WO2018235865A1 - 水質測定装置及び水質測定方法 - Google Patents

水質測定装置及び水質測定方法 Download PDF

Info

Publication number
WO2018235865A1
WO2018235865A1 PCT/JP2018/023454 JP2018023454W WO2018235865A1 WO 2018235865 A1 WO2018235865 A1 WO 2018235865A1 JP 2018023454 W JP2018023454 W JP 2018023454W WO 2018235865 A1 WO2018235865 A1 WO 2018235865A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample water
pipe
ultraviolet light
water
excimer lamp
Prior art date
Application number
PCT/JP2018/023454
Other languages
English (en)
French (fr)
Inventor
雅人 矢幡
増田 裕一
達哉 片岡
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019525661A priority Critical patent/JP6908110B2/ja
Priority to US16/624,091 priority patent/US11739006B2/en
Priority to EP18820500.9A priority patent/EP3644050B1/en
Priority to CN201880041669.1A priority patent/CN110832313B/zh
Publication of WO2018235865A1 publication Critical patent/WO2018235865A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Water organic contamination in water
    • G01N33/1846Total carbon analysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/326Lamp control systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Definitions

  • the present invention relates to a water quality measuring device and a water quality measuring method for measuring the water quality of sample water.
  • the sample water is immersed in the UV lamp by flowing the sample water into the reaction chamber. And sample water is oxidized by irradiating an ultraviolet ray from a UV lamp.
  • an apparatus for realizing such a wet oxidation method for example, an apparatus using an excimer lamp or a mercury lamp as a light source has been proposed. If an excimer lamp is used as a light source, ultraviolet light with high energy density can be emitted (see, for example, Patent Documents 2 and 3 below).
  • a flow path is formed so as to surround the periphery (outside) of the excimer lamp. Then, the sample water is oxidized by the ultraviolet light emitted from the excimer lamp in the process of passing through the flow path. Moreover, in the apparatus of patent document 3, the flow path is formed so that the inside of a cylindrical lamp may be penetrated. Then, the sample water is oxidized by the ultraviolet light emitted from the lamp in the process of passing through the flow path.
  • the light source is located inside, and the sample water is located outside the light source. Then, the ultraviolet light traveling from the light source to the sample water diffuses outward. Therefore, there existed a problem that the irradiation efficiency of an ultraviolet-ray became low.
  • the flow path is provided around the light source, there is a problem that the structure of the flow path becomes complicated.
  • the flow path pipe different from the lamp is inserted in the lamp, there is a problem that the configuration becomes complicated.
  • a gap is formed between the flow passage pipe and the lamp, and the irradiation efficiency of ultraviolet light is lowered.
  • the present invention has been made in view of the above situation, and provides a water quality measurement device and a water quality measurement method that can make the flow path of sample water simple and improve the irradiation efficiency of ultraviolet light to sample water. With the goal.
  • a water quality measurement device comprises an ultraviolet irradiation unit, an inflow pipe, an outflow pipe, and a detection unit.
  • the said ultraviolet irradiation part has a passage area which makes sample water pass, and irradiates an ultraviolet to sample water from the circumference of the passage area concerned.
  • the inflow pipe allows sample water to flow into the passage area.
  • the outflow pipe allows the sample water, which has been oxidized by being irradiated with ultraviolet light by the ultraviolet irradiation unit, to flow out of the passage area.
  • the detection unit detects a decomposition product that has flowed out to the outflow pipe.
  • the sample water flows sequentially through the inflow pipe, the passage area of the ultraviolet irradiation unit, and the outflow pipe. Therefore, the flow path in the water quality measurement device can be simplified.
  • the sample water in the passage area is oxidized by the ultraviolet light irradiated from the periphery toward the inside. Therefore, the sample water can be efficiently irradiated with the ultraviolet light from the excimer lamp. That is, according to the water quality measurement device according to the present invention, the flow path of the sample water can be simplified, and the irradiation efficiency of the ultraviolet light to the sample water can be improved.
  • the said ultraviolet irradiation part has the inner pipe which an internal space is formed as the said passage area
  • the inner peripheral surface of the said inner pipe and the said It may be a double-tube type excimer lamp which irradiates ultraviolet rays by discharging between electrodes provided on the outer peripheral surface of the outer tube.
  • the inflow pipe may allow sample water to flow into the inner pipe from one end.
  • the outflow pipe may cause sample water oxidized by being irradiated with ultraviolet light in the inner pipe to flow out from the other end of the inner pipe.
  • the sample water flows sequentially through the inflow pipe, the inner pipe of the excimer lamp, and the outflow pipe. Therefore, the flow path in the water quality measurement device can be simplified. Further, the sample water is oxidized in the inner tube of the excimer lamp by being irradiated with ultraviolet light. Furthermore, the excimer lamp stabilizes the illumination in a short time as compared with the mercury lamp and the like. Therefore, it is possible to efficiently irradiate the sample water with ultraviolet light from the excimer lamp in a short time. Furthermore, since the inner tube itself of the lamp is directly used as a flow path, the distance from the light emitting position to the sample water can be shortened, and the irradiation efficiency of ultraviolet light to the sample water can be improved. That is, according to the water quality measurement device according to the present invention, the flow path of the sample water can be simplified, and the irradiation efficiency of the ultraviolet light to the sample water can be improved.
  • the detection unit may detect the decomposition product by measuring the conductivity of the sample water flowing out to the outflow pipe.
  • the decomposition product can be detected with high accuracy by measuring the conductivity of the sample water.
  • the said outflow pipe may be equipped with a thermal radiation part.
  • the heat dissipation unit dissipates the heat of the sample water.
  • the heat dissipation unit can dissipate the heat of the oxidized sample water. Then, the decomposition product can be detected by the detection unit in a state where the temperature of the sample water is brought close to the ambient temperature.
  • the said excimer lamp may have a shielding part.
  • the shield covers the outer peripheral surface of the outer tube and prevents ultraviolet light from leaking to the outside.
  • the ultraviolet rays can be prevented from leaking to the outside with a simple configuration in which only the outer tube is covered by the shielding portion, so that the irradiation efficiency of the ultraviolet rays to the sample water can be improved.
  • the reflective surface which reflects an ultraviolet-ray may be formed in the inner surface of the said shielding part.
  • the sample water can be irradiated and oxidized by the ultraviolet rays reflected and directed inward of the excimer lamp. Therefore, the irradiation efficiency of the ultraviolet light to sample water can be further improved.
  • the fluorescent agent may be apply
  • the water quality measurement device may further include a liquid transfer control unit.
  • the liquid transfer control unit causes sample water to flow from the inflow pipe into the inner pipe and then irradiates ultraviolet light to the sample water in the inner pipe with the excimer lamp in a state in which the inflow of sample water is stopped. By flowing sample water from the inflow pipe into the inner pipe, the oxidized sample water is sent to the detection unit through the outflow pipe.
  • the sample water is oxidized by the ultraviolet light from the excimer lamp by repeating the inflow of the sample water into the inner tube of the excimer lamp and the stop of the inflow, and the oxidized sample water is
  • the operation of detecting by the detection unit can be repeated. Therefore, the sample water can be oxidized, and the operation of detecting the oxidized sample water by the detection unit can be performed with simple control.
  • the excimer lamp stabilizes the illumination in a short time. Therefore, sample water can be repeatedly detected in a short time.
  • the water quality measurement method includes an inflow step, an irradiation step, an outflow step, and a detection step.
  • the sample water is provided in the passage area through the inflow pipe with respect to the ultraviolet irradiation unit that has a passage area through which the sample water passes and the sample water is irradiated with ultraviolet light from around the passage area. Allow the At the said irradiation step, an ultraviolet-ray is irradiated to the sample water in the said passing area
  • the outflow step the sample water oxidized by the irradiation of the ultraviolet light by the ultraviolet irradiation unit is made to flow out from the passage area to the outflow pipe.
  • the detection step the decomposition product that has flowed out to the outflow pipe is detected.
  • the inflow step includes an inner pipe having an inner space formed as the passage area, and an outer pipe disposed around the inner pipe, the inner circumferential surface of the inner pipe and the outer surface
  • Sample water may be allowed to flow into the inner pipe from the one end through the inflow pipe with respect to a double-tube type excimer lamp which irradiates ultraviolet rays by discharging between the electrodes provided on the outer peripheral surface of the pipe.
  • the sample water in the inner tube may be irradiated with ultraviolet light by the excimer lamp.
  • sample water oxidized by being irradiated with ultraviolet light in the inner pipe may be made to flow out from the other end of the inner pipe to the outflow pipe.
  • the decomposition product may be detected by measuring the conductivity of the sample water having flowed into the outflow pipe.
  • the water quality measurement method may further include a heat dissipation step.
  • the heat dissipation step the heat of the sample water flowed out to the outflow pipe is dissipated.
  • the sample water in the inner pipe may be irradiated with ultraviolet light by the excimer lamp in a state where the inflow of the sample water from the inflow pipe into the inner pipe is stopped.
  • the sample water may flow into the inner pipe from the inflow pipe again, and the oxidized sample water may be sent to the detection unit through the outflow pipe.
