WO2022038837A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2022038837A1
WO2022038837A1 PCT/JP2021/017324 JP2021017324W WO2022038837A1 WO 2022038837 A1 WO2022038837 A1 WO 2022038837A1 JP 2021017324 W JP2021017324 W JP 2021017324W WO 2022038837 A1 WO2022038837 A1 WO 2022038837A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
inspection device
ultraviolet
discharge
light
Prior art date
Application number
PCT/JP2021/017324
Other languages
English (en)
French (fr)
Inventor
嘉昭 仁枝
裕一 増田
雅人 矢幡
達哉 片岡
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202180051050.0A priority Critical patent/CN115916692B/zh
Priority to EP21857989.4A priority patent/EP4201879A1/en
Priority to US18/021,865 priority patent/US20240011960A1/en
Priority to JP2022543277A priority patent/JP7414148B2/ja
Publication of WO2022038837A1 publication Critical patent/WO2022038837A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0032General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array using two or more different physical functioning modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • This disclosure relates to an inspection device for inspecting sample water.
  • Ultraviolet rays may be used for inspection of sample water. For example, irradiating the sample water directly with ultraviolet rays to oxidize the inspection target in the sample water, or irradiating a gas containing oxygen with ultraviolet rays to generate ozone for oxidizing the inspection target in the sample water. There is.
  • Patent Document 1 discloses an excimer lamp as a device for generating ultraviolet rays.
  • the excimer lamp disclosed in Patent Document 1 is provided with a start auxiliary light source that irradiates ultraviolet rays to the discharge gas enclosed in the discharge container, and the discharge container is not partially covered with the cladding tube and is used for the start auxiliary light source. Is exposed.
  • the excimer lamp disclosed in Patent Document 1 is provided with a start auxiliary light source to improve the lighting startability of the excimer lamp. Further, in Patent Document 1, since the ultraviolet rays from the excimer lamp are radiated from the exposed portion without being covered by the cladding tube, between the ultraviolet radiation surface of the starting auxiliary light source and the ultraviolet radiation surface of the excimer lamp. It is disclosed that the distance should be set so that the ultraviolet light from the excimer lamp does not substantially reach the starting auxiliary light source. This is to prevent the starting auxiliary light source from being deteriorated by the ultraviolet rays from the excimer lamp being applied to the starting auxiliary light source.
  • the excimer lamp that is, the excimer lamp in consideration of the problem caused by the ultraviolet rays derived from the discharge gas. ..
  • One of the purposes of the present disclosure is to solve the problem caused by the ultraviolet rays derived from the discharge gas while assisting in exciting the discharge gas.
  • the inspection device of the present disclosure is an inspection device for inspecting sample water, and includes an ultraviolet irradiation unit and a detection unit for detecting a target component contained in the sample water.
  • the ultraviolet irradiation unit is arranged around the inner tube, the outer tube that forms a discharge space for enclosing the discharge gas between the inner tube, and a pair of electrodes for generating a discharge in the discharge space.
  • an auxiliary light source that assists in exciting the discharge gas by irradiating the discharge gas with light from the outside of the outer tube.
  • the auxiliary light source can irradiate light having a wavelength longer than the wavelength of the ultraviolet light generated by exciting the discharge gas, and the outer tube is less likely to transmit the ultraviolet light than the inner tube. Transmits light of the wavelength to be irradiated.
  • the ultraviolet light generated by exciting the discharge gas is difficult to be irradiated from the inside of the discharge space toward the outside of the outer tube, and is light from an auxiliary light source that assists in exciting the discharge gas. Is irradiated from the outside of the outer tube toward the inside of the discharge space. Therefore, the inspection apparatus according to the present disclosure can solve the problem caused by the ultraviolet rays derived from the discharge gas while assisting in exciting the discharge gas.
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of the ultraviolet irradiation unit 20 of FIG.
  • FIG. 3 is a schematic cross-sectional view taken along the line IV-IV of the ultraviolet irradiation unit 20 of FIG.
  • It is an image diagram which shows the movement of the ultraviolet light generated in the discharge space 242 and the light from an auxiliary light source 28.
  • It is a schematic cross-sectional view which shows the structure of the ultraviolet irradiation part which concerns on a modification.
  • It is a schematic cross-sectional view which shows the structure of the ultraviolet irradiation part which concerns on a modification.
  • It is a schematic diagram which shows the whole structure of the inspection apparatus 1a which concerns on the modification.
  • FIG. 1 is a schematic diagram showing the overall configuration of the inspection device 1 according to the present embodiment.
  • the inspection device 1 is a device for measuring the TOC amount (TOC concentration) in the sample water.
  • the inspection device 1 is a so-called wet oxidation type inspection device that oxidizes organic substances in the sample water by irradiating the sample water with ultraviolet rays.
  • the inspection device 1 includes a liquid feeding unit 10, an ultraviolet irradiation unit 20, and a detection unit 30.
  • the liquid feeding unit 10 feeds the sample water S to be measured to the flow path F of the inspection device 1. More specifically, the liquid feeding unit 10 sends the sample water S to the flow path F by pulling the sample water S in the vial bottle 12 by the pump P.
  • the location of the pump P is on the flow path on the downstream side of the detection unit 30, but the location is not limited to this, and the pump P may be arranged anywhere on the flow path F.
  • the ultraviolet irradiation unit 20 is a device that generates ultraviolet rays and is an excimer lamp. In the present embodiment, the ultraviolet irradiation unit 20 irradiates the sample water S with ultraviolet rays. The details of the ultraviolet irradiation unit 20 will be described later.
  • the vial bin 12 and the ultraviolet irradiation unit 20 are connected by a tube T1 constituting the flow path F.
  • the tube T1 constitutes an example of an inflow tube for flowing the sample water S into the ultraviolet irradiation unit 20.
  • the detection unit 30 detects the target component in the sample water S.
  • the detection target of the detection unit 30 is a decomposition product produced by being oxidized by receiving ultraviolet rays.
  • the detection unit 30 detects the decomposition product produced by being oxidized by ultraviolet rays by measuring the conductivity of the sample water S.
  • the organic matter in the sample water S is oxidized by ultraviolet rays, it is finally decomposed into water and carbon dioxide.
  • carbon dioxide which is a decomposition product, dissolves in water, ions are generated, and the conductivity of sample water S changes.
  • the detection unit 30 detects the decomposition product of the sample water S by measuring the conductivity changed by carbon dioxide which is the decomposition product.
  • the detection unit 30 detects carbon dioxide as a decomposition product by measuring the conductivity, but the method for detecting the decomposition product is not limited to this method.
  • the ultraviolet irradiation unit 20 and the detection unit 30 are connected by a tube T2 constituting the flow path F.
  • the tube T2 constitutes an example of an outflow tube that allows the sample water S that has been oxidized by being irradiated with ultraviolet rays to flow out from the ultraviolet irradiation unit 20.
  • the pump P is connected to the downstream side of the detection unit 30 via the tube T3.
  • the sample water S is sent from the vial bottle 12 toward the ultraviolet irradiation unit 20 and the detection unit 30 by the pump P, and is discharged.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the ultraviolet irradiation unit 20.
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of the ultraviolet irradiation unit 20 of FIG.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of the ultraviolet irradiation unit 20 of FIG.
