WO2018230977A1 - 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법 - Google Patents

신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법 Download PDF

Info

Publication number
WO2018230977A1
WO2018230977A1 PCT/KR2018/006732 KR2018006732W WO2018230977A1 WO 2018230977 A1 WO2018230977 A1 WO 2018230977A1 KR 2018006732 W KR2018006732 W KR 2018006732W WO 2018230977 A1 WO2018230977 A1 WO 2018230977A1
Authority
WO
WIPO (PCT)
Prior art keywords
ornithine
microorganism
ncgl2522
activity
corynebacterium
Prior art date
Application number
PCT/KR2018/006732
Other languages
English (en)
French (fr)
Inventor
김선혜
박수진
이경민
나경수
리홍선
배현정
심지현
양영렬
엄혜원
이효형
강민경
김혜원
송병철
오해나
이한형
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to JP2019568771A priority Critical patent/JP7203475B2/ja
Priority to US16/622,490 priority patent/US11492648B2/en
Priority to CN201880052148.6A priority patent/CN111406064B/zh
Priority to BR112019026883-9A priority patent/BR112019026883B1/pt
Priority to EP18818652.2A priority patent/EP3640258A4/en
Publication of WO2018230977A1 publication Critical patent/WO2018230977A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01038N-Acetyl-gamma-glutamyl-phosphate reductase (1.2.1.38)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01001Amino-acid N-acetyltransferase (2.3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01035Glutamate N-acetyltransferase (2.3.1.35)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01011Acetylornithine transaminase (2.6.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02008Acetylglutamate kinase (2.7.2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/03Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; catalysing transmembrane movement of substances (3.6.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03003Ornithine carbamoyltransferase (2.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01057Diamine N-acetyltransferase (2.3.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)

