JP2005147962A - 光学式ガス濃度検出装置 - Google Patents
光学式ガス濃度検出装置 Download PDFInfo
- Publication number
- JP2005147962A JP2005147962A JP2003388440A JP2003388440A JP2005147962A JP 2005147962 A JP2005147962 A JP 2005147962A JP 2003388440 A JP2003388440 A JP 2003388440A JP 2003388440 A JP2003388440 A JP 2003388440A JP 2005147962 A JP2005147962 A JP 2005147962A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- light
- gas cell
- gas concentration
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 50
- 239000003463 adsorbent Substances 0.000 claims description 15
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- -1 Polyethylene sulfite Polymers 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
【課題】 光学式ガス濃度検出装置において、検出効率が良く、且つ、小型化する装置を提供する。
【解決手段】 本発明のガス濃度検出装置は、特定波長の光を特定ガスが存在するガスセル部3に入光し、ガスセル部3内に設置の平面鏡5a、5bで多重反射させることによって、その光の光路長さを長くして薄いガス濃度を測定する。
【選択図】 図2
【解決手段】 本発明のガス濃度検出装置は、特定波長の光を特定ガスが存在するガスセル部3に入光し、ガスセル部3内に設置の平面鏡5a、5bで多重反射させることによって、その光の光路長さを長くして薄いガス濃度を測定する。
【選択図】 図2
Description
本発明は、透過光の吸収を利用してガス濃度を検出する装置に関する。
ガス分子は、ある特定波長の光を吸収する性質をもっている。そこで、この現象を利用してガスの濃度を測定できることは知られており、この原理を応用したさまざまなガス濃度検出装置が考案されている。
この原理を応用したガス濃度検出装置は、例えば、特許文献1(特開平8−101123号公報)があり、ある特定波長の光を、ガス雰囲気中のガスセル中を通す光と通さない光を検出して、その差をもって、ガス濃度を検出する旨が開示してある。
この原理を応用したガス濃度検出装置は、例えば、特許文献1(特開平8−101123号公報)があり、ある特定波長の光を、ガス雰囲気中のガスセル中を通す光と通さない光を検出して、その差をもって、ガス濃度を検出する旨が開示してある。
前記のような方法でガス濃度を検出する際、吸収される光の強度はガス濃度によって決まり、ガス濃度が極端に薄い場合には困難である。
そのため、ガス濃度検出に必要な強度差を得るためには、長い光路長の基で測定する必要がある。この長い光路長を得るのに、ガス濃度検出装置は大型にならざるをえないし、長い光路長全体を均一なガス試料で満たす必要があり、ガス試料自体も多量に必要とされる。
そのため、ガス濃度検出に必要な強度差を得るためには、長い光路長の基で測定する必要がある。この長い光路長を得るのに、ガス濃度検出装置は大型にならざるをえないし、長い光路長全体を均一なガス試料で満たす必要があり、ガス試料自体も多量に必要とされる。
又、ガスセルに試料ガスを導入する部分では、一般的には、試料ガス捕集手段を用いて捕集した試料ガスを一旦サンプルバック等に貯蔵しておき、その後ガス濃度検出装置に導入、もしくは、試料ガス捕集手段から直接配管等でガス濃度検出装置に導入される。
これらの場合、試料ガス捕集手段からガス濃度検出装置までの試料ガス運搬の過程で、接ガス部の流路表面に対し試料ガスの吸着、温度変化による物性の変化等が試料ガスの濃度、成分に少なからず悪影響を与える場合がある。この悪影響は試料ガスの濃度が比較的低濃度の場合は顕著に現れる。
これらの場合、試料ガス捕集手段からガス濃度検出装置までの試料ガス運搬の過程で、接ガス部の流路表面に対し試料ガスの吸着、温度変化による物性の変化等が試料ガスの濃度、成分に少なからず悪影響を与える場合がある。この悪影響は試料ガスの濃度が比較的低濃度の場合は顕著に現れる。
また、検出感度を上げるため、ガス試料の成分濃度を上げることが考えられ、その手段として、モリキュラシーブ、シリカゲル等の吸着剤でガス試料の捕集をするやり方は既存の技術として広く知られている。
しかし、それらの吸着剤は通常粒子状であるため、ガラスやステンレス管等に詰め、捕集管として使用されている。そのため、使用の際には捕集したガス試料を上記捕集管に一旦通し、捕集を掛けた後、捕集管を加熱することでガス試料成分を脱着させいている。
この方法は、ガス試料の濃度を高めるためには有効な方法であるが、装置のラインに別工程のラインを挿入させることにもなり、上記で述べた通り各流路表面のガス試料の吸着、漏れ等の問題によりラインを伸ばすことは測定誤差要因を増やすことになる。また、ガス濃度検出装置自体が大型化してしまうため好ましくない。
しかし、それらの吸着剤は通常粒子状であるため、ガラスやステンレス管等に詰め、捕集管として使用されている。そのため、使用の際には捕集したガス試料を上記捕集管に一旦通し、捕集を掛けた後、捕集管を加熱することでガス試料成分を脱着させいている。
