WO2018235567A1 - オクタフルオロシクロペンテンの製造方法 - Google Patents

オクタフルオロシクロペンテンの製造方法 Download PDF

Info

Publication number
WO2018235567A1
WO2018235567A1 PCT/JP2018/021235 JP2018021235W WO2018235567A1 WO 2018235567 A1 WO2018235567 A1 WO 2018235567A1 JP 2018021235 W JP2018021235 W JP 2018021235W WO 2018235567 A1 WO2018235567 A1 WO 2018235567A1
Authority
WO
WIPO (PCT)
Prior art keywords
octafluorocyclopentene
ether
glycol
aprotic polar
polar solvent
Prior art date
Application number
PCT/JP2018/021235
Other languages
English (en)
French (fr)
Inventor
杉本 達也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US16/612,759 priority Critical patent/US10710946B2/en
Priority to KR1020197036265A priority patent/KR102567382B1/ko
Priority to CN201880032039.8A priority patent/CN110637001B/zh
Priority to JP2019525317A priority patent/JP7147757B2/ja
Publication of WO2018235567A1 publication Critical patent/WO2018235567A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/204Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/208Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being MX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/08Monocyclic halogenated hydrocarbons with a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a process for the preparation of octafluorocyclopentene.
  • the present invention relates to a process for producing 1,2,3,3,4,4,5,5-octafluorocyclopentene by fluorinating 1-chloroheptafluorocyclopentene.
  • 1,2,3,3,4,4,5,5-octafluorocyclopentene is an etching and chemical vapor deposition (CVD) process that can be performed in the manufacturing process of semiconductor devices.
  • octafluorocyclopentene is an etching and chemical vapor deposition (CVD) process that can be performed in the manufacturing process of semiconductor devices.
  • CVD chemical vapor deposition
  • octafluorocyclopentene is an etching and chemical vapor deposition (CVD) process that can be performed in the manufacturing process of semiconductor devices.
  • CVD chemical vapor deposition
  • Patent Document 1 1,2-dichlorohexafluorocyclopentene, 1,2,3-trichloroheptafluorocyclopentene obtained by fluorination of hexachlorocyclopentadiene with anhydrous hydrogen fluoride, and A mixture of compounds containing two or more chlorine atoms consisting of 5-tetrachlorotetrafluorocyclopentene is fluorinated with potassium fluoride in an N, N-dimethylformamide solvent to obtain octafluorocyclopentene in a yield of 93.1%. Is described.
  • Patent Document 2 using 1,2-dichlorohexafluorocyclopentene as a raw material, using potassium fluoride as a fluorinating agent in an N, N-dimethylformamide solvent, the dropping speed of the raw material, and the product octafluoro It is described that the reaction was carried out while adjusting the withdrawal speed of cyclopentene to obtain octafluorocyclopentene in a yield of 87.8%.
  • Patent Document 3 1-chloroheptafluorocyclopentene, 1,2-dichlorohexafluorocyclopentene, trichloropentacene obtained by fluorination in a gas phase with anhydrous hydrogen fluoride using octachlorocyclopentene as a starting material.
  • a mixture of fluorocyclopentene, tetrachlorotetrafluorocyclopentene and pentachlorotrifluorocyclopentene is fluorinated with potassium fluoride to give octafluorocyclopentene in 90% yield.
  • Patent Document 4 a raw material containing 1-chloroheptafluorocyclopentene as a main component is fluorinated with potassium fluoride in an N, N-dimethylformamide solvent to obtain octafluorocyclopentene in a yield of 87%.
  • Patent Document 5 heating is performed using potassium fluoride as a fluorinating agent in a mixed solvent of N, N-dimethylformamide and benzene which is a nonpolar solvent, using 1-chloroheptafluorocyclopentene as a raw material. It is described that by performing refluxing, octafluorocyclopentene was obtained in a yield of 72%.
  • Non-Patent Document 1 octachlorocyclopentene is used as a raw material, and fluorination is carried out using potassium fluoride as a fluorinating agent in an N-methylpyrrolidone solvent to obtain octafluorocyclopentene in a yield of 72%.
  • an object of this invention is to provide the manufacturing method which can fully improve the yield of octafluoro cyclopentene.
  • the inventor focused on a fluorination step of contacting 1-chloroheptafluorocyclopentene with an alkali metal fluoride to fluorinate 1-chloroheptafluorocyclopentene. More specifically, when the present inventors perform such a fluorination step, in accordance with the method described in Patent Document 2 or Patent Document 3, fluorine is supplied while supplying 1-chloroheptafluorocyclopentene as a raw material into the reactor. The reaction was carried out with an alkali metal fluoride as an agent to try out the obtained octafluorocyclopentene from the reactor.
  • 1,2-dichlorohexafluorocyclopentene which is used as a raw material, has a boiling point of 90 ° C. and a chlorine number larger than that of 1,2-dichlorohexafluorocyclopentene.
  • the boiling point of the compound is above 90.degree.
  • the boiling point of the mixture which contains multiple types of these compounds is also over 90 degreeC.
  • the inventor of the present invention performs the fluorination step in a liquid phase containing a mixed solvent of an aprotic polar solvent and a solvent satisfying a specific attribute to reduce the internal temperature.
  • the inventors have newly found that they can be effectively suppressed, and completed the present invention.
  • the present invention is aimed at advantageously solving the above-mentioned problems, and a method for producing octafluorocyclopentene according to the present invention comprises contacting 1-chloroheptafluorocyclopentene with an alkali metal fluoride to prepare octafluorocyclopentene.
  • C A suspension obtained by suspending the alkali metal fluoride in a mixed solvent containing an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent.
  • the yield of octafluorocyclopentene can be sufficiently increased.
  • the "boiling point" of various solvents means the boiling point under 1 atm.
  • the volume ratio of the glycol ether in the mixed solvent is 10% by volume or more and 30% by volume or less with respect to 100% by volume of the aprotic polar solvent. Is preferred. If the volume ratio of glycol ether in the mixed solvent is 10% by volume or more and 30% by volume or less with respect to 100% by volume of the aprotic polar solvent, the yield of octafluorocyclopentene is further improved and the fluorination step Can promote the fluorination reaction in In addition, in this specification, a "volume ratio" means the volume ratio in 23 degreeC.
  • the aprotic polar solvent is preferably N, N-dimethylformamide or N, N-dimethylacetamide. If the aprotic polar solvent is N, N-dimethylformamide or N, N-dimethylacetamide, the yield of octafluorocyclopentene can be further enhanced.
  • the glycol ether is preferably a dialkyl ether of polyethylene glycol or a dialkyl ether of polypropylene glycol. If the glycol ether is a dialkyl ether of polyethylene glycol or a dialkyl ether of polypropylene glycol, the temperature drop of the suspension in the fluorination step is effectively suppressed to further enhance the production efficiency and yield of octafluorocyclopentene. be able to.
  • the glycol ether contains at least one of diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and dipropylene glycol dimethyl ether. . If the glycol ether contains any of the above, the temperature drop of the suspension in the fluorination step can be effectively suppressed to further enhance the production efficiency and yield of octafluorocyclopentene.
  • the method for producing octafluorocyclopentene of the present invention (hereinafter sometimes referred to simply as the “production method of the present invention” or the like) is not particularly limited, and includes a reactor and a distillation column or a rectification column. It can be suitably carried out with known production equipment.
  • the suspension formed by suspending the alkali metal fluoride in a mixed solvent containing an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent is maintained at 85 ° C. or higher.
  • the production method of the present invention fluorination using a suspension of an alkali metal fluoride prepared using a mixed solvent containing an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent As the process is carried out, octafluorocyclopentene can be produced in high yield. Furthermore, the production method of the present invention may include a preparation step prior to the fluorination step. In the following, various elements such as raw materials, mixed solvents, and alkali metal fluorides that can be used in the production method of the present invention will be described in detail, and one example of various steps that can be included in the production method of the present invention will be described.
  • 1-chloroheptafluorocyclopentene is used as a raw material.
  • the preparation of 1-chloroheptafluorocyclopentene follows known methods. For example, according to US Pat. No. 3,567,788, 1,2-dichlorohexafluorocyclopentene is fluorinated with anhydrous potassium fluoride under dimethysulfoxide solvent to give 1-chloroheptafluoro in a yield of 74%. I am getting cyclopentene.
  • polychlorofluorocyclopentene such as 4-tetrachlorotetrafluorocyclopentene and 1,2,3,3,4-pentachlorotrifluorocyclopentene as a raw material
  • aromatic hydrocarbons such as N, N-dimethylformamide and toluene
  • the compound is fluorinated with potassium fluoride in a mixed solvent of to give 1-chloroheptafluorocyclopentene in a maximum yield of 89.1%.
  • the mixed solvent used in the process of the present invention comprises an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent.
  • a mixed solvent obtained by mixing a glycol ether having a boiling point higher than that of the aprotic solvent with respect to the aprotic polar solvent the decrease in the temperature of the suspension in the fluorination step is effectively suppressed. can do.
  • the temperature of the suspension formed by suspending the fluorinating agent is If it decreases, the rate of the fluorination reaction decreases. As the rate of the fluorination reaction decreases, the proportion of unreacted starting materials in the reaction system increases. As a result, the unreacted raw material is vaporized as it is without being fluorinated, moves into a recovery mechanism such as a rectification column, and is easily recovered together with the reaction product obtained in the fluorination step.
  • the mixed solvent may contain a third solvent other than the aprotic polar solvent and the glycol ether having a boiling point higher than that of the aprotic polar solvent.
  • an amide-based solvent can be suitably used as the aprotic polar solvent.