  • the sample water flows sequentially through the inflow pipe, the inner pipe of the excimer lamp, and the outflow pipe. Therefore, the flow path in the water quality measurement device can be simplified. Further, the sample water is oxidized in the inner tube of the excimer lamp by being irradiated with ultraviolet light. Therefore, the sample water can be efficiently irradiated with the ultraviolet light from the excimer lamp.
  • FIG. 2 is a cross-sectional view of the excimer lamp of FIG. 1 along the line AA.
  • FIG. 5 is a block diagram showing an electrical configuration of a control unit and members around the control unit. It is the flowchart which showed the control action by the control part. It is a figure for demonstrating the operation
  • FIG. 1 is a schematic view showing the configuration of a water quality measurement apparatus 1 according to a first embodiment of the present invention.
  • the water quality measurement apparatus 1 is an apparatus for measuring the concentration of total organic carbon (TOC) in sample water, and is a so-called wet oxidation type that oxidizes organic substances in the sample water by irradiating the sample water with ultraviolet light. It is a measuring device.
  • the water quality measurement device 1 detects the decomposition product (oxidative decomposition product) of the sample water by measuring the conductivity of the sample water.
  • the water quality measurement device 1 includes an excimer lamp 2, an inflow pipe 3, an outflow pipe 4, a detection unit 5, a pump 6, a bypass pipe 9, and a three-way valve 10.
  • FIG. 2 is a cross-sectional view of the excimer lamp 2 of FIG. 1 taken along the line AA.
  • the excimer lamp 2 is a double cylindrical excimer lamp, and includes an inner tube 21, an outer tube 22 and a shielding portion 23.
  • the excimer lamp 2 constitutes an example of the ultraviolet irradiation unit.
  • the excimer lamp 2 is a double cylindrical excimer lamp.
  • the excimer lamp 2 does not necessarily have to be a double cylindrical type, and may be a double cylindrical type.
  • the double cylindrical excimer lamp 2 is more preferable because it is compatible with the piping and material procurement is easy.
  • the inner pipe 21 is made of a glass material and formed in a long cylindrical shape. Although not shown, an electrode is provided on the inner circumferential surface of the inner pipe 21.
  • the inner diameter of the inner pipe 21 is, for example, 0.5 to 2.0 mm.
  • the internal space of the inner pipe 21 is configured as a flow path through which sample water passes.
  • the volume of the inner pipe 21 is, for example, 0.05 to 0.40 ml.
  • the internal space of the inner pipe 21 constitutes an example of the passage area.
  • the outer pipe 22 is disposed outside the inner pipe 21 at intervals so as to surround the inner pipe 21.
  • the outer tube 22 is made of a glass material and formed in a long cylindrical shape.
  • the central axis of the outer pipe 22 coincides with the central axis of the inner pipe 21.
  • an electrode is provided on the outer peripheral surface of the outer tube.
  • the longitudinal dimension of the outer tube 22 and the inner tube 21 is, for example, 3 to 30 cm, preferably about 10 cm.
  • One end of the outer pipe 22 and one end of the inner pipe 21 are connected by an end face 25.
  • the other end of the outer pipe 22 and the other end of the inner pipe 21 are connected by the end face 25.
  • an annular discharge space 30 defined by the inner tube 21, the outer tube 22, and the end face 25 is formed.
  • the discharge space 30 is filled with a discharge gas (discharge gas).
  • discharge gas discharge gas
  • the discharge space 30 is filled with xenon (Xe) as a discharge gas.
  • the shielding portion 23 is provided on the outer peripheral surface of the outer pipe 22.
  • the shielding portion 23 covers the entire outer peripheral surface of the outer tube 22.
  • Shielding part 23 consists of aluminum foil, for example.
  • the inner surface 23A (surface facing the outer tube 22) of the shielding portion 23 functions as a reflecting surface that reflects ultraviolet light.
  • the shielding portion 23 prevents the light in the discharge space 30 from leaking from the outer tube 22 to the outside, and the light in the discharge space 30 efficiently flows into the inner tube 21.
  • the sample water In the water quality measurement apparatus 1, light (ultraviolet light) near 172 nm (172 to 180 nm) with high energy density is generated. Therefore, in the case of oxidizing the sample water in the water quality measurement device 1, the sample water can be oxidized in a short time.
  • the inflow pipe 3 is connected to one end (the lower end in FIG. 1) of the inner pipe 21 of the excimer lamp 2.
  • the inner diameter of the inflow tube 3 is substantially the same as the inner diameter of the inner tube 21 of the excimer lamp 2.
  • one end of the inner pipe 21 is an end of the inner pipe 21 located at the upstream side in the inflow direction of the sample water among the ends of the inner pipe 21.
  • the outflow pipe 4 is connected to the other end (upper end in FIG. 1) of the inner pipe 21 of the excimer lamp 2.
  • the outflow pipe 4 is provided with a pipe main body 41 and a heat radiating portion 42.
  • the tube body 41 is formed in an elongated tubular shape.
  • the tube main body 41 is connected to the other end of the inner tube 21 of the excimer lamp 2.
  • the inner diameter of the tube body 41 is substantially the same as the inner diameter of the inner tube 21 of the excimer lamp 2.
  • the other end of the inner pipe 21 is an end of the inner pipe 21 located at the downstream side in the inflow direction of the sample water among the ends of the inner pipe 21.
  • the heat radiating portion 42 is for dissipating the heat of the sample water, and is interposed in the middle of the tube main body 41.
  • the heat radiating part 42 is a coil for heat radiation formed in a tubular (tubular) shape.
  • the heat dissipation portion 42 is formed in a tubular (tubular) shape by winding a metal wire having a length of 500 to 2000 mm.
  • the heat radiating portion 42 dissipates (radiates heat) the heat of the oxidized sample water and stabilizes the temperature of the sample water flowing into the detecting portion 5. Note that not only the configuration in which a part of the outflow pipe 4 as described above is the heat dissipation part 42, but all of the outflow pipe 4 may be configured by the heat dissipation part 42.
  • the detection unit 5 is interposed in the middle of the outflow pipe 4 (the pipe main body 41). Specifically, the detection unit 5 is located downstream of the heat dissipation unit 42 in the inflow direction of the sample water. The sample water that has passed through the inside of the heat dissipation unit 42 flows into the detection unit 5.
  • the detection unit 5 is a conductivity detector that measures the conductivity of the liquid, and measures the conductivity of the sample water in the outflow pipe 4.
  • the pump 6 is disposed in the middle of the outflow pipe 4 (the pipe main body 41), and is disposed downstream of the detection unit 5 in the inflow direction of the sample water.
  • the bypass pipe 9 is connected to a portion between the detection unit 5 and the pump 6 at a middle portion of the outflow pipe 4 (the pipe main body 41).
  • the three-way valve 10 is provided at a connection portion (joining portion) between the outflow pipe 4 (the pipe main body 41) and the bypass pipe 9.
  • the three-way valve 10 performs a switching operation of switching the flow path through which the sample water flows. Specifically, the three-way valve 10 switches between a flow path from the detection unit 5 to the pump 6 through the outflow pipe 4 and a flow path through the bypass pipe 9 after passing through the outflow pipe 4.
  • the sample water sequentially moves the inflow pipe 3, the inner pipe 21 of the excimer lamp 2, and the outflow pipe 4 by the operation of the pump 6.
  • movement and stop of the sample water are appropriately performed by controlling ON / OFF of the pump 6 as described later.
  • light ultraviolet light
  • the flow rate of the sample water flowing into the inner tube 21 of the excimer lamp 2 is, for example, 1 to 30 ml / min.
  • the sample water before oxidation and the sample water after oxidation selectively flow into the outflow pipe 4 by controlling the operation of the excimer lamp 2 together with the pump 6 as described later.
  • the detection unit 5 measures the conductivity of the sample water, and the concentration of total organic carbon (TOC) in the sample water is measured based on the measurement result.
  • pure water for example, is used as the sample water.
  • FIG. 3 is a block diagram showing the electrical configuration of the control unit and peripheral components thereof.
  • the water quality measurement apparatus 1 includes a clocking unit 7 and a control unit 8 in addition to the excimer lamp 2, the detection unit 5, the pump 6, and the three-way valve 10 described above.
  • the timer unit 7 is configured to measure an elapsed time during operation of the water quality measurement device 1.
  • the control unit 8 is configured to include, for example, a CPU (Central Processing Unit), and respective units such as the excimer lamp 2, the detection unit 5, the pump 6, and the timer unit 7 are electrically connected.
  • the control unit 8 functions as a liquid transfer control unit 81, a calculation control unit 82, and the like when the CPU executes a program.
  • the liquid transfer control unit 81 controls the operation of the excimer lamp 2, the pump 6 and the three-way valve 10 based on the measurement result of the timer unit 7.
  • the calculation control unit 82 calculates the concentration of total organic carbon (TOC) in the sample water based on the detection result of the detection unit 5.
  • TOC total organic carbon
  • FIG. 4 is a flowchart showing a control operation by the control unit 8.
  • 5A to 5C are diagrams for explaining the operation of the water quality measuring device. Specifically, FIG. 5A is a schematic view showing a state in which sample water before oxidation is detected.
  • FIG. 5B is a schematic view showing a state in which the sample water is oxidized.
  • FIG. 5C is a schematic view showing how oxidized sample water is detected.
  • the operation of the pump 6 is started (the pump 6 is turned on) by the liquid transfer control unit 81 (pump 6 is turned on) Step S101).
  • the liquid transfer control unit 81 operates the three-way valve 10 such that the flow path from the detection unit 5 to the pump 6 is opened (the bypass flow path is closed).
  • sample water (pure water) flows in into the inflow pipe 3, the inner pipe 21 of the excimer lamp 2, and the outflow pipe 4 one by one.
  • the sample water flows into the inner pipe 21 from the one end through the inflow pipe 3 to the excimer lamp 2 (inflow step). Then, the detection unit 5 measures the conductivity of the sample water in the outflow pipe 4 (step S102).
  • the liquid transfer control unit 81 stops the operation of the pump 6 (turns the pump 6 OFF) as shown in FIG. 5B. At the same time, the operation of the excimer lamp 2 is started (the excimer lamp 2 is turned on) (step S103).