この方法は、ガス試料の濃度を高めるためには有効な方法であるが、装置のラインに別工程のラインを挿入させることにもなり、上記で述べた通り各流路表面のガス試料の吸着、漏れ等の問題によりラインを伸ばすことは測定誤差要因を増やすことになる。また、ガス濃度検出装置自体が大型化してしまうため好ましくない。
そこで、本発明は、効果的に装置全体を小型化し且つ、検出に必要な光路長を確保する手段を提供するし、ガス試料を発生源からの捕集から測定までの工程を効果的に単純化、一体化させる光学式ガス濃度検出装置を提供する。
請求項1のガス濃度検出装置は、特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光して、ガス濃度を検出する。そして、ガスセルの相対する内面には鏡面が設けてあり、特定波長の光はガスセル内で多重反射させることによって、その光の光路長は長くなる。そのため、小さいガスセルであっても長い光路を得ることができるし、その長い光路のために、薄いガス濃度であっても、ガス吸収が充分に行われ、良好なガス濃度の測定が可能となる。
又、請求項2のガス濃度検出装置は、特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光してガス濃度を検出する。そして、ガスセルは円筒状であり、その内面は鏡面に形成してある。そこで、特定波長の入光をガスセル内で多重反射させた後に出光させることによって、光路長は長くなり、薄いガス濃度であっても、その長い光路におけるガス吸収が行われ、良好なガス濃度の測定が可能となる。
請求項3のガス濃度検出装置は、特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光して、ガス濃度を検出する。そして、円筒状に形成の前記ガスセルの内面は鏡面に形成してある。そこで、前記ガスセルの側部に入光傾斜鏡を設置して、特定波長の光を受け入れて前記ガスセル内に向けて反射させると共に、ガスセルの側部に出光傾斜鏡を設置して、前記ガスセル内で多重反射させた後の光を出光として得る。
このように、入光傾斜鏡と出光傾斜鏡を設置することによって、入光の方向と出光の方向を適宜選択できる。
このように、入光傾斜鏡と出光傾斜鏡を設置することによって、入光の方向と出光の方向を適宜選択できる。
請求項4のガス濃度検出装置は、ガスセルの底面に開口部が形成してあり、このガスセルの底面をガスが発生している箇所に当てると、その底面に形成の開口部から、発生するガスをガスセル内に取り込むことができて、ガス濃度を測定することができる。
請求項5のガス濃度検出装置は、ガスセル内に吸着剤を備えることによって、ガスセルの底面から入るガスを吸着することができる。
請求項6のガス濃度検出装置は、ガスセル内を昇温可能にする温度調整機構を備えているので、吸着剤に吸着のガスは昇温によって脱着され、ガスセル内に充満することで、発生ガスよりもガス濃度を上げることができる。そのため、検出感度を向上することができる。
請求項5のガス濃度検出装置は、ガスセル内に吸着剤を備えることによって、ガスセルの底面から入るガスを吸着することができる。
請求項6のガス濃度検出装置は、ガスセル内を昇温可能にする温度調整機構を備えているので、吸着剤に吸着のガスは昇温によって脱着され、ガスセル内に充満することで、発生ガスよりもガス濃度を上げることができる。そのため、検出感度を向上することができる。
請求項1のガス濃度検出装置は、ガスセル内に設けてある相対する鏡面で、特定波長の入光が多重反射が行われるので、光路長は長くなり、薄いガス濃度であっても測定可能である。
又、請求項2のガス濃度検出装置は、円筒状のガスセル内に設けてある鏡面で、特定波長の入光が多重反射が行われるので、光路長は長くなり、薄いガス濃度であっても測定可能である。
請求項3のガス濃度検出装置は、ガスセルの側部に入光傾斜鏡と出光傾斜鏡が設けてあるので、入光の方向と出光の方向を適宜選択できる。
又、請求項2のガス濃度検出装置は、円筒状のガスセル内に設けてある鏡面で、特定波長の入光が多重反射が行われるので、光路長は長くなり、薄いガス濃度であっても測定可能である。
請求項3のガス濃度検出装置は、ガスセルの側部に入光傾斜鏡と出光傾斜鏡が設けてあるので、入光の方向と出光の方向を適宜選択できる。
請求項4のガス濃度検出装置は、ガスセルの底面に開口部が形成してあるので、その開口部をガス発生箇所に当てることによって、容易に測定ガスの取り入れができ、ガス濃度を測定することができる。
請求項5のガス濃度検出装置は、ガスセル内に吸着剤を備えることによって、ガスセルの底面から入るガスを吸着することができる。
請求項6のガス濃度検出装置は、ガスセル内を昇温可能にする温度調整機構を備えているので、吸着剤に吸着されたガスは昇温によって脱着され、ガスセル内に充満することによって、ガス濃度を上げ、検出感度を向上させることができる。
請求項5のガス濃度検出装置は、ガスセル内に吸着剤を備えることによって、ガスセルの底面から入るガスを吸着することができる。
請求項6のガス濃度検出装置は、ガスセル内を昇温可能にする温度調整機構を備えているので、吸着剤に吸着されたガスは昇温によって脱着され、ガスセル内に充満することによって、ガス濃度を上げ、検出感度を向上させることができる。
(第1の実施の形態)
本発明を図面を参照して説明する。図1には本発明のガス濃度検出装置の構成図である。
図1に示すように、ガス濃度検出の構成は、コントロールデバイス1と発光素子を備える発光素子部2と、受光素子を備える受光素子部4と、分析ガスを含有のガスセル部3であり、コントロールデバイス1からの信号によって、発光素子部2から分析ガスが含有のガスセル部3に出光し、ガスセル部3からの出光を受光素子部4で受光し、その受光をコントロールデバイス1で分析して、ガスセル3部内のガス濃度として検知する。