  • the ultraviolet irradiation unit 20 includes an inner tube 22, an outer tube 24, an electrode 26, an auxiliary light source 28, and a cladding tube 29.
  • the inner tube 22 is configured so that an object to be irradiated with ultraviolet rays passes through the internal space 222.
  • the inner pipe 22 is connected to the tube T1 corresponding to the inflow pipe and the tube T2 corresponding to the outflow pipe, and the sample water S passes through the internal space 222 of the inner pipe 22.
  • the inner tube 22 is formed in a long cylindrical shape (see FIGS. 3 and 4).
  • the outer pipe 24 is arranged around the inner pipe 22. More specifically, the outer pipe 24 is arranged so as to surround the inner pipe 22 and spaced apart from the inner pipe 22.
  • the outer tube 24 is formed in a long cylindrical shape.
  • the central axis of the outer tube 24 coincides with the central axis of the inner tube 22. That is, the outer pipe 24 is arranged coaxially with the inner pipe 22 (see FIGS. 3 and 4).
  • FIG. 6 is a schematic cross-sectional view showing the structure of the ultraviolet irradiation portion according to the modified example.
  • the shape of the outer pipe 24 may be a shape in which two cylinders having different diameters are connected.
  • the end face 241 of the outer pipe 24 is connected to the side surface of the inner pipe 22.
  • the end face 243 of the outer tube 24 is connected to the side surface of the inner tube 22.
  • the longitudinal length of the inner tube 22 is longer than the longitudinal length of the outer tube 24. Therefore, each of the end faces 241 and 243 of the outer tube 24 is connected to the side surface of the inner tube 22.
  • the length of the inner pipe 22 in the longitudinal direction is the same as the length of the outer pipe 24 in the longitudinal direction, or shorter than the length of the outer pipe 24 in the longitudinal direction, and each of the end faces 241 and 243 of the outer pipe 24 is inside. It may be configured to be connected to the end of the tube 22.
  • a discharge space 242 is formed between the inner tube 22 and the outer tube 24.
  • the discharge gas G is sealed in the discharge space 242.
  • the discharge gas include rare gases such as argon (Ar), krypton (Kr), and xenon (Xe), as well as argon fluoride (ArF), krypton fluoride (KrF), krypton chloride (ClKr), and xenon chloride.
  • a mixed gas of a rare gas such as (ClXe) and a halogen gas can be adopted.
  • the discharge gas G will be described as Xe.
  • the electrode 26 is composed of an outer electrode 262 and an inner electrode 264.
  • the outer electrode 262 and the inner electrode 264 are arranged on the outer periphery of the outer tube 24, respectively, with the cladding tube 29 arranged on the outer periphery of the outer tube 24 interposed therebetween.
  • the outer electrode 262 is arranged on the outer periphery of the cladding tube 29, and the inner electrode 264 is arranged between the cladding tube 29 and the outer tube 24.
  • the ultraviolet irradiation unit 20 when a voltage is applied to the outer electrode 262 and the inner electrode 264, a discharge is generated in the discharge space 242.
  • the discharge gas G in the discharge space 242 is excited and becomes an excimer state.
  • Light emission occurs when this excimer state returns to the original state (ground state).
  • the light directed inward in the radial direction irradiates an object (sample water S in the present embodiment) to be irradiated with ultraviolet rays passing through the internal space 222 of the inner tube 22. Will be done.
  • the ultraviolet irradiation unit 20 is a double-cylinder excimer lamp, and the ultraviolet rays emitted from the discharge space 242 are directed toward the internal space 222 of the inner tube 22 arranged along the longitudinal direction of the excimer lamp. And irradiate.
  • the outer electrode 262 is provided with an opening 266, and the auxiliary light source 28 is arranged in the opening 266 on the outside of the outer tube 24 so that the irradiation surface of the auxiliary light source 28 faces the cladding tube 29. ..
  • the auxiliary light source 28 irradiates light from the outside of the outer tube 24 toward the discharge gas G in the discharge space 242.
  • the discharge gas G Once the discharge gas G is excited to be in the excimer state, it can be in the excimer state again due to the light emission generated when the excimer state returns to the ground state and the discharge in the discharge space 242.
  • a high voltage is required in order to bring the discharge gas G into the excimer state while the discharge gas G is in the ground state.
  • the start of light emission can be assisted by irradiating the discharge space 242 with light from the auxiliary light source 28.
  • the peak wavelength of light generated when the discharge gas G returns from the excimer state to the ground state differs depending on the type of the discharge gas G.
  • Ar is 126 nm
  • Kr is 146 nm
  • Xe is 172 nm
  • ArF is 193 nm
  • KrF is 248 nm
  • ClKr is 222 nm
  • ClXe is 308 nm. That is, the light generated when the discharge gas G returns from the excimer state to the ground state is ultraviolet light. In the following, the light generated when the discharge gas G returns from the excimer state to the ground state is also simply referred to as ultraviolet light.
  • the auxiliary light source 28 can irradiate light having a wavelength longer than that of ultraviolet light generated in the discharge space 242.
  • the auxiliary light source 28 can irradiate visible light and irradiates light of about 400 nm.
  • FIG. 5 is an image diagram showing the movement of ultraviolet light generated in the discharge space 242 and light from the auxiliary light source 28.
  • the inner tube 22 has a property of transmitting ultraviolet light U generated in the discharge space 242. Specifically, the inner tube 22 transmits light of 200 nm or less.
  • the inner tube 22 is made of, for example, high-purity quartz glass having few lattice defects.
  • the outer tube 24 has a property that the ultraviolet light U generated in the discharge space 242 is difficult to pass through, while the light emitted from the auxiliary light source 28 is transmitted. Specifically, the outer tube 24 does not easily transmit light of 200 nm or less.
  • the outer tube 24 is made of, for example, quartz glass having lattice defects containing impurities.
  • the ultraviolet light U generated in the discharge space 242 passes through the inner tube 22 and is irradiated to the sample water S in the inner space 222, but is not irradiated to the outside of the outer tube 24.
  • the light V from the auxiliary light source 28 is irradiated into the discharge space 242 from the outside of the outer tube 24.
  • a device installed in consideration of the generation of ozone (for example, a device for purging) becomes unnecessary, and a vacuum is applied around the ultraviolet irradiation unit 20 in consideration of the generation of ozone. There is no need to put it in a state, the device can be miniaturized, and the cost required to create the device can be reduced.
  • the auxiliary light source 28 can be installed in a state of being close to the cladding tube 29 (outer tube 24), and the device can be miniaturized. be able to.
  • the cladding tube 29 may be made of a material different from that of the outer tube 24, it is preferably made of the same material as the outer tube 24 from the viewpoint of ease of welding.
  • FIG. 7 is a schematic cross-sectional view showing the structure of the ultraviolet irradiation portion according to the modified example.
  • the ultraviolet irradiation unit according to the modified example is different from the ultraviolet irradiation unit 20 (see FIG. 2) according to the above embodiment in that the cladding tube 29 is not provided and the installation positions of the outer electrode 262 and the inner electrode 264 are different. different.
  • both the outer electrode 262 and the inner electrode 264 are provided on the outside of the outer tube 24, but as shown in FIG. 7, the inner electrode 264 may be provided on the inner tube 22. In this case, it is not necessary to provide the cladding tube 29.
  • outer electrode 262 and the inner electrode 264 on the outside, there is nothing that blocks the light radiated from the discharge space 242 into the inner space 222 (inner electrode 264), and the efficiency of irradiating the sample water S with ultraviolet rays is improved. Can be raised.