Definitions

  • the present application relates to a novel polypeptide having ornithine-based product releasing capacity and a method for producing ornithine-based products using the same.
  • Ornithine is a substance widely found in plants, animals, and microorganisms. It is biosynthesized from glutamate and is a precursor used for the biosynthesis of putrescine, citrulline, and proline. It also plays an important role in the pathway of the production of urea from amino acids or ammonia through the ornithine cycle in the metabolism of higher animals in vitro. Ornithine is used as a nutritional supplement because it is effective in reducing muscle mass and body fat, and is also used as a medicine to improve cirrhosis and liver dysfunction.
  • a method for producing ornithine a method of treating milk casein with a digestive enzyme and a method using transformed E. coli or Corynebacterium microorganisms are known (Korea Registration No. 10-1372635; T Gotoh et al., Bioprocess Biosyst.Eng., 33: 773-777, 2010).
  • Putrescine (or 1,4-butanediamine) is an important raw material for the production of polyamides 4 and 6, including nylons 4 and 6.
  • Putrescine can be produced on an industrial scale through hydrogenation of succinonitrile, which is produced as acrylonitrile by the addition of hydrogen cyanide. Synthetic pathways for these chemicals require non-renewable petrochemical products as raw materials. There is also a need for high temperatures and pressures associated with expensive catalyst systems, as well as relatively complex manufacturing steps and equipment. Therefore, as an alternative to the chemical production process, production of putrescine from renewable biomass-derived carbon sources is required, and in recent years, studies to use eco-friendly microorganisms to produce industrially available high concentration of polyamine (putrescine) It's happening continuously. (Qian ZG, et al., Biotechnol Bioeng, 104: 651-662, 2009; Schneider J, et al., Appl Microbiol Biotechnol, 88: 859-868, 2010).
  • NCgl2522 gene having a putrescine releasing ability has been identified (Korean Patent Publication No. 2014-0115244).
  • Shawinsky Patent Publication No. 2014-0115244 Korean Patent Publication No. 2014-0115244.
  • emission enhancing proteins can more efficiently release putrescine from putrescine producing strains.
  • L-arginine is used for medicines such as liver function promoters, brain function promoters, and comprehensive amino acid preparations, and has recently been in the spotlight for foods such as fish jelly additives, health drink additives, and salt replacements for hypertensive patients.
  • Research into the use of microorganisms to produce high concentrations of arginine that is industrially available has been continuously conducted, and is derived from the bacteria of the genus Brevibacterium or Corynebacterium, a glutamate producing strain. A method using a mutant strain, a method using an amino acid producing strain that is improved by cell fusion, and the like have been reported.
  • Corynebacterium sp Corynebacterium sp.
  • the present inventors have made intensive efforts to develop variants of the excreted protein that can enhance ornithine product excretion ability and thus improve productivity.
  • the mutation is introduced at a specific position in the amino acid sequence of NCgl2522 protein, the excretion ability of ornithine product is increased.
  • the improvement was confirmed.
  • the present invention was completed by confirming that the mutated protein was introduced into a microorganism producing ornithine product putrescine or arginine, thereby making it possible to prepare ornithine product putrescine or arginine in high yield.
  • One object of the present application is to provide a novel polypeptide having the ability to release ornithine-based products.
  • Another object of the present application is to provide a polynucleotide encoding the polypeptide, and a vector comprising the polynucleotide.
  • Still another object of the present application is to provide a microorganism that produces ornithine-based products, including the polypeptide or enhanced in its activity.
  • Still another object of the present application is to culture the genus Corynebacterium microorganism producing the ornithine-based product in a medium; And it provides a method for producing ornithine-based products comprising the step of recovering ornithine-based products from the microorganism or medium obtained in the step.
  • Polypeptide having an ornithine-based product of the present application has an excellent ornithine-based product-releasing activity, when the activity is introduced into the ornithine-based product-producing microorganisms can further improve the production capacity of ornithine-based products.
  • One aspect of the present application for achieving the above object is a novel having an ornithine product-releasing ability in which the 77th glycine amino acid residue from the N-terminus in the amino acid sequence of the ornithine-based product excretion protein is substituted with another amino acid.
  • the ornithine-based product releasing protein means a protein involved in releasing extracellular products that are biosynthesized using ornithine as a precursor, and specifically, a protein involved in releasing putrescine or arginine into the cell it means. More specifically, it may be an NCgl2522 protein disclosed in Korean Patent Publication No. 2014-0115244.
  • the NCgl2522 protein may be composed of, for example, an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2, but includes a sequence having the same activity as the protein, without limitation, those skilled in the art can be sequenced in GenBank, etc. of NCBI known database You can get information.
  • novel polypeptide having ornithine-based product-releasing ability of the present application is characterized in that the 77th glycine (Glycine) amino acid residue is substituted with another amino acid from the N-terminus in the amino acid sequence of the ornithine-based product-releasing protein.
  • Unmodified polypeptides, specifically those having 77 th glycine amino acid residues, have an enhanced ability to release ornithine products.
  • the polypeptide having the excitatory capacity of the ornithine-based product may be, for example, a 77th glycine substituted with alanine or arginine in the amino acid sequence of the ornithine-based product excretion protein, and specifically, any of SEQ ID NOs: 3 to 6
  • ornithine-based product means a material that can be biosynthesized using ornithine as a precursor.
  • ornithine as a precursor a substance that can be produced through the ornithine circuit, and may be putrescine, citrulline, proline, and arginine, but is not limited thereto as long as it can be biosynthesized using ornithine as a precursor.
  • ornithine-based products may be putrescine and arginine.
  • a substance synthesized using ornithine as a precursor which may be released by a novel polypeptide having an ornithine-based product-releasing ability of the present application is included without limitation.
  • Another embodiment of the present application is a polynucleotide encoding a polypeptide having a discharge capacity of the ornithine-based product.
  • the polynucleotide is an amino acid sequence of any one of SEQ ID NO: 3 to SEQ ID NO: 6, or 70% or more, 80% or more, as long as the polynucleotide has similar activity as that of the polypeptide having the ability to release the ornithine-based product But may include polynucleotides encoding polypeptides exhibiting homology or identity of at least 85%, more specifically at least 90%, even more specifically at least 95%, most specifically at least 99%, but It is not limited. In addition, it is apparent that polynucleotides can also be included which can be translated into a protein consisting of the amino acid sequence of SEQ ID NO: 1 or a protein having homology or identity thereof by codon degeneracy.
  • a protein having the activity of a protein consisting of the amino acid sequence of SEQ ID NO: 1 by hybridizing under a strict condition with a complementary sequence to all or a part of the nucleotide sequence for example, a probe which can be prepared from a known gene sequence.
  • Any coding sequence can be included without limitation.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. Such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology or identity, 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly 99% or more 60 ° C., 1 ⁇ SSC, 0.1% SDS, which is a condition for hybridizing genes having the above homology or identity and not hybridizing genes having a lower homology or identity, or washing conditions for ordinary Southern hybridization As the conditions of washing once, specifically 2 to 3 times at a salt concentration and temperature corresponding to 60 ° C., 0.1 ⁇ SSC, 0.1% SDS, more specifically 68 ° C., 0.1 ⁇ SSC, 0.1% SDS. Can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization.
  • complementary is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include isolated nucleic acid fragments that are complementary to the entire sequence as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology or identity can be detected using hybridization conditions comprising a hybridization step at a Tm value of 55 ° C. and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • homology refers to the degree of agreement with two given amino acid sequences or nucleotide sequences and can be expressed as a percentage.
  • homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology”.
  • identity means the degree of sequence relevance between amino acid or nucleotide sequences, and in some cases determined by the match between strings of such sequences.
  • identity means the degree of sequence relevance between amino acid or nucleotide sequences, and in some cases determined by the match between strings of such sequences.
  • BLAST 2.0 or by hybridization experiments used under defined stringent conditions
  • Appropriate hybridization conditions which are defined within the scope of the art, are well known to those skilled in the art, and are well known to those skilled in the art (e.g. J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; FM Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York.
  • sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms, and the default gap penalty established by the program used may be used together.
  • Substantially, homologous or identical polynucleotides or polypeptides generally have a medium stringency or along at least about 50%, 60%, 70%, 80% or 90% of all or the full-length of the target polynucleotide or polypeptide. Will hybrid at high stringency.
  • polynucleotides containing degenerate codons instead of codons in the hybridizing polynucleotides are also contemplated.
  • any two polynucleotide or polypeptide sequences are at least for example 50%, 55%, 60%, 65% 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98 Whether having% or 99% homology or identity is described, for example, in Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: can be determined using known computer algorithms such as the " FASTA " program using default parameters such as at 2444. Or in the needle-only program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet.
  • Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), as can be determined, can be determined.
  • GCG program package (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215] 403 (1990); including Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego, 1994, and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073).
  • homology or identity can be determined using BLAST, or ClustalW, of the National Biotechnology Information Database Center.
  • the homology or identity of a polynucleotide or polypeptide is described, for example, in Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443, and can be determined by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly arranged symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. As disclosed by 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap opening penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • the term “homology” or “identity” refers to a comparison between polypeptides or polynucleotides.
  • Another aspect of this application is a vector containing the said polynucleotide.
  • the term "vector” refers to a DNA preparation containing a nucleotide sequence of a polynucleotide encoding said target polypeptide operably linked to a suitable regulatory sequence such that the target polypeptide can be expressed in a suitable host.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it can replicate in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector, and pBR-based, pUC-based, pBluescriptII-based, etc. , pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • the vector usable in the present application is not particularly limited and known expression vectors may be used. Specifically, pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • a polynucleotide encoding a target polypeptide in a chromosome may be replaced with a mutated polynucleotide through a vector for inserting an intracellular chromosome. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
  • transformation in the present application means introducing a vector comprising a polynucleotide encoding a target polypeptide into a host cell so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide also includes DNA and RNA encoding the target polypeptide.
  • the polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the gene sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a polypeptide of the present application.
  • Another aspect of the present application is to provide a microorganism that produces an ornithine-based product, comprising or having enhanced activity of a polypeptide having the ability to release the ornithine-based product.
  • the genus Corynebacterium microorganism comprising a polypeptide having the ability to release the ornithine-based product or enhanced in its activity to produce putrescine or arginine is provided.
  • microorganism includes both wild-type microorganisms and microorganisms in which natural or artificial genetic modification has occurred, and a specific mechanism is weakened due to the insertion of an external gene or an increase or weakening of the activity of an endogenous gene. Or enhanced microorganisms.
  • the "microorganism of the genus Corynebacterium” specifically refers to Corynebacterium glutamicum, Corynebacterium ammonia genes, Brevibacterium lactofermentum , Brevibacterium flame ( Brevibacterium flavu m), Corynebacterium thermoaminogenes ( Corynebacterium thermoaminogenes ), Corynebacterium episodes ( Corynebacterium) efficiens ) and the like, but are not necessarily limited thereto. More specifically, in the present application, the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum which is less affected by cell growth and survival even when exposed to high concentrations of putrescine or arginine.
  • the term "the genus Corynebacterium microorganism producing an ornithine-based product” refers to a microorganism of the genus Corynebacterium that has the ability to produce ornithine-based products through natural forms or mutations.
  • the microorganism producing the ornithine-based product is not particularly limited thereto, for example, acetylglutamate synthase or acetyl ornithyl, which converts glutamate to acetylglutamate (N-acetylglutamate) to enhance the biosynthetic pathway from glutamate to ornithine.
  • Ornithine acetyltransferase (ArgJ), which converts tin to ornithine, acetylglutamate kinase (ArgB), which converts acetylglutamate to acetylglutamyl phosphate, acetylglutamate semialdehyde (ArgB) Acetyl gamma glutamyl phosphate reductase (ArgC), which converts to N-acetylglutamate semialdehyde), and acetylornithine aminotransferase (ArgD), which converts acetylglutamate semialdehyde into acetylornithine (N-acetylornithine).