  • the amide solvent is not particularly limited, and N-methylformamide (boiling point: 197 ° C.), N, N-dimethylformamide (boiling point: 153 ° C.), N, N-diethylformamide (boiling point: 177 ° C.), Acetamide (boiling point: 222 ° C.), N, N-dimethylacetamide (boiling point: 165 ° C.), N, N-diethylacetamide (boiling point: 185 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.), and N, N- Dimethylimidazolidinone (boiling point: 225 ° C.) can be mentioned.
  • linear amide solvents such as N, N-diethylacetamide are preferable, and N, N-dimethylformamide and N, N-dimethylacetamide which are industrially easily available are particularly preferable.
  • the aprotic polar solvent can be used singly or in combination of two or more kinds, but it is preferable to use one kind alone since the preparation in carrying out the production method of the present invention is easy. .
  • the total volume of the mixture is 100% by volume, preferably more than 50% by volume, more preferably more than 80% by volume, particularly preferably 90% by volume
  • the excess may be occupied by one type of solvent ("major aprotic polar solvent") which is the main component of the aprotic polar solvent mixture.
  • major aprotic polar solvent the main component of the aprotic polar solvent mixture.
  • the aprotic polar solvent comprises a mixture of a plurality of solvents
  • the boiling point of the glycol ether used in combination with the aprotic polar solvent needs to be at least higher than the boiling point of the main aprotic polar solvent.
  • the total amount of the plurality of glycol ethers is 100% by volume, preferably more than 50% by volume, Preferably more than 80% by volume, particularly preferably more than 90% by volume, may be occupied by one of the main components of glycol ethers ("main glycol ether").
  • main glycol ether main glycol ether
  • the boiling point of the main glycol ether needs to be higher than the boiling point of the main aprotic polar solvent.
  • the aprotic polar solvent preferably has a boiling point of 140 ° C. or more, and preferably 150 ° C. or more.
  • the boiling point of the aprotic polar solvent is equal to or higher than the above lower limit, the yield of octafluorocyclopentene can be further sufficiently enhanced, and the production efficiency of octafluorocyclopentene can be enhanced.
  • the amount of the aprotic polar solvent used is preferably 1.0 ml or more, more preferably 1.2 ml or more, and preferably 1.5 ml or less, per 1 g of 1-chloroheptafluorocyclopentene as the raw material. Is preferred.
  • the amount of the aprotic polar solvent used is at least the above lower limit, the viscosity of the suspension excessively increases, and 1-chloroheptafluorocyclopentene and alkali metal fluoride are added in the liquid phase in the fluorination step.
  • the fluorination reaction efficiency in a fluorination process can be raised by raising the ease of stirring at the time of stirring in order to make Hb contact, and improving contact efficiency of these further.
  • industrial economic efficiency can be improved if the usage-amount of aprotic polar solvent is below the said upper limit.
  • glycol ether a compound having a boiling point higher than that of the aprotic polar solvent used in combination is used.
  • glycol ethers include, but are not limited to, dialkyl ethers of polyethylene glycol and dialkyl ethers of polypropylene glycol. If the glycol ether is a dialkyl ether of polyethylene glycol or a dialkyl ether of polypropylene glycol, the temperature drop of the suspension in the fluorination step is effectively suppressed to further enhance the production efficiency and yield of octafluorocyclopentene. Can.
  • the carbon number of the alkyl group of the dialkyl ether of polyethylene glycol is preferably 4 or less.
  • the carbon number of the alkyl group of the dialkyl ether of polypropylene glycol is preferably 2 or less.
  • the dialkyl ether of polyethylene glycol diethylene glycol dimethyl ether (boiling point: 162 ° C.), diethylene glycol diethyl ether (boiling point: 188 ° C.), diethylene glycol ethyl methyl ether (boiling point: 179 ° C.), diethylene glycol dibutyl ether (boiling point: 255) ° C), triethylene glycol dimethyl ether (boiling point: 216 ° C.), triethylene glycol diethyl ether (boiling point:> 216 ° C.), tetraethylene glycol dimethyl ether (boiling point: 276 ° C.), tetraethylene glycol diethyl ether (boiling point:> 276 ° C.) Etc.
  • dialkyl ethers of polypropylene glycol examples include dipropylene glycol dimethyl ether (boiling point: 175 ° C.), dipropylene glycol diethyl ether (boiling point:> 175 ° C.), tripropylene glycol dimethyl ether (boiling point:> 241 ° C.), and the like.
  • the glycol ether one type can be used alone, or two or more types can be used in combination, but it is preferable to use one type alone since preparation is easy when carrying out the production method of the present invention.
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and dipropylene glycol dimethyl ether are more preferable in terms of industrial availability.
  • the glycol ether contains any of the above, the temperature drop of the suspension in the fluorination step can be effectively suppressed to further enhance the production efficiency and yield of octafluorocyclopentene. .
  • the glycol ether preferably has a boiling point of 150 ° C. or higher, and more preferably 160 ° C. or higher. Furthermore, the boiling point of the glycol ether is preferably 5 ° C. or more higher, more preferably 7 ° C. or more higher than the boiling point of the aprotic polar solvent used in combination.
  • the temperature drop of the suspension in the fluorination step is effective As well as being able to sufficiently enhance the yield of octafluorocyclopentene, the production efficiency of octafluorocyclopentene can be enhanced.
  • the upper limit of the difference between the boiling point of the glycol ether and the boiling point of the aprotic polar solvent is not particularly limited, and may be 200 ° C. or less.
  • the volume ratio of glycol ether in the mixed solvent is preferably 10% by volume or more, more preferably 15% by volume or more, with respect to 100% by volume of all aprotic polar solvents contained in the mixed solvent, and 30% by volume It is preferable that it is the following and it is more preferable that it is 25 volume% or less. If the volume ratio of glycol ether is the above lower limit value or more, the effect of suppressing the temperature decrease of the suspension in the fluorination step can be exhibited more favorably, and the yield of octafluorocyclopentene can be further improved. .
  • the volume ratio of glycol ether is equal to or less than the above upper limit value
  • an amount of alkali metal fluoride that can promote the fluorination reaction in the fluorination step can be dissolved in the aprotic polar solvent.
  • the mixed solvent contains a plurality of aprotic polar solvents and / or a plurality of glycol ethers
  • the total content of the aprotic polar solvents and the total content of glycol ethers Preferably, the above-mentioned volume ratio is satisfied.
  • the mixed solvent used in the fluorination step needs to contain an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent.
  • the combination of the aprotic polar solvent and the glycol ether is not particularly limited, and N, N-dimethylformamide / diethylene glycol dimethyl ether, N, N-dimethylformamide / diethylene glycol diethyl ether, N, N-dimethylformamide / trily Ethylene glycol dimethyl ether, N, N-dimethylformamide / tetraethylene glycol dimethyl ether, N, N-dimethylformamide / dipropylene glycol dimethyl ether, N, N-dimethylacetamide / diethylene glycol diethyl ether, N, N-dimethylacetamide / triethylene glycol dimethyl ether N, N-dimethylacetamide / tetraethylene glycol dimethylether
  • N, N-dimethylformamide / triethylene glycol dimethyl ether N, N-dimethylformamide / tetraethylene glycol dimethyl ether
  • N, N-dimethylacetamide / triethylene glycol dimethyl ether N, N-dimethylacetamide / tetraethylene glycol
  • the combination of dimethyl ether, N, N-dimethyl acetamide / dipropylene glycol dimethyl ether is preferred from the viewpoint of reactivity.
  • the aprotic polar solvent and glycol ether which are used for preparation of a mixed solvent are to which the drying process was performed in advance.
  • the drying method is not particularly limited, and any conventional method can be used.
  • a desiccant is added to the used aprotic polar solvent / glycol ether and left for a predetermined time, and / or dried Methods such as recovering by flowing an aprotic polar solvent / glycol ether to a column packed with the agent may be mentioned.
  • Alkali metal fluoride The alkali metal fluoride is partially dissolved in the mixed solvent of the above composition, and the remainder is dispersed to form a suspension. Then, the alkali metal fluoride in the suspension functions as a raw material fluorinating agent in the production method of the present invention.
  • the alkali metal fluoride include potassium fluoride and cesium fluoride. Among them, potassium fluoride is preferably used because it is industrially inexpensive. These can be used singly or in combination of two or more.
  • the thing of the powdery thing dried as possible is preferable from a reactive viewpoint, and a spray-dried product is more preferable. Spray-dried alkali metal fluorides tend to have a larger specific surface area than conventional alkali metal fluorides that have not been subjected to spray-drying treatment, and are highly dispersible.
  • the amount of the alkali metal fluoride used is preferably in the range of 1.0 molar equivalent or more and 2.0 molar equivalents or less relative to 1-chloroheptafluorocyclopentene which is the raw material, and is 1.1 molar equivalent or more and 1.5 molar equivalents The following range is more preferable.
  • a production apparatus capable of suitably carrying out the production method of the present invention may be an apparatus in which a rectification column is installed on the upper part of a reactor provided with a stirrer and a raw material feed pump. Furthermore, at the outlet of the rectification column, a receiver for collecting octafluorocyclopentene as a reaction product may be installed. Furthermore, a cooling pipe for refluxing is installed at the top of the rectification column, and a refrigerant in a temperature range of -20 ° C to 0 ° C can be circulated.
  • a manufacturing method of the present invention is carried out by a manufacturing apparatus of such composition.
  • ⁇ Preparation process> for example, an alkali metal fluoride, an aprotic polar solvent, and a glycol ether are charged into the reactor, and the reactor is heated, and the alkali metal fluoride is added in the reactor A suspension is prepared which is suspended in the mixed solvent. Then, the temperature of the suspension in the reactor is preferably set to 115 ° C. or higher by the start of the supply of 1-chloroheptafluorocyclopentene which is the raw material. In addition, it is preferable that the temperature of the suspension at the time of a raw material supply start time shall be 130 degrees C or less.