  • the outer electrode 262 is arranged over the entire circumference of the cladding tube 29, but it may be provided in a part thereof.
  • the inner tube 22 is made of a material that transmits light of 200 nm or less
  • the outer tube 24 is made of a material that does not easily transmit light of 200 nm or less.
  • the materials of the inner tube 22 and the outer tube 24 may be suitably selected based on the type of the selected discharge gas G and the auxiliary light source 28. More specifically, the material of the inner tube 22 may be any material that allows ultraviolet light derived from the discharge gas G to pass through.
  • the material of the outer tube 24 may be any material as long as it is difficult for ultraviolet light derived from the discharge gas G to pass through and at least a part of the light from the auxiliary light source 28 is transmitted.
  • an inspection device for measuring the TOC of sample water by combining wet oxidation using ultraviolet rays and conductivity measurement has been described.
  • the present disclosure is not limited to this, and can be used for various inspection devices for measuring a target component contained in sample water using an ultraviolet irradiation unit.
  • FIG. 8 is a schematic diagram showing the overall configuration of the inspection device 1a according to the modified example.
  • the inspection device 1a is a device for measuring the amount of nitrogen in the sample water by using the contact pyrolysis / chemical luminescence method.
  • the nitrogen compound in the sample water S is thermally decomposed to change the nitrogen compound into nitric oxide.
  • ozone is generated by irradiating a gas containing oxygen with ultraviolet rays, and the ozone and nitric oxide are reacted to change nitric oxide into nitrogen dioxide.
  • synchrotron radiation is emitted from nitrogen dioxide.
  • the inspection device 1a can measure the amount of nitrogen in the sample water by detecting the light generated when nitric oxide is changed to nitrogen dioxide.
  • the inspection device 1a includes an ultraviolet irradiation unit 20a, a thermal decomposition unit 42, and a detection unit 30a.
  • the ultraviolet irradiation unit 20a is different from the ultraviolet irradiation unit 20 according to the above embodiment in that gas passes through the internal space of the inner tube instead of the sample water S.
  • the gas passing through the internal space of the inner tube of the ultraviolet irradiation unit 20a contains at least oxygen.
  • the ultraviolet irradiation unit 20a is only different from the ultraviolet irradiation unit 20 in that the sample passing through the inner space of the inner tube is not a liquid but a gas, and the sample passing through the inner space of the inner tube is irradiated with ultraviolet rays.
  • the purpose of use is the same as that of the ultraviolet irradiation unit 20, and the structure is common to that of the ultraviolet irradiation unit 20. Therefore, the detailed description of the ultraviolet irradiation unit 20a will be omitted because it is common to the ultraviolet irradiation unit 20.
  • the thermal decomposition unit 42 thermally decomposes the nitrogen compound in the sample water S to change the nitrogen compound into nitric oxide.
  • the pyrolysis unit 42 includes a catalyst and oxidizes the sample water S injected together with the carrier gas. By oxidizing the sample water S, the nitrogen compound in the sample water S changes to nitric oxide.
  • the thermal decomposition section 42 includes a dehumidifying section for removing water in the carrier gas after thermal decomposition.
  • the carrier gas after being thermally decomposed by the thermal decomposition unit 42 and the ozone generated by the ultraviolet irradiation unit 20a are introduced into the detection unit 30a.
  • the nitric oxide in the carrier gas reacts with ozone to become nitrogen dioxide excited in a metastable state.
  • Nitrogen dioxide excited in a metastable state emits light when it becomes nitrogen dioxide in a stable state.
  • the detection unit 30a detects the components contained in the sample water treated with the gas irradiated with ultraviolet rays. More specifically, in the present embodiment, the detection unit 30a detects the synchrotron radiation from nitrogen dioxide. More specifically, the detection unit 30a detects light of 590 nm to 2500 nm.
  • the inspection device 1a can use the ultraviolet irradiation unit described in the above embodiment as a device for generating ozone. Further, the inspection device 1a includes a detection unit according to the detection target.
  • the inspection device for inspecting the sample water includes an ultraviolet irradiation unit and a detection unit for detecting a target component contained in the sample water.
  • the ultraviolet irradiation unit is arranged around the inner tube, the outer tube that forms a discharge space for enclosing the discharge gas between the inner tube, and a pair of electrodes for generating a discharge in the discharge space.
  • an auxiliary light source that assists in exciting the discharge gas by irradiating the discharge gas with light from the outside of the outer tube.
  • the auxiliary light source can irradiate light having a wavelength longer than the wavelength of ultraviolet light generated by exciting the discharge gas.
  • the outer tube is more difficult to transmit ultraviolet light than the inner tube, and transmits light having a wavelength emitted from an auxiliary light source.
  • the ultraviolet light generated by exciting the discharge gas is difficult to be irradiated from the inside of the discharge space toward the outside of the outer tube, and assists in exciting the discharge gas.
  • the light from the auxiliary light source is emitted from the outside of the outer tube toward the inside of the discharge space. Therefore, the inspection device according to the first item can solve the problem caused by the ultraviolet rays derived from the discharge gas while assisting in exciting the discharge gas.
  • the ultraviolet irradiation unit irradiates the sample water passing through the internal space of the inner tube with ultraviolet rays.
  • the detection unit detects the conductivity of the sample water that has been irradiated with ultraviolet rays.
  • the TOC of the sample water can be measured by combining wet oxidation and conductivity measurement.
  • the ultraviolet irradiation unit irradiates the gas passing through the internal space of the inner tube with ultraviolet rays.
  • the detection unit detects the target component contained in the sample water treated with the gas irradiated with ultraviolet rays.
  • the gas contains at least oxygen.
  • the ultraviolet irradiation unit irradiates the gas with the ultraviolet light to generate ozone for oxidizing nitric oxide to nitrogen dioxide.
  • the detection unit detects synchrotron radiation from nitrogen diate.
  • the total amount of nitrogen in the sample water can be measured by using the contact pyrolysis / chemical emission method.
  • the auxiliary light source is arranged close to the periphery of the outer tube.
  • the ultraviolet irradiation unit can be miniaturized.
  • the pair of electrodes are the outer electrode arranged on the outer periphery of the outer tube and the inner tube side of the outer tube. Includes an arranged inner electrode. An opening is formed in the outer electrode. Auxiliary light sources are placed in the openings.
  • the ultraviolet irradiation unit can be miniaturized.
  • the inspection device according to any one of paragraphs 1 to 5 further includes a cladding tube arranged around the outer tube.
  • the pair of electrodes includes an outer electrode arranged on the outer periphery of the cladding tube and an inner electrode arranged between the cladding tube and the outer tube.
  • the inspection device by providing the outer electrode and the inner electrode on the outside, there is nothing to block the ultraviolet light radiated from the discharge space into the inner space, and the sample water is irradiated with the ultraviolet light. Efficiency can be increased.
  • the ultraviolet light is light having a wavelength of 200 nm or less.
  • 1,1a inspection device 10 liquid feeding part, 12 vial bottle, 20,20a ultraviolet irradiation part, 22 inner tube, 24 outer tube, 26 electrodes, 28 auxiliary light source, 29 cladding tube, 30, 30a detector, 42 thermal decomposition Part, 222 internal space, 241,243 end face, 242 discharge space, 262 outer electrode, 264 inner electrode, 266 opening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Water Treatments (AREA)