  • Ornithine is at least one active selected from the group are modified so as to increase the productivity compared to the endogenous activity of the tin can be improved.
  • the term "the genus Corynebacterium microorganism that produces putrescine or arginine” refers to a microorganism of the genus Corynebacterium that has putrescine or arginine production ability through natural form or mutation. it means. Microorganisms in Corynebacterium do not produce putrescine, and arginine can be produced, but arginine is significantly less productive.
  • a microorganism of the genus Corynebacterium having a putrescine or arginine producing ability is inserted into a natural strain itself or a gene related to an external putrescine or arginine production mechanism, or enhances or weakens the activity of an endogenous gene. It means a microorganism of the genus Corynebacterium that has an improved putrescine or arginine production capacity.
  • the microorganism producing the putrescine further includes ornithine carbamoyltransfrase (ArgF), which is involved in arginine synthesis in ornithine, a protein involved in glutamate release, and acetyltransferase, which acetylates putrescine.
  • ArgF ornithine carbamoyltransfrase
  • At least one activity selected from the group consisting of may be mutated to weaken compared to the intrinsic activity, and / or may be mutated to introduce the activity of ornithine decarboxylase (ODC).
  • the arginine-producing microorganisms further include ornithine carbamoyltransfrase (ArgF), argininosuccinate synthase (argG), argininosuccinic acid, which are involved in arginine synthesis in ornithine.
  • At least one activity selected from the group consisting of degrading enzymes (Argininosuccinate lyase, argH), aspartate ammonia lyase and aspartate aminotransferase may be mutated to be enhanced relative to intrinsic activity.
  • the term "enhancing" the activity of a protein means that the activity of the protein is introduced or increased relative to intrinsic activity.
  • introduction of this activity, it is meant that the activity of a specific polypeptide that the microorganism originally did not have appears naturally or artificially.
  • the term “increasing" the activity of the protein compared to the intrinsic activity means that the activity is improved compared to the intrinsic activity or activity before modification of the protein possessed by the microorganism.
  • the "intrinsic activity” refers to the activity of a specific protein originally possessed by a parent strain or an unmodified microorganism before transformation, when the microorganism's trait changes due to genetic variation caused by natural or artificial factors. It can be used interchangeably with the activity before modification.
  • the increase in the number of copies of the polynucleotide 1) is not particularly limited thereto, but may be performed in a form operably linked to a vector or by insertion into a chromosome in a host cell.
  • a polynucleotide encoding a protein of the present disclosure may be operatively linked to a vector capable of replicating and functioning independently of the host and introduced into the host cell, or the polynucleotide may be inserted into a chromosome in the host cell.
  • the polynucleotide may be operably linked to a vector which can be introduced into the host cell, thereby increasing the copy number of the polynucleotide in the chromosome of the host cell.
  • 2) modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but deletion, insertion, non-conservative or conservative substitution of these nucleic acid sequences to further enhance the activity of the expression control sequence or these It can be carried out by inducing a variation in the sequence in combination with or by replacing with a nucleic acid sequence having a stronger activity.
  • the expression control sequence may include, but is not particularly limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, a sequence that controls the termination of transcription and translation, and the like.
  • a strong heterologous promoter may be linked to the top of the polynucleotide expression unit instead of the original promoter.
  • the strong promoter include CJ7 promoter (Korean Patent No. 0620092 and WO2006 / 065095), lysCP1 promoter (WO2009 / 096689), and EF. -Tu promoter, groEL promoter, aceA or aceB promoter and the like, but is not limited thereto.
  • 3) modification of the polynucleotide sequence on the chromosome is not particularly limited, and expression control sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further enhance the activity of the polynucleotide sequence. This can be done by inducing a phase shift or by replacing with a polynucleotide sequence that has been modified to have stronger activity.
  • introduction of a foreign polynucleotide sequence may be performed by introducing a foreign polynucleotide encoding a protein exhibiting the same / similar activity as the protein, or a codon-optimized variant polynucleotide thereof, into the host cell.
  • the foreign polynucleotide can be used without limitation in its origin or sequence as long as it exhibits the same / similar activity as the protein.
  • the foreign polynucleotide introduced may be introduced into the host cell by optimizing its codons so that optimized transcription and translation is performed in the host cell. The introduction can be carried out by a person skilled in the art appropriately selected for known transformation methods, the expression of the introduced polynucleotide in the host cell can be produced by the protein to increase its activity.
  • the term "attenuation" of protein activity is a concept that includes both reduced activity or no activity as compared to intrinsic activity.
  • Such weakening of protein activity can be achieved by the application of various methods well known in the art.
  • Examples of the method may include deleting all or part of a gene on a chromosome that encodes the protein, including when the activity of the protein is removed; Replacing the gene encoding the protein on a chromosome with a mutated gene such that the activity of the enzyme is reduced; Introducing a mutation into an expression control sequence of a gene on a chromosome encoding said protein; A method of replacing an expression control sequence of a gene encoding the protein with a sequence having weak or no activity (eg, replacing a promoter of the gene with a promoter that is weaker than an intrinsic promoter); Deleting all or part of a gene on a chromosome that encodes the protein; Introducing an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to a transcript of a gene on the chromosome to inhibit translation from the mRNA to
  • a method of deleting part or all of a gene encoding a protein replaces a polynucleotide encoding an endogenous target protein in a chromosome with a polynucleotide or marker gene in which a part of a nucleic acid sequence is deleted through a chromosome insertion vector in a microorganism.
  • This can be done by.
  • a method of deleting a gene by homologous recombination may be used, but is not limited thereto.
  • "part of” is different depending on the type of polynucleotide, and may be appropriately determined by those skilled in the art, but specifically 1 to 300, more specifically 1 to 100, even more specifically 1 to 50 Can be. However, it is not particularly limited thereto.
  • the method of modifying the expression control sequence is carried out by inducing a mutation on the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof to further weaken the activity of the expression control sequence, or more By replacing with a nucleic acid sequence having weak activity.
  • the expression control sequence may include, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, and a sequence controlling termination of transcription and translation.
  • a method of modifying a gene sequence on a chromosome may be performed by inducing a mutation on the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further weaken the activity of the protein, or to perform weaker activity. It may be carried out by replacing with a gene sequence that is improved to have or a gene sequence that has been modified to have no activity, but is not limited thereto.
  • Another aspect of the present application is the step of (i) culturing in the medium a microorganism comprising a polypeptide having a discharge capacity of the ornithine-based product or to produce an ornithine-based product with enhanced activity thereof; And (ii) recovering the ornithine-based product from the microorganism or medium obtained in the step.
  • microorganism producing the polypeptide and / or the ornithine-based product having the ability to release the ornithine-based product is as described above.
  • the step of culturing the microorganism is not particularly limited thereto, and may be performed by a known batch culture method, continuous culture method, fed-batch culture method, or the like.
  • the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to 9, specifically, Can adjust pH 6 to 8, most specifically pH 6.8), and maintain an aerobic condition by introducing oxygen or oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45 °C, specifically 25 to 40 °C, can be incubated for about 10 to 160 hours, but is not limited thereto. Putrescine produced by the culture may be secreted into the medium or remain in the cells.
  • the culture medium used includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • fatty acids e.g. palmitic acid, stearic acid and linoleic acid
  • alcohols e.g. glycerol and ethanol
  • organic acids e.g. acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds (eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds (eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto.
  • organic compounds eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea
  • inorganic compounds eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto.
  • the medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sul
  • the method for recovering the ornithine-based product produced in the culturing step of the present application may collect the desired product from the cultured microorganism or the medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, but is not limited thereto.
  • the method for recovering the ornithine-based product may further include the purification using a suitable method known in the art.
  • Corynebacterium glutamicum gene NCgl2522 has been shown to have the ability to release putrescine (Korean Patent Publication No. 2014-0115244), but in addition to putrescine, citrulline and proline can be biosynthesized using ornithine as a starting material. And to determine whether the arginine can be discharged as follows.
  • a homologous recombination fragment comprising a CJ7 promoter known from WO 2006/065095 A, wherein both ends of the promoter have the original sequence of NCgl2522 on the chromosome.
  • the 5'-terminal portion of the CJ7 promoter was obtained by performing genomic DNA of Corynebacterium glutamicum ATCC21831 or KCCM10741P as a template and PCR using primer pairs of SEQ ID NOs: 17 and 18 of Table 1. At this time, the PCR reaction was repeated 30 times of denaturation at 94 °C, 30 seconds annealing at 55 °C and 30 seconds stretching at 72 °C.
  • the CJ7 promoter site was obtained by PCR under the same conditions using primer pairs of SEQ ID NOs: 19 and 20 in Table 1, and the 3'-terminal site of the CJ7 promoter was Corynebacterium glutamicum ATCC21831 or KCCM10741P.
  • the genomic DNA of was used as a template and PCR was carried out under the same conditions using primer pairs of SEQ ID NOs: 21 and 22 in Table 1. Primers used for promoter substitution are as shown in Table 1 below.
  • NCgl2522-L5 (SEQ ID NO .: 17) TGCAGGTCGACTCTAGA GTTCTGCGTAGCTGTGTGCC NCgl2522-L3 (SEQ ID NO .: 18) GATGTTTCT GGATCGTAACTGTAACGAATGG CJ7-F (SEQ ID NO .: 19) AGAAACATCCCAGCGCTACTAATA CJ7-R (SEQ ID NO .: 20) AGTGTTTCCTTTCGTTGGGTACG NCgl2522-R5 (SEQ ID NO .: 21) CAACGAAAGGAAACACT ATGATTTCAGAAACTTTGCAGGCG NCgl2522-R3 (SEQ ID NO .: 22) TCGGTACCCGGGGATCC CACAAAAAGCGTAGCGATCAACG
  • Each PCR product obtained above was fusion cloned into pDZ vector treated with BamHI and XbaI. Fusion cloning was reacted at 50 ° C. for 10 minutes using the In-Fusion® HD Cloning Kit (Clontech), and the resulting plasmids were pDZ-P (CJ7) -NCgl2522-21831 and pDZ-P (CJ7)-, respectively. It was named NCgl2522-10741P.
  • the plasmids pDZ-P (CJ7) -NCgl2522-21831 and pDZ-P (CJ7) -NCgl2522-10741P prepared above were introduced into the arginine producing strains ATCC21831 and KCCM10741P by electroporation to obtain a transformant.
  • the transformant was BHIS plate medium (Braine heart infusion 37 g / L) containing kanamycin (25 ⁇ g / ml) and X-gal (5-bromo-4-chloro-3-indolin--D-galactoside). Colonies were formed by smearing and incubating in sorbitol 91 g / L, agar 2%).
  • Strains into which the plasmids pDZ-P (CJ7) -NCgl2522-21831 or pDZ-P (CJ7) -NCgl2522-10741P were introduced were selected from colonies formed therefrom
  • the selected strains were CM medium (glucose 10 g / L, polypeptone 10 g / L, yeast extract 5 g / L, beef extract 5 g / L, NaCl 2.5 g / L, urea 2 g / L, pH 6.8) After shaking culture (30 °C, 8 hours), and diluted sequentially from 10 -4 to 10 -10 , respectively, and plated and cultured in X-gal-containing solid medium to form colonies. Among the colonies formed, strains in which the promoter of the NCgl2522 gene was finally substituted with CJ7 were selected by secondary crossover by selecting white colonies appearing at a relatively low ratio.
  • Corynebacterium glutamicum mutants selected therefrom were named ATCC21831_Pcj7 Ncgl2522 and KCCM10741P_Pcj7 NCgl2522, respectively.
  • arginine production ability was compared against the Corynebacterium glutamicum mutants ATCC21831_Pcj7 Ncgl2522 and KCCM10741P_Pcj7 NCgl2522 prepared in the reference example.
  • the parent strain Corynebacterium glutamicum ATCC21831, KCCM10741P was used.
  • Production medium [6% glucose, 3% ammonium sulfate, 0.1% potassium monophosphate, 0.2% magnesium sulfate, 0.2% CSL (corn) Immersion solution) 1.5%, NaCl 1%, yeast extract 0.5%, biotin 100ug / L, pH7.2] inoculated 1 platinum strain in a 250ml corner-baffle flask containing 25ml and 48 hours at 30 °C Produced by incubating at 200 rpm. After culturing, arginine production was measured by HPLC, and the results are shown in Table 2 below.
  • the NCgl2522 gene is not only a gene for putrescine but also has the ability to release biosynthesis products including ornithine as a starting material.
  • the NCgl2522 gene and variants herein can be interpreted that it can be very useful for the production of ornithine-based products using biomass.
  • NCgl2522 Korean Patent No. 10-1607741
  • Mutant gene fragments prepared in this manner were fusion cloned into pDZ vectors cut with XbaI. Fusion cloning was reacted at 50 ° C. for 10 minutes using the In-Fusion® HD Cloning Kit (Clontech) to complete the pDZ-N2522 variant plasmid library.
  • the recombinant plasmid libraries prepared by the above procedure were screened using HTS (High Thoughput Screening).
  • HTS High Thoughput Screening
  • the screening-based strain was used as a recombinant microorganism KCCM11240P (Korean Patent No. 10-1493585) that produces Corynebacterium glutamicum-derived putrescine.
  • the prepared plasmid libraries were introduced into KCCM11240P by electroporation to obtain transformants, and the transformants were kanamycin (25 ⁇ g / ml) and Smear and incubate on BHIS plate medium containing 37 g / L Braine heart infusion, 91 g / L sorbitol, 2% agar) containing X-gal (5-bromo-4-chloro-3-indolin--D-galactoside) Thereby forming colonies. Among the colonies formed therefrom, strains into which the plasmid pDZ-N2522 variant library was introduced were selected.