  • the fluorination reaction in the subsequent fluorination step can be promoted by setting the temperature of the suspension at the time of starting the feed of the raw material to the above lower limit value or more. Further, by setting the temperature of the suspension at the start of the raw material to the upper limit value or less, due to the low boiling point of 1-chloroheptafluorocyclopentene which is the raw material, the rectification column installed at the upper part of the reactor The concentration of 1-chloroheptafluorocyclopentene at the top of the column can be suppressed to improve the yield of octafluorocyclopentene.
  • ⁇ Fluorination process-recovery process> In the fluorination step, while maintaining the suspension in the reactor obtained in the above preparation step at 85 ° C. or higher, the raw material 1-chloroheptafluorocyclopentene is supplied to the suspension to be fluorinated. Thus, octafluorocyclopentene is obtained. Specifically, first, 1-chloroheptafluorocyclopentene, which is a raw material, is supplied into the reactor using a pump or the like. The feed rate of 1-chloroheptafluorocyclopentene is preferably in the range of 0.4 to 0.7 g / min.
  • the time required for the fluorination step can be shortened to further improve the production efficiency of octafluorocyclopentene.
  • the feed rate is below the upper limit value, the decrease in temperature in the reactor due to the addition of 1-chloroheptafluorocyclopentene is effectively suppressed, and the fluorination reaction rate in the fluorination step is Can be effectively suppressed. This can further improve the yield of octafluorocyclopentene.
  • the raw material 1-chloroheptafluorocyclopentene supplied to the suspension it is not necessary to cool or heat the raw material 1-chloroheptafluorocyclopentene supplied to the suspension.
  • the raw material 1-chloroheptafluorocyclopentene can be supplied to the reactor at the temperature corresponding to the room temperature or the ambient temperature.
  • the temperature at the time of supply of 1-chloroheptafluorocyclopentene, which is a raw material is preferably about 50 ° C. or less from the viewpoint of suppressing volatilization and stably supplying.
  • the reaction time (required time) in the fluorination step is preferably 6 to 30 hours, and more preferably 7 to 15 hours, depending on the size of the reactor used and the scale of the reaction. If the reaction time is too short, the conversion of the raw material 1-chloroheptafluorocyclopentene will be poor, resulting in a decrease in the yield of octafluorocyclopentene, while if the reaction time is too long, energy costs will be wasted.
  • an optional purification step may be performed.
  • purification treatment such as distillation purification is performed on octafluorocyclopentene collected in the receiver. In this way, the purity of the product obtained in the fluorination step can be further increased.
  • the pressure means gauge pressure.
  • the volumes of various solvents charged in the preparation step were each measured at 23 ° C.
  • the yield of octafluorocyclopentene obtained in Examples and Comparative Examples is the yield of octafluorocyclopentene determined by gas chromatography analysis according to the following conditions with respect to the amount of 1-chloroheptafluorocyclopentene as a raw material added. Calculated as a ratio.
  • Example 1 Preparation process> Alkali to a 500 ml glass reactor equipped with a stirrer, rectification column (manufactured by Toshina Seiki, column length: 30 cm, packing material: Helipak No. 1), liquid transfer pump (manufactured by Yamazen, QT-150) Spray-dried potassium fluoride (33.7 g) as metal fluoride, 150 ml of dry N, N-dimethylformamide as aprotic polar solvent, diethylene glycol dimethyl ether as glycol ether having a boiling point higher than that of aprotic polar solvent 30 ml dried with molecular sieve 5A), immersed in an oil bath and warmed to 120 ° C., and the contents were stirred to obtain a suspension.
  • rectification column manufactured by Toshina Seiki, column length: 30 cm, packing material: Helipak No. 1
  • liquid transfer pump manufactured by Yamazen, QT-150
  • Spray-dried potassium fluoride (33.7 g) as metal fluor
  • the temperature of the suspension and the temperature of the top of the rectification column were monitored by a thermocouple attached in such a manner that the temperature of the suspension in the reactor and the temperature of the top of the rectification column could be measured.
  • a refrigerant of -10 ° C. was circulated and circulated in the condenser of the rectification column.
  • the feed start rate of the raw material was 0.62 g / min, and the raw material was fed over 3.25 hours while finely adjusting the feed rate during the raw material feed period.
  • the total feed of the raw material was 114.5 g.
  • the temperature of the suspension in the reactor was 90.4 ° C. at the lowest.
  • extraction of the product was started at a reflux ratio of 60 (temperature at the top of the rectification column: 26.6 ° C.). Thereafter, heating at 120 ° C. and extraction of the product at a reflux ratio of 60 are continued, and the temperature of the oil bath is 130 ° C. and 140 ° C. while observing the temperature at the top of the rectification column and the reflux condition. The temperature rose gradually.
  • Example 2 The same operation as in Example 1 was carried out except that diethylene glycol-dimethyl ether as glycol ether was changed to 30 ml of diethylene glycol diethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 100.9 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 3 The same operation as in Example 1 was carried out except that diethylene glycol-dimethyl ether as glycol ether was changed to 30 ml of triethylene glycol dimethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 102.1 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 4 The same operation as in Example 1 was carried out except that diethylene glycol-dimethyl ether as a glycol ether was changed to 45 ml of triethylene glycol dimethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 101.3 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 5 The same operation as in Example 1 was carried out except that diethylene glycol-dimethyl ether as glycol ether was changed to 30 ml of tetraethylene glycol dimethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 102.9 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 6 The same operation as in Example 1 was carried out except that diethylene glycol-dimethyl ether as a glycol ether was changed to 30 ml of dipropylene glycol dimethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 101.3 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 7 Dry N, N-dimethylformamide as aprotic polar solvent is changed to dry N, N-dimethylacetamide, diethylene glycol dimethyl ether as glycol ether having a boiling point higher than that of aprotic polar solvent, triethylene glycol dimethyl ether ( The same operation as in Example 1 was performed except that the catalyst was changed to molecular sieve 5A in advance.
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively.
  • the temperature at the top of the rectification column was 26.1 ° C.
  • Example 8 The same operation as in Example 7 was performed, except that triethylene glycol-dimethyl ether as glycol ether was changed to 30 ml of dipropylene glycol dimethyl ether (previously dried with molecular sieve 5A).
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively. Further, the total amount of the crude product recovered through the recovery step was 101.7 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 1 The same operation as in Example 1 was performed except that diethylene glycol dimethyl ether, which was a glycol ether having a boiling point higher than that of the aprotic polar solvent, was not added.
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively.
  • About 2 hours after starting the extraction of the product the temperature at the top of the rectification column rose to 30.7 ° C., and the extraction had to be interrupted temporarily.
  • the total amount of crude product recovered through the recovery step was 101.4 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 2 The same operation as in Example 7 was carried out except that the glycol ether triethylene glycol dimethyl ether was not added.
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively.
  • About 1.2 hours after starting the extraction of the product the temperature at the top of the rectification column rose to 28.3 ° C., and the extraction had to be interrupted temporarily.
  • the total amount of crude product recovered through the recovery step was 102.8 g.
  • Table 1 The results of calculating the yield of the target product in the same manner as in Example 1 are shown in Table 1.
  • Example 3 It is carried out except that 30 ml (previously dried with molecular sieve 5A) of ethylene glycol dimethyl ether (boiling point: 84 ° C.) having a boiling point lower than that of the aprotic polar solvent N, N-dimethylformamide is used as the glycol ether.
  • the reaction was carried out as in Example 1.
  • the temperature of the suspension at the start of the feed of the raw material, the total feed amount of the raw material, and the minimum temperature of the suspension in the fluorination step were as shown in Table 1, respectively.
  • KF potassium fluoride
  • DMF N, N-dimethylformamide
  • DMA N, N-dimethylacetamide
  • Diglyme is diethylene glycol dimethyl ether
  • Diglyet is diethylene glycol diethyl ether
  • Triglyme is triethylene glycol dimethyl ether
  • Tetraglyme is tetraethylene glycol dimethyl ether
  • DPDME dipropylene glycol dimethyl ether
  • Glyme is ethylene glycol dimethyl ether
  • the minimum temperature of the suspension obtained by suspending the alkali metal fluoride in a mixed solvent of an aprotic polar solvent and a glycol ether having a boiling point higher than that of the aprotic polar solvent is 85 ° C.
  • Examples 1 to 8 in which the fluorination step of 1-chloroheptafluorocyclopentene was carried out as conditions not inferior it can be seen that the yield of octafluorocyclopentene could be sufficiently increased.
  • Comparative Examples 1 and 2 in which a suspension containing no glycol ether was used the yield could not be sufficiently increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1-クロロヘプタフルオロシクロペンテンをアルカリ金属フッ素化物と接触させてオクタフルオロシクロペンテンを得る製造方法である。かかる製造方法は、非プロトン性極性溶媒、及び当該非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む混合溶媒中に、アルカリ金属フッ素化物が懸濁してなる懸濁液を85℃以上に維持しつつ、当該懸濁液に対して1-クロロヘプタフルオロシクロペンテンを供給してフッ素化してオクタフルオロシクロペンテンを得るフッ素化工程を含む。