Abstract

紫外線照射部(20)は、内管(22)と、内管の周囲に配置され、内管との間で放電ガスを封入する放電空間(242)を形成する外管(24)と、放電空間内に放電を発生するための一対の電極(26)と、外管の外側から放電ガスに光を照射し、放電ガスを励起させることを補助する補助光源(28)とを有する。外管は、内管に比べて放電ガスを励起させることにより発生する紫外光を透過させ難く、補助光源から照射される波長の光を透過させる。

Description

検査装置
 本開示は、試料水を検査するための検査装置に関する。
 試料水の検査に、紫外線を利用することがある。たとえば、試料水中の検査対象を酸化させるために紫外線を直接試料水に照射させたり、試料水中の検査対象を酸化させるためのオゾンを発生させるために酸素を含むガスに紫外線を照射させたりすることがある。
 特開2018-55965号公報(特許文献1)には、紫外線を発生させる装置としてエキシマランプが開示されている。特許文献1に開示されたエキシマランプは、放電容器内に封入された放電用ガスに紫外線を照射する始動補助光源を備え、放電容器の一部が被覆管に覆われずに始動補助光源に対して露出している。
特開2018-55965号公報
 特許文献1に開示されたエキシマランプは、始動補助光源を備えることでエキシマランプの点灯始動性が改善される。また、特許文献1には、エキシマランプからの紫外線が被覆管に覆われずに露出している部分から放射されるため、始動補助光源の紫外線放射面とエキシマランプの紫外線放射面との間の距離を、エキシマランプからの紫外線が始動補助光源に実質的に届かない距離に設定する必要があることが開示されている。これは、エキシマランプからの紫外線が始動補助光源に照射されて始動補助光源が劣化してしまうことを防止するためである。
 また、放電容器が酸素を含む雰囲気下に配置されている場合、被覆管に覆われずに露出している部分から放射されるエキシマランプからの紫外線により人体に有害なオゾンが発生する。そのため、特許文献1に開示されたエキシマランプを使用する場合、酸素を除去した雰囲気下にエキシマランプを配置したり、あるいは、エキシマランプが配置されている処理室内を窒素等の不活性ガスによりパージしたりする必要がある。
 以上のように、放電ガスを励起させることを補助することで点灯始動性を確保しようとした場合、エキシマランプ、すなわち放電ガス由来の紫外線により生じる問題を考慮してエキシマランプを設計する必要がある。
 本開示は、放電ガスを励起させることを補助しつつ、放電ガス由来の紫外線により生じる問題を解決することを一の目的とする。
 本開示の検査装置は、試料水を検査するための検査装置であって、紫外線照射部と、試料水に含まれる対象成分を検出する検出部とを含む。紫外線照射部は、内管と、内管の周囲に配置され、内管との間で放電ガスを封入する放電空間を形成する外管と、放電空間内に放電を発生するための一対の電極と、外管の外側から放電ガスに光を照射し、放電ガスを励起させることを補助する補助光源とを含む。補助光源は、放電ガスを励起させることにより発生する紫外光の波長よりも長い波長の光を照射することができ、外管は、内管に比べて紫外光を透過させ難く、前記補助光源から照射される波長の光を透過させる。
 本開示によれば、放電ガスを励起させることにより発生する紫外光は、放電空間内から外管の外側に向けて照射され難く、かつ、放電ガスを励起させることを補助する補助光源からの光は外管の外側から放電空間内に向けて照射される。そのため、本開示にかかる検査装置は、放電ガスを励起させることを補助しつつ、放電ガス由来の紫外線により生じる問題を解決できる。
本実施の形態にかかる検査装置1の全体構成を示す模式図である。 紫外線照射部20の構造を示す概略断面図である。 図2の紫外線照射部20のIII-III線に沿う概略断面図である。 図2の紫外線照射部20のIV-IV線に沿う概略断面図である。 放電空間242内で生じる紫外光および補助光源28からの光の動きを示すイメージ図である。 変形例にかかる紫外線照射部の構造を示す概略断面図である。 変形例にかかる紫外線照射部の構造を示す概略断面図である。 変形例にかかる検査装置1aの全体構成を示す模式図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <検査装置の全体構成>
 図1は、本実施の形態にかかる検査装置1の全体構成を示す模式図である。検査装置1は、試料水中のTOC量(TOCの濃度)を測定するための装置である。検査装置1は、試料水に紫外線を照射することで試料水中の有機物を酸化させる、いわゆる湿式酸化式の検査装置である。
 図1を参照して、検査装置1は、送液部10と、紫外線照射部20と、検出部30とを備える。送液部10は、測定対象の試料水Sを検査装置1の流路Fに送液する。より具体的には、送液部10は、ポンプPによりバイアルビン12内の試料水Sを引くことで、試料水Sを流路Fに送液する。なお、図1に示す例では、ポンプPの配置場所は、検出部30の下流側の流路上であるが、これに限定されるものではなく、流路F上のどこに配置されてもよい。
 紫外線照射部20は、紫外線を発生させる装置であって、エキシマランプである。本実施の形態において、紫外線照射部20は、試料水Sに対して紫外線を照射する。紫外線照射部20の詳細については、後述する。バイアルビン12と紫外線照射部20とは、流路Fを構成するチューブT1によって接続されている。チューブT1は、紫外線照射部20に試料水Sを流入させる流入管の一例を構成している。