本発明を図面を参照して説明する。図1には本発明のガス濃度検出装置の構成図である。
図1に示すように、ガス濃度検出の構成は、コントロールデバイス1と発光素子を備える発光素子部2と、受光素子を備える受光素子部4と、分析ガスを含有のガスセル部3であり、コントロールデバイス1からの信号によって、発光素子部2から分析ガスが含有のガスセル部3に出光し、ガスセル部3からの出光を受光素子部4で受光し、その受光をコントロールデバイス1で分析して、ガスセル3部内のガス濃度として検知する。
図2(A)は、ガスセル部3(3A)の平面図であり、(B)は側面図、(C)はD〜D’断面図である。
このガスセル部3Aは、内部に平面断面、長方形の空間8を形成し、上面が開口の直方体状であり、前記開口を閉鎖するために、平面板6を取り付ける段差部8aが形成してある。
そして、前記段差部8aにはボルト孔7aが複数個穿設してある。一方、平面板6には、前記ボルト孔7aに対応してボルト孔7が穿設してあり、この平面板6はテフロン(登録商標)素材で作成してあり、シール機能を有しているため、他のガスケット無しで、前記開口に密着して取り付けられる。尚、シール機能を有する箇所は、ゴム等の使用も考えられるが、ゴムはガスが吸着したり、ゴム自身からのガス放出が考えられるので好ましくなく、前記テフロン(登録商標)素材を使用している。
又、前記空間8内において、長手方向の相対する側面に、全反射の平面鏡5aと全反射の平面鏡5bが設けてある。
又、前記平面鏡5bの左右端に近い位置には、平面鏡5aに向けて、発光素子部2の光を入光する入光孔10aと、前記内部から出光する光の出光孔10bが形成してある。即ち、入光孔10aと出光孔10bは同じ側の位置に形成してある。
このガスセル部3Aは、内部に平面断面、長方形の空間8を形成し、上面が開口の直方体状であり、前記開口を閉鎖するために、平面板6を取り付ける段差部8aが形成してある。
そして、前記段差部8aにはボルト孔7aが複数個穿設してある。一方、平面板6には、前記ボルト孔7aに対応してボルト孔7が穿設してあり、この平面板6はテフロン(登録商標)素材で作成してあり、シール機能を有しているため、他のガスケット無しで、前記開口に密着して取り付けられる。尚、シール機能を有する箇所は、ゴム等の使用も考えられるが、ゴムはガスが吸着したり、ゴム自身からのガス放出が考えられるので好ましくなく、前記テフロン(登録商標)素材を使用している。
又、前記空間8内において、長手方向の相対する側面に、全反射の平面鏡5aと全反射の平面鏡5bが設けてある。
又、前記平面鏡5bの左右端に近い位置には、平面鏡5aに向けて、発光素子部2の光を入光する入光孔10aと、前記内部から出光する光の出光孔10bが形成してある。即ち、入光孔10aと出光孔10bは同じ側の位置に形成してある。
次に、前記ガス濃度検出装置の作用について、図2(D)を参照して説明すると、先ず、前記入光孔10aの直前に発光素子部2を設置するが、離れているときにはグラスファイバー等を介して入光させる。一方、出光孔10bには、空間8からの出光を受光する受光素子部4を取り付ける。尚、発光素子部2が発する光の波長は、測定するガスで吸収されるものを選定する。
又、ガスセル部3Aには、ガスを注入する図示略の孔が穿設してあり、測定するガスを空間8内に注入する。
次に、コントロールデバイス1からの信号によって、発光素子部2から、光を発すると、空間8内で、平面鏡5aと平面鏡5bとの間で多重反射が起こる。そして、その多重反射の光路の間に、特定波長の光は吸収されて、出光孔10bから出て受光素子部4で受光する。この受光された光を分析することによって、ガス濃度は測定される。
又、ガスセル部3Aには、ガスを注入する図示略の孔が穿設してあり、測定するガスを空間8内に注入する。
次に、コントロールデバイス1からの信号によって、発光素子部2から、光を発すると、空間8内で、平面鏡5aと平面鏡5bとの間で多重反射が起こる。そして、その多重反射の光路の間に、特定波長の光は吸収されて、出光孔10bから出て受光素子部4で受光する。この受光された光を分析することによって、ガス濃度は測定される。
以上のように、空間8内に、平面鏡5aと平面鏡5bが設けてあり、これらの平面鏡5aと平面鏡5bの間で多重反射が起こることにより、薄い濃度のガスであっても吸収されて測定可能となる。又、このように、多重反射によって長い光路長を得ることができるので、小さいガスセル部3A(平面鏡5aと平面鏡5bの間の距離)であってもよく、経済性に富む。
尚、前記ガスセル部3Aを用いて、例えば、1%程度の濃度のアセトンガスの測定について説明する。
この1%程度の濃度のアセトンガスを光の吸収により検出させる場合には、光路長Rを1000mm以上必要とする。
そして、発光素子部2の光を、入光孔10aから適宜の角度で入射させると、全反射の平面鏡5aと全反射の平面鏡5bの間を、13回、回折し、出光孔10bから出射し、受光素子部4で検出される。
尚、平面鏡5aと平面鏡5bの距離は80mmであるので、13回の回折により、光路長Rは1040mmとなり、必要な光路長1000mm以上を確保でき、ガスセル3Aの大きさは、118×50×22.5mmと小型化される。
この1%程度の濃度のアセトンガスを光の吸収により検出させる場合には、光路長Rを1000mm以上必要とする。
そして、発光素子部2の光を、入光孔10aから適宜の角度で入射させると、全反射の平面鏡5aと全反射の平面鏡5bの間を、13回、回折し、出光孔10bから出射し、受光素子部4で検出される。