Description

オクタフルオロシクロペンテンの製造方法
 本発明は、オクタフルオロシクロペンテンの製造方法に関するものである。特に、本発明は、1-クロロヘプタフルオロシクロペンテンをフッ素化して、1,2,3,3,4,4,5,5-オクタフルオロシクロペンテンを製造する製造方法に関するものである。
 1,2,3,3,4,4,5,5-オクタフルオロシクロペンテン(以下、「オクタフルオロシクロペンテン」とも称する)は、半導体装置の製造工程で行われうるエッチング及び化学気相成長法(CVD:Chemical Vapour Deposition)等におけるプラズマ反応用のガスとして、或いは、含フッ素医薬中間体及びフォトクロミック分子材料等の原料として有用である。中でも、高純度化されたオクタフルオロシクロペンテンは、特に、半導体装置の製造工程にて用いられうる、プラズマエッチングガス及びCVD用ガス等として、好適に使用されうる。
 近年、幾つかのオクタフルオロシクロペンテンの製造方法が提案されてきた。例えば、特許文献1では、ヘキサクロロシクロペンタジエンを無水フッ化水素によりフッ素化して得られた、1,2-ジクロロヘキサフルオロシクロペンテン、1,2,3-トリクロロヘプタフルオロシクロペンテン、及び1,2,3,5-テトラクロロテトラフルオロシクロペンテンから成る塩素原子を2つ以上含む化合物の混合物を、N,N-ジメチルホルムアミド溶媒下にフッ化カリウムによりフッ素化し、オクタフルオロシクロペンテンを収率93.1%で得たとの記載がなされている。
 特許文献2では、1,2-ジクロロヘキサフルオロシクロペンテンを原料に用い、N,N-ジメチルホルムアミド溶媒下、フッ化カリウムをフッ素化剤に用いて、原料の滴下速度と、生成物であるオクタフルオロシクロペンテンの抜出し速度を調整しながら反応を行い、オクタフルオロシクロペンテンを収率87.8%で得たと記載されている。
 特許文献3では、オクタクロロシクロペンテンを出発原料に用いて、無水フッ化水素により気相中でフッ素化されて得られた、1-クロロヘプタフルオロシクロペンテン、1,2-ジクロロヘキサフルオロシクロペンテン、トリクロロペンタフルオロシクロペンテン、テトラクロロテトラフルオロシクロペンテン、及びペンタクロロトリフルオロシクロペンテンの混合物を、フッ化カリウムによりフッ素化し、オクタフルオロシクロペンテンを収率90%で得ている。
 特許文献4では、1-クロロヘプタフルオロシクロペンテンを主成分とする原料をN,N-ジメチルホルムアミド溶媒下、フッ化カリウムによりフッ素化し、収率87%でオクタフルオロシクロペンテンを得ている。
 特許文献5では、1-クロロヘプタフルオロシクロペンテンを原料に用いて、N,N-ジメチルホルムアミドと、無極性溶媒であるベンゼンとの混合溶媒下に、フッ化カリウムをフッ素化剤に用いて、加熱還流を行うことで、オクタフルオロシクロペンテンを収率72%で得られたとの記載がなされている。
 非特許文献1では、オクタクロロシクロペンテンを原料に用いて、N-メチルピロリドン溶媒下に、フッ素化剤にフッ化カリウムを用いてフッ素化し、オクタフルオロシクロペンテンを収率72%で得ている。
国際公開第1997/043233号 特開平9-95458号公報 特開2006-151998号公報 特開2001-247493号公報 米国特許第3,567,788号明細書
John T. Maynard, "Journal of Organic Chemistry", 1963, vol. 28, p. 112-115
 ここで、近年、上記したような用途にて好適に用いられうるオクタフルオロシクロペンテンの製造方法に関して、高収率化することの必要性が高まりつつある。しかし、上述したような従来から提案されてきた種々の製造方法では、オクタフルオロシクロペンテンの収率を十分に高めることができなかった。
 そこで、本発明は、オクタフルオロシクロペンテンの収率を十分に高めることができる、製造方法を提供することを目的とする。
 そこで、まず、本発明者は、1-クロロヘプタフルオロシクロペンテンをフッ素化するために、1-クロロヘプタフルオロシクロペンテンをアルカリ金属フッ素化物と接触させるフッ素化工程に着目した。より具体的には、本発明者は、かかるフッ素化工程を行うに当たり、特許文献2又は特許文献3に記載の方法に従って、原料としての1-クロロヘプタフルオロシクロペンテンを反応器内に供給しながらフッ素化剤としてのアルカリ金属フッ素化物と反応させて、得られたオクタフルオロシクロペンテンを反応器から取り出す手法を試した。その結果、原料としての1-クロロヘプタフルオロシクロペンテンを反応器内に継続的に供給していくと、反応器内(反応内容物)の温度が徐々に低下する傾向があることを見出した。さらに詳細には、本発明者は、内温がおおよそ85℃未満に低下すると、炭素-塩素結合の、炭素-フッ素結合への変換速度が非常に遅くなることで、目的生成物のオクタフルオロシクロペンテンの収率低下を招くことを突き止めた。
 本発明者は、反応器内における1-クロロヘプタフルオロシクロペンテン及びアルカリ金属フッ素化物の反応中の温度、即ち、内温が低下する一因が、1-クロロヘプタフルオロシクロペンテンの沸点が56℃と低いことにあると推定した。ここで、例えば、特許文献1及び2にて、原料として用いられている、1,2-ジクロロヘキサフルオロシクロペンテンは沸点が90℃であり、1,2-ジクロロヘキサフルオロシクロペンテンよりも塩素数が多い化合物の沸点は、90℃超である。なお、これらの化合物を複数種含む混合物の沸点も90℃超である。従って、引用文献1及び2に開示されたような、液相でのフッ素化工程を想定した場合に、反応溶媒とアルカリ金属フッ素化物との懸濁液に対して、原料としての1-クロロヘプタフルオロシクロペンテンが接触すれば、従来のように1,2-ジクロロヘキサフルオロシクロペンテンを原料として用いた場合と比較して、気化熱等の影響が大きく、内温を下げる効果が大きいと考えられる。そして、上記したように、内温が低下するとフッ素化工程におけるフッ素化反応の速度が非常に遅くなるため、反応系中に未反応の1-クロロヘプタフルオロシクロペンテンが多く残留するようになり、目的生成物である、オクタフルオロシクロペンテンと共に、反応器から取り出され易くなる。よって、オクタフルオロシクロペンテンの収率が低下する虞がある。
 ところで、内温の低下によるフッ素化反応速度の低下を抑制するための方策として、原料である1-クロロヘプタフルオロシクロペンテンの反応器への供給速度を遅くすることが考えられる。しかし、原料供給速度を遅くすれば、フッ素化工程の所要時間が非常に長くなるので、生産性の低下を招いてしまうので、現実的な方策ではない。
 また、別の方策として、内温の初期設定値を高くすることが考えられる。しかし、原料である1-クロロヘプタフルオロシクロペンテンを反応器に供給すれば、やはり、上記したように、1-クロロヘプタフルオロシクロペンテンの低沸点に起因して内温の低下を引き起こし、ひいては、オクタフルオロシクロペンテンの収率を低下させると想定される。
 さらにまた、別の方策として、フッ素化工程中における反応器の加熱により、内温を調節することも考えられる。しかし、内温の変動に合わせて反応器の加熱温度を調節して内温が常に所望の値となるように制御することは、非常に困難であり、非現実的である。
 以上のような状況に鑑み、本発明者は、フッ素化工程を、非プロトン性極性溶媒、及び特定の属性を満たす溶媒の混合溶媒を含む液相中にて行うことで、内温の低下を効果的に抑制可能であることを新たに見出し、本発明を完成させた。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明のオクタフルオロシクロペンテンの製造方法は、1-クロロヘプタフルオロシクロペンテンをアルカリ金属フッ素化物と接触させてオクタフルオロシクロペンテンを得る製造方法であって、非プロトン性極性溶媒、及び前記非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む混合溶媒中に、前記アルカリ金属フッ素化物が懸濁してなる懸濁液を85℃以上に維持しつつ、前記懸濁液に対して1-クロロヘプタフルオロシクロペンテンを供給してフッ素化してオクタフルオロシクロペンテンを得るフッ素化工程と、前記フッ素化工程にて生成された前記オクタフルオロシクロペンテンを回収する回収工程とを含むことを特徴とする。かかる製造方法によれば、オクタフルオロシクロペンテンの収率を十分に高めることができる。
 なお、本明細書において、各種溶媒の「沸点」は、1気圧下での沸点を意味する。
 また、本発明のオクタフルオロシクロペンテンの製造方法において、前記混合溶媒中における前記グリコールエーテルの体積割合が、前記非プロトン性極性溶媒100体積%に対して、10体積%以上30体積%以下であることが好ましい。混合溶媒中におけるグリコールエーテルの体積割合が、非プロトン性極性溶媒100体積%に対して、10体積%以上30体積%以下であれば、オクタフルオロシクロペンテンの収率を一層向上させるとともに、フッ素化工程におけるフッ素化反応を促進することができる。
 なお、本明細書において、「体積割合」は、23℃での体積割合を意味する。
 また、本発明のオクタフルオロシクロペンテンの製造方法において、前記非プロトン性極性溶媒が、N,N-ジメチルホルムアミド、又はN,N-ジメチルアセトアミドであることが好ましい。非プロトン性極性溶媒が、N,N-ジメチルホルムアミド、又はN,N-ジメチルアセトアミドであれば、オクタフルオロシクロペンテンの収率を一層高めることができる。
 また、本発明のオクタフルオロシクロペンテンの製造方法において、前記グリコールエーテルが、ポリエチレングリコールのジアルキルエーテル、又は、ポリプロピレングリコールのジアルキルエーテルであることが好ましい。グリコールエーテルがポリエチレングリコールのジアルキルエーテル、又は、ポリプロピレングリコールのジアルキルエーテルであれば、フッ素化工程における懸濁液の温度低下を効果的に抑制して、オクタフルオロシクロペンテンの製造効率及び収率を一層高めることができる。
 また、本発明のオクタフルオロシクロペンテンの製造方法において、前記グリコールエーテルが、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、及びジプロピレングリコールジメチルエーテルのうちの少なくとも一種を含むことが好ましい。グリコールエーテルが上記のうちの何れかを含んでいれば、フッ素化工程における懸濁液の温度低下を効果的に抑制して、オクタフルオロシクロペンテンの製造効率及び収率を一層高めることができる。