  • the selected strains were screened using 96 deep well plates for titer screening (glucose 2 g / L, MgSO 4 .7H 2 O 0.4 g / L, MgCl 2 0.8 g / L, KH 2 PO 4 1 g / L, ( NH 4 ) 2 SO 4 4 g / L, soy protein hydrolyzate 0.48 g / L, MnSO 4 ⁇ 7H 2 O 0.01 g / L, thiamine-HCl 200 ⁇ g / L, biotin 200 ⁇ g / L, FeSO 4 ⁇ 7H 2 O shake culture (30 ° C., 24 hours) in 0.01 g / L, arginine 1 mM, kanamycin 25 ⁇ g / ml, pH 7.2), and the concentration of putrescine produced from each culture was measured and putrescine compared to the control group.
  • NCgl2522 variant selected through the above procedure was substituted with alanine (Ala) in the NCgl2522 amino acid sequence (SEQ ID NO: 1) of Corynebacterium glutamicum ATCC13032 (Gly), which is the 77th amino acid residue from the N-terminus. It was confirmed that it was, it was named NCgl2522_G77A (SEQ ID NO: 3).
  • the present invention through the NCgl2522_G77A variant prepared in Example 2, recognized that the 77th amino acid residue from the N-terminal position is important for the activity of the NCgl2522 protein.
  • various variants were prepared in which the 77th amino acid residue of NCgl2522 protein was substituted with another amino acid residue.
  • homologous recombination fragments were obtained using the genomic DNA of Corynebacterium glutamicum ATCC13032 as a template, using specific primer pairs (SEQ ID NOs: 7 and 8) that exclude the start codon of the NCgl2522 gene ORF.
  • PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 1 min elongation was repeated 30 times.
  • the PCR product obtained above was then cloned into the pDZ vector treated with XbaI. Fusion cloning was performed using an In-Fusion® HD Cloning Kit (Clontech), and the resulting plasmid was named pDZ-NCgl2522_G77.
  • PCR was performed using the primer pairs (SEQ ID NOs. 9 and 10) shown in Table 4 to induce random mutations in the 77th amino acid residue of NCgl2522. Variant plasmid libraries were completed. At this time, PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 5 min elongation was repeated 25 times.
  • the recombinant plasmid libraries prepared by the above procedure were screened using HTS (High Thoughput Screening).
  • HTS High Thoughput Screening
  • the screening-based strain was used KCCM11240P, a recombinant microorganism that produces Corynebacterium glutamicum-derived putrescine.
  • the prepared plasmid libraries were introduced into KCCM11240P by electroporation to obtain transformants, and strains into which the plasmid pDZ-NCgl2522_G77 variant was introduced were selected in the same manner as in Example 2. Two transformants with the greatest increase in putrescine productivity compared to the control group were selected, and it was confirmed in the same manner as in Example 2 that the variation in the amino acid sequence of the NCgl2522 protein of each transformant was induced.
  • NCgl2522 amino acid sequence SEQ ID NO: 1 of Corynebacterium glutamicum ATCC13032
  • the variant NCgl2522_G77A ATCC13032 in which glycine (Glycine), which is the 77th amino acid residue from the N-terminus, was substituted with alanine
  • a variant substituted with Arginine was identified and named NCgl2522_G77R (ATCC13032) (SEQ ID NO: 4).
  • NCgl2522 protein derived from other strains various 77 amino acid residues of the NCgl2522 protein derived from Corynebacterium glutamicum ATCC13869 were substituted with other amino acid residues. Variants were produced.
  • homologous recombination fragments were obtained using the genomic DNA of Corynebacterium glutamicum ATCC13869 as a template, using specific primer pairs (SEQ ID NOs. 7 and 8) that exclude the start codon of the NCgl2522 gene ORF.
  • PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 30 °C, 30 seconds elongation process was repeated 30 times.
  • the PCR product obtained above was fusion cloned into the pDZ vector treated with XbaI. Fusion cloning was performed using the In-Fusion® HD Cloning Kit (Clontech), and the resulting plasmid was named pDZ-13869-NCgl2522_G77.
  • plasmid pDZ-13869-NCgl2522_G77 prepared above was used as a template, and PCR was performed using the primer pairs (SEQ ID NOs. 9 and 10) shown in Table 4 to induce random mutations at the 77th amino acid residue.
  • -NCgl2522_G77 variant plasmid library was completed. At this time, PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 5 min elongation was repeated 25 times.
  • recombinant plasmid libraries prepared by the above procedure were screened using HTS (High Thoughput Screening). Screening based strains used DAB12-b, a recombinant microorganism that produces Corynebacterium glutamicum-derived putrescine. Then, the prepared plasmid libraries were introduced into DAB12-b by electroporation to obtain transformants, and strains into which the plasmid pDZ-13869-NCgl2522_G77 variant was introduced were selected in the same manner as in Example 2.
  • the variant 2 species in which the 77th amino acid residue was substituted from the N-terminus in the NCgl2522 amino acid sequence (SEQ ID NO: 2) of Corynebacterium glutamicum ATCC13869 The strains with the highest yield of putrescine were selected. Among them, the variant in which the 77th amino acid residue, glycine, was substituted with alanine was NCgl2522_G77A (ATCC13869) (SEQ ID NO: 5), and the variant substituted with arginine was NCgl2522_G77R (ATCC13869) (SEQ ID NO: 6). Named.
  • NCgl2522 gene variants NCgl2522_G77A or NCgl2522_G77R were introduced into the chromosome in the Corynebacterium glutamicum ATCC13032-based putrescine-producing strain.
  • genomic DNA of Corynebacterium glutamicum ATCC13032 as a template was subjected to PCR using primer pairs (SEQ ID NOs: 11 and 14, SEQ ID NOs: 12 and 13) to NCgl2522_G77A, primer pairs (SEQ ID NOs: 11 and 16, PCR using SEQ ID NOs: 12 and 15) yielded homologous recombination fragments with the NCgl2522_G77R variant sequence.
  • primer pairs SEQ ID NOs: 11 and 16
  • SEQ ID NOs: 12 and 15 PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 30 °C, 30 seconds elongation process was repeated 30 times.
  • Each PCR product obtained above was fusion cloned into a pDZ vector treated with XbaI. Fusion cloning was performed using the In-Fusion® HD Cloning Kit (Clontech). The resulting plasmids were named pDZ-NCgl2522_G77A and pDZ-NCgl2522_G77R, respectively.
  • the plasmid pDZ-NCgl2522_G77A or pDZ-NCgl2522_G77R prepared above was introduced into the ATCC13032-based putrescine-producing strain KCCM11240P (Korea Patent Publication No. 2013-0082478) by electroporation to obtain a transformant.
  • the transformant was BHIS plate medium (Braine heart infusion 37 g / L, sorbitol containing kanamycin (25 ⁇ g / ml) and X-gal (5-bromo-4-chloro-3-indolin--D-galactoside) Colonies were formed by plating and incubating at 91 g / L, 2% agar).
  • Strains into which the plasmids pDZpDZ-NCgl2522_G77A or pDZ-NCgl2522_G77R were introduced were selected from colonies formed therefrom.
  • the selected strains were CM medium (glucose 10 g / L, polypeptone 10 g / L, yeast extract 5 g / L, beef extract 5 g / L, NaCl 2.5 g / L, urea 2 g / L, pH 6.8) After shaking culture (30 °C, 8 hours), and diluted sequentially from 10 -4 to 10 -10 , respectively, and plated and cultured in X-gal-containing solid medium to form colonies. Among the colonies formed, the strains in which the NCgl2522 gene was finally replaced by the NCgl2522_G77A or NCgl2522_G77R variants were selected by secondary crossover by selecting white colonies appearing at a relatively low ratio.
  • the final obtained strain was subjected to PCR using primer pairs (SEQ ID NOs: 11 and 12) to sequence analysis to confirm that the product was substituted with the variant.
  • PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 1 min elongation was repeated 30 times.
  • Corynebacterium glutamicum mutants selected therefrom were named KCCM11240P NCgl2522_G77A and KCCM11240P NCgl2522_G77R, respectively.
  • the putrescine producing strain DAB12-a ⁇ NCgl1469 (Korean Patent Publication No. 2013-0082478), which is based on Corynebacterium glutamicum ATCC13869, was named DAB12-b, and the putrescine releasing ability of the putrescine producing strain was determined.
  • DAB12-b The putrescine producing strain DAB12-a ⁇ NCgl1469 (Korean Patent Publication No. 2013-0082478), which is based on Corynebacterium glutamicum ATCC13869, was named DAB12-b, and the putrescine releasing ability of the putrescine producing strain was determined.
  • NCgl2522_G77A or NCgl2522_G77R were introduced into the chromosome of the DAB12-b strain.
  • PCR was performed using the primer pairs (SEQ ID NOs: 11 and 14, SEQ ID NOs: 12 and 13) of Table 5 using the genomic DNA of Corynebacterium glutamicum ATCC13869 as a template to obtain NCgl2522_G77A and a primer pair (SEQ ID NO: 11). And 16, SEQ ID NOs: 12 and 15) were performed to obtain homologous fragments having the NCgl2522_G77R variant sequence.
  • the PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 30 second stretching process was repeated 30 times.
  • Each PCR product obtained above was fusion cloned into a pDZ vector treated with XbaI. Fusion cloning was performed using the In-Fusion® HD Cloning Kit (Clontech). The resulting plasmids were named pDZ-NCgl2522_G77A-2 and pDZ-NCgl2522_G77R-2, respectively.
  • the plasmid pDZ-NCgl2522_G77A-2 or pDZ-NCgl2522_G77R-2 prepared above was introduced into DAB12-b by electroporation to obtain a transformant, and the transformant was kanamycin (25 ⁇ g / ml). Smear and incubate on BHIS plate medium containing 37 g / L of Brine heart infusion, 91 g / L of sorbitol, 2% agar, containing X-gal (5-bromo-4-chloro-3-indolin--D-galactoside) Thereby forming colonies. Among the colonies formed, strains into which the plasmid pDZ-NCgl2522_G77A-2 or pDZ-NCgl2522_G77R-2 were introduced were selected.
  • the selected strains were CM medium (glucose 10 g / L, polypeptone 10 g / L, yeast extract 5 g / L, beef extract 5 g / L, NaCl 2.5 g / L, urea 2 g / L, pH 6.8) After shaking culture (30 °C, 8 hours), and diluted sequentially from 10 -4 to 10 -10 , respectively, and plated and cultured in X-gal-containing solid medium to form colonies. Among the colonies formed, strains in which the NCgl2522 gene was finally substituted by the NCgl2522_G77A and NCgl2522_G77R variants were selected by secondary crossover by selecting white colonies appearing at a relatively low ratio.
  • PCR was performed using primer pairs (SEQ ID NOs: 11 and 12) on the final selected strains, and the nucleotide sequences of the obtained products were analyzed to confirm that they were substituted with the variants. At this time, PCR reaction is denatured at 95 °C, 30 seconds; Annealing at 55 ° C. for 30 seconds; And 72 ° C., 1 min elongation was repeated 30 times.
  • Corynebacterium glutamicum mutants selected therefrom were named DAB12-b NCgl2522_G77A and DAB12-b NCgl2522_G77R, respectively.
  • Corynebacterium glutamicum mutant (KCCM11240P NCgl2522_G77A; DAB12-b NCgl2522_G77R) and two parent strains (KCCM11240P; DAB12-b) were each prepared with 1 mM arginine-containing CM flat medium (glucose 1%, polypeptone 1). %, Yeast extract 0.5%, beef extract 0.5%, NaCl 0.25%, urea 0.2%, 50% NaOH 100 ⁇ l, agar 2%, pH 6.8, based on 1L) and incubated for 24 hours at 30 °C.
  • Each strain cultured therefrom was 25 ml of titer medium (glucose 8%, soy protein 0.25%, corn solid 0.50%, (NH 4 ) 2 SO 4 4%, KH 2 PO 4 0.1%, MgSO 4 ⁇ 7H 2 O 0.05%, urea 0.15%, biotin 100 ⁇ g, thiamine-HCl 3 mg, calcium-pantothenic acid 3 mg, nicotinamide 3 mg, CaCO 3 5%, based on 1 L) was inoculated to about platinum at 200 °C 30 Shake incubation for 50 hours at rpm. In culture of all strains 1 mM arginine was added to the medium. The putrescine concentration produced from each culture was measured and the results are shown in Table 6 below.
  • NCgl2522 gene variant was confirmed in KCCM11240P P (CJ7) -NCgl2522 (Korean Patent Publication No. 2014-0115244), which is a putrescine producing strain having increased putrescine excretion capacity based on Corynebacterium glutamicum ATCC13032 NCgl2522_G77A and NCgl2522_G77R were introduced into the chromosome of the strain, respectively.
  • KCCM11240P P (CJ7) -NCgl2522 in the same manner as in Example ⁇ 4-1>, respectively, so that the NCgl2522 gene in the chromosome was mutated. It was confirmed that the substitution.
  • Corynebacterium glutamicum mutants selected through the above process were named KCCM11240P P (CJ7) -NCgl2522 NCgl2522_G77A and KCCM11240P P (CJ7) -NCgl2522 NCgl2522_G77R, respectively.
  • Corynebacterium glutamicum mutants (KCCM11240P P (CJ7) -NCgl2522 NCgl2522_G77A and KCCM11240P P (CJ7) -NCgl2522 NCgl2522_G77R) and the parent strain (KCCM11240P P (CJ7) -NCgl2522 group respectively containing 1 mM CM2525) Smear in medium (based on 1% glucose, 1% polypeptone, 0.5% yeast extract, 0.5% beef extract, 0.5% NaCl, 0.2% urea, 50% NaOH, 2% agar, pH 6.8, 1 L) Incubate at 24 ° C. for 24 hours.
  • medium based on 1% glucose, 1% polypeptone, 0.5% yeast extract, 0.5% beef extract, 0.5% NaCl, 0.2% urea, 50% NaOH, 2% agar, pH 6.8, 1 L
  • Each strain cultured therefrom was 25 ml of titer medium (glucose 8%, soy protein 0.25%, corn solid 0.50%, (NH 4 ) 2 SO 4 4%, KH 2 PO 4 0.1%, MgSO 4 ⁇ 7H 2 O 0.05%, urea 0.15%, biotin 100 ⁇ g, thiamine-HCl 3 mg, calcium-pantothenic acid 3 mg, nicotinamide 3 mg, CaCO 3 5%, based on 1 L) was inoculated to about platinum at 200 °C 30 Shake incubation for 50 hours at rpm. In culture of all strains 1 mM arginine was added to the medium. The putrescine concentration produced from each culture was measured and the results are shown in Table 7 below.
  • NCgl2522 gene variant NCgl2522_G77A or NCgl2522_G77R was introduced into the chromosome in Corynebacterium glutamicum ATCC21831 and KCCM10741P (Korean Patent No. 10-0791659).
  • strains in which the NCgl2522 gene was finally substituted with NCgl2522_G77A and NCgl2522_G77R variants were selected using the same method as in Example ⁇ 4-2>.
  • Corynebacterium glutamicum mutants selected therefrom were named KCCM10741P NCgl2522_G77A and KCCM10741P NCgl2522_G77R, ATCC21831_Pcj7 Ncgl2522_G77A, ATCC21831_Pcj7 Ncgl2522_G77R, respectively.
  • the parent strain Corynebacterium glutamicum KCCM10741P, ATCC21831 and KCCM10741P_Pcj7 Ncgl2522 and ATCC21831_Pcj7 Ncgl2522 prepared in Reference Examples were used, and production medium [6% glucose, 3% ammonium sulfate, 0.1% potassium phosphate monobasic , 100% magnesium sulfate, 0.2% magnesium sulfate, 1.5% CSL (corn immersion), 1% NaCl, 0.5% yeast extract, 100 ug / L Biotin, pH7.2] in a 250 ml corner-baffle flask containing 25 ml
  • the strain was inoculated and produced by incubating at 30 rpm for 48 hours at 30 °C. After the end of the culture, the production of L-arginine was measured by HPLC, and the results are shown in Table 8 below.
  • the inventors confirmed that for the NCgl2522 gene, which is a putrescine releasing protein, the 77th amino acid residue at the N-terminus plays a key role in the release ability of ornithine-based products.
  • the 77th amino acid is substituted with other amino acid residues, it was confirmed that the production amount of ornithine-based product in the strain in which the variant is introduced.
  • the present invention can be applied to a method for producing ornithine-based products using microorganisms to further improve the yield, it can be very useful for the production of ornithine-based products using biomass.
  • a putrescine-producing strain based on Corynebacterium glutamicum ATCC13032 is introduced into the NCgl2522 gene variant NCgl2522_G77A chromosome, and the core is introduced into the chromosome.
  • Nebacterium glutamicum strain can produce putrescine with high yield and high productivity, and named the strain as KCCM11240P NCgl2522_G77A, and then to the Korea Microorganism Conservation Center (KCCM), an international depository organization under the Treaty of Budapest, 2016. It was deposited on the 1st of January and was given accession number KCCM11886P.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 출원은 오르니틴계 산물 배출능을 가지는 신규한 폴리펩타이드 및 이를 이용하여 오르니틴계 산물을 생산하는 방법에 관한 것이다.