尚、平面鏡5aと平面鏡5bの距離は80mmであるので、13回の回折により、光路長Rは1040mmとなり、必要な光路長1000mm以上を確保でき、ガスセル3Aの大きさは、118×50×22.5mmと小型化される。
又、図2(E)に示すガスセル部3Bは、前記ガスセル部3Aと同様に、内部空間の形状が平面断面、長方形であり、相対する上下面に平面鏡5aと平面鏡5bが設けてあると共に、左右面にも、平面鏡5cと平面鏡5dが設けてある。
又、前記発光素子2の光を入光する入光孔10aとガスセルから出光する出光孔10bは、平面鏡5aと平面鏡5bのほぼ中心に設けてある。
そして、入光孔10aからの発光素子2の光は、ガスセル内部で、平面鏡5a、平面鏡5b、平面鏡5c及び平面鏡5dで反射を繰返して、出光孔10bから出射する。
又、前記発光素子2の光を入光する入光孔10aとガスセルから出光する出光孔10bは、平面鏡5aと平面鏡5bのほぼ中心に設けてある。
そして、入光孔10aからの発光素子2の光は、ガスセル内部で、平面鏡5a、平面鏡5b、平面鏡5c及び平面鏡5dで反射を繰返して、出光孔10bから出射する。
前記のように、ガスセル内部の全体に反射鏡を設けてあり、入光孔10aより入射した発光部素子からの光は、長方形ミラーを19回、回折して出光孔10bから出射し受光素子部で検出される。尚、この平面鏡5aと平面鏡5bの距離は55mmであるため19回の回折により光路長は1045mmとなり、必要な光路長1000mm以上を確保した。そして、このガス濃度検出装置の大きさは、79.5×45.6×13mmであり、ガスセル全体で反射するため、光の拡散もなく、ガス濃度検出装置より小型化できる。
以上のように、断面長方形のガスセル内の各面に平面鏡5a〜平面鏡5dを設ける構成であってもよく、この構成によると、更に、光路長Rを長くすることができる。
又、ガスセル内部を平面鏡5a、平面鏡5b、平面鏡5c及び平面鏡5dで全体を反射ミラーに構成すると、後述する円周鏡18の場合と異なり、光の拡散がない。
又、ガスセル内部を平面鏡5a、平面鏡5b、平面鏡5c及び平面鏡5dで全体を反射ミラーに構成すると、後述する円周鏡18の場合と異なり、光の拡散がない。
(第2の実施の形態)
本実施の形態は、図3に示すように、ガスセル部3(3B)の形状が円筒体状である光学式ガス濃度検出装置である。図3(A)は光学式ガス濃度検出装置の平面図、(B)は正面図、図8(C)はC〜C’断面図である。
ガスセル部3は円筒上であり、このガスセル本体3aの上には、発光素子を備える発光素子部2と受光素子を備える受光素子部4が取り付けてある。
本実施の形態は、図3に示すように、ガスセル部3(3B)の形状が円筒体状である光学式ガス濃度検出装置である。図3(A)は光学式ガス濃度検出装置の平面図、(B)は正面図、図8(C)はC〜C’断面図である。
ガスセル部3は円筒上であり、このガスセル本体3aの上には、発光素子を備える発光素子部2と受光素子を備える受光素子部4が取り付けてある。
前記ガスセル本体3aには、円筒筒状の空間8が形成してあり、底面11には開口部が形成してあると共に、その開口部の全周に渡って密閉性を備えるテフロン(登録商標)製等のガスケット20が取り付けてある。
一方、前記空間8の上部には、光を透過可能な材質の副蓋12が固定してあると共に、その副蓋12の上には、空間8に向ける方向に入光孔10aと出光孔10bが形成の主蓋13が固定してある。
又、前記空間8の側面には、全反射する円周鏡18が全周に設けてあると共に、前記入光孔10aからの光を水平に変更する入光傾斜鏡(45゜の反射鏡)15aと、空間8内で多重反射させた後の光を出光孔10bに導く出光傾斜鏡15bが、円周鏡18が一体で設けてある。
一方、前記空間8の上部には、光を透過可能な材質の副蓋12が固定してあると共に、その副蓋12の上には、空間8に向ける方向に入光孔10aと出光孔10bが形成の主蓋13が固定してある。
又、前記空間8の側面には、全反射する円周鏡18が全周に設けてあると共に、前記入光孔10aからの光を水平に変更する入光傾斜鏡(45゜の反射鏡)15aと、空間8内で多重反射させた後の光を出光孔10bに導く出光傾斜鏡15bが、円周鏡18が一体で設けてある。
次に、前記光学式ガス濃度検出装置を、ここでは、人の腕から発生するガス濃度の検知についての作用を説明する。
先ず、前記底面11をガス濃度を測定する腕の上に当てると、ガスケット20が腕と密着して空間8は密閉状態になる。そして、時間が経つと、腕から発生するガスは空間8に捕集されるので、発光素子部2の光を入光孔10aから出射する。この光は、入光傾斜鏡15aで反射されて水平光になり、図3(D)に示すように、複数回、円周鏡18で回折し、出光傾斜鏡15bに導かれる。そして、この出光傾斜鏡15bによって、光は垂直方向に変更されて、出光孔10bから受光素子部4に入り、ガス濃度が測定される。
先ず、前記底面11をガス濃度を測定する腕の上に当てると、ガスケット20が腕と密着して空間8は密閉状態になる。そして、時間が経つと、腕から発生するガスは空間8に捕集されるので、発光素子部2の光を入光孔10aから出射する。この光は、入光傾斜鏡15aで反射されて水平光になり、図3(D)に示すように、複数回、円周鏡18で回折し、出光傾斜鏡15bに導かれる。そして、この出光傾斜鏡15bによって、光は垂直方向に変更されて、出光孔10bから受光素子部4に入り、ガス濃度が測定される。
尚、具体的には、前記円周鏡18で回折する回数は、35回であり、円周鏡18の直径は30mmであるので、光路長は1050mmとなり、必要な光路長1000mm以上を確保できる。又、このガス濃度検出装置の大きさは、直径58φ×21.9mm(H)であり、前記第1の実施の形態の長方形状のガスセルに比して、小型化ができる。