  • the movement of the sample water in the water quality measurement device 1 is stopped, and the ultraviolet light is irradiated to the sample water located in the inner pipe 21 in the excimer lamp 2 (irradiation step). Then, the sample water in the inner tube 21 of the excimer lamp 2 is oxidized.
  • the irradiation efficiency of the ultraviolet light to the sample water can be improved.
  • ultraviolet light is attenuated by the square of the distance. With such a configuration, the distance from the light emitting position to the sample water can be shortened, and the irradiation efficiency of the ultraviolet light to the sample water can be improved.
  • step S104 the time counted by the timer 7 (the time after the operation of the excimer lamp 2 is started) reaches a predetermined value (step S104) YES)
  • the liquid transfer control unit 81 stops the operation of the excimer lamp 2 (turns off the excimer lamp 2) and starts the operation of the pump 6 (turns on the pump 6) (step S105). ).
  • sample water new sample water
  • the sample water oxidized in the inner pipe 21 of the excimer lamp 2 is pushed out by the newly introduced sample water, and the pushed out sample water (sample water after oxidation) flows out to the outflow pipe 4.
  • the sample water passes through the inside of the heat radiating portion 42 of the outflow pipe 4 and flows into the detecting portion 5.
  • the heat of the oxidized sample water is dissipated (heat dissipation) (heat dissipation step).
  • the temperature of the sample water flowing into the detection unit 5 approaches the ambient temperature, the sample water is stabilized. Then, the sample water in the state of being dissipated by the heat dissipation unit 42 flows into the detection unit 5.
  • the sample water oxidized in the inner pipe 21 of the excimer lamp 2 is pushed outward from the other end of the inner pipe 21 as new sample water flows into the water quality measuring apparatus 1 (newly Sample water) and flows into the outflow pipe 4 and is sent to the detection unit 5 (efflux step). Then, the detection unit 5 measures the conductivity of the sample water (sample water after oxidation) in the outflow pipe 4 (step S106: detection step).
  • the conductivity of the sample water is detected by the detection unit 5 while the sample water is allowed to flow into the outflow pipe 4. Therefore, the occurrence of contamination can be suppressed, and accurate detection can be performed.
  • the flow control unit 81 closes the flow path from the detection unit 5 to the pump 6 and the flow path from the pipe main body 41 to the bypass pipe 9 (bypass flow).
  • the three-way valve 10 is operated so that the route is opened.
  • the sample water flows to the bypass pipe 9 by the pressure from the upstream side, and the sample water is replaced.
  • the deterioration of each part of the water quality measurement device 1 can be suppressed.
  • the calculation control unit 82 controls the conductivity of the sample water before oxidation measured by the detection unit 5 (the conductivity measured in step S102), and the conductivity of the oxidation sample water measured by the detection unit 5
  • the concentration of total organic carbon (TOC) in the sample water is calculated based on the ratio (conductivity measured in step S106) (step S107).
  • the decomposition product may be vaporized after gas-liquid separation and detected by NDIR (non-dispersive infrared analyzer) or the like.
  • step S108 the operations of the excimer lamp 2 and the pump 6 are stopped, and the operation in the water quality measurement device 1 is ended.
  • FIG. 6 is a graph showing an example of the measurement result of the concentration of total organic carbon in sample water by the water quality measurement device 1.
  • the vertical axis represents concentration value (ppb) of total organic carbon
  • the horizontal axis represents elapsed time (msec).
  • FIG. 6 shows the measurement result in the case where the above-described operation is repeated a plurality of times in the water quality measurement device 1.
  • the concentration value B of total organic carbon is represented by the difference between the peak and the base of the graph at constant intervals.
  • the water quality measuring device 1 the time the sample water is oxidized is represented by T 1 in excimer lamp 2, the time the conductivity is measured by the detector 5 is represented by T 2.
  • the water quality measurement device 1 As described above, only one detection unit 5 for measuring the conductivity is provided. Therefore, it can be confirmed from the graph of FIG. 6 that the water quality measurement device 1 has less mechanical errors and can obtain highly accurate measurement results as compared to the configuration in which a plurality of detectors are provided.
  • the water quality measurement device 1 includes the double cylindrical (double cylindrical) excimer lamp 2 as an example of the ultraviolet irradiation unit. .
  • the inflow pipe 3 is connected to one end of the inner pipe 21 of the excimer lamp 2, and the outflow pipe 4 is connected to the other end of the inner pipe 21 of the excimer lamp 2.
  • a detector 5 for measuring the conductivity of the sample water is interposed in the outflow pipe 4.
  • the water quality measurement device 1 detects a decomposition product (oxidative decomposition product) of the sample water.
  • the sample water flows sequentially through the inflow pipe 3, the inner pipe 21 of the excimer lamp 2, and the outflow pipe 4.
  • the flow path in the water quality measurement device 1 can be simplified. Further, since the movement path of the sample water is constituted by one linear flow path, the sample water in the flow path is moved so as to be pushed out by the inflow of new sample water. Therefore, the sample water can be smoothly flowed without remaining in the flow path of the water quality measurement device 1.
  • the sample water is oxidized in the inner tube 21 of the excimer lamp 2 by being irradiated with ultraviolet light. Furthermore, the excimer lamp 2 stabilizes its illumination in a short time as compared with a mercury lamp or the like. Therefore, the ultraviolet light from the excimer lamp 2 can be efficiently irradiated to the sample water in a short time.
  • the inner tube 21 itself of the excimer lamp 2 is directly used as a flow path, the distance from the light emitting position to the sample water can be shortened, and the irradiation efficiency of the ultraviolet light to the sample water can be improved. That is, according to the water quality measurement device 1, the flow path of the sample water can be simplified, and the irradiation efficiency of the ultraviolet light to the sample water can be improved.
  • the detection unit 5 measures the conductivity of the sample water flowing out to the outflow pipe 4. And based on the detection result, a degradation product is detected.
  • the excimer lamp 2 includes the shielding portion 23.
  • the shielding portion 23 covers the outer peripheral surface of the outer tube 22 of the excimer lamp 2.
  • the outflow pipe 4 is provided with the heat radiating portion 42.
  • the heat dissipation unit 42 dissipates the heat of the sample water that has flowed out to the outflow pipe 4 (the pipe main body 41) (heat dissipation step).
  • the heat dissipation unit 42 can dissipate the heat of the oxidized sample water. Then, the decomposition product can be detected by the detection unit 5 in a state where the temperature of the sample water is brought close to the ambient temperature.
  • the inner surface 23A of the shielding portion 23 functions as a reflection surface that reflects ultraviolet light.
  • the ultraviolet rays emitted from the excimer lamp 2 and directed to the outside can be reflected by the inner surface 23A of the shielding portion 23 and directed to the inside of the excimer lamp 2 (inner tube 21).
  • the sample water can be irradiated and oxidized by the inward ultraviolet light. As a result, the irradiation efficiency of the ultraviolet light to the sample water can be further improved.
  • the water quality measurement device 1 includes the liquid transfer control unit 81.
  • the liquid feed control unit 81 After sending the sample water from the inflow pipe 3 into the inner pipe 21 of the excimer lamp 2 (inflow step), the liquid feed control unit 81 causes the excimer lamp 2 to stop the inside of the inner pipe 21 with the sample water stopped flowing.
  • the sample water is irradiated with ultraviolet light (irradiation step), and the sample water is again introduced from the inflow pipe 3 into the inner pipe 21 to send the oxidized sample water to the detection unit 5 through the outflow pipe 4.
  • the sample water is oxidized by the ultraviolet light from the excimer lamp 2 by repeating the inflow of the sample water into the inner tube 21 of the excimer lamp 2 and the stop of the inflow, and the oxidized sample water is detected
  • the operation of detecting at 5 can be repeated.
  • the sample water can be oxidized, and the operation of detecting the oxidized sample water by the detection unit can be performed with simple control.
  • the excimer lamp 2 stabilizes its illumination in a short time. Therefore, sample water can be repeatedly detected in a short time.
  • FIG. 7 is a cross-sectional view showing the excimer lamp 2 of the water quality measurement device 1 according to the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment described above in that a fluorescent agent 23B is applied to the shielding portion 23 of the excimer lamp 2. Specifically, in the second embodiment, the fluorescent agent 23B is applied to a part of the inner surface 23A of the shielding portion 23 of the excimer lamp 2.
  • the fluorescent agent 23B is applied to a part of the inner surface 23A of the shielding portion 23 of the excimer lamp 2 in the water quality measurement device 1. Therefore, light (fluorescence) having a wavelength different from the wavelength of the ultraviolet light emitted from the excimer lamp 2 can be directed to the sample water.
  • the water quality measurement apparatus 1 in the water quality measurement apparatus 1, it demonstrated as moving the sample water in a flow path by operation
  • an adjustable valve may be provided instead of the pump 6, and a configuration in which a constant pressure can be applied in the flow path may be used.
  • the liquid transfer control unit 81 moves the sample water in the flow path by adjusting the opening degree of the valve.
  • the excimer lamp 2 has been described as an example of the ultraviolet irradiation unit.
  • an ultraviolet irradiation lamp other than the excimer lamp 2 as an ultraviolet irradiation part.
  • an ultraviolet irradiation light source may be provided around the passage area through which the sample water passes, and the light source may irradiate the sample water with ultraviolet light inward from the surrounding area.
  • the ultraviolet light source may have a shape other than a cylindrical shape.