Description

신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
본 출원은 오르니틴계 산물 배출능을 가지는 신규한 폴리펩타이드 및 이를 이용하여 오르니틴계 산물을 생산하는 방법에 관한 것이다.
오르니틴(L-ornithine)은 식물, 동물, 미생물에서 널리 발견되는 물질로 글루타메이트로부터 생합성 되며, 퓨트레신, 시트룰린 및 프롤린의 생합성에 사용되는 전구체이다. 또한, 고등동물의 생체 내 대사에서 오르니틴 회로를 통해 아미노산 또는 암모니아로부터 요소를 생성하여 체외로 배출하는 경로에서 중요한 역할을 한다. 오르니틴은 근육 생성과 체지방 감소에 효과가 있기 때문에, 영양보충제로 사용되고 있고, 간경화와 간기능 장애를 개선하는 의약품으로도 이용되고 있다. 이러한 오르니틴을 생산하는 방법으로는 우유 카제인(casein)을 소화 효소로 처리하는 방법 및 형질전환된 대장균 또는 코리네박테리움 속 미생물을 이용한 방법이 알려져 있다 (대한민국 등록번호 제10-1372635호; T. Gotoh et al., Bioprocess Biosyst. Eng., 33:773-777, 2010).
퓨트레신 (또는 1,4-부탄다이아민)은 나일론 4, 6을 포함하는 폴리아미드 4, 6의 생산을 위한 중요한 원료물질이다. 퓨트레신은 수소 시안화물 (hydrogen cyanide) 첨가에 의해 아크릴로니트릴 (acrylonitrile)로 생산되는 숙시노니트릴 (succinonitrile)의 수소화 방법을 통해 산업적 규모로 생산될 수 있다. 이러한 화학물질의 합성경로에서는 비 재생적인 석유화학적 산물을 원료 물질로서 필요로 한다. 또한 상대적으로 복잡한 제조단계, 설비뿐만 아니라, 값비싼 촉매시스템과 관련한 높은 온도와 압력이 필요하다. 이에, 상기 화학생산공정의 대안으로 재생가능한 바이오매스 유래 탄소원으로부터 퓨트레신의 생산이 요구되고, 최근에는 산업적으로 이용 가능한 고농도의 폴리아민 (퓨트레신)을 생산하기 위하여 친환경적인 미생물을 이용하려는 연구가 지속적으로 이루어지고 있다. (Qian ZG, et al., Biotechnol Bioeng, 104: 651-662, 2009; Schneider J, et al., Appl Microbiol Biotechnol, 88: 859-868, 2010).
한편, 퓨트레신 배출능을 가지는 NCgl2522 유전자가 규명된 바 있다 (대한민국 공개특허 제2014-0115244호). 그러나 보다 높은 수율로 퓨트레신을 생산하기 위해, 퓨트레신 생산 균주로부터 더욱 효과적으로 퓨트레신을 배출시킬 수 있는 배출능 향상 단백질을 개발하는 것이 여전히 필요한 실정이다.
L-아르기닌은 간 기능 촉진제, 뇌기능 촉진제, 종합 아미노산 제제 등의 의약용으로 사용되고 있으며, 생선묵 첨가제, 건강음료 첨가제, 고혈압 환자의 식염 대체용 등의 식품용으로도 최근 각광받고 있는 물질이다. 산업적으로 이용 가능한 고농도의 아르기닌을 생산하기 위하여 미생물을 이용하려는 연구가 지속적으로 이루어지고 있으며, 글루타민산(glutamate) 생산 균주인 브레비박테리움(Brevibacterium) 또는 코리네박테리움(Corynebacterium)속 미생물로부터 유도된 변이주를 이용하는 방법, 세포융합으로 생육 개선된 아미노산 생산 균주를 이용하는 방법 등이 보고되었다. 한편, 코리네박테리움(Corynebacterium)속 미생물은 L-lysine 배출능을 가지는 lysE가 동일한 염기성 아미노산인 L-아르기닌도 배출한다고 보고된 바 있으며 (Bellmann A, et al, Microbiology, 147:1765-1774, 2001), 상기 유전자의 강화를 통해 L-아르기닌 생산균주의 생산능을 향상시키는 방법이 알려져 있다(특허번호 US 2002-196232).
본 발명자들은 오르니틴 산물 배출능이 증진되어 보다 생산능을 향상시킬 수 있는 배출 단백질의 변이체를 개발하기 위해 예의 노력한 결과, NCgl2522 단백질의 아미노산 서열 중 특정 위치에 변이를 도입 시, 오르니틴계 산물의 배출능이 향상됨을 확인하였다. 이에, 오르니틴계 산물인 퓨트레신 또는 아르기닌을 생산하는 미생물에 상기 변이된 단백질을 도입하여, 오르니틴계 산물인 퓨트레신 또는 아르기닌을 고수율로 제조할 수 있음을 확인함으로써 본 출원을 완성하였다.
본 출원의 하나의 목적은 오르니틴계 산물의 배출능을 가지는 신규 폴리펩타이드를 제공하는 것이다.
본 출원의 다른 목적은 상기 폴리펩타이드를 코딩하는 폴리뉴클레오티드, 및 상기 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 폴리펩타이드를 포함하거나 이의 활성이 강화된, 오르니틴계 산물을 생산하는 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 오르니틴계 산물을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물을 배지에서 배양하는 단계; 및 상기 단계에서 수득되는 미생물 또는 배지로부터 오르니틴계 산물을 회수하는 단계를 포함하는, 오르니틴계 산물 생산방법을 제공하는 것이다.
본 출원의 오르니틴계 산물의 배출능을 가지는 폴리펩타이드는 우수한 오르니틴계 산물 배출 활성을 가지므로, 오르니틴계 산물 생산 미생물에 그 활성이 도입될 경우 오르니틴계 산물의 생산능을 더욱 향상시킬 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 오르니틴계 산물 배출 단백질의 아미노산 서열에서 N-말단으로부터 77 번째 글리신 (Glycine) 아미노산 잔기가 다른 아미노산으로 치환된, 오르니틴계 산물 배출능을 가지는 신규 폴리펩타이드를 제공하는 것이다.
본 출원에서 상기 오르니틴계 산물 배출 단백질은 오르니틴을 전구체로하여 생합성되는 산물을 배출하는 세포 외로 배출하는데 관여하는 단백질을 의미하며, 구체적으로는 퓨트레신 또는 아르기닌을 세포 외로 배출하는데 관여하는 단백질을 의미한다. 보다 구체적으로 대한민국 공개특허 제2014-0115244호에 개시된 NCgl2522 단백질일 수 있다. 상기 NCgl2522 단백질은 예를 들어, 서열번호 1 또는 서열번호 2로 기재된 아미노산 서열로 구성된 것일 수 있으나, 상기 단백질과 동일한 활성을 갖는 서열은 제한 없이 포함하며, 당업자는 공지의 데이터베이스인 NCBI의 GenBank 등에서 서열 정보를 얻을 수 있다.
본 출원의 오르니틴계 산물 배출능을 가지는 신규 폴리펩타이드는, 상기 오르니틴계 산물 배출 단백질의 아미노산 서열에서 N-말단으로부터 77 번째 글리신 (Glycine) 아미노산 잔기가 다른 아미노산으로 치환된 것을 특징으로 하며, 이를 통해 비변이 폴리펩타이드, 구체적으로는 77 번째 글리신 아미노산 잔기를 가지는 폴리펩타이드에 비하여 향상된 오르니틴계 산물의 배출능을 갖는다. 상기 오르니틴계 산물의 배출능을 가지는 폴리펩티드는, 예를 들어, 오르니틴계 산물 배출 단백질의 아미노산 서열에서 77 번째 글리신이 알라닌 또는 아르기닌으로 치환된 것일 수 있고, 구체적으로 서열번호 3 내지 서열번호 6 중 어느 하나로 기재되는 아미노산 서열로 구성된 폴리펩타이드, 또는 상기 서열과 70 % 이상, 80 % 이상, 구체적으로는 85 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성 또는 동일성을 나타내는 아미노산 서열일 수 있으나, 77 번째 글리신이 다른 아미노산으로 치환되어 오르니틴계 배출능을 가지는 한, 이에 제한되는 것은 아니다. 또한, 이러한 상동성 또는 동일성을 가지는 서열로서, 실질적으로 서열번호 3 내지 서열번호 6 중 어느 하나로 기재되는 아미노산 서열로 구성된 폴리펩타이드와 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 역시 본 출원의 범주에 포함되는 것으로 해석되어야 한다.
본 출원에서 용어, “오르니틴계 산물은” 오르니틴을 전구체로하여 생합성할 수 있는 물질을 의미한다. 구체적으로 오르니틴을 전구체로 하여, 오르니틴 회로를 통해 생산될 수 있는 물질로, 퓨트레신, 시트룰린, 프롤린, 아르기닌 일 수 있으나, 오르니틴을 전구체로 하여 생합성 될 수 있는 물질이면 이에 제한되지 않는다. 그 예로 오르니틴계 산물은 퓨트레신과 아르기닌 일 수 있다. 또한, 본 출원의 오르니틴계 산물 배출능을 가지는 신규 폴리펩타이드에 의해 배출될 수 있는 오르니틴을 전구체로 하여 합성되는 물질은 제한없이 포함된다.
본 출원의 다른 하나의 양태는, 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 코딩하는 폴리뉴클레오티드이다.
상기 폴리뉴클레오티드는 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드와 유사한 활성을 가지는 한, 서열번호 3 내지 서열번호 6 중 어느 하나로 기재되는 아미노산 서열, 또는 상기 서열과 70 % 이상, 80 % 이상, 구체적으로는 85 % 이상, 더욱 구체적으로는 90 % 이상, 보다 더욱 구체적으로는 95 % 이상, 가장 구체적으로는 99 % 이상의 상동성 또는 동일성을 나타내는 폴리펩타이드를 코딩하는 폴리뉴클레오티드를 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 1의 아미노산 서열로 이루어진 단백질 또는 이와 상동성 또는 동일성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화하여, 서열번호 1의 아미노산 서열로 이루어진 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한없이 포함될 수 있다.
상기 “엄격한 조건”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 80% 이상, 85 % 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로는 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다. Sambrook et al.,supra, 9.50-9.51, 11.7-11.8 참조).
본 출원에서 용어, "상동성"은 두 개의 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다.
또한, "동일성"은 아미노산 또는 뉴클레오티드 서열 사이의 서열 관련성 정도를 의미하며, 경우에 따라서는 그러한 서열의 스트링 사이의 일치에 의해 결정된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
용어 "상동성" 및 "동일성"은 종종 상호 교환적으로 이용된다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성 또는 동일성이 있는 폴리뉴클레오티드 또는 폴리펩티드는 일반적으로 모두 또는 타겟 폴리뉴클레오티드 또는 폴리펩티드의 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 엄격도 또는 높은 엄격도에서 하이브리드할 것이다. 하이브리드하는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 적어도 예를 들어, 50%, 55%, 60%, 65% 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(바람직하게는, 버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 “상동성” 또는 "동일성"은 폴리펩티드 또는 폴리뉴클레오티드 사이의 비교를 나타낸다.
본 출원의 또 다른 하나의 양태는, 상기 폴리뉴클레오티드를 포함하는 벡터이다.
본 출원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 폴리펩타이드를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 폴리펩타이드를 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 폴리펩타이드를 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.
본 출원에서 용어 "형질전환"은 표적 폴리펩타이드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩타이드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌 글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다. 또한, 상기 폴리뉴클레오티드는 표적 폴리펩타이드를 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 폴리펩타이드를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 또 다른 양태는, 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 포함하거나 이의 활성이 강화된, 오르니틴계 산물을 생산하는 미생물을 제공하는 것이다.
구체적으로는, 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 포함하거나 이의 활성이 강화된, 퓨트레신 또는 아르기닌을 생산하는 코리네박테리움속(the genus Corynebacterium) 미생물을 제공하는 것이다.
본 출원에서 용어, “미생물”은 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 약화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물일 수 있다.
본 출원에서 "코리네박테리움 속 미생물"은 구체적으로는 코리네박테리움 글루타미쿰, 코리네박테리움 암모니아게네스, 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum), 브레비박테리움 플라범 (Brevibacterium flavum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 코리네박테리움 에피션스 (Corynebacterium efficiens) 등이나, 반드시 이에 한정되는 것은 아니다. 더욱 구체적으로는, 본 출원에서 코리네박테리움 속 미생물은 고농도의 퓨트레신 또는 아르기닌에 노출되더라도 세포 생장과 생존에 영향을 적게 받는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있다.
본 출원에서 용어 "오르니틴계 산물을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물"이란, 천연형 또는 변이를 통하여 오르니틴계 산물의 생산능을 가지고 있는 코리네박테리움 속 미생물을 의미한다. 상기 오르니틴계 산물을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 예를 들어 글루타메이트에서 오르니틴까지의 생합성 경로를 강화하기 위해 글루타메이트를 아세틸글루타메이트 (N-acetylglutamate)로 전환하는 아세틸글루타메이트 신타아제 또는 아세틸오르니틴을 오르니틴으로 전환하는 오르니틴 아세틸트랜스퍼라아제 (ArgJ), 아세틸글루타메이트를 아세틸글루타밀 포스페이트 (N-acetylglutamyl phosphate)로 전환하는 아세틸글루타메이트 키나아제 (ArgB), 아세틸글루타밀 포스페이트를 아세틸글루타메이트 세미알데히드 (N-acetylglutamate semialdehyde)로 전환하는 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 세미알데히드를 아세틸오르니틴 (N-acetylornithine)으로 전환하는 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)로 이루어진 군으로부터 선택되는 1종 이상의 활성이 내재적 활성에 비하여 증가시키도록 변형되어 오르니틴의 생산성이 향상된 것일 수 있다.
본 출원에서 용어 "퓨트레신 또는 아르기닌을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물"이란, 천연형 또는 변이를 통하여 퓨트레신 또는 아르기닌 생산능을 가지고 있는 코리네박테리움 속 미생물을 의미한다. 코리네박테리움 속 미생물은 퓨트레신을 생산하지 않으며, 아르기닌은 생산할 수 는 있으나 아르기닌의 생산능이 현저히 낮다. 따라서, 본 출원에서 퓨트레신 또는 아르기닌 생산능을 가지는 코리네박테리움 속 미생물이란 천연형 균주 자체 또는 외부 퓨트레신 또는 아르기닌 생산 기작과 관련된 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 약화시켜 향상된 퓨트레신 또는 아르기닌 생산능을 가지게 된 코리네박테리움 속 미생물을 의미한다.
또한, 상기 퓨트레신을 생산하는 미생물은 추가적으로 오르니틴에서 아르기닌 합성에 관여하는 오르니틴 카르바모일 트랜스퍼라아제 (ornithine carbamoyltransfrase, ArgF), 글루타메이트 배출에 관여하는 단백질, 퓨트레신을 아세틸화시키는 아세틸트랜스퍼라아제로 구성되는 군에서 선택되는 1종 이상의 활성이 내재적 활성에 비해 약화되도록 변이되고/되거나, 오르니틴 디카르복실라아제 (ornithine decarboxylase, ODC)의 활성이 도입되도록 변이된 것일 수 있다.
또한, 상기 아르기닌을 생산하는 미생물은 추가적으로 오르니틴에서 아르기닌 합성에 관여하는 오르니틴 카르바모일 트랜스퍼라아제 (ornithine carbamoyltransfrase, ArgF), 아르기니노숙신산 합성효소 (Argininosuccinate synthase, argG), 아르기니노숙신산 분해효소 (Argininosuccinate lyase, argH), 아스파테이트 암모니아 리아제 및 아스파테이트 아미노트랜스퍼라아제로 구성되는 군으로부터 선택되는 1종 이상의 활성이 내재적 활성에 비해 강화되도록 변이된 것일 수 있다.
본 출원에서 용어, 단백질의 활성의 “강화”는 상기 단백질의 활성이 도입되거나, 또는 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 활성의 “도입”은, 자연적 혹은 인위적으로 미생물이 본래 가지고 있지 않았던 특정 폴리펩타이드의 활성이 나타나게 되는 것을 의미한다.
본 출원에서 용어, 단백질의 활성이 내재적 활성에 비하여 “증가”한다는 것은, 미생물이 가진 단백질의 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 “내재적 활성”은, 자연적 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 단백질의 활성을 말한다. 변형 전 활성으로 혼용되어 사용될 수 있다.
구체적으로, 본 출원에서 활성 증가는,
1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형,
4) 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입, 또는
5) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가하는 방법으로 수행될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095), lysCP1 프로모터(WO2009/096689), EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있으나, 이에 한정되지 않는다. 아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
또한, 4) 외래 폴리뉴클레오티드 서열의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.
마지막으로, 5) 상기 1) 내지 4)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.
본 출원에서 용어, 단백질 활성의 “약화”는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다.