 以下、本発明の実施形態について詳細に説明する。本発明のオクタフルオロシクロペンテンの製造方法(以下、単に「本発明の製造方法」等と称することもある)は、特に限定されることなく、反応器と、蒸留塔又は精留塔と、を備える既知の製造装置にて、好適に実施することができる。
 本発明の製造方法は、非プロトン性極性溶媒、及び非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む混合溶媒中に、アルカリ金属フッ素化物が懸濁してなる懸濁液を85℃以上に維持しつつ、懸濁液に対して1-クロロヘプタフルオロシクロペンテンを供給してフッ素化してオクタフルオロシクロペンテンを得るフッ素化工程と、かかるフッ素化工程にて生成されたオクタフルオロシクロペンテンを回収する回収工程とを含むことを特徴とする。そして、本発明の製造方法では、非プロトン性極性溶媒、及び非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む混合溶媒を用いて調製したアルカリ金属フッ素化物の懸濁液を用いたフッ素化工程を実施するので、高収率でオクタフルオロシクロペンテンを製造することができる。さらに、本発明の製造方法は、フッ素化工程の前段に準備工程を含みうる。
 以下、本発明の製造方法にて使用しうる原料、混合溶媒、及びアルカリ金属フッ素化物等の各種要素について詳述したうえで、本発明の製造方法に含まれうる各種工程の一例を説明する。
[原料]
 本発明の製造方法では、原料として1-クロロヘプタフルオロシクロペンテンを用いる。1-クロロヘプタフルオロシクロペンテンの調製法は、既知の方法に従う。例えば、米国特許第3,567,788号によれば、1,2-ジクロロヘキサフルオロシクロペンテンを、ジメチスルホキシド溶媒下に、無水フッ化カリウムでフッ素化して、収率74%で1-クロロヘプタフルオロシクロペンテンを得ている。また、特開2001-240568号公報によれば、1,2-ジクロロヘキサフルオロシクロペンテン、1,2,3-トリクロロペンタフルオロシクロペンテン、1,2,4-トリクロロペンタフルオロシクロペンテン、1,2,3,4-テトラクロロテトラフルオロシクロペンテン、及び1,2,3,3,4-ペンタクロロトリフルオロシクロペンテンなどのポリクロロフルオロシクロペンテンを原料に、N,N-ジメチルホルムアミドとトルエンのような芳香族炭化水素との混合溶媒下、フッ化カリウムにてフッ素化し、1-クロロヘプタフルオロシクロペンテンが最高収率89.1%で得られている。さらにまた、特開2001-261594号公報によれば、1,1-ジクロロオクタフルオロシクロペンタンを原料に用いて、銅、錫、ビスマスなどの遷移金属を主成分とするパラジウム合金触媒下、水素還元を行うことで、最高収率95.6%で、1-クロロヘプタフルオロシクロペンテンが得られている。
[混合溶媒]
 本発明の製造方法にて使用する混合溶媒は、非プロトン性極性溶媒、及びかかる非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む。非プロトン性極性溶媒に対して、当該非プロトン性溶媒よりも高沸点のグリコールエーテルを混合して得た混合溶媒を用いることで、フッ素化工程における懸濁液の温度の低下を効果的に抑制することができる。ここで、液相中にて原料である1-クロロヘプタフルオロシクロペンテンをフッ素化剤であるアルカリ金属フッ素化物と接触させてフッ素化する場合、フッ素化剤が懸濁してなる懸濁液の温度が低下すれば、フッ素化反応の速度が低下する。フッ素化反応の速度が低下すると、反応系中における未反応の原料の存在比率が高くなる。その結果、未反応の原料がフッ素化されることなくそのまま気化して、精留塔等の回収機構内へと移動し、フッ素化工程で得られた反応生成物と共に回収され易くなる。そこで、本発明の製造方法にて使用する混合溶媒を上記のような組成とすることで、フッ素化工程における懸濁液の温度の低下を効果的に抑制して、フッ素化工程にて、反応速度の低下を抑制して1-クロロヘプタフルオロシクロペンテンを効率的にフッ素化してオクタフルオロシクロペンテンを生成することができる。よって、かかるフッ素化工程を含む本発明の製造方法によれば、高収率でオクタフルオロシクロペンテンを生成することができるとともに、反応速度の低下抑制効果により製造効率を高めることができる。なお、混合溶媒は、非プロトン性極性溶媒、及びかかる非プロトン性極性溶媒よりも高沸点のグリコールエーテル以外の、第三の溶媒を含んでいても良い。
-非プロトン性極性溶媒-
 非プロトン性極性溶媒としては、アミド系溶媒を好適に使用することができる。アミド系溶媒としては、特に限定されることなく、N-メチルホルムアミド(沸点:197℃)、N,N-ジメチルホルムアミド(沸点:153℃)、N,N-ジエチルホルムアミド(沸点:177℃)、アセトアミド(沸点:222℃)、N,N-ジメチルアセトアミド(沸点:165℃)、N,N-ジエチルアセトアミド(沸点:185℃)、N-メチルピロリドン(沸点:202℃)、及びN,N-ジメチルイミダゾリジノン(沸点:225℃)、を挙げることができる。これらの中でも、オクタフルオロシクロペンテンの収率を一層高めることが可能である点に鑑みて、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド、及びN,N-ジエチルアセトアミドのような直鎖状アミド系溶媒が好ましく、とりわけ工業的に入手が容易な、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドがより好ましい。非プロトン性極性溶媒は、一種を単独で、或いは複数種を併用して用いることができるが、本発明の製造方法を実施する際の仕込みが容易であるため、一種を単独で用いることが好ましい。
 なお、非プロトン性極性溶媒が複数種の溶媒の混合物よりなる場合には、かかる混合物全体を100体積%として、好ましくは50体積%超、より好ましくは80体積%超、特に好ましくは90体積%超が、非プロトン性極性溶媒混合物の主成分である一種の溶媒(「主たる非プロトン性極性溶媒」)により占有されうる。また、非プロトン性極性溶媒が複数種の溶媒の混合物よりなる場合には、これらと併用されるグリコールエーテルの沸点が、少なくとも主たる非プロトン性極性溶媒の沸点よりも高いことを必要とする。さらにまた、本発明の製造方法にて使用する混合溶媒が複数種のグリコールエーテル類を含有する場合には、かかる複数種のグリコールエーテル類全体を100体積%として、好ましくは50体積%超、より好ましくは80体積%超、特に好ましくは90体積%超が、グリコールエーテル類の主成分である一種(「主たるグリコールエーテル」)により占有されうる。そして、少なくとも、主たるグリコールエーテルの沸点が、主たる非プロトン性極性溶媒の沸点よりも高いことを必要とする。
 非プロトン性極性溶媒は、沸点が140℃以上であることが好ましく、150℃以上であることが好ましい。非プロトン性極性溶媒の沸点が上記下限値以上であれば、オクタフルオロシクロペンテンの収率を一層十分に高めることができると共に、オクタフルオロシクロペンテンの製造効率を高めることができる。
 非プロトン性極性溶媒の使用量は、原料である、1-クロロヘプタフルオロシクロペンテン1g当たり、1.0ml以上であることが好ましく、1.2ml以上であることがより好ましく、1.5ml以下であることが好ましい。非プロトン性極性溶媒の使用量を上記下限値以上とすれば、懸濁液の粘度が過度に上昇し、フッ素化工程にて液相中にて1-クロロヘプタフルオロシクロペンテンとアルカリ金属フッ素化物とを接触させるために撹拌する際の撹拌容易性を高めて、これらの接触効率を一層向上させることにより、フッ素化工程におけるフッ素化反応効率を高めることができる。また、非プロトン性極性溶媒の使用量を上記上限値以下とすれば、工業的な経済性を向上させることができる。
-グリコールエーテル-
 グリコールエーテルとしては、併用する非プロトン性極性溶媒よりも沸点の高い化合物が用いられる。グリコールエーテルとしては、特に限定されることなく、ポリエチレングリコールのジアルキルエーテル、及びポリプロピレングリコールのジアルキルエーテルなどを挙げることができる。グリコールエーテルがポリエチレングリコールのジアルキルエーテル、又はポリプロピレングリコールのジアルキルエーテルであれば、フッ素化工程における懸濁液の温度低下を効果的に抑制して、オクタフルオロシクロペンテンの製造効率及び収率を一層高めることができる。なお、ポリエチレングリコールのジアルキルエーテルのアルキル基の炭素数は4以下であることが好ましい。また、ポリプロピレングリコールのジアルキルエーテルのアルキル基の炭素数は2以下であることが好ましい。具体的には、ポリエチレングリコールのジアルキルエーテルとしては、ジエチレングリコールジメチルエーテル(沸点:162℃)、ジエチレングリコールジエチルエーテル(沸点:188℃)、ジエチレングリコールエチルメチルエーテル(沸点:179℃)、ジエチレングリコールジブチルエーテル(沸点:255℃)、トリエチレングリコールジメチルエーテル(沸点:216℃)、トリエチレングリコールジエチルエーテル(沸点:>216℃)、テトラエチレングリコールジメチルエーテル(沸点:276℃)、テトラエチレングリコールジエチルエーテル(沸点:>276℃)などが挙げられる。ポリプロピレングリコールのジアルキルエーテルとしては、ジプロピレングリコールジメチルエーテル(沸点:175℃)、ジプロピレングリコールジエチルエーテル(沸点:>175℃)、トリプロピレングリコールジメチルエーテル(沸点:>241℃)などを挙げることができる。グリコールエーテルとしては、一種を単独で、或いは複数種を併用して用いることができるが、本発明の製造方法を実施する際の仕込みが容易であるため、一種を単独で用いることが好ましい。
 これらの中でも、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、及びジプロピレングリコールジメチルエーテルが、工業的に入手容易な点でより好ましい。また、グリコールエーテルが上記のうちの何れかを含んでいれば、フッ素化工程における懸濁液の温度低下を効果的に抑制して、オクタフルオロシクロペンテンの製造効率及び収率を一層高めることができる。