Abstract

水質測定装置1は、二重筒型のエキシマランプ2を備えている。エキシマランプ2の内管21の一端部には、流入管3が接続されており、エキシマランプ2の内管21の他端部には、流出管4が接続されている。流出管4には、試料水の導電率を計測する検出部5が介在している。水質測定装置1では、試料水は、流入管3、エキシマランプ2の内管21、及び、流出管4を順々に流れる。そのため、水質測定装置1における流路を簡易な構成にすることできる。また、試料水は、エキシマランプ2の内管21内において、紫外線が照射されることにより酸化される。そのため、エキシマランプ2からの紫外線を効率的に試料水に照射できる。

Description

水質測定装置及び水質測定方法
 本発明は、試料水の水質を測定する水質測定装置及び水質測定方法に関するものである。
 水質測定装置における試料水の酸化方法の一つとして、紫外線を用いて試料水を酸化するいわゆる湿式酸化法がある。湿式酸化法は、主に純水などを測定対象とする場合に用いられる(例えば、下記特許文献1参照)。
 特許文献1に記載の装置では、反応チャンバ内に試料水が流入されることで、試料水がUVランプに浸漬される。そして、UVランプから紫外線が照射されることにより、試料水が酸化される。
 このような湿式酸化法を実現する装置として、例えば、エキシマランプや水銀ランプを光源とする装置が提案されている。エキシマランプを光源とすれば、エネルギー密度の高い紫外線を照射できる(例えば、下記特許文献2,3参照)。
 特許文献2に記載の装置では、エキシマランプの周囲(外方)を囲むように流路が形成されている。そして、試料水は、その流路を通過する過程でエキシマランプから照射される紫外線によって酸化される。
 また、特許文献3に記載の装置では、筒状のランプ内を貫通するように流路が形成されている。そして、試料水は、その流路を通過する過程でランプから照射される紫外線によって酸化される。
米国特許第6737276号明細書 特開2014-213244号公報 特許第3268447号公報
 上記した特許文献1,2に記載の装置では、光源が内部に位置しており、光源の外側に試料水が位置する。そして、光源から試料水に向かう紫外線は、外方に向かって拡がるように拡散する。そのため、紫外線の照射効率が低くなるという不具合があった。また、光源の周囲に流路を設けるため、流路の構成が複雑になるという不具合があった。
 また、上記した特許文献3に記載の装置では、ランプ内にランプとは別の流路管を挿入しているため、構成が複雑になるという不具合があった。また、流路管とランプとの間に隙間ができ、紫外線の照射効率が低くなるという不具合もあった。
 本発明は、上記実情に鑑みてなされたものであり、試料水の流路を簡易な構成にでき、かつ、試料水に対する紫外線の照射効率を向上できる水質測定装置及び水質測定方法を提供することを目的とする。
(1)本発明に係る水質測定装置は、紫外線照射部と、流入管と、流出管と、検出部とを備える。前記紫外線照射部は、試料水を通過させる通過領域を有し、当該通過領域の周囲から試料水に対して紫外線を照射する。前記流入管は、前記通過領域に試料水を流入させる。前記流出管は、前記紫外線照射部により紫外線が照射されて酸化された試料水を前記通過領域から流出させる。前記検出部は、前記流出管に流出した分解産物を検出する。
 このような構成によれば、試料水は、流入管、紫外線照射部の通過領域、及び、流出管を順々に流れる。
 そのため、水質測定装置における流路を簡易な構成にすることできる。
 また、通過領域内の試料水は、周囲から内側に向かって照射される紫外線により酸化される。
 そのため、エキシマランプからの紫外線を効率的に試料水に照射できる。
 すなわち、本発明に係る水質測定装置によれば、試料水の流路を簡易な構成にでき、かつ、試料水に対する紫外線の照射効率を向上できる。
(2)また、前記紫外線照射部は、内部空間が前記通過領域として形成される内管、及び、当該内管の周囲に配置される外管を有し、当該内管の内周面及び当該外管の外周面に設けられた電極間で放電させることにより紫外線を照射する二重筒型のエキシマランプであってもよい。前記流入管は、前記内管内に一端部から試料水を流入させてもよい。前記流出管は、前記内管内で紫外線が照射されることにより酸化された試料水を当該内管の他端部から流出させてもよい。
 このような構成によれば、試料水は、流入管、エキシマランプの内管、及び、流出管を順々に流れる。
 そのため、水質測定装置における流路を簡易な構成にすることできる。
 また、試料水は、エキシマランプの内管内において、紫外線が照射されることにより酸化される。さらに、エキシマランプは、水銀ランプなどと比べて短時間で照度が安定する。
 そのため、エキシマランプからの紫外線を短時間で効率的に試料水に照射できる。
 さらに、ランプの内管自体を流路として直接利用するため、発光位置から試料水までの距離を短くでき、試料水に対する紫外線の照射効率を向上できる。
 すなわち、本発明に係る水質測定装置によれば、試料水の流路を簡易な構成にでき、かつ、試料水に対する紫外線の照射効率を向上できる。
(3)また、前記検出部は、前記流出管に流出した試料水の導電率を計測することで、前記分解産物を検出してもよい。
 このような構成によれば、試料水の導電率を計測することにより、分解産物を精度よく検出できる。
(4)また、前記流出管は、放熱部を備えてもよい。前記放熱部は、試料水の熱を放散させる。
 このような構成によれば、放熱部により、酸化された試料水の熱を放散させることができる。そして、試料水の温度を周囲温度に近づけた状態で、検出部により分解産物を検出できる。
(5)また、前記エキシマランプは、遮蔽部を有してもよい。前記遮蔽部は、前記外管の外周面を覆い、紫外線が外部に漏れるのを阻止する。
 このような構成によれば、遮蔽部によって外管を覆うだけの簡易な構成で、紫外線が外部に漏れるのを阻止できるため、試料水に対する紫外線の照射効率を向上できる。
(6)また、前記遮蔽部の内面には、紫外線を反射させる反射面が形成されていてもよい。
 このような構成によれば、エキシマランプから出射されて外部に向かう紫外線を、遮蔽部に設けられた反射面によって反射させて、エキシマランプの内方に向かわせることができる。そして、反射されてエキシマランプの内方に向かう紫外線によって、試料水を照射して酸化させることができる。
 そのため、試料水に対する紫外線の照射効率を一層向上できる。
(7)また、前記遮蔽部の内面には、蛍光剤が塗布されていてもよい。
 このような構成によれば、エキシマランプからの紫外線が遮蔽部の内面にあたると、蛍光剤によって、エキシマランプから出射された紫外線の波長とは異なる波長の光(蛍光)が発光(放出)される。
 そのため、エキシマランプから出射される紫外線の波長とは異なる波長の光を試料水に向けて照射できる。
(8)また、前記水質測定装置は、送液制御部をさらに備えてもよい。前記送液制御部は、前記流入管から前記内管内に試料水を流入させた後、試料水の流入を停止させた状態で前記エキシマランプにより前記内管内の試料水に紫外線を照射し、再び前記流入管から前記内管内に試料水を流入させることにより、前記流出管を介して酸化された試料水を前記検出部に送る。
 このような構成によれば、エキシマランプの内管内への試料水の流入、及び、その流入の停止を繰り返すことで、エキシマランプからの紫外線によって試料水を酸化させ、その酸化された試料水を検出部で検出する動作を繰り返すことができる。
 そのため、試料水を酸化させ、その酸化された試料水を検出部で検出する動作を簡易な制御で行うことができる。
 特に、エキシマランプは、短時間で照度が安定する。そのため、短時間で試料水を繰り返し検出することができる。
(9)また、本発明に係る水質測定方法には、流入ステップと、照射ステップと、流出ステップと、検出ステップとが含まれる。前記流入ステップでは、試料水を通過させる通過領域を有し、当該通過領域の周囲から試料水に対して紫外線を照射する紫外線照射部に対して、流入管を介して当該通過領域内に試料水を流入させる。前記照射ステップでは、前記紫外線照射部により前記通過領域内の試料水に紫外線を照射する。前記流出ステップでは、前記紫外線照射部により紫外線が照射されることにより酸化された試料水を前記通過領域から流出管に流出させる。前記検出ステップでは、前記流出管に流出した分解産物を検出する。
(10)また、前記流入ステップでは、内部空間が前記通過領域として形成される内管、及び、当該内管の周囲に配置される外管を有し、当該内管の内周面及び当該外管の外周面に設けられた電極間で放電させることにより紫外線を照射する二重筒型のエキシマランプに対し、前記流入管を介して前記内管内に一端部から試料水を流入させてもよい。前記照射ステップでは、前記エキシマランプにより前記内管内の試料水に紫外線を照射させてもよい。前記流出ステップでは、前記内管内で紫外線が照射されることにより酸化された試料水を当該内管の他端部から前記流出管に流出させてもよい。
(11)また、前記検出ステップでは、前記流出管に流出した試料水の導電率を計測することで、前記分解産物を検出してもよい。
(12)また、前記水質測定方法には、放熱ステップがさらに含まれてもよい。前記放熱ステップでは、前記流出管に流出した試料水の熱を放散させる。
(13)また、前記照射ステップでは、前記流入管から前記内管内への試料水の流入を停止させた状態で前記エキシマランプにより前記内管内の試料水に紫外線を照射してもよい。前記流出ステップでは、再び前記流入管から前記内管内に試料水が流入することにより、前記流出管を介して酸化された試料水が検出部に送られてもよい。
 本発明によれば、試料水は、流入管、エキシマランプの内管、及び、流出管を順々に流れる。そのため、水質測定装置における流路を簡易な構成にすることできる。また、試料水は、エキシマランプの内管内において、紫外線が照射されることにより酸化される。そのため、エキシマランプからの紫外線を効率的に試料水に照射できる。
本発明の第1実施形態に係る水質測定装置の構成を示した概略図である。 図1のエキシマランプのA-A線に沿う断面図である。 制御部及びその周辺の部材の電気的構成を示したブロック図である。 制御部による制御動作を示したフローチャートである。 水質測定装置における動作を説明するための図であって、酸化前の試料水が検出される状態を示した概略図である。 水質測定装置における動作を説明するための図であって、試料水が酸化される状態を示した概略図である。 水質測定装置における動作を説明するための図であって、酸化された試料水が検出される状態を示した概略図である。 水質測定装置による試料水中における全有機体炭素の濃度の測定結果の一例を示したグラフである。 本発明の第2実施形態に係る水質測定装置のエキシマランプを示した断面図である。