이러한 단백질 활성의 약화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 상기 단백질의 활성이 제거된 경우를 포함하여 상기 단백질을 암호화하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 효소의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 단백질을 암호화하는 유전자를 대체하는 방법; 상기 단백질을 암호화하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법(예컨대, 상기 유전자의 프로모터를 내재적 프로모터보다 약한 프로모터로 교체하는 방법); 상기 단백질을 암호화하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 단백질로의 번역을 저해하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 상기 예에 의해 특별히 제한되는 것은 아니다.
구체적으로, 단백질을 암호화하는 유전자의 일부 또는 전체를 결실하는 방법은, 미생물 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이의 일례로 상동재조합에 의하여 유전자를 결실시키는 방법을 사용할 수 있으나, 이에 한정되지 않는다. 또한, 상기에서 "일부"란 폴리뉴클레오티드의 종류에 따라서 상이하고, 당업자가 적절히 결정할 수 있으나, 구체적으로는 1 내지 300개, 보다 구체적으로는 1 내지 100개, 보다 더 구체적으로는 1 내지 50개일 수 있다. 그러나, 특별히 이에 제한되는 것은 아니다.
또한, 발현 조절서열을 변형하는 방법은 상기 발현 조절서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함할 수 있으나, 이에 한정되지 않는다.
아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 또 다른 양태는 (i) 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 포함하거나 이의 활성이 강화된 오르니틴계 산물을 생산하는 미생물을 배지에서 배양하는 단계; 및 (ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 오르니틴계 산물을 회수하는 단계를 포함하는 오르니틴계 산물 생산방법을 제공한다.
구체적인 예로, (i) 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 포함하거나 이의 활성이 강화된 퓨트레신을 생산하는 미생물을 배지에서 배양하는 단계; 및 (ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는 퓨트레신 생산방법을 제공한다.
또 다른 구체적인 예로, (i) 상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드를 포함하거나 이의 활성이 강화된 L-아르기닌을 생산하는 미생물을 배지에서 배양하는 단계; 및 (ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 L-아르기닌을 회수하는 단계를 포함하는 L-아르기닌 생산방법을 제공한다.
상기 오르니틴계 산물의 배출능을 가지는 폴리펩타이드 및/또는 오르니틴계 산물을 생산하는 미생물에 대해서는 상기 설명한 바와 같다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 퓨트레신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 출원의 상기 배양 단계에서 생산된 오르니틴계 산물을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양된 미생물 또는 배지로부터 목적하는 산물을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. 또한, 상기 오르니틴계 산물을 회수하는 방법은 당해 분야에 공지된 적합한 방법을 이용하여 정제하는 단계를 추가적으로 포함할 수 있다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 국한되는 것은 아니다.
실시예 1. 퓨트레신 배출 단백질의 아르기닌 배출능 확인
코리네박테리움 글루타미쿰 유전자 NCgl2522은 퓨트레신의 배출능이 있는 것으로 밝혀진 바 있으나(대한민국 공개특허 제2014-0115244호), 퓨트레신 외에도, 오르니틴을 출발물질로 하여 생합성 될 수 있는 시트룰린, 프롤린 및 아르기닌을 배출할 수 있는지 확인하기 위하여 다음과 같이 실험하였다.
구체적으로, 오르니틴을 출발 물질로 하여 생합성될 수 있는 산물 중 대표적인 예로 아르기닌 배출능이 있는지 확인하였다.
<1-1> 아르기닌 생산균주 기반 NCgl2522 강화 벡터 및 균주 제작
아르기닌 생산능을 가진 야생형 ATCC21831 균주와 KCCM10741P (대한민국 등록특허 제10-0791659호)에서 NCgl2522 활성을 강화하기 위하여, 염색체 내 NCgl2522의 개시 코돈 앞에 CJ7 프로모터(WO 2006/065095 A)를 도입하였다.
WO 2006/065095 A에 공지된 CJ7 프로모터를 포함하고, 상기 프로모터의 양끝 말단 부위는 염색체상의 NCgl2522 원래의 서열을 갖는 상동재조합 단편을 수득하였다. 구체적으로, CJ7 프로모터의 5'-말단 부위는 코리네박테리움 글루타미쿰 ATCC21831 또는 KCCM10741P의 게놈 DNA를 주형으로 하고 표 1의 서열번호: 17 및 18의 프라이머 쌍을 이용한 PCR을 수행하여 수득하였다. 이때 PCR 반응은 94℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 또한, CJ7 프로모터 부위는 표 1의 서열번호: 19 및 20의 프라이머 쌍을 이용하여 동일한 조건에서 PCR을 수행하여 수득하였으며, CJ7 프로모터의 3'-말단 부위는 코리네박테리움 글루타미쿰 ATCC21831 또는 KCCM10741P의 게놈 DNA를 주형으로 하고 표 1의 서열번호: 21 및 22의 프라이머 쌍을 이용하여 동일한 조건에서 PCR을 수행하여 수득하였다. 프로모터 치환에 사용된 프라이머는 하기 표 1에 나타난 바와 같다.
프라이머 서열 (5' -> 3')
NCgl2522-L5 (서열번호: 17) TGCAGGTCGACTCTAGA GTTCTGCGTAGCTGTGTGCC
NCgl2522-L3 (서열번호: 18) GATGTTTCT GGATCGTAACTGTAACGAATGG
CJ7-F (서열번호: 19) AGAAACATCCCAGCGCTACTAATA
CJ7-R (서열번호: 20) AGTGTTTCCTTTCGTTGGGTACG
NCgl2522-R5 (서열번호: 21) CAACGAAAGGAAACACT ATGATTTCAGAAACTTTGCAGGCG
NCgl2522-R3 (서열번호: 22) TCGGTACCCGGGGATCC CACAAAAAGCGTAGCGATCAACG
상기에서 수득한 각 PCR 산물을 BamHI과 XbaI으로 처리된 pDZ 벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 50 ℃에서 10 분 동안 반응시켰으며, 이를 통해 얻은 플라스미드를 각각 pDZ-P(CJ7)-NCgl2522-21831 및 pDZ-P(CJ7)-NCgl2522-10741P 라 명명하였다.
상기에서 제조된 플라스미드 pDZ-P(CJ7)-NCgl2522-21831 및 pDZ-P(CJ7)-NCgl2522-10741P 를 아르기닌 생산균주인 ATCC21831 및 KCCM10741P 에 전기천공법 (electroporation)으로 도입하여 형질전환체를 수득하고, 상기 형질전환체를 카나마이신 (25 ㎍/㎖)과 X-gal (5-bromo-4-chloro-3-indolin--D-galactoside)이 함유된 BHIS 평판 배지 (Braine heart infusion 37 g/L, 소르비톨 91 g/L, 한천 2 %)에 도말하여 배양함으로써 콜로니를 형성시켰다. 이로부터 형성된 콜로니 중에서 상기 플라스미드 pDZ-P(CJ7)-NCgl2522-21831 또는 pDZ-P(CJ7)-NCgl2522-10741P가 도입된 균주를 선별하였다.
상기 선별된 균주를 CM 배지 (글루코스 10 g/L, 폴리펩톤 10 g/L, 효모 추출물 5 g/L, 소고기 추출물 5 g/L, NaCl 2.5 g/L, 요소 2 g/L, pH 6.8)에서 진탕 배양 (30 ℃, 8 시간)하고, 각각 10-4부터 10-10까지 순차적으로 희석한 후 X-gal 함유 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택함으로써 2 차 교차 (crossover)에 의해 최종적으로 NCgl2522 유전자의 프로모터가 CJ7으로 치환된 균주를 선별하였다. 최종 선발된 균주를 대상으로 표 1의 프라이머 쌍 (서열번호 19 및 22)을 이용해 PCR을 수행하여 수득한 산물을 염기서열 분석하여 염색체 내 NCgl2522 개시 코돈 앞에 CJ7 프로모터가 도입되었음을 확인하였다. 이때 PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30초 어닐링; 및 72 ℃, 1 분 신장 과정을 30 회 반복하여 수행하였다.
이로부터 선별된 코리네박테리움 글루타미쿰 변이주를 각각 ATCC21831_Pcj7 Ncgl2522 및 KCCM10741P_Pcj7 NCgl2522로 명명하였다.
<1-2> 아르기닌 생산균주 기반 NCgl2522 강화 균주의 생산능 확인
NCgl2522 유전자가 오르니틴계 산물 중 하나인 아르기닌 배출능에 미치는 영향을 확인하기 위하여, 상기 참고예에서 제작한 코리네박테리움 글루타미쿰 변이주 ATCC21831_Pcj7 Ncgl2522 및 KCCM10741P_Pcj7 NCgl2522를 대상으로 아르기닌 생산능을 비교하였다.
이 때 대조군으로서는 모균주인 코리네박테리움 글루타미쿰 ATCC21831, KCCM10741P 를 사용하였으며, 생산 배지 [포도당 6%, 황산암모늄 3%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.2%, CSL(옥수수 침지액) 1.5%, NaCl 1%, 이스트 익스트렉트 0.5%, 비오틴 100ug/L, pH7.2] 25 ml을 넣은 250ml 코너-바플 플라스크에 1 백금이의 균주를 접종하고 30 ℃에서 48시간 동안 200 rpm으로 배양하여 생산하였다. 배양종료 후 HPLC로 아르기닌의 생산량을 측정하였으며, 그 결과는 하기 표 2과 같았다.
균주 OD 아르기닌농도 (g/L) 오르니틴농도 (g/L) 아르기닌Fold (%)
KCCM10741P 91 3.0 0.3 100
KCCM10741P_Pcj7 Ncgl2522 72 3.6 0.4 120
ATCC21831 102 4.2 0.3 100
ATCC21831_Pcj7 Ncgl2522 86 4.8 0.4 114
상기 표 2에 나타난 바와 같이, KCCM10741P 및 ATCC21831에 NCgl2522 유전자의 프로모터를 CJ7으로 치환하여 강화하였을 때, 상기 변이주인 코리네박테리움 글루타미쿰 균주에서 모균주 대비 각각 아르기닌 생산량이 20%, 14% 증가하였음을 확인하였다. 또한, 아르기닌으로 전환되기 전 단계 물질인 오르니틴의 농도도 상기 변이주에서 모균주 대비 증가함을 확인하였다.
이를 토대로 NCgl2522 유전자는 퓨트레신의 배출유전자일 뿐만 아니라, 오르니틴을 포함하여 이를 출발물질로 하여 생합성되는 산물들에 대한 배출능을 가지고 있다는 것을 확인하였다. 또한, 상기 결과로부터 NCgl2522 유전자 및 본 원의 변이체는 바이오매스를 활용한 오르니틴계 산물 생산에 매우 유용하게 이용될 수 있음을 해석할 수 있다.
실시예 2. 퓨트레신 배출 단백질을 코딩하는 유전자의 변이체 라이브러리 제작 및 유효 변이 확보
오르니틴계 산물 배출 단백질의 활성을 증가시키고자, 본 발명자들은 퓨트레신 배출 단백질을 코딩하는 유전자인 NCgl2522 (대한민국 등록특허 제10-1607741 호)의 변이체를 제작하였다.
구체적으로, 상기 NCgl2522 유전자 변이체 라이브러리 제작을 위하여 코리네박테리움 글루타미쿰 ATCC13032 게놈 DNA를 주형으로, 표 3의 NCgl2522 유전자 ORF의 개시코돈을 제외시키는 특이적 프라이머 쌍 (서열번호 7 및 8)을 이용하여 임의 돌연변이유발 PCR (JENA error prone PCR)을 수행하였다.
프라이머 서열 (5' -> 3')
13032-putE-EF-FX (서열번호 7) CCGGGGATCCTCTAGA ACTTCAGAAACCTTACAGGC
13032-putE-EF-RX (서열번호 8) GCAGGTCGACTCTAGA CTAGTGCGCATTATTGGCTC
이와 같은 과정으로 제작한 돌연변이 유전자 단편들을 XbaI으로 자른 pDZ 벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 50 ℃에서 10 분 동안 반응시켰으며, 이를 통해 pDZ-N2522 변이체 플라스미드 라이브러리를 완성하였다.
그 다음 상기와 같은 과정으로 제작한 재조합 플라스미드 라이브러리들을 HTS (High Thoughput Screening)를 이용하여 스크리닝하였다. 이때, 스크리닝 기반 균주는 코리네박테리움 글루타미쿰 유래 퓨트레신을 생산하는 재조합 미생물인 KCCM11240P (대한민국 등록특허 제10-1493585호)를 사용하였다.
구체적으로, 퓨트레신 배출 활성이 증가된 변이체를 확보하기 위하여, 제작한 플라스미드 라이브러리들을 KCCM11240P에 전기천공법으로 도입하여 형질전환체를 수득하고, 상기 형질전환체를 카나마이신 (25 ㎍/㎖)과 X-gal (5-bromo-4-chloro-3-indolin--D-galactoside)이 함유된 BHIS 평판 배지 (Braine heart infusion 37 g/L, 소르비톨 91 g/L, 한천 2 %)에 도말하여 배양함으로써 콜로니를 형성시켰다. 이로부터 형성된 콜로니 중에서 상기 플라스미드 pDZ-N2522 변이체 라이브러리가 도입된 균주를 선별하였다.
상기 선별된 균주를 96 Deep well plate을 이용하여 스크리닝 역가 배지 (글루코스 2 g/L, MgSO4·7H2O 0.4 g/L, MgCl2 0.8 g/L, KH2PO4 1 g/L, (NH4)2SO4 4 g/L, 대두단백질 가수분해물 0.48 g/L, MnSO4·7H2O 0.01 g/L, 티아민·HCl 200 ㎍/L, 바이오틴 200 ㎍/L, FeSO4·7H2O 0.01 g/L, 아르기닌 1 mM, 카나마이신 25 ㎍/㎖, pH 7.2)에서 진탕 배양 (30 ℃, 24 시간)하고, 각 배양물로부터 생산된 퓨트레신 농도를 측정하여, 대조군 대비 퓨트레신 생산성이 가장 많이 증가된 형질전환체 1 종을 선별하였다. 그 다음, 선별된 상기 형질전환체의 NCgl2522 단백질의 아미노산 서열에서 어떤 변이가 유도되었는지 확인하였다. Ncgl2522 변이체 서열의 확인은, 해당 변이체를 포함하는 형질전환체로부터 서열번호 7 및 8의 프라이머를 이용한 colony PCR을 수행하여 상동재조합 단편을 수득한 후, 서열번호 7의 프라이머를 사용하여 유전자 서열을 해독하는 방식으로 수행하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 1 분 신장 과정을 30 회 반복하여 수행하였다.
그 결과, 상기 과정을 통해 선별된 NCgl2522 변이체는 코리네박테리움 글루타미쿰 ATCC13032의 NCgl2522 아미노산 서열 (서열번호 1)에서 N-말단으로부터 77 번째 아미노산 잔기인 글리신 (Gly)이 알라닌 (Ala)으로 치환된 것임을 확인하였고, 이를 NCgl2522_G77A (서열번호 3)으로 명명하였다.
실시예 3. 퓨트레신 배출 단백질을 코딩하는 유전자의 77 번째 아미노산 잔기가 치환된 다양한 변이체의 확보
본 발명들은 상기 실시예 2에서 제조된 NCgl2522_G77A 변이체를 통해, N-말단으로부터 77 번째 아미노산 잔기가 NCgl2522 단백질의 활성에 중요한 위치임을 인식하였다. 이에, NCgl2522 단백질의 77 번째 아미노산 잔기를 다른 아미노산 잔기로 치환한 다양한 변이체를 제작하였다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC13032의 게놈 DNA를 주형으로, NCgl2522 유전자 ORF의 개시코돈을 제외시키는 특이적 프라이머 쌍 (서열번호 7 및 8)을 이용하여 상동재조합 단편을 수득하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 1 분 신장 과정을 30 회 반복하여 수행하였다.
그 다음 상기에서 수득한 PCR 산물을 XbaI으로 처리된 pDZ벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 수행하였고, 이를 통해 수득한 플라스미드를 pDZ-NCgl2522_G77이라 명명하였다.
다음으로, 상기에서 제작한 플라스미드 pDZ-NCgl2522_G77를 주형으로, NCgl2522의 77 번째 아미노산 잔기에 임의 돌연변이를 유발하기 위해 표 4의 프라이머 쌍(서열번호 9 및 10)을 이용하여 PCR을 수행하여 pDZ-NCgl2522_G77 변이체 플라스미드 라이브러리를 완성하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 5 분 신장 과정을 25 회 반복하여 수행하였다.
프라이머 서열 (5' -> 3')
SM_putE_G77-F (서열번호 9) TGGGGTTCCGTGNNKATTCTTGGCGCT
SM_putE_G77-R(서열번호 10) AGCGCCAAGAATMNNCACGGAACCCCA
그 다음 상기와 같은 과정으로 제작한 재조합 플라스미드 라이브러리들을 HTS (High Thoughput Screening)를 이용하여 스크리닝하였다. 이때, 스크리닝 기반 균주는 코리네박테리움 글루타미쿰 유래 퓨트레신을 생산하는 재조합 미생물인 KCCM11240P을 이용하였다.
제작한 플라스미드 라이브러리들을 KCCM11240P에 전기천공법으로 도입하여 형질전환체를 수득하고, 실시예 2와 동일한 방법으로 상기 플라스미드 pDZ-NCgl2522_G77 변이체가 도입된 균주를 선별하였다. 대조군 대비 퓨트레신 생산성이 가장 많이 증가된 형질전환체 2 종을 선별하였고, 각 형질전환체의 NCgl2522 단백질의 아미노산 서열에서 어떤 변이가 유도되었는지 실시예 2과 같은 방법으로 확인하였다.
그 결과, 코리네박테리움 글루타미쿰 ATCC13032의 NCgl2522 아미노산 서열 (서열번호 1)에서 N-말단으로부터 77 번째 아미노산 잔기인 글리신 (Glycine)이 알라닌 (Alanine)으로 치환된 변이체 NCgl2522_G77A (ATCC13032) (서열번호 3)외에, 아르기닌 (Arginine)으로 치환된 변이체가 확인되었고, 이를 NCgl2522_G77R (ATCC13032) (서열번호 4)으로 명명하였다.
또한, 상기 변이의 퓨트레신 생산성 증가 효과가 다른 균주 유래의 NCgl2522 단백질에도 적용될 수 있는지 확인하기 위해, 코리네박테리움 글루타미쿰 ATCC13869 유래 NCgl2522 단백질의 77 번째 아미노산 잔기를 다른 아미노산 잔기로 치환한 다양한 변이체를 제작하였다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC13869의 게놈 DNA를 주형으로, NCgl2522 유전자 ORF의 개시코돈을 제외시키는 특이적 프라이머 쌍 (서열번호 7 및 8)을 이용하여 상동재조합 단편을 수득하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 30초 신장 과정을 30 회 반복하여 수행하였다.
상기에서 수득한 PCR 산물을 XbaI으로 처리된 pDZ벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 수행하였고, 그 결과로 얻은 플라스미드를 pDZ-13869-NCgl2522_G77이라 명명하였다.
다음으로, 상기에서 제작한 플라스미드 pDZ-13869-NCgl2522_G77을 주형으로 하고, 77 번째 아미노산 잔기에 임의 돌연변이를 유발하기 위해 표 4의 프라이머 쌍 (서열번호 9 및 10)을 이용해 PCR을 수행하여 pDZ-13869-NCgl2522_G77 변이체 플라스미드 라이브러리를 완성하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 5분 신장 과정을 25 회 반복하여 수행하였다.