 検出部30は、試料水S中の対象成分を検出する。本実施の形態において、検出部30の検出対象は、紫外線を受けて酸化されて生成された分解産物である。検出部30は、試料水Sの導電率を計測することで、紫外線により酸化されて生成された分解産物を検出する。試料水S中の有機物は、紫外線により酸化されると、最終的に水と二酸化炭素に分解される。分解産物である二酸化炭素が水に溶解するとイオンを生じ、試料水Sの導電率が変化する。本実施の形態にかかる検出部30は、分解産物である二酸化炭素により変化する導電率を測定することで、試料水Sの分解産物を検出する。なお、本実施の形態において、検出部30は、導電率を測定することで分解産物である二酸化炭素を検出するが、分解産物を検出する方法は当該方法に限られない。
 紫外線照射部20と検出部30とは、流路Fを構成するチューブT2によって接続されている。チューブT2は、紫外線が照射されて酸化された試料水Sを紫外線照射部20から流出させる流出管の一例を構成している。
 検出部30の下流側にチューブT3を介してポンプPが接続されている。ポンプPによって、試料水Sは、バイアルビン12内から紫外線照射部20、検出部30に向かって送液され、排出される。
 [紫外線照射部20の構成]
 図2~図4を参照して、紫外線照射部20について詳細に説明する。図2は、紫外線照射部20の構造を示す概略断面図である。図3は、図2の紫外線照射部20のIII-III線に沿う概略断面図である。図4は、図2の紫外線照射部20のIV-IV線に沿う概略断面図である。
 図2を参照して、紫外線照射部20は、内管22と、外管24と、電極26と、補助光源28と、被覆管29とを備える。
 内管22は、紫外線を照射する対象物が内部空間222を通過するように構成されている。本実施の形態において、内管22は、流入管に相当するチューブT1と流出管に相当するチューブT2とに接続されており、内管22の内部空間222を試料水Sが通過する。内管22は、長尺な円筒状に形成されている(図3,図4参照)。
 外管24は、内管22の周囲に配置されている。より具体的には、外管24は、内管22を囲むようにして、内管22の外方に間隔を隔てて配置されている。外管24は長尺な円筒状に形成されている。外管24の中心軸線は、内管22の中心軸線と一致する。すなわち、外管24は、内管22と同軸上に配置されている(図3,図4参照)。
 なお、内管22および外管24は、円筒状に形成されているとしたが、筒状に形成されていればよい。たとえば、内管22および外管24の一方または両方は、径の異なる2つの筒を接続させた形状をしていてもよい。また、内管22と外管24とは同軸上に配置されているとしたが、中心軸は一致していなくともよい。たとえば、図6は、変形例にかかる紫外線照射部の構造を示す概略断面図である。図6に示すように、外管24の形状を、径の異なる2つの筒を接続させた形状にしてもよい。
 外管24の端面241は、内管22の側面に接続されている。同様に、外管24の端面243は、内管22の側面に接続されている。本実施の形態においては、内管22の長手方向の長さは、外管24の長手方向の長さよりも長い。そのため、外管24の端面241,243の各々は、内管22の側面に接続されている。なお、内管22の長手方向の長さを外管24の長手方向の長さと同一、または外管24の長手方向の長さよりも短くして、外管24の端面241,243の各々を内管22の端部と接続するような構成にしてもよい。
 このような構成により、紫外線照射部20においては、内管22と外管24との間で放電空間242が形成される。放電空間242には、放電ガスGが封入されている。放電ガスとしては、たとえば、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)などの希ガスの他、フッ化アルゴン(ArF)、フッ化クリプトン(KrF)、塩化クリプトン(ClKr)、塩化キセノン(ClXe)などの希ガスとハロゲンガスとの混合ガスを採用することができる。本実施の形態においては、放電ガスGはXeであるものとして説明する。
 電極26は、外側電極262と内側電極264とから構成されている。外側電極262および内側電極264は、外管24の外周に配置された被覆管29を隔てて、それぞれ外管24の外周に配置されている。換言すると、外側電極262は、被覆管29の外周に配置されており、内側電極264は、被覆管29と外管24との間に配置されている。
 このような構成により、紫外線照射部20では、外側電極262および内側電極264に電圧が印加されると、放電空間242内で放電が発生する。この放電により、放電空間242内の放電ガスGが励起されエキシマ状態となる。このエキシマ状態が元の状態(基底状態)に戻るときに発光が生じる。この光(紫外光)のうち、径方向内方側に向かう光は、内管22の内部空間222内を通過する紫外線を照射する対象物(本実施の形態においては、試料水S)に照射される。すなわち、紫外線照射部20は、二重筒型のエキシマランプであって、放電空間242から照射される紫外線を、エキシマランプの長手方向に沿って配置されている内管22の内部空間222に向けて照射する。
 外側電極262には開口部266が設けられており、補助光源28は、外管24の外側であって、補助光源28の照射面が被覆管29と対向するように開口部266に配置される。補助光源28は、外管24の外側から放電空間242内の放電ガスGに向けて光を照射する。
 放電ガスGは、一度励起させてエキシマ状態にすれば、その後、エキシマ状態から基底状態に戻るときに生じる発光と放電空間242内の放電とにより再度エキシマ状態となり得る。しかし、放電ガスGが基底状態にある中で当該放電ガスGをエキシマ状態にしようとするためには、高い電圧が必要とされる。本実施の形態においては、放電空間242内に補助光源28による光が照射されることで、発光の開始を補助できる。