1.水質測定装置の全体構成
 図1は、本発明の第1実施形態に係る水質測定装置1の構成を示した概略図である。
 水質測定装置1は、試料水中の全有機体炭素(TOC)の濃度を測定するための装置であって、試料水に紫外線を照射することで試料水中の有機物を酸化させる、いわゆる湿式酸化式の測定装置である。水質測定装置1では、試料水の導電率を計測することで、試料水の分解産物(酸化分解産物)を検出する。水質測定装置1は、エキシマランプ2と、流入管3と、流出管4と、検出部5と、ポンプ6と、バイパス管9と、三方弁10とを備えている。
 図2は、図1のエキシマランプ2のA-A線に沿う断面図である。
 図1及び図2に示すように、エキシマランプ2は、二重筒型のエキシマランプであって、内管21と、外管22と、遮蔽部23とを備えている。エキシマランプ2が、紫外線照射部の一例を構成している。具体的には、この例では、エキシマランプ2は、二重円筒型のエキシマランプである。エキシマランプ2は、必ずしも二重円筒型である必要はなく、二重筒型であればよい。なお、本実施形態のように、二重円筒型のエキシマランプ2は、配管との相性がよく、資材調達が容易であるため、より好ましい構成である。
 内管21は、ガラス材料からなり、長尺な円筒状に形成されている。図示しないが、内管21の内周面には、電極が設けられている。内管21の内径は、例えば、0.5~2.0mmである。内管21の内部空間は、試料水が通過する流路として構成されている。内管21の容量は、例えば、0.05~0.40mlである。内管21の内部空間が、通過領域の一例を構成している。
 外管22は、内管21を囲むようにして、内管21の外方に間隔を隔てて配置されている。外管22は、ガラス材料からなり、長尺な円筒状に形成されている。外管22の中心軸線は、内管21の中心軸線と一致している。図示しないが、外管の外周面には、電極が設けられている。外管22及び内管21の長手方向の寸法は、例えば、3~30cmであって、好ましくは、約10cmである。外管22の一端部と、内管21の一端部とは、端面25によって接続されている。同様に、外管22の他端部と、内管21の他端部とは、端面25によって接続されている。このような構成により、エキシマランプ2では、内管21、外管22及び端面25によって区画される円環状の放電空間30が形成されている。放電空間30には、放電用のガス(放電ガス)が封入されている。この例では、放電空間30には、放電ガスとしてキセノン(Xe)が封入されている。
 遮蔽部23は、外管22の外周面に設けられている。遮蔽部23は、外管22の外周面の全面を覆っている。遮蔽部23は、例えば、アルミ箔からなる。遮蔽部23の内面23A(外管22と対向する面)は、紫外線を反射する反射面として機能する。
 このような構成により、エキシマランプ2では、内管21に設けられた電極、及び、外管22に設けられた電極に電圧が印加されると、放電空間30内において、放電が発生する。この放電により、放電空間30内の放電ガスが励起されエキシマ状態となる。そして、このエキシマ状態が元の状態(基底状態)に戻るときに発光が生じる。この光(紫外線)のうち、径方向内方側に向かう光は、内管21内に流入し、径方向外側に向かう光は、遮蔽部23の内面23Aで反射されて径方向内方側に向かい、内管21内に流入する。すなわち、放電空間30内で生じる光のうち、外管22の外方に向かう光は、遮蔽部23によって遮蔽され、さらに、遮蔽部23の内面23Aによって反射されて径方向内方に向かう。そのため、遮蔽部23によって、放電空間30内の光が外管22から外部に漏れることが阻止されるとともに、放電空間30内の光が効率的に内管21内に流入する。
 なお、水質測定装置1では、高いエネルギー密度の172nm付近(172~180nm)の光(紫外線)が生じる。そのため、水質測定装置1において、試料水を酸化する場合には、短時間で試料水を酸化できる。
 流入管3は、エキシマランプ2の内管21の一端部(図1においては、下端部)に接続されている。流入管3の内径は、エキシマランプ2の内管21の内径とほぼ同一である。なお、内管21の一端部とは、内管21の端部のうち、試料水の流入方向において上流側に位置する内管21の端部である。
 流出管4は、エキシマランプ2の内管21の他端部(図1においては、上端部)に接続されている。流出管4は、管本体41と、放熱部42とを備えている。
 管本体41は、長尺な管状に形成されている。管本体41が、エキシマランプ2の内管21の他端部に接続されている。管本体41の内径は、エキシマランプ2の内管21の内径とほぼ同一である。なお、内管21の他端部とは、内管21の端部のうち、試料水の流入方向において下流側に位置する内管21の端部である。
 放熱部42は、試料水の熱を放散させるためのものであり、管本体41の途中部に介在されている。放熱部42は、管状(筒状)に形成された放熱用のコイルである。具体的には、放熱部42は、500~2000mmの長さの金属線が巻かれることで、管状(筒状)に形成されている。放熱部42は、酸化後の試料水の熱を放散(放熱)させ、検出部5に流入する試料水の温度を安定化させる。なお、上記したような流出管4の一部が放熱部42である構成に限らず、流出管4のすべてが放熱部42により構成されていてもよい。
 検出部5は、流出管4(管本体41)の途中部に介在されている。具体的には、検出部5は、試料水の流入方向において、放熱部42の下流側に位置している。放熱部42内を通過した試料水は、検出部5に流入する。検出部5は、液体の導電率を計測する導電率検出器であって、流出管4内の試料水の導電率を計測する。
 ポンプ6は、流出管4(管本体41)の途中部であって、試料水の流入方向において、検出部5の下流側に配置されている。
 バイパス管9は、流出管4(管本体41)の途中部であって、検出部5とポンプ6との間の部分に接続されている。
 三方弁10は、流出管4(管本体41)とバイパス管9との接続部分(合流部分)に設けられている。三方弁10は、試料水が流れる流路を切り替える切替動作を行う。具体的には、三方弁10は、流出管4を通って検出部5からポンプ6に向かう流路と、流出管4を通った後にバイパス管9を通る流路とを切り替える。
 水質測定装置1では、ポンプ6の動作により、試料水が、流入管3、エキシマランプ2の内管21、及び、流出管4を順々に移動する。水質測定装置1では、後述するように、ポンプ6のON/OFFが制御されることで、試料水の移動及び停止が適宜行われる。さらに、エキシマランプ2が動作されることにより、エキシマランプ2の内管21内に位置する試料水に光(紫外線)が照射される。エキシマランプ2の内管21に流入する試料水の流量は、例えば、1~30ml/minである。
 そして、水質測定装置1では、後述するように、ポンプ6とともにエキシマランプ2の動作が制御されることで、酸化前の試料水、及び、酸化後の試料水が選択的に流出管4に流入する。水質測定装置1では、これらの試料水の導電率を検出部5が計測し、その計測結果に基づいて、試料水中の全有機体炭素(TOC)の濃度が測定される。なお、この例においては、試料水として、例えば、純水が用いられる。
2.制御部及びその周辺の部材の電気的構成
 図3は、制御部及びその周辺の部材の電気的構成を示したブロック図である。
 水質測定装置1は、上記したエキシマランプ2、検出部5、ポンプ6、三方弁10に加えて、計時部7と、制御部8とを備えている。
 計時部7は、水質測定装置1の動作中における経過時間を測定するように構成されている。
 制御部8は、例えば、CPU(Central Processing Unit)を含む構成であり、エキシマランプ2、検出部5、ポンプ6及び計時部7などの各部が電気的に接続されている。制御部8は、CPUがプログラムを実行することにより、送液制御部81及び算出制御部82などとして機能する。
 送液制御部81は、計時部7の測定結果に基づいて、エキシマランプ2、ポンプ6及び三方弁10の動作を制御する。
 算出制御部82は、検出部5の検出結果に基づいて、試料水中の全有機体炭素(TOC)の濃度を算出する。
3.制御部による制御動作
 図4は、制御部8による制御動作を示したフローチャートである。また、図5A~図5Cは、水質測定装置における動作を説明するための図である。具体的には、図5Aは、酸化前の試料水が検出される状態を示した概略図である。図5Bは、試料水が酸化される状態を示した概略図である。図5Cは、酸化された試料水が検出される状態を示した概略図である。
 水質測定装置1において、試料水中の全有機体炭素(TOC)の濃度の測定を行う場合には、まず、送液制御部81によって、ポンプ6の動作が開始(ポンプ6がON)される(ステップS101)。このとき、送液制御部81は、検出部5からポンプ6に向かう流路が開放されるように(バイパス流路が閉鎖されるように)、三方弁10を動作させる。
 すると、図5Aに示すように、試料水(純水)が、流入管3、エキシマランプ2の内管21、及び、流出管4に順々に流入する。
 このとき、エキシマランプ2に対しては、流入管3を介して内管21内に一端部から試料水が流入する(流入ステップ)。そして、検出部5は、流出管4内の試料水の導電率を計測する(ステップS102)。
 その後、所定時間が経過して、計時部7が計時する時間が所定の値になると、送液制御部81は、図5Bに示すように、ポンプ6の動作を停止(ポンプ6をOFF)させるとともに、エキシマランプ2の動作を開始(エキシマランプ2をON)させる(ステップS103)。
 これにより、水質測定装置1内における試料水の移動が停止されるとともに、エキシマランプ2において、内管21内に位置する試料水に対して紫外線が照射される(照射ステップ)。そして、エキシマランプ2の内管21内の試料水が酸化される。エキシマランプ2では、内管21自体を流路として直接利用するため、試料水に対する紫外線の照射効率を向上できる。一般的に、紫外線は、距離の二乗で減衰するが、このような構成であれば、発光位置から試料水までの距離を短くでき、試料水に対する紫外線の照射効率を向上できる。
 次いで、エキシマランプ2の動作が開始されてから所定時間が経過して、計時部7が計時する時間(エキシマランプ2の動作が開始されてからの時間)が所定の値になると(ステップS104でYES)、送液制御部81は、図5Cに示すように、エキシマランプ2の動作を停止(エキシマランプ2をOFF)させるとともに、ポンプ6の動作を開始(ポンプ6をON)させる(ステップS105)。