又、この円周鏡18を用いて反射させると、実際には光の幅を考慮しなければならず、一回の反射ごとに光の幅が広がっていく。そのため、すべての光が理論値通りの光路長を満たしているわけではなく、回折の度合いにより、光路長が長くなる部分や短くなる部分が存在する。よって、受光素子部4に入射する光の強度は光路長の長短を含む平均的な長さになっている。
又、この円周鏡18を用いて反射させると、実際には光の幅を考慮しなければならず、一回の反射ごとに光の幅が広がっていく。そのため、すべての光が理論値通りの光路長を満たしているわけではなく、回折の度合いにより、光路長が長くなる部分や短くなる部分が存在する。よって、受光素子部4に入射する光の強度は光路長の長短を含む平均的な長さになっている。
以上のように、空間8の形状が円形であると、更に、回折数を多く取ることができる。尚、前記円周鏡18での反射方向に対し、垂直方向に発光素子部2と受光素子部4を構成してあるので入光傾斜鏡15aと出光傾斜鏡15bが必要であるが、発光素子部2と受光素子部4が円周鏡18の反射方向と同じ方向であると、入光傾斜鏡15aと出光傾斜鏡15bは不要である。
又、この光学式ガス濃度検出装置は、空間8の底面11に開口部が形成してあるので、その開口部を、直接、測定部位に当てることによって、容易にガス試料捕集をすることができて、濃度測定を可能にする。
従って、従来のような試料ガス捕集手段からガスセル部までの試料ガスの運搬手段のプロセスを省くことができる。そのため、ガス試料の接ガス部の表面面積も少なく、漏れ箇所も少なく、測定誤差要因が減少し、且つ、小型化される。
又、この光学式ガス濃度検出装置は、空間8の底面11に開口部が形成してあるので、その開口部を、直接、測定部位に当てることによって、容易にガス試料捕集をすることができて、濃度測定を可能にする。
従って、従来のような試料ガス捕集手段からガスセル部までの試料ガスの運搬手段のプロセスを省くことができる。そのため、ガス試料の接ガス部の表面面積も少なく、漏れ箇所も少なく、測定誤差要因が減少し、且つ、小型化される。
(第3の実施の形態)
本実施の形態の光学式ガス濃度検出装置を図4を参照して説明する。図4(A)は構成図であり、(B)は正面断面図である。
本実施の形態は測定ガスを吸着剤で吸着させることを可能にし、この吸着後、昇温することで、脱着し、ガスセル内部に充満することで発生ガスよりもガス濃度を上げた状態で測定可能にするものである。
光学式ガス濃度検出装置は、上蓋40、ガスセル内を昇温可能にする温度調整機構25、ガスセル部30で構成してある。
温度調整機構25は、ガスセル部30の開口部31に載置して密閉する合成樹脂板の蓋体26と、この蓋体26の下面に貼着の吸着剤28と、蓋体26の上面に載置の発熱体29で構成してある。
従って、吸着剤28に吸着のガスは、発熱体29の熱で、吸着剤28から離散する。又、この温度調整機構25は上蓋40で覆われていて、通常は一体になっている。
尚、前記蓋体26は比較的耐薬品製が高く、ガス試料成分の表面吸着の起こり難い樹脂であるポリエーテルエーテルケトンで製作したが、同程度の性能の樹脂であるポリェニレンサルファイト樹脂、フッ化ビニリデン樹脂、ポリプロピレン樹脂等で製作してもよい。
本実施の形態の光学式ガス濃度検出装置を図4を参照して説明する。図4(A)は構成図であり、(B)は正面断面図である。
本実施の形態は測定ガスを吸着剤で吸着させることを可能にし、この吸着後、昇温することで、脱着し、ガスセル内部に充満することで発生ガスよりもガス濃度を上げた状態で測定可能にするものである。
光学式ガス濃度検出装置は、上蓋40、ガスセル内を昇温可能にする温度調整機構25、ガスセル部30で構成してある。
温度調整機構25は、ガスセル部30の開口部31に載置して密閉する合成樹脂板の蓋体26と、この蓋体26の下面に貼着の吸着剤28と、蓋体26の上面に載置の発熱体29で構成してある。
従って、吸着剤28に吸着のガスは、発熱体29の熱で、吸着剤28から離散する。又、この温度調整機構25は上蓋40で覆われていて、通常は一体になっている。
尚、前記蓋体26は比較的耐薬品製が高く、ガス試料成分の表面吸着の起こり難い樹脂であるポリエーテルエーテルケトンで製作したが、同程度の性能の樹脂であるポリェニレンサルファイト樹脂、フッ化ビニリデン樹脂、ポリプロピレン樹脂等で製作してもよい。
一方、直方体形状のガスセル部30内には、分析するガスを貯留する空間8が、平面視、長方形状に形成してあり、この空間8の上に前記温度調整機構25を吸着剤28を取り付けて固定する。また、このガスセル部30の底面11には開口部が形成してあると共に、端部にはテフロン(登録商標)製のガスケット20が取り付けてある。そして、空間8の側面には全面反射する平面鏡5aと平面鏡5bが相対して設けてあるか(図2(C)参照)、或は、図2(D)に示すように四面に全反射鏡が設けてある。
尚、前記全面反射の鏡の数に対応して、入光孔(図示略)と出光孔(図示略)が形成してあり、この入光孔と出光孔は長方形状の空間であるので、第1実施の形態における図2(C)(D)に示す位置であり、或は、長方形の全側面を反射鏡で構成する場合には図2(E)に示すようにほぼ中央である。
次に、前記構成の光学式ガス濃度検出装置は、先ず、ガスセル部30の底面11を測定する部位、例えば、人の腕の上に載置させると、底面11に形成の開口部に、腕から発生するガスが入り、そのガスは吸着剤28に吸着される。
次に、温度調整機構25に備えてある発熱体29によって、吸着剤28に吸着のガスは脱着するが、この時のガスセル内の試料ガス成分の濃度は元の試料ガス濃度の数倍から数十倍である。