 ここで、放電ガスGがエキシマ状態から基底状態に戻るときに生じる光と、補助光源28から照射される光について説明する。放電ガスGがエキシマ状態から基底状態に戻るときに生じる光のピーク波長は、放電ガスGの種類によって異なる。たとえば、Arは126nm、Krは146nm、Xeは172nm、ArFは193nm、KrFは248nm、ClKrは222nm、ClXeは308nmである。すなわち、放電ガスGがエキシマ状態から基底状態に戻るときに生じる光は、紫外光である。以下では、放電ガスGがエキシマ状態から基底状態に戻るときに生じる光を、単に紫外光ともいう。
 補助光源28は、放電空間242内で生じる紫外光よりも長い波長の光を照射可能である。たとえば、補助光源28は、可視光を照射可能であって、400nm程度の光を照射する。
 [内管22および外管24の特性]
 図5を参照して、内管22および外管24の特性について説明する。図5は、放電空間242内で生じる紫外光および補助光源28からの光の動きを示すイメージ図である。
 内管22は、放電空間242内で発生した紫外光Uが透過する性質を有する。具体的には、内管22は、200nm以下の光が透過する。内管22は、たとえば、格子欠陥の少ない純度の高い石英ガラスからなる。
 外管24は、放電空間242内で発生した紫外光Uを通しにくい一方で、補助光源28から照射される光が透過する性質を有する。具体的には、外管24は、200nm以下の光が透過しにくい。外管24は、たとえば、不純物を含む格子欠陥のある石英ガラスからなる。
 このような構成により、放電空間242内で生じた紫外光Uは、内管22を透過して内部空間222内の試料水Sに照射される一方、外管24の外には照射されない。一方、補助光源28からの光Vは、外管24の外から放電空間242内に照射される。
 その結果、外管24の外から放電空間242内での発光を補助する光を照射させて、発光の開始を補助しつつ、放電空間242内の放電ガスG由来の波長の短い紫外光Uにより生じる問題を解決ができる。具体的には、放電ガスG由来の波長の短い紫外光Uによるオゾンの発生を防止でき、また、放電ガスG由来の波長の短い紫外光Uが補助光源28に照射されることによる補助光源28の劣化を防止できる。
 オゾンの発生を防止できる結果、オゾンの発生を考慮して設置される装置(たとえば、パージするための装置)が不要になり、また、オゾンの発生を考慮して紫外線照射部20の周囲を真空状態にする必要がなくなり、装置を小型化することができたり、また、装置の作成に要するコストを削減したりすることができる。
 また、放電ガスG由来の紫外光Uによる補助光源28の劣化を考慮する必要がないため、補助光源28を被覆管29(外管24)に近接させた状態で設置でき、装置を小型化することができる。
 なお、被覆管29は、外管24とは異なる材質の素材で構成されていてもよいものの、溶着の容易性の観点から外管24と同じ素材で構成されていることが好ましい。
 また、外管24と内管22との溶着は異種素材同士をつなげるため、難しいものの、外管24と内管22とを異種の素材で構成することで、発光の開始を補助しつつ、放電空間242内の放電ガスG由来の波長の短い紫外光Uにより生じる問題を解決できる。
 [変形例]
 図7は、変形例にかかる紫外線照射部の構造を示す概略断面図である。変形例にかかる紫外線照射部は、被覆管29を備えていない点、および外側電極262および内側電極264の設置位置が異なる点で、上記実施の形態にかかる紫外線照射部20(図2参照)と異なる。
 上記実施の形態において、外側電極262および内側電極264をいずれも外管24の外側に設けたが、図7に示すように、内側電極264を内管22に設けてもよい。この場合、被覆管29を設ける必要がない。
 なお、外側電極262および内側電極264を外側に設けることで、放電空間242から内部空間222内に放射される光を遮るもの(内側電極264)がなくなり、試料水Sへの紫外線の照射効率を上げることができる。
 上記実施の形態において、外側電極262は、被覆管29の全周に亘って配置されているものとしたが、一部に設けられていてもよい。
 上記実施の形態において、内管22は200nm以下の光が透過する素材からなり、外管24は200nm以下の光が透過しにくい素材からなるとした。なお、内管22および外管24の素材は、選択された放電ガスGの種類と、補助光源28とに基づいて好適に選択されればよい。より具体的には、内管22の素材は、放電ガスG由来の紫外光が透過する素材であればよい。外管24の素材は、放電ガスG由来の紫外光が透過しにくく、補助光源28からの光の少なくとも一部が透過する素材であればよい。
 上記実施の形態では、紫外線を用いた湿式酸化と導電率測定とを組み合わせて試料水のTOCを測定する検査装置について説明した。本開示はこれに限定されることなく、紫外線照射部を用いて試料水に含まれる対象成分を測定する種々の検査装置に利用可能である。
 図8は、変形例にかかる検査装置1aの全体構成を示す模式図である。検査装置1aは、接触熱分解・化学発光法を用いて試料水中の窒素量を測定するための装置である。検査装置1aでは、試料水S中の窒素化合物を熱分解させることで、窒素化合物を一酸化窒素に変化させる。次に、酸素を含むガスに紫外線を照射することでオゾンを発生させて、オゾンと一酸化窒素とを反応させて、一酸化窒素を二酸化窒素に変化させる。このときに、二酸化窒素から放射光が放射される。放射光の強度が窒素の濃度に比例するため、検査装置1aでは、一酸化窒素を二酸化窒素に変化させたときに発生する光を検出することで、試料水中の窒素量を測定できる。具体的には、検査装置1aは、紫外線照射部20aと、熱分解部42と、検出部30aとを備える。
 紫外線照射部20aは、内管の内部空間を試料水Sではなくガスが通過する点で上記実施の形態にかかる紫外線照射部20と異なる。紫外線照射部20aの内管の内部空間を通過するガスは、少なくとも酸素を含む。なお、紫外線照射部20aは、内管の内部空間を通過する試料が、液体ではなくガスである点で紫外線照射部20と異なるに過ぎず、内管の内部空間を通過する試料に紫外線を照射するという使用目的は紫外線照射部20と共通しており、紫外線照射部20と共通の構造を有する。そのため、紫外線照射部20aの詳細な説明については、紫外線照射部20と共通するため省略する。