 これにより、試料水(新たな試料水)が、流入管3、エキシマランプ2の内管21、及び、流出管4に順々に流入する。そして、新たに流入した試料水によって、エキシマランプ2の内管21内で酸化された試料水が押し出され、その押し出された試料水(酸化後の試料水)が、流出管4に流出する。
 そして、試料水は、流出管4の放熱部42内を通過して検出部5に流入する。試料水が放熱部42内を通過することで、酸化後の試料水の熱が放散(放熱)される(放熱ステップ)。また、検出部5に流入する試料水の温度が周囲温度に近づくことで、試料水が安定化する。そして、放熱部42により放熱された状態の試料水が検出部5に流入する。
 このように、エキシマランプ2の内管21内で酸化された試料水は、新たな試料水が水質測定装置1内に流入することにより内管21の他端部から外方に押し出され(新たな試料水と置き換わり)、流出管4に流入して検出部5に送られる(流出ステップ)。そして、検出部5は、流出管4内の試料水(酸化後の試料水)の導電率を計測する(ステップS106:検出ステップ)。
 また、検出ステップでは、流出管4内に試料水が流されながら、検出部5により試料水の導電率が検出される。そのため、コンタミネーションの発生が抑制され、精度のよい検出を行うことができる。
 また、次回の測定までのインターバル時間が長い場合には、送液制御部81は、検出部5からポンプ6に向かう流路が閉鎖され、管本体41からバイパス管9に向かう流路(バイパス流路)が開放されるように、三方弁10を動作させる。これにより、上流側からの圧力により、試料水がバイパス管9に流れて、試料水が置き換えられる。このようにして、水質測定装置1の各部品の劣化を抑制することができる。
 実施した例では、算出制御部82は、検出部5が計測した酸化前の試料水の導電率(ステップS102で計測した導電率)、および、検出部5が計測した酸化後の試料水の導電率(ステップS106で計測した導電率)に基づいて、試料水中の全有機体炭素(TOC)の濃度を算出する(ステップS107)。
 なお、当該検出部5のTOCの検出原理においては、導電率計測以外でもよく、気液分離後に分解産物を気化させNDIR(非分散型赤外分析計)等で検出してもよい。
 その後は、水質測定装置1における試料水の測定が完了するまで、上記した動作が繰り返される。そして、水質測定装置1における試料水の測定が完了すると(ステップS108でYES)、エキシマランプ2及びポンプ6の動作が停止されて、水質測定装置1における動作が終了される。
4.水質測定装置における測定結果
 図6は、水質測定装置1による試料水中における全有機体炭素の濃度の測定結果の一例を示したグラフである。
 図6では、縦軸が全有機体炭素の濃度値(ppb)を表し、横軸が経過時間(msec)を表している。
 図6では、水質測定装置1において、上記した動作が複数回繰り返された場合の測定結果が示されている。このグラフでは、全有機体炭素の濃度値Bは、一定周期ごとにおけるグラフのピークとベースとの差で表される。また、このグラフでは、水質測定装置1において、エキシマランプ2で試料水が酸化される時間がTで表され、検出部5で導電率が計測される時間がTで表されている。
 このグラフから、水質測定装置1において、試料水の全有機体炭素の濃度を複数回算出した結果、複数の濃度値Bの値において、ぶれ(差異)が少ないことが確認できる。
 水質測定装置1では、上記したように、導電率を計測する検出部5が1つのみ設けられている。そのため、図6のグラフから、水質測定装置1は、検出器を複数設ける構成に比べて、機械的な誤差が少なく、精度の高い測定結果が得られることが確認できる。
5.作用効果
(1)本実施形態によれば、図1に示すように、水質測定装置1は、紫外線照射部の一例としての二重筒型(二重円筒型)のエキシマランプ2を備えている。エキシマランプ2の内管21の一端部には、流入管3が接続されており、エキシマランプ2の内管21の他端部には、流出管4が接続されている。流出管4には、試料水の導電率を計測する検出部5が介在している。水質測定装置1では、試料水の分解産物(酸化分解産物)を検出する。水質測定装置1では、試料水は、流入管3、エキシマランプ2の内管21、及び、流出管4を順々に流れる。
 そのため、水質測定装置1における流路を簡易な構成にすることできる。
 また、試料水の移動経路が1つの線状の流路で構成されるため、流路内の試料水は、新たな試料水が流入されることにより押し出されるように移動される。
 そのため、水質測定装置1の流路内における試料水を残留させることなく円滑に流すことができる。
 また、試料水は、エキシマランプ2の内管21内において、紫外線が照射されることにより酸化される。さらに、エキシマランプ2は、水銀ランプなどと比べて短時間で照度が安定する。
 そのため、エキシマランプ2からの紫外線を短時間で効率的に試料水に照射できる。
 さらに、エキシマランプ2の内管21自体を流路として直接利用するため、発光位置から試料水までの距離を短くでき、試料水に対する紫外線の照射効率を向上できる。
 すなわち、水質測定装置1によれば、試料水の流路を簡易な構成にでき、かつ、試料水に対する紫外線の照射効率を向上できる。
(2)また、本実施形態によれば、検出部5は、前記流出管4に流出した試料水の導電率を計測する。そして、その検出結果に基づいて、分解産物が検出される。
 そのため、分解産物を精度よく検出できる。
(3)また、本実施形態によれば、図2に示すように、水質測定装置1において、エキシマランプ2は、遮蔽部23を備えている。遮蔽部23は、エキシマランプ2の外管22の外周面を覆っている。
 そのため、遮蔽部23によって外管22を覆うだけの簡易な構成で、紫外線が外管22から外部に漏れるのを阻止できる。その結果、試料水に対する紫外線の照射効率を向上できる。
(4)また、本実施形態によれば、図1に示すように、水質測定装置1において、流出管4は、放熱部42を備えている。放熱部42は、流出管4(管本体41)に流出した試料水の熱を放散させる(放熱ステップ)。
 そのため、放熱部42により、酸化された試料水の熱を放散させることができる。そして、試料水の温度を周囲温度に近づけた状態で、検出部5により分解産物を検出できる。
(5)また、本実施形態によれば、図2に示すように、水質測定装置1のエキシマランプ2において、遮蔽部23の内面23Aは、紫外線を反射させる反射面として機能する。
 そのため、エキシマランプ2から出射されて外部に向かう紫外線を、遮蔽部23の内面23Aによって反射させて、エキシマランプ2(内管21)の内方に向かわせることができる。そして、内方に向かう紫外線によって、試料水を照射して酸化させることができる。
 その結果、試料水に対する紫外線の照射効率を一層向上できる。
(6)また、本実施形態によれば、水質測定装置1は、送液制御部81を備えている。送液制御部81は、流入管3からエキシマランプ2の内管21内に試料水を流入させた後(流入ステップ)、試料水の流入を停止させた状態でエキシマランプ2により内管21内の試料水に紫外線を照射し(照射ステップ)、再び流入管3から内管21内に試料水を流入させることにより、流出管4を介して酸化された試料水を検出部5に送る。
 そのため、エキシマランプ2の内管21内への試料水の流入、及び、その流入の停止を繰り返すことで、エキシマランプ2からの紫外線によって試料水を酸化させ、その酸化された試料水を検出部5で検出する動作を繰り返すことができる。
 その結果、試料水を酸化させ、その酸化された試料水を検出部で検出する動作を簡易な制御で行うことができる。
 特に、エキシマランプ2は、短時間で照度が安定する。そのため、短時間で試料水を繰り返し検出することができる。
6.第2実施形態
 以下では、図7を用いて、本発明の第2実施形態に係る水質測定装置1(エキシマランプ2)の構成について説明する。なお、第1実施形態と同様の構成については、上記と同様の符号を用いることにより説明を省略する。
 図7は、本発明の第2実施形態に係る水質測定装置1のエキシマランプ2を示した断面図である。
 第2実施形態では、エキシマランプ2の遮蔽部23に蛍光剤23Bが塗布されている点が、上記した第1実施形態と異なっている。
 具体的には、2実施形態では、エキシマランプ2の遮蔽部23の内面23Aの一部には、蛍光剤23Bが塗布されている。
 これにより、エキシマランプ2において、発光が生じると、この光(紫外線)のうちの一部は、遮蔽部23の内面23Aの蛍光剤23Bで反射されて径方向内方側に向かい、内管21内に流入する。これにより、エキシマランプ2で出射された光とは異なる波長の光(蛍光)が、内管21内に流入する。そして、これらの波長の異なる光によって、内管21内の試料水が照射されて酸化される。
 このように、第2実施形態では、水質測定装置1において、エキシマランプ2の遮蔽部23の内面23Aの一部に蛍光剤23Bが塗布されている。
 そのため、エキシマランプ2から出射される紫外線の波長とは異なる波長の光(蛍光)を試料水に向けて照射できる。
7.変形例
 上記した実施形態では、水質測定装置1において、検出部5が1つのみ設けられるとして説明した。しかし、水質測定装置1において、流入管3及び流出管4のそれぞれに検出部5を介在させてもよい。そして、流入管3に介在された検出部5によって、酸化前の試料水の導電率を計測し、流出管4に介在された検出部5によって、酸化後の試料水の導電率を計測してもよい。
 また、上記した実施形態では、水質測定装置1において、ポンプ6の動作によって、流路内の試料水を移動させるとして説明した。しかし、水質測定装置1において、ポンプ6に代えて調整可能な弁が設けられ、流路内に一定の圧力がかけられる構成が用いられてもよい。この場合には、送液制御部81は、弁の開度を調整することにより、流路内の試料水を移動させる。
 また、上記した実施形態では、エキシマランプ2が紫外線照射部の一例であるとして説明した。しかし、エキシマランプ2以外の紫外線照射ランプを紫外線照射部として用いることも可能である。例えば、試料水が通過する通過領域の周囲に紫外線照射光源を設け、当該光源から試料水に対し、周囲から内方に向かうように紫外線を照射する構成であってもよい。この場合、紫外線照射光源は、筒状以外の形状であってもよい。
   1    水質測定装置
   2    エキシマランプ
   3    流入管
   4    流出管
   5    検出部
   8    制御部
   21   内管
   22   外管
   23   遮蔽部
   23A  内面
   23B  蛍光剤
   81   送液制御部