次に、発光素子部2からの光を入光孔から空間8内に入射させると、平面鏡5aと平面鏡5b(或は、四面に設けた全反射鏡)で複数回、回折して、その光は出光孔から受光素子部4に入射し、ガス濃度を測定する。
次に、温度調整機構25に備えてある発熱体29によって、吸着剤28に吸着のガスは脱着するが、この時のガスセル内の試料ガス成分の濃度は元の試料ガス濃度の数倍から数十倍である。
次に、発光素子部2からの光を入光孔から空間8内に入射させると、平面鏡5aと平面鏡5b(或は、四面に設けた全反射鏡)で複数回、回折して、その光は出光孔から受光素子部4に入射し、ガス濃度を測定する。
以上のように、光学式ガス濃度検出装置は吸着剤を備えているので、薄いガス濃度であっても、時間を経ることにより量的には多量のガスを捕集することが可能となり、この捕集されたガスは温度調整機構25を介して容易に脱着することにより検出感度を向上させて測定することができる。
2 発光素子部
3 ガスセル部
4 受光素子部
5a 平面鏡
5b 平面鏡
8 空間
10a 入光孔
10b 出光孔
11 底面
15a 入光傾斜鏡
15b 出光傾斜鏡
18 円周鏡
3 ガスセル部
4 受光素子部
5a 平面鏡
5b 平面鏡
8 空間
10a 入光孔
10b 出光孔
11 底面
15a 入光傾斜鏡
15b 出光傾斜鏡
18 円周鏡
Claims (6)
- 特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光して、ガス濃度を検出するガス濃度検出装置において、
前記ガスセルの相対する内面を鏡面で形成し、前記特定波長の光を前記ガスセル内で多重反射させることを特徴とするガス濃度検出装置。 - 特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光して、ガス濃度を検出するガス濃度検出装置において、
円筒状に形成の前記ガスセルの内面を鏡面で形成し、前記特定波長の入光を前記ガスセル内で多重反射させた後に出光させることを特徴とするガス濃度検出装置。 - 特定波長の光を特定ガスが存在するガスセルに入光し、そのガスセルからの出光を受光して、ガス濃度を検出するガス濃度検出装置において、
円筒状に形成の前記ガスセルの内面を鏡面で形成し、
前記特定波長の光を受け入れて前記ガスセル内に向けて反射するために、前記ガスセルの側部に入光傾斜鏡を設置し、
前記ガスセル内で多重反射させた後の出光を得るために、前記ガスセルの側部に出光傾斜鏡を設置することを特徴とするガス濃度検出装置。 - ガスセルの底面を開口状に形成して、発生する特定ガスをガスセルに取り入れることを特徴とする請求項1から請求項3のいずれか1項のガス濃度検出装置。
- ガスセル内に吸着剤を備えることを特徴とする請求項4のガス濃度検出装置。
- ガスセル内を昇温可能にする温度調整機構を備えることを特徴とする請求項5のガス濃度検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003388440A JP2005147962A (ja) | 2003-11-18 | 2003-11-18 | 光学式ガス濃度検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003388440A JP2005147962A (ja) | 2003-11-18 | 2003-11-18 | 光学式ガス濃度検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005147962A true JP2005147962A (ja) | 2005-06-09 |
Family
ID=34695514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003388440A Pending JP2005147962A (ja) | 2003-11-18 | 2003-11-18 | 光学式ガス濃度検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005147962A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010074280A1 (en) | 2008-12-25 | 2010-07-01 | Canon Kabushiki Kaisha | Analysis apparatus |
US7807061B2 (en) | 2006-07-19 | 2010-10-05 | Denso Corporation | Optical gas concentration detector and method of producing structure used in the detector |
CN102297839A (zh) * | 2011-05-20 | 2011-12-28 | 中国科学院电工研究所 | 一种用于吸收光谱测定的气体吸收池 |
CN104111226A (zh) * | 2014-08-07 | 2014-10-22 | 中国科学院上海微系统与信息技术研究所 | 一种小体积长光程的气体检测用光学腔体 |
WO2014192674A1 (ja) | 2013-05-29 | 2014-12-04 | 株式会社Nttドコモ | 皮膚ガス測定装置および皮膚ガス測定方法 |
CN104568831A (zh) * | 2014-12-18 | 2015-04-29 | 武汉六九传感科技有限公司 | 一种光电气体传感器及检测装置 |