 熱分解部42は、試料水S中の窒素化合物を熱分解させて、窒素化合物を一酸化窒素に変化させる。図示していないものの、熱分解部42は、触媒を備え、キャリアガスとともに注入された試料水Sを酸化させる。試料水Sを酸化させることで、試料水S中の窒素化合物は、一酸化窒素に変化する。また、図示していないものの、熱分解部42は、熱分解後のキャリアガス中の水分を除去するための除湿部を備える。
 熱分解部42によって熱分解された後のキャリアガスと、紫外線照射部20aで発生したオゾンとは、検出部30aに導入される。検出部30aにキャリアガスとオゾンとが導入されると、キャリアガス中の一酸化窒素とオゾンとが反応して、準安定状態に励起された二酸化窒素となる。準安定状態に励起された二酸化窒素は、安定状態の二酸化窒素となる際に発光する。
 検出部30aは、紫外線の照射を受けたガスを用いて処理された試料水に含まれる成分の検出を行う。より具体的には、本実施の形態において、検出部30aは、二酸化窒素からの放射光を検出する。より具体的には、検出部30aは、590nm~2500nmの光を検出する。
 以上のように、検査装置1aは、オゾンを発生させるための装置として、上記実施の形態で説明した紫外線照射部を利用可能である。また、検査装置1aは、検出対象に応じた検出部を備える。
 [態様]
 上述した実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る試料水を検査するための検査装置は、紫外線照射部と、試料水に含まれる対象成分を検出する検出部とを備える。紫外線照射部は、内管と、内管の周囲に配置され、内管との間で放電ガスを封入する放電空間を形成する外管と、放電空間内に放電を発生するための一対の電極と、外管の外側から放電ガスに光を照射し、放電ガスを励起させることを補助する補助光源とを有する。補助光源は、放電ガスを励起させることにより発生する紫外光の波長よりも長い波長の光を照射することができる。外管は、内管に比べて紫外光を透過させ難く、補助光源から照射される波長の光を透過させる。
 第1項に記載の検査装置によれば、放電ガスを励起させることにより発生する紫外光は、放電空間内から外管の外側に向けて照射され難く、かつ、放電ガスを励起させることを補助する補助光源からの光は外管の外側から放電空間内に向けて照射される。そのため、第1項に記載の検査装置は、放電ガスを励起させることを補助しつつ、放電ガス由来の紫外線により生じる問題を解決できる。
 (第2項)第1項に記載の検査装置において、紫外線照射部は、内管の内部空間を通過する試料水に対して紫外線を照射する。検出部は、紫外線の照射を受けた試料水の導電率を検出する。
 第2項に記載の検査装置によれば、湿式酸化と導電率測定とを組み合わせて試料水のTOCを測定することができる。
 (第3項)第1項に記載の検査装置において、紫外線照射部は、内管の内部空間を通過するガスに対して紫外線を照射する。検出部は、紫外線の照射を受けたガスを用いて処理された試料水に含まれる対象成分を検出する。
 第3項に記載の検査装置によれば、紫外線の照射を受けたガスを用いて試料水を処理した検査を行うことができる。
 (第4項)第3項に記載の検査装置において、ガスは、酸素を少なくとも含む。紫外線照射部は、前記ガスに対して前記紫外光を照射することにより、一酸化窒素を二酸化窒素に酸化させるためのオゾンを発生させる。検出部は、二酸窒素からの放射光を検出する。
 第4項に記載の検査装置によれば、接触熱分解・化学発光法を用いて試料水中の全窒素量を測定することができる。
 (第5項)第1項~第4項のうちいずれか1項に記載の検査装置において、補助光源は、外管の周囲に近接して配置される。
 第5項に記載の検査装置によれば、紫外線照射部を小型化できる。
 (第6項)第1項~第5項のうちいずれか1項に記載の検査装置において、一対の電極は、外管の外周に配置された外側電極と、外側電極よりも内管側に配置された内側電極とを含む。外側電極には、開口部が形成されている。補助光源は、開口部に配置される。
 第6項に記載の検査装置によれば、紫外線照射部を小型化できる。
 (第7項)第1項~第5項のうちいずれか1項に記載の検査装置は、外管の周囲に配置された被覆管をさらに有する。一対の電極は、被覆管の外周に配置された外側電極と、被覆管と外管との間に配置された内側電極とを含む。
 第7項に記載の検査装置によれば、外側電極および内側電極を外側に設けることで、放電空間から内部空間内に放射される紫外光を遮るものがなくなり、試料水への紫外光の照射効率を上げることができる。
 (第8項)第7項に記載の検査装置において、被覆管と外管とは同じ材質の部材から成る。
 第8項に記載の検査装置によれば、被覆管と外観とを溶着させることが容易になる。
 (第9項)第1項~第8項のうちいずれか1項に記載の検査装置において、紫外光は、200nm以下の波長の光である。
 第9項に記載の検査装置によれば、放電ガスを励起させることを補助しつつ、放電ガス由来の紫外線により生じる問題を解決できる。
 今回開示された各実施の形態は、技術的に矛盾しない範囲で適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1,1a 検査装置、10 送液部、12 バイアルビン、20,20a 紫外線照射部、22 内管、24 外管、26 電極、28 補助光源、29 被覆管、30,30a 検出部、42 熱分解部、222 内部空間、241,243 端面、242 放電空間、262 外側電極、264 内側電極、266 開口部。