 グリコールエーテルは、沸点が150℃以上であることが好ましく、160℃以上であることが好ましい。さらに、グリコールエーテルの沸点が、併用する非プロトン性極性溶媒の沸点よりも、5℃以上高いことが好ましく、7℃以上高いことがより好ましい。グリコールエーテルの沸点が上記下限値以上、及び/又は、グリコールエーテルの沸点と非プロトン性極性溶媒の沸点との差分が上記下限値以上であれば、フッ素化工程における懸濁液の温度低下を効果的に抑制して、オクタフルオロシクロペンテンの収率を一層十分に高めることができると共に、オクタフルオロシクロペンテンの製造効率を高めることができる。なお、グリコールエーテルの沸点と、非プロトン性極性溶媒の沸点との差分の上限値は、特に限定されることなく、200℃以下であり得る。
 混合溶媒中におけるグリコールエーテルの体積割合は、混合溶媒に含まれる全非プロトン性極性溶媒100体積%に対して、10体積%以上が好ましく、15体積%以上であることがより好ましく、30体積%以下であることが好ましく、25体積%以下であることがより好ましい。グリコールエーテルの体積割合が上記下限値以上であれば、フッ素化工程での懸濁液の温度低下を抑制する効果を一層良好に発揮して、オクタフルオロシクロペンテンの収率を一層向上させることができる。また、グリコールエーテルの体積割合が上記上限値以下であれば、フッ素化工程におけるフッ素化反応を促進しうる程度の量のアルカリ金属フッ化物を非プロトン性極性溶媒に対して溶解させることができる。なお、混合溶媒が複数種の非プロトン性極性溶媒、及び/又は、複数種のグリコールエーテル類を含む場合には、非プロトン性極性溶媒の合計含有量と、グリコールエーテル類の合計含有量との間で、上記体積割合が満たされることが好ましい。
 上述したように、本発明においては、フッ素化工程にて用いる混合溶媒が、非プロトン性極性溶媒及び当該非プロトン性極性溶媒よりも沸点の高いグルコールエーテルを含むことが必要である。非プロトン性極性溶媒とグリコールエーテルとの組み合わせとしては、特に限定されることなく、N,N-ジメチルホルムアミド/ジエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド/ジエチレングリコールジエチルエーテル、N,N-ジメチルホルムアミド/トリエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド/テトラエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド/ジプロピレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/ジエチレングリコールジエチルエーテル、N,N-ジメチルアセトアミド/トリエチレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/テトラエチレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/ジプロピレングリコールジメチルエーテル、などの組み合わせを挙げることができる。これらの中でも、N,N-ジメチルホルムアミド/トリエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド/テトラエチレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/トリエチレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/テトラエチレングリコールジメチルエーテル、N,N-ジメチルアセトアミド/ジプロピレングリコールジメチルエーテルの組み合わせが、反応性の観点で好ましい。
 なお、混合溶媒の調製に用いる非プロトン性極性溶媒及びグリコールエーテルは、事前に乾燥処理を施されたものであることが好ましい。乾燥方法としては、特に限定されることなく、常法に従うことができるが、例えば、用いる非プロトン性極性溶媒/グリコールエーテルに対して乾燥剤を添加して所定時間放置する、及び/又は、乾燥剤を充填したカラムに対して非プロトン性極性溶媒/グリコールエーテルを流して回収する、等の方法が挙げられる。
[アルカリ金属フッ素化物]
 アルカリ金属フッ素化物は、上記のような組成の混合溶媒中にて、一部が溶解し、残りが分散して、懸濁液を構成する。そして、かかる懸濁液中のアルカリ金属フッ素化物が、本発明の製造方法にて、原料のフッ素化剤として機能する。アルカリ金属フッ化物としては、例えば、フッ化カリウム及びフッ化セシウムが挙げられる。中でも、フッ化カリウムが工業的に安価であるため、好適に使用される。これらは、一種を単独で、又は複数種を併用して用いることができる。また、アルカリ金属フッ化物の形態としては、可能な限り乾燥された粉末状のものが反応性の観点で好ましく、スプレードライ品がより好ましい。アルカリ金属フッ素化物のスプレードライ品は、スプレードライ処理を経ていない通常の市販品にかかるアルカリ金属フッ素化物よりも、比表面積が大きい傾向があり、分散性に富む。
 アルカリ金属フッ化物の使用量としては、原料である1-クロロヘプタフルオロシクロペンテンに対し、1.0モル当量以上2.0モル当量以下の範囲が好ましく、1.1モル当量以上1.5モル当量以下の範囲がより好ましい。アルカリ金属フッ化物の使用量を上記下限値以上とすることで、フッ素化工程にて未反応の1-クロロヘプタフルオロシクロオペンテンが残留することを十分に抑制して、オクタフルオロシクロペンテンの収率を一層向上させることができる。また、アルカリ金属フッ化物の使用量を上記上限値以下とすることで、フッ素化反応後の反応器内の固形分量が過度に多くなることを抑制して、反応器内からの固形分の払い出しを容易にすることができる。
 次に、本発明の製造方法に含まれうる各種工程の一例を説明する。例えば、本発明の製造方法を好適に実施することができる製造装置は、撹拌機、原料供給ポンプを付した反応器の上部に、精留塔を据え付けてなる装置でありうる。さらに、精留塔の抜き出し口には反応生成物であるオクタフルオロシクロペンテンを捕集する受器が設置されうる。さらにまた、精留塔の上部には還流を行うための冷却管が据え付けられ、-20℃~0℃の温度範囲の冷媒を循環させうる。以下、本発明の製造方法が、かかる構成の製造装置により実施されるものとして、各種工程の一例を説明する。
<準備工程>
 まず、準備工程では、例えば、反応器内に、アルカリ金属フッ化物、非プロトン性極性溶媒、及びグリコールエーテルを仕込み、反応器を加温して、かかる反応器内にて、アルカリ金属フッ素化物が混合溶媒中に懸濁してなる懸濁液を調製する。そして、原料である1-クロロヘプタフルオロシクロペンテンの供給開始の時点までに、反応器内の懸濁液の温度を115℃以上とすることが好ましい。なお、原料供給開始時点における懸濁液の温度は、130℃以下とすることが好ましい。原料供給開始時点における懸濁液の温度を上記下限値以上とすることで、後続するフッ素化工程におけるフッ素化反応を促進することができる。また、原料開始時点における懸濁液の温度を上記上限値以下とすることで、原料である1-クロロヘプタフルオロシクロペンテンの低沸点に起因して、反応器の上部に据え付けられた精留塔の塔頂部に1-クロロヘプタフルオロシクロペンテンが濃縮することを抑制して、オクタフルオロシクロペンテンの収率を向上させることができる。
<フッ素化工程~回収工程>
 フッ素化工程では、上記準備工程で得られた反応器内の懸濁液を85℃以上に維持しつつ、かかる懸濁液に対して原料である1-クロロヘプタフルオロシクロペンテンを供給してフッ素化してオクタフルオロシクロペンテンを得る。具体的には、まず、原料である1-クロロヘプタフルオロシクロペンテンを、ポンプ等を使用して反応器内に供給する。1-クロロヘプタフルオロシクロペンテンの供給速度としては、0.4~0.7g/分の範囲が好ましい。供給速度が上記下限値以上であれば、フッ素化工程の所要時間を短縮して、オクタフルオロシクロペンテンの製造効率を一層向上させることができる。また、供給速度が上記上限値以下であれば、反応器内の温度が1-クロロヘプタフルオロシクロペンテンの添加に起因して低下することを効果的に抑制して、フッ素化工程におけるフッ素化反応速度の低下を効果的に抑制することができる。これにより、オクタフルオロシクロペンテンの収率を一層向上させることができる。
 また、懸濁液に対して供給される、原料である1-クロロヘプタフルオロシクロペンテンに対して、冷却又は加熱を行う必要はない。換言すると、原料である1-クロロヘプタフルオロシクロペンテンは、室温又は外気温に相当する温度のまま、反応器に対して供給されうる。なお、原料である1-クロロヘプタフルオロシクロペンテンの供給時の温度は、揮発を抑制して安定的に供給する観点から、約50℃以下とすることが好ましい。
 そして、原料の1-クロロヘプタフルオロシクロペンテンの供給を開始した後、精留塔の塔頂温度が26~27℃に到達してから約30分後以降に、生成物の抜き出しを開始し、冷却した受器に捕集する(回収工程)。このように、回収工程では、フッ素化工程にて精製されたオクタフルオロシクロペンテンを回収することができる。生成物の抜き出しを開始してから、フッ素化工程における反応時間が経過するまでの間、生成物の抜き出しを継続するが、精留塔塔頂部の温度、還流具合に応じて、反応器の加温温度を徐々に上げていっても良い。このように、フッ素化工程と回収工程とは、フッ素化工程の開始後、所定時間経過した時点から、同時進行しうる。
 フッ素化工程における反応時間(所要時間)は用いる反応器の大きさや、反応実施の規模にもよるが、6~30時間が好ましく、7~15時間がより好ましい。反応時間が短すぎると原料1-クロロヘプタフルオロシクロペンテンの転化率が悪く、オクタフルオロシクロペンテンの収率低下を招き、一方、反応時間が長すぎるとエネルギーコストの無駄を生じる。
<精製工程>
 回収工程の後、任意で精製工程を実施しても良い。精製工程では、受器に捕集されたオクタフルオロシクロペンテンについて、蒸留精製等の精製処理を行う。このようにして、フッ素化工程にて得られた生成物の純度をさらに高めることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。なお、圧力はゲージ圧を意味する。また、実施例、比較例にて、準備工程で仕込んだ各種溶媒の体積は、それぞれ23℃にて測定した。さらにまた、実施例、比較例において得られたオクタフルオロシクロペンテンの収率は、原料である1-クロロヘプタフルオロシクロペンテンの添加量に対する、下記条件に従うガスクロマトグラフィー分析によって測定したオクタフルオロシクロペンテンの収量の比率として算出した。
