnung für ein Getriebe mit zwei Eingangswellen
DE102016125078A1 (de) * 2016-10-06 2018-04-12 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung und Hybridmodul
DE102016219682A1 (de) * 2016-10-11 2018-04-12 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung
JP7031734B2 (ja) * 2018-03-28 2022-03-08 株式会社アイシン 車両用駆動装置
DE102018205463A1 (de) * 2018-04-11 2019-10-17 Zf Friedrichshafen Ag Hybridantriebsmodul für ein Kraftfahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138412A1 (en) * 2010-12-01 2012-06-07 Zf Friedrichshafen Ag Control device of a rotating shifting element of an automatic transmission for engine start-stop operation
WO2019015714A1 (de) 2017-07-18 2019-01-24 Schaeffler Technologies AG & Co. KG Hybridmodul mit drehdurchführung

Also Published As

Publication number Publication date
DE102019115904A1 (de) 2020-09-10
US20220185091A1 (en) 2022-06-16
CN113543997A (zh) 2021-10-22
EP3934927A1 (de) 2022-01-12

Similar Documents

Publication Publication Date Title
EP3661780B1 (de) Hybridmodul mit nadellager umfassender betätigungseinheit; sowie hybridantriebsstrang
EP2287487B1 (de) Antriebsstrangmodul für ein Kraftfahrzeug
EP3429878A1 (de) Elektroantrieb
EP3545608A1 (de) Kupplungseinrichtung
EP1957826A1 (de) Torsionsschwingungsdämpfer
EP3559494A1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug
EP2060824B1 (de) Torsionsschwingungsdämpferanordnung
DE102017121348B4 (de) Kupplungseinrichtung, Hybridmodul und Antriebsstrang
WO2012045297A1 (de) Doppelkupplung
WO2015078580A2 (de) Hydrodynamische maschine
EP2129928A1 (de) Kupplungsanordnung
WO2018171830A1 (de) Antriebsstrangeinheit mit getriebeseitiger lagerung einer dreifachkupplung eines hybridmoduls
EP3759371B1 (de) Kupplungsanordnung sowie diese kupplungsanordnung aufweisende antriebseinheit
EP3759368B1 (de) Kupplungsanordnung mit zusätzlichem stützlager; sowie antriebseinheit
EP3934927A1 (de) Hybridmodul mit trennkupplung und betätigungseinheit ohne kompensation; sowie antriebsstrang
EP3826873B1 (de) Hybridmodul mit eingangswelle mit drehdurchführung sowie betätigungseinrichtung für eine von mehreren kupplungen; sowie antriebsstrang
DE102019128300B3 (de) Antriebsanordnung für ein Kraftfahrzeug
EP2076685B1 (de) Kupplung und kupplungsanordnung mit einer solchen kupplung
WO2020052703A1 (de) Kupplungsanordnung mit vollhydraulischer betätigung; sowie antriebseinheit
WO2019166056A1 (de) Betätigungsvorrichtung mit axial verschachteltem nehmerzylinder; kupplungssystem sowie antriebseinheit
WO2019166050A1 (de) Kupplungsanordnung mit lagerung auf zumindest einem nehmerzylinder einer betätigungsvorrichtung; sowie antriebseinheit
EP3696436B1 (de) Kupplungsvorrichtung für eine landwirtschaftliche arbeitsmaschine
EP1916146A2 (de) Hybrid-Antriebssystem für ein Fahrzeug
DE19920662A1 (de) Kupplungseinrichtung
DE102015217676A1 (de) Kupplungsaktor für getriebeintegrierte Kupplungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20705882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020705882

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020705882

Country of ref document: EP

Effective date: 20211007