Claims (9)

  1.  試料水を検査するための検査装置であって、
     紫外線照射部と、
     前記試料水に含まれる対象成分を検出する検出部とを備え、
     前記紫外線照射部は、
      内管と、
      前記内管の周囲に配置され、前記内管との間で放電ガスを封入する放電空間を形成する外管と、
      前記放電空間内に放電を発生するための一対の電極と、
      前記外管の外側から前記放電ガスに光を照射し、前記放電ガスを励起させることを補助する補助光源とを有し、
     前記補助光源は、前記放電ガスを励起させることにより発生する紫外光の波長よりも長い波長の光を照射することができ、
     前記外管は、前記内管に比べて前記紫外光を透過させ難く、前記補助光源から照射される波長の光を透過させる、検査装置。
  2.  前記紫外線照射部は、前記内管の内部空間を通過する前記試料水に対して前記紫外光を照射し、
     前記検出部は、前記紫外光の照射を受けた前記試料水の導電率を検出する、請求項1に記載の検査装置。
  3.  前記紫外線照射部は、前記内管の内部空間を通過するガスに対して前記紫外光を照射し、
     前記検出部は、前記紫外光の照射を受けたガスを用いて処理された前記試料水に含まれる対象成分を検出する、請求項1に記載の検査装置。
  4.  前記ガスは、酸素を少なくとも含み、
     前記紫外線照射部は、前記ガスに対して前記紫外光を照射することにより、一酸化窒素を二酸化窒素に酸化させるためのオゾンを発生させ、
     前記検出部は、二酸窒素からの放射光を検出する、請求項3に記載の検査装置。
  5.  前記補助光源は、前記外管の周囲に近接して配置される、請求項1~請求項4のうちいずれか1項に記載の検査装置。
  6.  前記一対の電極は、前記外管の外周に配置された外側電極と、当該外側電極よりも前記内管側に配置された内側電極とを含み、
     前記外側電極には、開口部が形成されており、
     前記補助光源は、前記開口部に配置される、請求項1~請求項5のうちいずれか1項に記載の検査装置。
  7.  前記外管の周囲に配置された被覆管をさらに有し、
     前記一対の電極は、前記被覆管の外周に配置された外側電極と、前記被覆管と前記外管との間に配置された内側電極とを含む、請求項1~請求項5のうちいずれか1項に記載の検査装置。
  8.  前記被覆管と前記外管とは同じ材質の部材から成る、請求項7に記載の検査装置。
  9.  前記紫外光は、200nm以下の波長の光である、請求項1~請求項8のうちいずれか1項に記載の検査装置。
PCT/JP2021/017324 2020-08-20 2021-05-06 検査装置 WO2022038837A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180051050.0A CN115916692B (zh) 2020-08-20 2021-05-06 检查装置
EP21857989.4A EP4201879A1 (en) 2020-08-20 2021-05-06 Inspection device
US18/021,865 US20240011960A1 (en) 2020-08-20 2021-05-06 Inspection apparatus
JP2022543277A JP7414148B2 (ja) 2020-08-20 2021-05-06 検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-139351 2020-08-20
JP2020139351 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022038837A1 true WO2022038837A1 (ja) 2022-02-24

Family

ID=80322716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017324 WO2022038837A1 (ja) 2020-08-20 2021-05-06 検査装置

Country Status (4)

Country Link
US (1) US20240011960A1 (ja)
EP (1) EP4201879A1 (ja)
JP (1) JP7414148B2 (ja)
WO (1) WO2022038837A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249140A (ja) * 2000-03-03 2001-09-14 Dkk Toa Corp 液滴下装置、並びにこれを用いた酸化反応装置及び分析装置
JP2007323995A (ja) * 2006-06-01 2007-12-13 Ushio Inc 紫外光放射装置
JP2018055965A (ja) 2016-09-29 2018-04-05 株式会社オーク製作所 放電ランプおよび放電ランプ装置
WO2018235865A1 (ja) * 2017-06-21 2018-12-27 株式会社島津製作所 水質測定装置及び水質測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249140A (ja) * 2000-03-03 2001-09-14 Dkk Toa Corp 液滴下装置、並びにこれを用いた酸化反応装置及び分析装置
JP2007323995A (ja) * 2006-06-01 2007-12-13 Ushio Inc 紫外光放射装置
JP2018055965A (ja) 2016-09-29 2018-04-05 株式会社オーク製作所 放電ランプおよび放電ランプ装置
WO2018235865A1 (ja) * 2017-06-21 2018-12-27 株式会社島津製作所 水質測定装置及び水質測定方法

Also Published As

Publication number Publication date
JPWO2022038837A1 (ja) 2022-02-24
EP4201879A1 (en) 2023-06-28
JP7414148B2 (ja) 2024-01-16
US20240011960A1 (en) 2024-01-11
CN115916692A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6365096B2 (ja) 紫外線照射式オゾン生成装置
JP6558376B2 (ja) 紫外線放射装置
KR20200085823A (ko) 기체 처리 장치
JP5865583B2 (ja) 排ガスの無触媒脱硝方法および装置
JP6693331B2 (ja) オゾン発生器
JP6241384B2 (ja) 自己組織化単分子膜のパターニング装置、光照射装置及び自己組織化単分子膜のパターニング方法
JP2010048582A (ja) 硫黄の分析方法および分析装置
WO2022038837A1 (ja) 検査装置
EP3644050B1 (en) Water quality measurement device and water quality measurement method
CN115916692B (zh) 检查装置
JP2010210565A (ja) 二酸化窒素濃度測定装置および滅菌装置
JP3507744B2 (ja) 全有機炭素測定システム用の酸化装置組立体
JP3292016B2 (ja) 放電ランプおよび真空紫外光源装置
JP5927074B2 (ja) ガス処理方法およびガス処理装置
JP3564988B2 (ja) 光源装置
JP3562744B2 (ja) 校正用ガス調製用オゾン発生器並びにそれを用いた校正用ガス調製装置、オゾン分析計及び窒素酸化物分析計
US6734444B2 (en) Substrate treatment device using a dielectric barrier discharge lamp
JP3314656B2 (ja) 光源装置
JPWO2022038837A5 (ja)
JPH10170494A (ja) 水中の窒素化合物濃度測定方法およびその装置
JPH06296823A (ja) オゾンの分解方法
JP4066693B2 (ja) 真空紫外光照射装置
JP4078223B2 (ja) 全窒素測定方法
WO2013145158A2 (ja) 排ガスの無触媒脱硝方法および装置
JP2010266222A (ja) 紫外線照射装置及びそれを用いた全有機体炭素測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857989

Country of ref document: EP

Effective date: 20230320

WWE Wipo information: entry into national phase

Ref document number: 18021865

Country of ref document: US