<ガスクロマトグラフィー分析>
 実施例、比較例で得られた反応生成物について、以下の条件に従うガスクロマトグラフィー分析(GC分析)を行い、反応生成物中におけるオクタフルオロシクロペンテンの含有量を分析した。
 装置:HP-6890(アジレント社製)
 カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
 カラム温度:40℃で10分間保持し、次いで、20℃/分で昇温し、その後、240℃で10分間保持した。
 インジェクション温度:200℃
 キャリヤーガス:窒素
 スプリット比:100/1
 検出器:FID(Flame Ionization Detector)検出器
(実施例1)
<準備工程>
 撹拌機、精留塔(東科精機製、カラム長:30cm、充填剤:ヘリパックNo.1)、送液ポンプ(山善製、QT-150)を付した、容量500mlのガラス反応器に、アルカリ金属フッ素化物としてのスプレードライフッ化カリウム(33.7g)、非プロトン性極性溶媒としての乾燥N,N-ジメチルホルムアミド150ml、非プロトン性極性溶媒よりも高沸点のグリコールエーテルとしてのジエチレングリコールジメチルエーテル(あらかじめ、モレキュラーシーブ5Aで乾燥した)30mlを入れ、オイルバスに浸漬して120℃に加温し、内容物を撹拌し、懸濁液を得た。反応器内の懸濁液の温度、及び精留塔塔頂部の温度を測定可能な態様で取り付けられた熱電対により、懸濁液の温度及び精留塔塔頂部の温度をモニタリングした。また、精留塔のコンデンサーには-10℃の冷媒を流して循環させた。
<フッ素化工程~回収工程>
 反応器内の懸濁液の温度が117℃になったところで、原料としての1-クロロヘプタフルオロシクロペンテン(供給温度21℃)の反応器内への供給を開始した。原料の供給開始速度は0.62g/分とし、原料供給期間中、供給速度を微調整しつつ、3.25時間にわたって原料を供給した。原料の総供給量は114.5gであった。その間、反応器内の懸濁液の温度は最低で、90.4℃であった。原料の送液を開始してから約1.4時間後に、還流比60で生成物の抜出しを開始した(精留塔塔頂の温度:26.6℃)。その後も、120℃での加温と、還流比60での生成物の抜出しとを継続し、精留塔塔頂の温度、還流具合を見ながら、オイルバスの温度を130℃、140℃と段階的に昇温した。原料の供給を開始してから6時間後に、精留塔塔頂温度が下がり始めたので、オイルバスの温度を120℃まで下げ、精留塔の分留器にアスピレーターを接続し、系内を-0.09MPaの圧力で減圧して、ホールドアップ分を回収した。回収した粗生成物の総量は、101.6gで、ガスクロマトグラフィー分析の結果から、粗生成物中における目的生成物であるオクタフルオロシクロペンテンの含有量を得た。そして、得られた目的生成物の収量の、原料供給量に対する比率を算出した。結果を表1に示す。
(実施例2)
 グリコールエーテルとしてのジエチレングリコージメチルエーテルを、ジエチレングリコールジエチルエーテル30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、100.9gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例3)
 グリコールエーテルとしてのジエチレングリコージメチルエーテルを、トリエチレングリコールジメチルエーテル30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、102.1gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例4)
 グリコールエーテルとしてのジエチレングリコージメチルエーテルを、トリエチレングリコールジメチルエーテル45ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、101.3gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例5)
 グリコールエーテルとしてのジエチレングリコージメチルエーテルを、テトラエチレングリコールジメチルエーテル30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、102.9gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例6)
 グリコールエーテルとしてのジエチレングリコージメチルエーテルを、ジプロピレングリコールジメチルエーテル30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、101.3gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例7)
 非プロトン性極性溶媒としての乾燥N,N-ジメチルホルムアミドを、乾燥N,N-ジメチルアセトアミドに変更し、非プロトン性極性溶媒よりも高沸点のグリコールエーテルとしてのジエチレングリコールジメチルエーテルを、トリエチレングリコールジメチルエーテル(あらかじめ、モレキュラーシーブ5Aで乾燥した)に変更した以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。なお、原料の送液を開始してから約1.4時間後に、還流比60で生成物の抜出しを開始した時点における精留塔塔頂の温度は、26.1℃であった。また、回収工程を経て回収した粗生成物の総量は、101.9gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(実施例8)
 グリコールエーテルとしてのトリエチレングリコージメチルエーテルを、ジプロピレングリコールジメチルエーテル30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)に変更したこと以外は、実施例7と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。また、回収工程を経て回収した粗生成物の総量は、101.7gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(比較例1)
 非プロトン性極性溶媒よりも高沸点のグリコールエーテルであるジエチレングリコールジメチルエーテルを添加しなかったこと以外は、実施例1と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。生成物の抜出しを開始してから約2時間後に、精留塔塔頂部の温度が30.7℃まで上昇し、抜出しを一時中断せざるをえなかった。回収工程を経て回収した粗生成物の総量は、101.4gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(比較例2)
 グリコールエーテルであるトリエチレングリコールジメチルエーテルを添加しなかったこと以外は、実施例7と同様の操作を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。生成物の抜出しを開始してから約1.2時間後に、精留塔塔頂部の温度が28.3℃まで上昇し、抜出しを一時中断せざるをえなかった。回収工程を経て回収した粗生成物の総量は、102.8gであった。そして、実施例1と同様にして目的生成物の収率を算出した結果を表1に示す。
(比較例3)
 グリコールエーテルとして、非プロトン性極性溶媒であるN,N-ジメチルホルムアミドよりも沸点の低い、エチレングリコールジメチルエーテル(沸点:84℃)30ml(あらかじめ、モレキュラーシーブ5Aで乾燥)を用いたこと以外は、実施例1と同様にして反応を行った。なお、原料供給開始時の懸濁液の温度、原料の総供給量、及びフッ素化工程における懸濁液の最低温度は、それぞれ表1に示す通りであった。原料供給開始後、約20分後に、精留塔コンデンサー部での還流が始まったが、その温度は53.6℃であり、明らかに、原料である1-クロロヘプタフルオロシクロペンテンがほとんど反応せずに、気化していたことが分かる。さらに、1.5時間反応を継続しても、塔頂部の温度は48.2℃までしか下がらず、これ以上反応を継続しても、オクタフルオロシクロペンテンへ変換されにくいことが示唆されたために、実験を中止した。
 表1中、
 「KF」は、フッ化カリウムを、
 「DMF」は、N,N-ジメチルホルムアミドを、
 「DMA」は、N,N-ジメチルアセトアミドを、
 「Diglyme」は、ジエチレングリコールジメチルエーテルを、
 「Diglyet」は、ジエチレングリコールジエチルエーテルを、
 「Triglyme」は、トリエチレングリコールジメチルエーテルを、
 「Tetraglyme」は、テトラエチレングリコールジメチルエーテルを、
 「DPDME」は、ジプロピレングリコールジメチルエーテルを、
 「Glyme」は、エチレングリコールジメチルエーテルを、
それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、非プロトン性極性溶媒、及びかかる非プロトン性極性溶媒よりも高沸点のグリコールエーテルとの混合溶媒中にアルカリ金属フッ素化物を懸濁して得た懸濁液を最低温度が85℃を下回らない条件として、1-クロロヘプタフルオロシクロペンテンのフッ素化工程を実施した実施例1~8では、オクタフルオロシクロペンテンの収率を十分に高めることができたことが分かる。
 一方、グリコールエーテル類を含有しない懸濁液を用いた比較例1~2では、収率を十分に高めることができなかったことが分かる。
 また、グリコールエーテルとして、非プロトン性極性溶媒よりも沸点の低いグリコールエーテルを用いて調製した懸濁液を用いた比較例3では、1-クロロヘプタフルオロシクロペンテンのフッ素化工程を安定して進行させることができなかったことが分かる。
 本発明によれば、オクタフルオロシクロペンテンの収率を十分に高めることができる、製造方法を提供することができる。