JP2018509598A (ja) * | 2015-01-19 | 2018-04-05 | インテグリス・インコーポレーテッド | 赤外線および紫外線を監視するための小容積、長経路長のマルチパスガスセル |
JP2019066475A (ja) * | 2017-10-03 | 2019-04-25 | 株式会社堀場製作所 | 多重反射セル、ガス分析装置、及び多重反射セル用ミラーの製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152788A (ja) * | 1974-05-29 | 1975-12-09 | ||
US4041932A (en) * | 1975-02-06 | 1977-08-16 | Fostick Moshe A | Method for monitoring blood gas tension and pH from outside the body |
JPS6191542A (ja) * | 1984-10-12 | 1986-05-09 | Ngk Insulators Ltd | 直結形非分散赤外線ガス分析計 |
JPS6191155U (ja) * | 1984-11-19 | 1986-06-13 | ||
JPH08184557A (ja) * | 1994-12-28 | 1996-07-16 | Tokyo Gas Co Ltd | 光式ガス検知装置 |
JPH08313430A (ja) * | 1995-05-18 | 1996-11-29 | Nippon Telegr & Teleph Corp <Ntt> | ガスセンサ |
JPH0949793A (ja) * | 1995-08-07 | 1997-02-18 | Fuji Electric Co Ltd | 多重反射形試料セル |
JP2000338040A (ja) * | 1999-05-25 | 2000-12-08 | Nippon Telegr & Teleph Corp <Ntt> | ガス濃縮分析方法および装置 |
JP2003014637A (ja) * | 2001-06-29 | 2003-01-15 | Ishikawajima Harima Heavy Ind Co Ltd | So3濃度計測装置 |
JP2003021595A (ja) * | 2000-08-22 | 2003-01-24 | Nippon Telegr & Teleph Corp <Ntt> | ガス分光分析用微小フローセルおよびその製造方法 |
-
2003
- 2003-11-18 JP JP2003388440A patent/JP2005147962A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152788A (ja) * | 1974-05-29 | 1975-12-09 | ||
US4041932A (en) * | 1975-02-06 | 1977-08-16 | Fostick Moshe A | Method for monitoring blood gas tension and pH from outside the body |
JPS6191542A (ja) * | 1984-10-12 | 1986-05-09 | Ngk Insulators Ltd | 直結形非分散赤外線ガス分析計 |
JPS6191155U (ja) * | 1984-11-19 | 1986-06-13 | ||
JPH08184557A (ja) * | 1994-12-28 | 1996-07-16 | Tokyo Gas Co Ltd | 光式ガス検知装置 |
JPH08313430A (ja) * | 1995-05-18 | 1996-11-29 | Nippon Telegr & Teleph Corp <Ntt> | ガスセンサ |
JPH0949793A (ja) * | 1995-08-07 | 1997-02-18 | Fuji Electric Co Ltd | 多重反射形試料セル |
JP2000338040A (ja) * | 1999-05-25 | 2000-12-08 | Nippon Telegr & Teleph Corp <Ntt> | ガス濃縮分析方法および装置 |
JP2003021595A (ja) * | 2000-08-22 | 2003-01-24 | Nippon Telegr & Teleph Corp <Ntt> | ガス分光分析用微小フローセルおよびその製造方法 |
JP2003014637A (ja) * | 2001-06-29 | 2003-01-15 | Ishikawajima Harima Heavy Ind Co Ltd | So3濃度計測装置 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7807061B2 (en) | 2006-07-19 | 2010-10-05 | Denso Corporation | Optical gas concentration detector and method of producing structure used in the detector |
WO2010074280A1 (en) | 2008-12-25 | 2010-07-01 | Canon Kabushiki Kaisha | Analysis apparatus |
JP2010169658A (ja) * | 2008-12-25 | 2010-08-05 | Canon Inc | 分析装置 |