그 다음, 상기와 같은 과정으로 제작한 재조합 플라스미드 라이브러리들을 HTS (High Thoughput Screening)를 이용하여 스크리닝하였다. 스크리닝 기반 균주는 코리네박테리움 글루타미쿰 유래 퓨트레신을 생산하는 재조합 미생물인 DAB12-b을 이용하였다. 그 다음, 제작한 플라스미드 라이브러리들을 DAB12-b에 전기천공법으로 도입하여 형질전환체를 수득하고, 실시예 2와 동일한 방법으로 플라스미드 pDZ-13869-NCgl2522_G77 변이체가 도입된 균주를 선별하였다.
그 결과, 코리네박테리움 글루타미쿰 ATCC13032의 NCgl2522의 변이체와 마찬가지로, 코리네박테리움 글루타미쿰 ATCC13869의 NCgl2522 아미노산 서열 (서열번호 2)에서 N-말단으로부터 77 번째 아미노산 잔기가 치환된 변이체 2 종이 퓨트레신 생산량이 가장 많은 균주로 선별되었다. 이 중 77 번째 아미노산 잔기인 글리신 (Glycine)이 알라닌 (Alanine)으로 치환된 변이체는 NCgl2522_G77A (ATCC13869) (서열번호 5)로, 아르기닌 (Arginine)으로 치환된 변이체는 NCgl2522_G77R (ATCC13869) (서열번호 6)으로 명명하였다.
실시예 4. NCgl2522 변이체 균주의 제작 및 이의 퓨트레신 생산능 확인
<4-1> ATCC13032 기반 퓨트레신 생산 균주에서 NCgl2522 변이체 균주의 제작
퓨트레신 생산 균주에서 퓨트레신 배출능을 증가시키기 위하여 코리네박테리움 글루타미쿰 ATCC13032 기반의 퓨트레신 생산 균주에 NCgl2522 유전자 변이체인 NCgl2522_G77A 또는 NCgl2522_G77R을 염색체 내로 도입하였다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC13032의 게놈 DNA를 주형으로 프라이머 쌍 (서열번호 11 및 14, 서열번호 12 및 13)들을 이용한 PCR을 수행하여 NCgl2522_G77A을, 프라이머 쌍 (서열번호 11 및 16, 서열번호 12 및 15)들을 이용한 PCR을 수행하여 NCgl2522_G77R 변이 서열을 갖는 상동재조합 단편을 수득하였다. 이때, PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30초 어닐링; 및 72 ℃, 30초 신장 과정을 30 회 반복하여 수행하였다.
프라이머 서열 (5' -> 3')
pDC-Pself-putE-up-FX (서열번호 11) CCGGGGATCCTCTAGA CCTCTAAGCGCCTCAAAG
pDC-putE-up-RX (서열번호 12) GCAGGTCGACTCTAGA GATTCGCGATATTGGCCG
putE_G77A-F(서열번호 13) CCGGCACTTTGGCTGACAAAATCG
putE_G77A-R(서열번호 14) CGATTTTGTCAGCCAAAGTGCCGG
putE_G77R-F(서열번호 15) CCGGCACTTTGCGTGACAAAATCG
putE_G77R-R(서열번호 16) CGATTTTGTCACGCAAAGTGCCGG
상기에서 수득한 각 PCR 산물을 XbaI으로 처리된 pDZ 벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 수행하였다. 그 결과로 얻은 플라스미드를 각각 pDZ-NCgl2522_G77A 및 pDZ-NCgl2522_G77R이라 명명하였다.
상기에서 제조된 플라스미드 pDZ-NCgl2522_G77A 또는 pDZ-NCgl2522_G77R를 ATCC13032 기반의 퓨트레신 생산 균주인 KCCM11240P (대한민국 공개특허 제2013-0082478호)에 전기천공법 (electroporation)으로 도입하여 형질전환체를 수득하고, 상기 형질전환체를 카나마이신 (25 ㎍/㎖)과 X-gal (5-bromo-4-chloro-3-indolin--D-galactoside)이 함유된 BHIS 평판 배지 (Braine heart infusion 37 g/L, 소르비톨 91 g/L, 한천 2 %)에 도말하여 배양함으로써 콜로니를 형성시켰다. 이로부터 형성된 콜로니 중에서 상기 플라스미드 pDZpDZ-NCgl2522_G77A 또는 pDZ-NCgl2522_G77R가 도입된 균주를 선별하였다.
상기 선별된 균주를 CM 배지 (글루코스 10 g/L, 폴리펩톤 10 g/L, 효모 추출물 5 g/L, 소고기 추출물 5 g/L, NaCl 2.5 g/L, 요소 2 g/L, pH 6.8)에서 진탕 배양 (30 ℃, 8 시간)하고, 각각 10-4부터 10-10까지 순차적으로 희석한 후 X-gal 함유 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택함으로써 2 차 교차 (crossover)에 의해 최종적으로 NCgl2522 유전자가 NCgl2522_G77A 또는 NCgl2522_G77R 변이체로 치환된 균주를 선별하였다. 최종 선발된 균주를 대상으로 프라이머 쌍 (서열번호 11 및 12)을 이용해 PCR을 수행하여 수득한 산물을 염기서열 분석하여 변이체로 치환되었음을 확인하였다. 이때 PCR 반응은 95 ℃, 30초 변성; 55 ℃, 30초 어닐링; 및 72 ℃, 1 분 신장 과정을 30 회 반복하여 수행하였다.
이로부터 선별된 코리네박테리움 글루타미쿰 변이주를 각각 KCCM11240P NCgl2522_G77A 및 KCCM11240P NCgl2522_G77R로 명명하였다.
<4-2> ATCC13869 기반 퓨트레신 생산 균주에서 NCgl2522 변이체 균주의 제작
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산 균주인 DAB12-a ΔNCgl1469 (대한민국 공개특허 제2013-0082478호)를 DAB12-b라 명명하고, 퓨트레신 생산 균주의 퓨트레신 배출능을 증가시키기 위하여 NCgl2522 유전자 변이체인 NCgl2522_G77A 또는 NCgl2522_G77R를 DAB12-b 균주의 염색체 내로 도입하였다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC13869의 게놈 DNA를 주형으로 표 5의 프라이머 쌍 (서열번호 11 및 14, 서열번호 12 및 13)들을 이용한 PCR을 수행하여 NCgl2522_G77A을, 프라이머 쌍 (서열번호 11 및 16, 서열번호 12 및 15)들을 이용한 PCR을 수행하여 NCgl2522_G77R 변이 서열을 갖는 상동재조합 단편을 수득하였다. 이때, PCR 반응은 95 ℃, 30 초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 30 초 신장 과정을 30 회 반복하여 수행하였다.
상기에서 수득한 각 PCR 산물을 XbaI으로 처리된 pDZ 벡터에 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD Cloning Kit (Clontech)를 사용하여 수행하였다. 그 결과로 얻은 플라스미드를 각각 pDZ-NCgl2522_G77A-2 및 pDZ-NCgl2522_G77R-2라 명명하였다.
상기에서 제조된 플라스미드 pDZ-NCgl2522_G77A-2 또는 pDZ-NCgl2522_G77R-2를 DAB12-b에 전기천공법 (electroporation)으로 도입하여 형질전환체를 수득하고, 상기 형질전환체를 카나마이신 (25 ㎍/㎖)과 X-gal(5-bromo-4-chloro-3-indolin--D-galactoside)이 함유된 BHIS 평판 배지 (Braine heart infusion 37 g/L, 소르비톨 91 g/L, 한천 2 %)에 도말하여 배양함으로써 콜로니를 형성시켰다. 형성된 콜로니 중에서 상기 플라스미드 pDZ-NCgl2522_G77A-2 또는 pDZ-NCgl2522_G77R-2가 도입된 균주를 선별하였다.
상기 선별된 균주를 CM 배지 (글루코스 10 g/L, 폴리펩톤 10 g/L, 효모 추출물 5 g/L, 소고기 추출물 5 g/L, NaCl 2.5 g/L, 요소 2 g/L, pH 6.8)에서 진탕 배양 (30 ℃, 8 시간)하고, 각각 10-4부터 10-10까지 순차적으로 희석한 후 X-gal 함유 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택함으로써 2 차 교차 (crossover)에 의해 최종적으로 NCgl2522 유전자가 NCgl2522_G77A 및 NCgl2522_G77R 변이체로 치환된 균주를 선별하였다. 최종 선발된 균주를 대상으로 프라이머 쌍 (서열번호 11 및 12)을 이용해 PCR을 수행하였고, 이를 통해 수득한 산물의 염기서열을 분석하여 변이체로 치환되었음을 확인하였다. 이때 PCR 반응은 95 ℃, 30 초 변성; 55 ℃, 30 초 어닐링; 및 72 ℃, 1 분 신장 과정을 30 회 반복하여 수행하였다.
이로부터 선별된 코리네박테리움 글루타미쿰 변이주를 각각 DAB12-b NCgl2522_G77A 및 DAB12-b NCgl2522_G77R로 명명하였다.
<4-3> NCgl2522 변이체 도입 균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에 퓨트레신 배출능을 증가시키는 NCgl2522 유전자 변이체 도입 시 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 <4-1> 및 <4-2>에서 제작한 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 코리네박테리움 글루타미쿰 변이주 (KCCM11240P NCgl2522_G77A; DAB12-b NCgl2522_G77R)와 2 종의 모균주 (KCCM11240P; DAB12-b)를 각각 1 mM 아르기닌 함유 CM 평판 배지 (글루코스 1 %, 폴리펩톤 1 %, 효모 추출물 0.5 %, 소고기 추출물 0.5 %, NaCl 0.25 %, 요소 0.2 %, 50 % NaOH 100 ㎕, 아가 2 %, pH 6.8, 1 L 기준)에 도말하여 30 ℃에서 24 시간 동안 배양하였다. 이로부터 배양된 각 균주를 25 ㎖의 역가 배지 (글루코스 8 %, 대두단백질 0.25 %, 옥수수고형 0.50 %, (NH4)2SO4 4 %, KH2PO4 0.1 %, MgSO4·7H2O 0.05 %, 요소 0.15 %, 바이오틴 100 ㎍, 티아민·HCl 3 mg, 칼슘-판토텐산 3 mg, 니코틴아미드 3 mg, CaCO3 5 %, 1 L 기준)에 한 백금이 정도로 접종한 후 이를 30 ℃에서 200 rpm으로 50 시간 동안 진탕 배양하였다. 모든 균주의 배양 시 배지에 1 mM 아르기닌을 첨가하였다. 각 배양물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 6에 나타내었다.
□ 균주명 퓨트레신(g/L) 생산성(g/L/h) Fold(%)
KCCM11240P 5.8 0.116 100
KCCM11240P NCgl2522_G77A 6.8 0.136 117
KCCM11240P NCgl2522_G77R 6.3 0.126 109
DAB12-b 6.5 0.129 100
DAB12-b NCgl2522_G77A 7.3 0.146 113
DAB12-b NCgl2522_G77R 7.1 0.142 110
상기 표 6에 나타난 바와 같이, KCCM11240P 및 DAB12-b에 각각 변이체 NCgl2522_G77A 또는 NCgl2522_G77R를 도입하였을 때, 상기 변이체가 도입된 모든 코리네박테리움 글루타미쿰 균주에서 모균주 대비 퓨트레신 생산량 및 생산성이 7% 내지 13% 증가하였음을 확인하였다. 이때의 생산성은 각 형질전환체의 시간당 퓨트레신 생산량을 나타내며 g/L/h로 나타내었다.
실시예 5. 퓨트레신 배출능이 증가된 퓨트레신 생산균주에 NCgl2522 변이체 도입 및 이의 퓨트레신 생산능 확인
<5-1> 퓨트레신 배출능이 증가된 균주에 NCgl2522 변이체를 도입한 균주의 제작
코리네박테리움 글루타미쿰 ATCC13032 기반의 퓨트레신 배출능이 증가된 퓨트레신 생산 균주인 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호)에서, NCgl2522 유전자 변이체의 영향성을 확인하기 위하여 NCgl2522_G77A 및 NCgl2522_G77R를 각각 상기 균주의 염색체 내로 도입하였다.
구체적으로, 실시예 <4-1>에서 제작한 pDZ-NCgl2522_G77A 및 pDZ-NCgl2522_G77R를 실시예 <4-1>과 동일한 방법으로 KCCM11240P P(CJ7)-NCgl2522에 각각 형질전환하여 염색체 내 NCgl2522 유전자가 변이체로 치환되었음을 확인하였다. 상기 과정을 통해 선별된 코리네박테리움 글루타미쿰 변이주를 각각 KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77A 및 KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77R로 명명하였다.
<5-2> 퓨트레신 배출능이 증가된 균주에 NCgl2522 변이체를 도입한 균주의 퓨트레신 생산능 평가
퓨트레신 배출능이 증가된 코리네박테리움 글루타미쿰 생산균주에 NCgl2522 변이체가 미치는 효과를 확인하기 위하여, 상기 실시예 <5-1>에서 제작한 코리네박테리움 글루타미쿰 변이주와 모균주의 퓨트레신 생산능을 비교하였다.
구체적으로, 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77A 및 KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77R)와 모균주 (KCCM11240P P(CJ7)-NCgl2522)를 각각 1 mM 아르기닌 함유 CM 평판 배지 (글루코스 1 %, 폴리펩톤 1 %, 효모 추출물 0.5 %, 소고기 추출물 0.5 %, NaCl 0.25 %, 요소 0.2 %, 50 % NaOH 100 ㎕, 아가 2 %, pH 6.8, 1 L 기준)에 도말하여 30 ℃에서 24 시간 동안 배양하였다. 이로부터 배양된 각 균주를 25 ㎖의 역가 배지 (글루코스 8 %, 대두단백질 0.25 %, 옥수수고형 0.50 %, (NH4)2SO4 4 %, KH2PO4 0.1 %, MgSO4·7H2O 0.05 %, 요소 0.15 %, 바이오틴 100 ㎍, 티아민·HCl 3 mg, 칼슘-판토텐산 3 mg, 니코틴아미드 3 mg, CaCO3 5 %, 1 L 기준)에 한 백금이 정도로 접종한 후 이를 30 ℃에서 200 rpm으로 50 시간 동안 진탕 배양하였다. 모든 균주의 배양 시 배지에 1 mM 아르기닌을 첨가하였다. 각 배양물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 7에 나타내었다.
□ 균주명 퓨트레신(g/L) 생산성(g/L/h) Fold(%)
KCCM11240P P(CJ7)-NCgl2522 6.9 0.138 100
KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77A 7.6 0.152 110
KCCM11240P P(CJ7)-NCgl2522 NCgl2522_G77R 7.5 0.150 109
상기 표 7에 나타난 바와 같이, 퓨트레신 배출능이 강화된 KCCM11240P P(CJ7)-NCgl2522에 변이체 NCgl2522_G77A 또는 NCgl2522_G77R를 도입하였을 때, 이미 퓨트레신 배출능이 강화되어 있는 모균주 대비 퓨트레신 생산량 및 생산성이 9% 내지 10% 증가하였음을 확인하였다. 이때의 생산성은 각 형질전환체의 시간당 퓨트레신 생산량을 나타내며 g/L/h로 나타내었다.
실시예 6. 아르기닌 생산균주에 NCgl2522 변이체 도입 및 이의 아르기닌 생산능 확인
<6-1> 아르기닌을 생산하는 균주에 NCgl2522 변이체를 도입한 균주의 제작
L-아르기닌 생산 균주에서 L-아르기닌 배출능을 증가시키기 위하여 코리네박테리움 글루타미쿰 ATCC21831 및 KCCM10741P (대한민국 등록특허 제10-0791659호) 에 NCgl2522 유전자 변이체인 NCgl2522_G77A 또는 NCgl2522_G77R을 염색체 내로 도입하였다.
구체적으로, 실시예 <4-2>와 같은 방법을 이용하여, 최종적으로 NCgl2522 유전자가 NCgl2522_G77A 및 NCgl2522_G77R 변이체로 치환된 균주를 선별하였다. 이로부터 선별된 코리네박테리움 글루타미쿰 변이주를 각각 KCCM10741P NCgl2522_G77A 및 KCCM10741P NCgl2522_G77R, ATCC21831_Pcj7 Ncgl2522_G77A, ATCC21831_Pcj7 Ncgl2522_G77R 로 명명하였다.
<6-2> NCgl2522 변이체 도입 균주의 L-아르기닌 생산능 평가
L-아르기닌 생산 균주에 L-아르기닌 배출능을 증가시키는 NCgl2522 유전자 변이체 도입 시 L-아르기닌 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 <6-1>에서 제작한 코리네박테리움 글루타미쿰 변이주를 대상으로 L-아르기닌 생산능을 비교하였다.
이 때 대조군으로서는 모균주인 코리네박테리움 글루타미쿰 KCCM10741P, ATCC21831 및 참조예에서 제조된 KCCM10741P_Pcj7 Ncgl2522, ATCC21831_Pcj7 Ncgl2522를 사용하였으며, 생산 배지 [포도당 6%, 황산암모늄 3%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.2%, CSL(옥수수 침지액) 1.5%, NaCl 1%, 이스트 익스트렉트 0.5%, 비오틴 100ug/L, pH7.2] 25 ml을 넣은 250ml 코너-바플 플라스크에 1백금이의 균주를 접종하고 30 ℃에서 48시간 동안 200 rpm으로 배양하여 생산하였다. 배양종료 후 HPLC로 L-아르기닌의 생산량을 측정하였으며, 그 결과는 하기 표 8과 같았다.
균주 OD 아르기닌농도 (g/L) 오르니틴농도 (g/L) 아르기닌Fold (%)
KCCM10741P 91 3.0 0.3 100
KCCM10741P_Pcj7 Ncgl2522 72 3.6 0.4 120
KCCM10741P_Pcj7 Ncgl2522_G77A 69 4.1 0.5 136.7
KCCM10741P_Pcj7 Ncgl2522_G77R 70 4.2 0.5 140
ATCC21831 102 4.2 0.3 100
ATCC21831_Pcj7 Ncgl2522 86 4.8 0.4 114
ATCC21831_Pcj7 Ncgl2522_G77A 86 5.4 0.5 128.6
ATCC21831_Pcj7 Ncgl2522_G77R 88 5.3 0.6 126.2
상기 표 8에 나타난 바와 같이, KCCM10741P 및 ATCC21831에 각각 변이체 NCgl2522_G77A 또는 NCgl2522_G77R를 도입하였을 때, 상기 변이체가 도입된 모든 코리네박테리움 글루타미쿰 균주에서 모균주 대비 L-아르기닌 생산량이 26% 내지 40 % 증가하였음을 확인하였다.
또한, L-아르기닌으로 전환되고 남아 배출된 L- 오르니틴의 농도도, 상기 변이체가 도입된 경우 증가함을 확인하였다. 이로부터 오르니틴을 출발물질로 하여 생합성되는 산물들도 배출할 것으로 해석 될 수 있다.
종합하면, 본 발명자들은 퓨트레신 배출 단백질인 NCgl2522 유전자의 경우 N-말단에서 77 번째 아미노산 잔기가 오르니틴계 산물의 배출능에 핵심적 역할을 한다는 것을 확인하였다. 특히 상기 77 번째 아미노산이 다른 아미노산 잔기로 치환되는 경우, 이러한 변이체가 도입된 균주에서는 오르니틴계 산물의 생산량이 증가되는 것을 확인할 수 있었다. 이에, 본 출원의 변이체를 미생물을 이용해 오르니틴계 산물을 생산하는 방법에 적용하여 생산량을 보다 향상시킬 수 있으므로, 바이오매스를 활용한 오르니틴계 산물 생산에 매우 유용하게 이용될 수 있다.
본 출원에서 퓨트레신 생산 균주에서 퓨트레신 배출능을 증가시키기 위하여 코리네박테리움 글루타미쿰 ATCC13032 기반의 퓨트레신 생산 균주에 NCgl2522 유전자 변이체인 NCgl2522_G77A 염색체 내로 도입하고, 상기 변이체가 도입된 코리네박테리움 글루타미쿰 균주에서 고수율 및 고생산성으로 퓨트레신을 생산할 수 있음을 확인하고, 상기균주를 KCCM11240P NCgl2522_G77A로 명명한 후 부다페스트 조약 하에 국제기탁기관인 한국미생물보존센터(KCCM)에 2016년 9월 1일자로 기탁하여 수탁번호 KCCM11886P를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2018006732-appb-I000001