Claims (13)

  1.  試料水を通過させる通過領域を有し、当該通過領域の周囲から試料水に対して紫外線を照射する紫外線照射部と、
     前記通過領域に試料水を流入させる流入管と、
     前記紫外線照射部により紫外線が照射されて酸化された試料水を前記通過領域から流出させる流出管と、
     前記流出管に流出した分解産物を検出する検出部とを備えることを特徴とする水質測定装置。
  2.  前記紫外線照射部は、内部空間が前記通過領域として形成される内管、及び、当該内管の周囲に配置される外管を有し、当該内管の内周面及び当該外管の外周面に設けられた電極間で放電させることにより紫外線を照射する二重筒型のエキシマランプであり、
     前記流入管は、前記内管内に一端部から試料水を流入させ、
     前記流出管は、前記内管内で紫外線が照射されることにより酸化された試料水を当該内管の他端部から流出させることを特徴とする請求項1に記載の水質測定装置。
  3.  前記検出部は、前記流出管に流出した試料水の導電率を計測することで、前記分解産物を検出することを特徴とする請求項1に記載の水質測定装置。
  4.  前記流出管は、試料水の熱を放散させる放熱部を備えることを特徴とする請求項1に記載の水質測定装置。
  5.  前記エキシマランプは、前記外管の外周面を覆い、紫外線が外部に漏れるのを阻止する遮蔽部を有することを特徴とする請求項2に記載の水質測定装置。
  6.  前記遮蔽部の内面には、紫外線を反射させる反射面が形成されていることを特徴とする請求項5に記載の水質測定装置。
  7.  前記遮蔽部の内面には、蛍光剤が塗布されていることを特徴とする請求項5に記載の水質測定装置。
  8.  前記流入管から前記内管内に試料水を流入させた後、試料水の流入を停止させた状態で前記エキシマランプにより前記内管内の試料水に紫外線を照射し、再び前記流入管から前記内管内に試料水を流入させることにより、前記流出管を介して酸化された試料水を前記検出部に送る送液制御部をさらに備えることを特徴とする請求項2に記載の水質測定装置。
  9.  試料水を通過させる通過領域を有し、当該通過領域の周囲から試料水に対して紫外線を照射する紫外線照射部に対して、流入管を介して当該通過領域内に試料水を流入させる流入ステップと、
     前記紫外線照射部により前記通過領域内の試料水に紫外線を照射する照射ステップと、
     前記紫外線照射部により紫外線が照射されることにより酸化された試料水を前記通過領域から流出管に流出させる流出ステップと、
     前記流出管に流出した分解産物を検出する検出ステップとを含むことを特徴とする水質測定方法。
  10.  前記流入ステップでは、内部空間が前記通過領域として形成される内管、及び、当該内管の周囲に配置される外管を有し、当該内管の内周面及び当該外管の外周面に設けられた電極間で放電させることにより紫外線を照射する二重筒型のエキシマランプに対し、前記流入管を介して前記内管内に一端部から試料水を流入させ、
     前記照射ステップでは、前記エキシマランプにより前記内管内の試料水に紫外線を照射させ、
     前記流出ステップでは、前記内管内で紫外線が照射されることにより酸化された試料水を当該内管の他端部から前記流出管に流出させることを特徴とする請求項9に記載の水質測定方法。
  11.  前記検出ステップでは、前記流出管に流出した試料水の導電率を計測することで、前記分解産物を検出することを特徴とする請求項9に記載の水質測定方法。
  12.  前記流出管に流出した試料水の熱を放散させる放熱ステップをさらに含むことを特徴とする請求項9に記載の水質測定方法。
  13.  前記照射ステップでは、前記流入管から前記内管内への試料水の流入を停止させた状態で前記エキシマランプにより前記内管内の試料水に紫外線を照射し、
     前記流出ステップでは、再び前記流入管から前記内管内に試料水が流入することにより、前記流出管を介して酸化された試料水が検出部に送られることを特徴とする請求項10に記載の水質測定方法。
PCT/JP2018/023454 2017-06-21 2018-06-20 水質測定装置及び水質測定方法 WO2018235865A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019525661A JP6908110B2 (ja) 2017-06-21 2018-06-20 水質測定装置及び水質測定方法
US16/624,091 US11739006B2 (en) 2017-06-21 2018-06-20 Water quality measurement device and water quality measurement method
EP18820500.9A EP3644050B1 (en) 2017-06-21 2018-06-20 Water quality measurement device and water quality measurement method
CN201880041669.1A CN110832313B (zh) 2017-06-21 2018-06-20 水质测定装置和水质测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121325 2017-06-21
JP2017-121325 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235865A1 true WO2018235865A1 (ja) 2018-12-27