Claims (5)

  1.  1-クロロヘプタフルオロシクロペンテンをアルカリ金属フッ素化物と接触させてオクタフルオロシクロペンテンを得る製造方法であって、
     非プロトン性極性溶媒、及び前記非プロトン性極性溶媒よりも高沸点のグリコールエーテルを含む混合溶媒中に、前記アルカリ金属フッ素化物が懸濁してなる懸濁液を85℃以上に維持しつつ、前記懸濁液に対して1-クロロヘプタフルオロシクロペンテンを供給してフッ素化してオクタフルオロシクロペンテンを得るフッ素化工程と、
     前記フッ素化工程にて生成された前記オクタフルオロシクロペンテンを回収する回収工程と、
    を含む、オクタフルオロシクロペンテンの製造方法。
  2.  前記混合溶媒中における前記グリコールエーテルの体積割合が、前記非プロトン性極性溶媒100体積%に対して、10体積%以上30体積%以下である、請求項1に記載のオクタフルオロシクロペンテンの製造方法。
  3.  前記非プロトン性極性溶媒が、N,N-ジメチルホルムアミド、又はN,N-ジメチルアセトアミドである、請求項1又は2に記載のオクタフルオロシクロペンテンの製造方法。
  4.  前記グリコールエーテルが、ポリエチレングリコールのジアルキルエーテル、又は、ポリプロピレングリコールのジアルキルエーテルである、請求項1~3の何れかに記載のオクタフルオロシクロペンテンの製造方法。
  5.  前記グリコールエーテルが、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、及びジプロピレングリコールジメチルエーテルのうちの少なくとも一種を含む、請求項1~4の何れかに記載のオクタフルオロシクロペンテンの製造方法。
PCT/JP2018/021235 2017-06-22 2018-06-01 オクタフルオロシクロペンテンの製造方法 WO2018235567A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/612,759 US10710946B2 (en) 2017-06-22 2018-06-01 Method of manufacturing octafluorocyclopentene
KR1020197036265A KR102567382B1 (ko) 2017-06-22 2018-06-01 옥타플루오로시클로펜텐의 제조 방법
CN201880032039.8A CN110637001B (zh) 2017-06-22 2018-06-01 八氟环戊烯的制造方法
JP2019525317A JP7147757B2 (ja) 2017-06-22 2018-06-01 オクタフルオロシクロペンテンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-122358 2017-06-22
JP2017122358 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235567A1 true WO2018235567A1 (ja) 2018-12-27

Family

ID=64735916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021235 WO2018235567A1 (ja) 2017-06-22 2018-06-01 オクタフルオロシクロペンテンの製造方法

Country Status (5)

Country Link
US (1) US10710946B2 (ja)
JP (1) JP7147757B2 (ja)
KR (1) KR102567382B1 (ja)
CN (1) CN110637001B (ja)
WO (1) WO2018235567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014433A (ja) * 2019-07-12 2021-02-12 ダイキン工業株式会社 フルオロオレフィン化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024290A (en) * 1960-03-07 1962-03-06 Du Pont Process for replacing vinylic halogens with fluorine
JP2001247493A (ja) * 2000-03-08 2001-09-11 Nippon Zeon Co Ltd オクタフルオロシクロペンテンの製造方法
JP2006151998A (ja) * 1997-09-17 2006-06-15 Nippon Zeon Co Ltd オクタフルオロシクロペンテンの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567788A (en) 1967-07-25 1971-03-02 Hooker Chemical Corp Preparation of fluorine-containing compounds
JP2577567B2 (ja) * 1987-07-07 1997-02-05 イハラケミカル工業株式会社 芳香族フッ素化合物の製造方法
JP3873308B2 (ja) 1995-09-29 2007-01-24 日本ゼオン株式会社 フッ化炭化水素化合物の製造法
EP0913380B1 (en) 1996-05-13 2002-04-03 Japan as represented by Director-General, Agency of Industrial Science and Technology Process for the preparation of fluorinated olefin
JP3792051B2 (ja) * 1997-09-17 2006-06-28 日本ゼオン株式会社 パーハロゲン化シクロペンテンの製造方法
JP4271822B2 (ja) 2000-02-29 2009-06-03 独立行政法人産業技術総合研究所 1−クロロヘプタフルオロシクロペンテンの製造方法
JP3897081B2 (ja) 2000-03-17 2007-03-22 日本ゼオン株式会社 1−クロロヘプタフルオロシクロペンテンの製造方法
DE602004030018D1 (de) * 2003-08-11 2010-12-23 Asahi Glass Co Ltd Verfahren zur herstellung von fluorhaltigem alkylether
GB0625214D0 (en) * 2006-12-19 2007-01-24 Ineos Fluor Holdings Ltd Process
JP5135926B2 (ja) * 2007-07-13 2013-02-06 ダイキン工業株式会社 4−フルオロ−1,3−ジオキソラン−2−オンの製造方法
CN101591211B (zh) * 2008-05-30 2012-10-03 南京理工大学 微波卤素交换氟化制备氟代化合物的方法
EP3461789B1 (en) * 2010-05-28 2021-12-15 Nippon Shokubai Co., Ltd. Production method for alkali metal salt of bis(fluorosulfonyl) imide
CN105732718B (zh) * 2016-03-22 2017-12-01 山东大学 一种氟代环三磷腈的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024290A (en) * 1960-03-07 1962-03-06 Du Pont Process for replacing vinylic halogens with fluorine
JP2006151998A (ja) * 1997-09-17 2006-06-15 Nippon Zeon Co Ltd オクタフルオロシクロペンテンの製造方法
JP2001247493A (ja) * 2000-03-08 2001-09-11 Nippon Zeon Co Ltd オクタフルオロシクロペンテンの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014433A (ja) * 2019-07-12 2021-02-12 ダイキン工業株式会社 フルオロオレフィン化合物の製造方法
JP7436777B2 (ja) 2019-07-12 2024-02-22 ダイキン工業株式会社 フルオロオレフィン化合物の製造方法

Also Published As

Publication number Publication date
KR102567382B1 (ko) 2023-08-14
CN110637001B (zh) 2022-05-27
US10710946B2 (en) 2020-07-14
CN110637001A (zh) 2019-12-31
KR20200019868A (ko) 2020-02-25
JP7147757B2 (ja) 2022-10-05
US20200181046A1 (en) 2020-06-11
JPWO2018235567A1 (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6860057B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP6168068B2 (ja) テトラフルオロプロペンの精製方法
JP7095696B2 (ja) オクタフルオロシクロペンテンの製造方法
WO2015008781A1 (ja) 2-フルオロブタンの精製方法
JP2014185111A (ja) 高純度2,2−ジフルオロブタン
JP7147757B2 (ja) オクタフルオロシクロペンテンの製造方法
JP5311009B2 (ja) 含水素フルオロオレフィン化合物の製造方法
JP2019127465A (ja) 1h,2h−パーフルオロシクロアルケンの製造方法
TWI689486B (zh) 氟化烷之製造方法、脒鹼之分離、回收方法、及回收的脒鹼之使用方法
JP2001247493A (ja) オクタフルオロシクロペンテンの製造方法
JP5652179B2 (ja) 半導体ガスの製造方法
US7074974B2 (en) Process for the production of fluoroethane and use of the same
JP2013112612A (ja) 半導体ガスの製造方法
JP6261531B2 (ja) フッ化メチルの製造方法
WO2018037999A1 (ja) ブテン類の変換方法及びモノフルオロブタンの精製方法
JPH06279331A (ja) 高純度のペルフルオロ−4−メチル−2−ペンテンおよびその製造方法並びに使用方法
WO2023210724A1 (ja) 1,1,1,3,5,5,5-ヘプタフルオロ-2-ペンテンの製造方法
JP5019046B2 (ja) モノヒドロパーフルオロシクロアルカン類の製造方法
JP2008509995A (ja) クロロジフルオロメタンの製造方法
JP6551064B2 (ja) 2−フルオロブタン又は2,2−ジフルオロブタンの精製方法
JP2017178897A (ja) クロロプロパン類の製造方法
WO2022014488A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP2017078069A (ja) フッ化メチルの製造方法
JPH0338543A (ja) ブロモジフルオロアセチルフルオリドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525317

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036265

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820822

Country of ref document: EP

Kind code of ref document: A1