Claims (21)

  1. 서열번호 1 또는 2로 기재된 아미노산 서열로 구성된 오르니틴계 산물 배출 단백질의 아미노산 서열에서 N-말단으로부터 77 번째 글리신 (Glycine) 아미노산 잔기가 다른 아미노산으로 치환된, 오르니틴계 산물 배출능을 가지는 폴리펩타이드.
  2. 제1항에 있어서, 상기 77 번째 글리신이 알라닌 (Alanine) 또는 아르기닌(Arginine)으로 치환된, 오르니틴계 산물 배출능을 가지는 폴리펩타이드.
  3. 제1항에 있어서, 상기 폴리펩타이드는 서열번호 3 내지 서열번호 6 중 어느 하나로 기재되는 아미노산 서열로 구성된, 오르니틴계 산물 배출능을 가지는 폴리펩타이드.
  4. 제1항 내지 제3항 중 어느 한 항의 오르니틴계 산물 배출능을 가지는 폴리펩타이드를 코딩하는 폴리뉴클레오티드.
  5. 제4항의 폴리뉴클레오티드를 포함하는 벡터.
  6. 제1항 내지 제3항 중 어느 한 항의 폴리펩타이드를 포함하거나 이의 활성이 강화된, 퓨트레신을 생산하는 코리네박테리움속(the genus Corynebacterium) 미생물.
  7. 제6항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, 퓨트레신을 생산하는 코리네박테리움속 미생물.
  8. 제6항에 있어서, 추가로 오르니틴 디카복실라아제 (ornithine decarboxylase, ODC)의 활성이 도입된, 퓨트레신을 생산하는 코리네박테리움속 미생물.
  9. 제6항에 있어서, 추가로 오르니틴 카르바모일 트렌스퍼라아제 (ArgF) 및 글루타메이트 배출에 관여하는 단백질로 구성되는 군으로부터 선택되는 1 종 이상의 활성이 내재적 활성에 비해 불활성화된, 퓨트레신을 생산하는 코리네박테리움속 미생물.
  10. 제6항에 있어서, 추가로 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 신타아제 또는 오르니틴 아세틸트랜스퍼라아제 (argJ), 아세틸글루타메이트 키나아제 (ArgB), 및 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)로 구성되는 군으로부터 선택되는 1 종 이상의 활성이 내재적 활성에 비해 강화된, 퓨트레신을 생산하는 코리네박테리움속 미생물.
  11. 제6항에 있어서, 추가적으로 퓨트레신 아세틸트렌스퍼라아제의 활성이 내재적 활성에 비해 약화된, 퓨트레신을 생산하는 코리네박테리움속 미생물.
  12. 제1항 내지 제3항 중 어느 한 항의 폴리펩타이드를 포함하거나 이의 활성이 강화된, 아르기닌을 생산하는 코리네박테리움속 미생물.
  13. 제12항에 있어서, 추가로 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 신타아제 또는 오르니틴 아세틸트랜스퍼라아제 (argJ), 아세틸글루타메이트 키나아제 (ArgB), 및 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)로 구성되는 군으로부터 선택되는 1 종 이상의 활성이 내재적 활성에 비해 강화된, 아르기닌을 생산하는 코리네박테리움속 미생물.
  14. 제12항에 있어서, 추가로 오르니틴 카르바모일 트랜스퍼라아제 (ornithine carbamoyltransfrase, ArgF), 아르기니노숙신산 합성효소 (Argininosuccinate synthase, argG),아르기니노숙신산 분해효소 (Argininosuccinate lyase, argH), 아스파테이트 암모니아 리아제 및/또는 아스파테이트 아미노트랜스퍼라아제로 구성되는 군으로부터 선택되는 1 종 이상의 활성이 내재적 활성에 비해 증가된, 아르기닌을 생산하는 코리네박테리움속 미생물.
  15. 제12항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, 아르기닌을 생산하는 코리네박테리움속 미생물.
  16. (i) 제6항 내지 제11항 중 어느 한 항의 미생물을 배지에서 배양하는 단계; 및
    (ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는, 퓨트레신 생산방법.
  17. (i) 제12항 내지 제15항 중 어느 한 항의 미생물을 배지에서 배양하는 단계; 및
    (ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 아르기닌을 회수하는 단계를 포함하는, 아르기닌 생산방법.
  18. 제1항 내지 제3항 중 어느 한 항의 폴리펩타이드를 포함하거나 이의 활성이 강화된, 오르니틴계 산물을 생산하는 코리네박테리움속 미생물.
  19. 제18항에 있어서, 추가로 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 신타아제 또는 오르니틴 아세틸트랜스퍼라아제 (argJ), 아세틸글루타메이트 키나아제 (ArgB), 및 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)로 구성되는 군으로부터 선택되는 1 종 이상의 활성이 내재적 활성에 비해 강화된, 오르니틴계 산물을 생산하는 코리네박테리움속 미생물.
  20. 제18항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, 오르니틴계 산물을 생산하는 코리네박테리움속 미생물.
  21. (i) 제18항 내지 제20항 중 어느 한 항의 미생물을 배지에서 배양하는 단계;
    및 ii) 상기 단계에서 수득되는 미생물 또는 배지로부터 오르니틴계 산물을 회수하는 단계를 포함하는, 오르니틴계 산물 생산방법.
PCT/KR2018/006732 2017-06-14 2018-06-14 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법 WO2018230977A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019568771A JP7203475B2 (ja) 2017-06-14 2018-06-14 新規なポリペプチド及びそれを用いたオルニチン系産物の生産方法
US16/622,490 US11492648B2 (en) 2017-06-14 2018-06-14 Modified polypeptide having an activity of ornithine-based product exporter and method for producing ornithine-based product using cells expressing the polypeptide
CN201880052148.6A CN111406064B (zh) 2017-06-14 2018-06-14 新型多肽及使用其生产基于鸟氨酸的产物的方法
BR112019026883-9A BR112019026883B1 (pt) 2017-06-14 2018-06-14 Polipeptídeo inovador e método para produzir produto à base de ornitina com uso do mesmo
EP18818652.2A EP3640258A4 (en) 2017-06-14 2018-06-14 NEW POLYPEPTIDE AND PROCESS FOR MANUFACTURING A PRODUCT BASED ON ORNITHIN WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170074980A KR101937569B1 (ko) 2017-06-14 2017-06-14 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
KR10-2017-0074980 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230977A1 true WO2018230977A1 (ko) 2018-12-20

Family

ID=64660353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006732 WO2018230977A1 (ko) 2017-06-14 2018-06-14 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법

Country Status (6)

Country Link
US (1) US11492648B2 (ko)
EP (1) EP3640258A4 (ko)
JP (1) JP7203475B2 (ko)
KR (1) KR101937569B1 (ko)
CN (1) CN111406064B (ko)
WO (1) WO2018230977A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230287382A1 (en) * 2018-12-27 2023-09-14 Cj Cheiljedang Corporation Ornithine decarboxylase variant and method for producing putrescine by using same
CN110964683B (zh) * 2019-12-02 2021-08-13 天津科技大学 生产l-精氨酸的基因工程菌及其构建方法与应用
KR20240013960A (ko) 2022-07-21 2024-01-31 대상 주식회사 L-아르기닌 또는 l-시트룰린 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 또는 l-시트룰린의 생산 방법
KR20240108884A (ko) * 2022-12-30 2024-07-10 씨제이제일제당 (주) 신규한 bbd29_rs02010 변이체 및 이를 이용한 l-아르기닌 생산 방법
WO2024144382A1 (ko) * 2022-12-30 2024-07-04 씨제이제일제당 (주) 신규한 bbd29_rs14450 변이체 및 이를 이용한 l-아르기닌 생산 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020196232A1 (en) 2001-06-22 2002-12-26 Chih-Feng Chen Input device with two elastic fulcrums for six degrees of freedom data input
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100791659B1 (ko) 2006-07-13 2008-01-03 씨제이 주식회사 알지닌을 생산하는 미생물 및 이를 이용한 엘-알지닌의제조방법
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
JP2009254323A (ja) * 2008-04-21 2009-11-05 Ajinomoto Co Inc L−グルタミン酸系アミノ酸の製造法
KR20120064045A (ko) * 2010-12-08 2012-06-18 씨제이제일제당 (주) 오르니틴 생산능이 향상된 미생물 및 이를 이용하여 오르니틴을 생산하는 방법
KR20130082478A (ko) 2012-01-11 2013-07-19 씨제이제일제당 (주) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
KR20140115244A (ko) 2013-03-20 2014-09-30 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
KR20170010960A (ko) * 2015-07-20 2017-02-02 씨제이제일제당 (주) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551795B1 (en) * 1998-02-18 2003-04-22 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics
US7252978B2 (en) 2001-07-25 2007-08-07 Ajinomoto Co., Inc. Method for producing L-arginine
MY175283A (en) * 2008-04-10 2020-06-18 Korea Advanced Inst Sci & Tech Mutant microorganisms having high ability to produce putrescine and method for producing putrescine using the same
WO2015132213A1 (de) * 2014-03-03 2015-09-11 Evocatal Gmbh Verfahren zur herstellung von endständigen aminocarbonsäuren und aminoaldehyden mittels eines rekombinaten mikroorganismus
EP3135758B1 (en) * 2014-04-25 2021-12-29 CJ Cheiljedang Corporation Diamine-producing microorganism and method for producing diamine using same
CN106459888B (zh) * 2014-04-25 2019-12-24 Cj第一制糖株式会社 用于产生腐胺的微生物和使用其产生腐胺的方法
EP3135757B1 (en) * 2014-04-25 2019-02-20 CJ Cheiljedang Corporation Diamine-producing microorganism and method for producing diamine using same
KR101813759B1 (ko) 2015-06-24 2018-01-02 씨제이제일제당 (주) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020196232A1 (en) 2001-06-22 2002-12-26 Chih-Feng Chen Input device with two elastic fulcrums for six degrees of freedom data input
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR100791659B1 (ko) 2006-07-13 2008-01-03 씨제이 주식회사 알지닌을 생산하는 미생물 및 이를 이용한 엘-알지닌의제조방법
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
JP2009254323A (ja) * 2008-04-21 2009-11-05 Ajinomoto Co Inc L−グルタミン酸系アミノ酸の製造法
KR20120064045A (ko) * 2010-12-08 2012-06-18 씨제이제일제당 (주) 오르니틴 생산능이 향상된 미생물 및 이를 이용하여 오르니틴을 생산하는 방법
KR101372635B1 (ko) 2010-12-08 2014-03-13 씨제이제일제당 (주) 오르니틴 생산능이 향상된 미생물 및 이를 이용하여 오르니틴을 생산하는 방법
KR20130082478A (ko) 2012-01-11 2013-07-19 씨제이제일제당 (주) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
KR101493585B1 (ko) 2012-01-11 2015-02-16 씨제이제일제당 (주) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
KR20140115244A (ko) 2013-03-20 2014-09-30 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
KR101607741B1 (ko) 2013-03-20 2016-03-31 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
KR20170010960A (ko) * 2015-07-20 2017-02-02 씨제이제일제당 (주) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Atlas of Protein Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
BELLMANN A ET AL., MICROBIOLOGY, vol. 147, 2001, pages 1765 - 1774
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
KIM, SEO YUN ET AL.: "Metabolic engineering of corynebacterium glutamicum for the production of L-ornithine", BIOTECHNOLOGY AND BIOENGINEERING, vol. 112, no. 2, 29 September 2014 (2014-09-29), pages 416 - 421, XP055648101, DOI: 10.1002/bit.25440 *
MATSUI, DAISUKE ET AL.: "Detection of D-ornithine extracellularly produced by Corynebacterium glutamicum ATCC 13032::argF.", BIOSCIENCE, BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 74, no. 12, 22 May 2014 (2014-05-22), pages 2507 - 2510, XP055126166, DOI: 10.1271/bbb.100523 *
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
QIAN ZG ET AL., BIOTECHNOL BIOENG, vol. 104, 2009, pages 651 - 662
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SCHNEIDER J ET AL., APPL MICROBIOL BIOTECHNOL, vol. 88, 2010, pages 859 - 868
See also references of EP3640258A4
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
T. GOTOH ET AL., BIOPROCESS BIOSYST. ENG., vol. 33, 2010, pages 773 - 777

Also Published As

Publication number Publication date
CN111406064B (zh) 2024-05-14
EP3640258A4 (en) 2021-04-21
CN111406064A (zh) 2020-07-10
US11492648B2 (en) 2022-11-08
JP7203475B2 (ja) 2023-01-31
BR112019026883A2 (pt) 2020-06-30
JP2020523989A (ja) 2020-08-13
KR20180136612A (ko) 2018-12-26
KR101937569B1 (ko) 2019-01-11
EP3640258A1 (en) 2020-04-22
US20200208182A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2012077995A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2019147078A1 (ko) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2019117671A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2016208854A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2020256415A1 (ko) L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2015163591A1 (ko) 다이아민 생산 미생물 및 이를 이용한 다이아민 생산방법
WO2015163592A1 (ko) 다이아민 생산 미생물 및 이를 이용한 다이아민 생산방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법
WO2022035011A1 (ko) 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026883

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018818652

Country of ref document: EP

Effective date: 20200114

ENP Entry into the national phase

Ref document number: 112019026883

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191216