US8698085B2 (en) | 2008-12-25 | 2014-04-15 | Canon Kabushiki Kaisha | Analysis apparatus |
CN102297839A (zh) * | 2011-05-20 | 2011-12-28 | 中国科学院电工研究所 | 一种用于吸收光谱测定的气体吸收池 |
WO2014192674A1 (ja) | 2013-05-29 | 2014-12-04 | 株式会社Nttドコモ | 皮膚ガス測定装置および皮膚ガス測定方法 |
CN104111226A (zh) * | 2014-08-07 | 2014-10-22 | 中国科学院上海微系统与信息技术研究所 | 一种小体积长光程的气体检测用光学腔体 |
CN104568831A (zh) * | 2014-12-18 | 2015-04-29 | 武汉六九传感科技有限公司 | 一种光电气体传感器及检测装置 |
JP2018509598A (ja) * | 2015-01-19 | 2018-04-05 | インテグリス・インコーポレーテッド | 赤外線および紫外線を監視するための小容積、長経路長のマルチパスガスセル |
US10451540B2 (en) | 2015-01-19 | 2019-10-22 | Entegris, Inc. | Multi-pass gas cell with mirrors in openings of cylindrical wall for IR and UV monitoring |
JP2019066475A (ja) * | 2017-10-03 | 2019-04-25 | 株式会社堀場製作所 | 多重反射セル、ガス分析装置、及び多重反射セル用ミラーの製造方法 |
JP7050639B2 (ja) | 2017-10-03 | 2022-04-08 | 株式会社堀場製作所 | 多重反射セル、ガス分析装置、及び多重反射セル用ミラーの製造方法 |
JP2022079586A (ja) * | 2017-10-03 | 2022-05-26 | 株式会社堀場製作所 | 多重反射セル、ガス分析装置、及び多重反射セルの構成方法 |
JP7094467B2 (ja) | 2017-10-03 | 2022-07-01 | 株式会社堀場製作所 | 多重反射セル、ガス分析装置、及び多重反射セルの構成方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3674689B1 (en) | Gas analyzer and gas analyzing method | |
EP2711688B1 (en) | Measuring unit and gas analyzing apparatus | |
US20140211209A1 (en) | Gas analysis apparatus | |
KR101635656B1 (ko) | 고농도 기체의 스펙트럼 분석에 적합한 장치 | |
JP2005233958A (ja) | ガスセンサ構造 | |
FI107194B (fi) | Kaasuseosten analysointi infrapunamenetelmällä | |
US6989549B2 (en) | Optical gas sensor | |
JP2001503865A (ja) | 新規な多重ガスndir分析器 | |
WO2016170681A1 (ja) | 光学測定装置 | |
FI95322C (fi) | Spektroskooppinen mittausanturi väliaineiden analysointiin | |
KR100597138B1 (ko) | 유체 분석용 셀 및 이를 사용한 분석 장치 | |
JP2005147962A (ja) | 光学式ガス濃度検出装置 | |
KR101803676B1 (ko) | 컴팩트형 비분산 적외선 가스 분석장치 | |
EP3321664B1 (en) | Functional water concentration sensor | |
JP2011169633A (ja) | ガス濃度算出装置およびガス濃度計測モジュール | |
US20220236174A1 (en) | Optical Measuring Assembly and Gas Sensor Comprising Same | |
JP2004053405A (ja) | インラインガス分析計 | |
JP2004294214A (ja) | ガス検出装置 | |
FI130319B (en) | Method and apparatus for measuring the spectrum of a gas sample | |
JP2019510213A (ja) | 溶液中の物質の吸光度を測定する装置および方法 | |
JP2006275641A (ja) | 分光式ガスセンサ | |
WO1998040720A1 (en) | Cuvette for spectrophotometrical analysis | |
JPH07198590A (ja) | ガスセルを用いたガスセンサー | |
US7852472B1 (en) | Systems and methods for spectroscopy using opposing laser beams | |
CN212459390U (zh) | 气体检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090926 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100112 |