Family

ID=64737243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023454 WO2018235865A1 (ja) 2017-06-21 2018-06-20 水質測定装置及び水質測定方法

Country Status (5)

Country Link
US (1) US11739006B2 (ja)
EP (1) EP3644050B1 (ja)
JP (1) JP6908110B2 (ja)
CN (1) CN110832313B (ja)
WO (1) WO2018235865A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200173968A1 (en) * 2018-11-29 2020-06-04 Nanjing University Organic Carbon Detector for Liquid Chromatography and Use Thereof
WO2022038837A1 (ja) * 2020-08-20 2022-02-24 株式会社島津製作所 検査装置
WO2023153623A1 (ko) * 2022-02-09 2023-08-17 주식회사 더웨이브톡 탁도 모니터링 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307114A (ja) * 1997-05-07 1998-11-17 Kurita Water Ind Ltd 水中tocモニター
JP3268447B2 (ja) 1999-06-02 2002-03-25 独立行政法人産業技術総合研究所 光反応管内蔵型光反応装置
US6407383B1 (en) * 1998-04-23 2002-06-18 Abb Research Ltd. Method and device for determining the oil concentration in liquids by means of fluorescence excitation with an excimer lamp
JP2003211159A (ja) * 2002-01-23 2003-07-29 Dkk Toa Corp 光酸化器、水処理装置及び測定装置
US6737276B1 (en) 1998-02-19 2004-05-18 Maihak Aktiengesellschaft Method and device for determining the total organic carbon content in liquids, especially ultra-pure water
JP2005536843A (ja) * 2002-08-22 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線発生装置
JP2006087988A (ja) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology 光反応管内蔵型光反応装置及びこれを用いる水質モニタリング装置
US20090246882A1 (en) * 2008-04-01 2009-10-01 Pochy Rocco D System for Measurement of Dissolved Organic Compounds in Water
JP2010056008A (ja) * 2008-08-29 2010-03-11 Ehime Univ 無水銀殺菌ランプおよび殺菌装置
JP2013544016A (ja) * 2010-11-16 2013-12-09 コーニンクレッカ フィリップス エヌ ヴェ 誘電体バリア放電ランプデバイス、及び、誘電体バリア放電ランプデバイスが設けられた光学流体処理デバイス
JP2014213244A (ja) 2013-04-24 2014-11-17 ウシオ電機株式会社 紫外線水処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868127A (en) * 1984-01-10 1989-09-19 Anatel Corporation Instrument for measurement of the organic carbon content of water
US4626413A (en) * 1984-01-10 1986-12-02 Anatel Instrument Corporation Instrument for measurement of the organic carbon content of water
DE19507189C2 (de) * 1995-03-02 1997-09-11 Stengelin Gmbh & Co Kg Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchführung eines solchen Verfahrens
JP2000015260A (ja) * 1998-07-02 2000-01-18 Masanori Tashiro 水処理装置
JP3320050B2 (ja) * 1999-11-26 2002-09-03 東亜ディーケーケー株式会社 有機炭素含量の測定方法及び測定装置
JP3507744B2 (ja) * 1999-12-27 2004-03-15 株式会社ティ・アンド・シー・テクニカル 全有機炭素測定システム用の酸化装置組立体
JP2003053178A (ja) * 2001-08-13 2003-02-25 Dkk Toa Corp 光酸化器
CN101264946B (zh) * 2008-03-20 2011-08-31 深圳市环境工程科学技术中心 可净化废水的铁碳管构件及一体化磁电氧化生物滤池和应用系统
EP2423677B1 (en) * 2009-04-24 2018-09-26 Shimadzu Corporation Total organic carbon meter provided with system blank function
US20120012537A1 (en) * 2010-07-14 2012-01-19 Ford Global Technologies, Llc Fluid Reconditioning System and Method of Using the Same
CN102156152B (zh) * 2011-02-25 2012-07-25 西安热工研究院有限公司 一种电厂给水总有机碳在线检测方法及装置
EP2599752B1 (en) * 2011-11-29 2015-01-14 Evoqua Water Technologies GmbH Method and arrangement for a water treatment
WO2013081054A1 (ja) * 2011-12-02 2013-06-06 ウシオ電機株式会社 エキシマランプ
CN106745479B (zh) * 2016-11-21 2020-09-15 江苏理工学院 一种短波长无极紫外光净化废水/纯水装置和方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307114A (ja) * 1997-05-07 1998-11-17 Kurita Water Ind Ltd 水中tocモニター
US6737276B1 (en) 1998-02-19 2004-05-18 Maihak Aktiengesellschaft Method and device for determining the total organic carbon content in liquids, especially ultra-pure water
US6407383B1 (en) * 1998-04-23 2002-06-18 Abb Research Ltd. Method and device for determining the oil concentration in liquids by means of fluorescence excitation with an excimer lamp
JP3268447B2 (ja) 1999-06-02 2002-03-25 独立行政法人産業技術総合研究所 光反応管内蔵型光反応装置
JP2003211159A (ja) * 2002-01-23 2003-07-29 Dkk Toa Corp 光酸化器、水処理装置及び測定装置
JP2005536843A (ja) * 2002-08-22 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線発生装置
JP2006087988A (ja) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology 光反応管内蔵型光反応装置及びこれを用いる水質モニタリング装置
US20090246882A1 (en) * 2008-04-01 2009-10-01 Pochy Rocco D System for Measurement of Dissolved Organic Compounds in Water
JP2010056008A (ja) * 2008-08-29 2010-03-11 Ehime Univ 無水銀殺菌ランプおよび殺菌装置
JP2013544016A (ja) * 2010-11-16 2013-12-09 コーニンクレッカ フィリップス エヌ ヴェ 誘電体バリア放電ランプデバイス、及び、誘電体バリア放電ランプデバイスが設けられた光学流体処理デバイス
JP2014213244A (ja) 2013-04-24 2014-11-17 ウシオ電機株式会社 紫外線水処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200173968A1 (en) * 2018-11-29 2020-06-04 Nanjing University Organic Carbon Detector for Liquid Chromatography and Use Thereof
US11567043B2 (en) * 2018-11-29 2023-01-31 Nanjing University Organic carbon detector for liquid chromatography and use thereof
WO2022038837A1 (ja) * 2020-08-20 2022-02-24 株式会社島津製作所 検査装置
CN115916692A (zh) * 2020-08-20 2023-04-04 株式会社岛津制作所 检查装置
JP7414148B2 (ja) 2020-08-20 2024-01-16 株式会社島津製作所 検査装置
WO2023153623A1 (ko) * 2022-02-09 2023-08-17 주식회사 더웨이브톡 탁도 모니터링 장치

Also Published As

Publication number Publication date
JPWO2018235865A1 (ja) 2020-04-09
EP3644050A1 (en) 2020-04-29
US11739006B2 (en) 2023-08-29
CN110832313A (zh) 2020-02-21
EP3644050B1 (en) 2023-03-29
CN110832313B (zh) 2023-08-15
US20200207643A1 (en) 2020-07-02
JP6908110B2 (ja) 2021-07-21
EP3644050A4 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2018235865A1 (ja) 水質測定装置及び水質測定方法
JP6564663B2 (ja) エキシマランプ装置
EP2598444B1 (en) Device for subjecting a fluid to a disinfecting treatment by exposing the fluid to ultraviolet light
JP5918775B2 (ja) 誘電体バリア放電ランプデバイス、及び、誘電体バリア放電ランプデバイスが設けられた光学流体処理デバイス
KR20200085823A (ko) 기체 처리 장치
US7628926B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
JP6693331B2 (ja) オゾン発生器
JP2019037450A (ja) 流体殺菌装置
JP4830878B2 (ja) 真空紫外線モニタ及びそれを用いた真空紫外線照射装置
KR101379737B1 (ko) 수 처리용 자외선 살균 램프 및 시스템
JP2004097986A (ja) 紫外線照射装置
JP4817713B2 (ja) 硫黄化合物の分析方法及び分析装置
JP2003211159A (ja) 光酸化器、水処理装置及び測定装置
JP7414148B2 (ja) 検査装置
JP2005147962A (ja) 光学式ガス濃度検出装置
JP7313764B2 (ja) 紫外線照射装置およびオゾン生成装置
KR102555241B1 (ko) 극자외선 생성 장치
RU2390498C2 (ru) Установка для обеззараживания воды ультрафиолетовым излучением
JP5904063B2 (ja) ガス活性化装置および窒素酸化物処理装置
JPH08152406A (ja) 蛍光分析装置
JPWO2022038837A5 (ja)
JP2016039257A (ja) 紫外光照射装置及び紫外光照射処理装置
JP2006092865A (ja) ショートアーク型放電ランプ
RU2505884C1 (ru) Способ измерения интенсивности источников вуф-излучения и устройство для его осуществления
KR20240016689A (ko) 다중채널을 갖는 ndir 센서 및 이를 포함하는 toc 측정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018820500

Country of ref document: EP

Effective date: 20200121