WO2018230029A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018230029A1
WO2018230029A1 PCT/JP2018/003104 JP2018003104W WO2018230029A1 WO 2018230029 A1 WO2018230029 A1 WO 2018230029A1 JP 2018003104 W JP2018003104 W JP 2018003104W WO 2018230029 A1 WO2018230029 A1 WO 2018230029A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
separator
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2018/003104
Other languages
English (en)
French (fr)
Inventor
稔之 有賀
渡辺 聡
光雄 山▲崎▼
哲徳 多幡
伸行 堀
飯塚 佳士
山本 祐輝
中井 賢治
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019525061A priority Critical patent/JP6978500B2/ja
Publication of WO2018230029A1 publication Critical patent/WO2018230029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • lithium ion secondary batteries for example, positive and negative electrodes having metal foil exposed portions are wound through a separator to form a wound electrode group, and the metal foil exposed portions of the positive and negative electrodes are laminated. It is structured to be welded to the current collector plate.
  • a metal foreign object or the like generated during the production process is mixed in the wound electrode group, a minute internal short circuit occurs and the performance deteriorates.
  • insulating portions are formed on both surfaces of a metal foil exposed portion of a positive electrode sandwiched between separators.
  • the insulating portion has a solid first insulating layer that does not allow the electrolytic solution formed on one surface of the exposed metal foil portion to pass therethrough, and a second insulating layer that covers the first insulating layer and has a gap through which the electrolytic solution passes.
  • a secondary battery includes an electrode in which a positive electrode having a positive electrode metal foil and a positive electrode mixture layer and a negative electrode having a negative electrode metal foil and a negative positive electrode mixture layer are stacked via a separator. And a current collector plate joined to at least one of a positive electrode laminate portion in which the positive electrode metal foil is laminated and a negative electrode laminate portion in which the negative electrode metal foil is laminated, and an end of the separator A is the distance from the portion to the junction of the polar laminated portion where the current collector plate is joined, and B is the thickness of the electrode group at the portion where the polar mixture layer where the current collector plate is joined is laminated.
  • the length of the separator protruding from the end of the polar mixture layer to which the current collector plate is joined is C
  • the thickness of the polar metal foil to which the current collector plate is joined is D
  • the current collector plate D is the number of laminated metal foils with polar bonding
  • E is the thickness of the separator.
  • the total number of separators the collector plate is interposed inside the metal foil polar joined when the e, the following formula (I) E> [ ⁇ AB / (A + C) ⁇ Dd ⁇ Ee] / (d ⁇ 1) Equation (I) Meet.
  • an internal short circuit can be suppressed and productivity can be improved.
  • FIG. 1 is an external perspective view showing an embodiment of a secondary battery of the present invention.
  • FIG. 2 is an exploded perspective view of the secondary battery illustrated in FIG. 1.
  • FIG. 3 is an exploded perspective view of the wound electrode group illustrated in FIG. 2.
  • the structure of a separator is shown, (a) is a top view, (b) is the IVb-IVb sectional view taken on the line of (a).
  • the structure of a negative electrode is shown, (a) is a top view, (b) is the Vb-Vb sectional view taken on the line of (a).
  • the structure of a positive electrode is shown, (a) is a top view, (b) is the VIb-VIb sectional view taken on the line of (a).
  • Sectional drawing which shows the detailed structure of the junction part by the side of the negative electrode in a wound electrode group. The figure which shows a verification result and shows the relationship between the ratio of the space converted between the current collector foils and the thickness of the separator and the occurrence rate of short-circuit marks. Sectional drawing which shows the detailed structure of the junction part by the side of a negative electrode when Formula (3) is materialized.
  • FIG. 1 is an external perspective view of a flat wound secondary battery
  • FIG. 2 is an exploded perspective view of the secondary battery shown in FIG.
  • the secondary battery 100 includes a battery can 1 and a battery lid 6 that form a battery container.
  • the battery can 1 is a rectangular secondary battery having a flat box shape, a pair of opposed wide side surfaces 1b having a relatively large area, and a pair of opposed narrow side surfaces 1c having a relatively small area, It has a bottom 1d and has an opening 1a above it.
  • a wound electrode group 3 is accommodated in the battery can 1, and an opening 1 a of the battery can 1 is sealed by a battery lid 6.
  • the battery lid 6 has a substantially rectangular flat plate shape and is welded by closing the opening 1a of the battery can 1 to seal the battery can 1 to the outside.
  • the battery lid 6 is provided with a positive external terminal 14 and a negative external terminal 12.
  • the positive external terminal 14 and the negative external terminal 12 are connected to an external device via a bus bar (not shown).
  • the wound electrode group 3 is charged via the positive external terminal 14 and the negative external terminal 12, and power is supplied to the external load.
  • the battery cover 6 is integrally provided with a gas discharge valve 10. When the pressure in the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the flat wound secondary battery 100 is ensured.
  • the battery lid 6 is provided with a liquid injection plug 11 for sealing the liquid injection hole 9 (see FIG. 2).
  • a wound electrode group 3 is accommodated in the battery can 1 of the secondary battery 100 via an insulating protective film 2.
  • the wound electrode group 3 is formed by winding a negative electrode 32 and a positive electrode 34 through separators 33 and 35 between both members (see FIG. 3).
  • the wound electrode group 3 includes a flat flat portion 36 and curved portions 37 having a semicircular cross section formed at both ends of the flat portion 36 in the winding direction.
  • the wound electrode group 3 is inserted into the battery can 1 from one curved portion 37 side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion 37 side is the opening of the battery can 1. It arrange
  • the positive electrode 34 has a positive foil exposed portion 34c
  • the negative electrode 32 has a negative foil exposed portion 32c.
  • the positive electrode foil exposed portion 34 c of the wound electrode group 3 is electrically connected to the positive electrode external terminal 14 provided on the battery lid 6 via the positive electrode current collector plate 44.
  • the negative electrode foil exposed portion 32 c of the wound electrode group 3 is electrically connected to the negative electrode external terminal 12 provided on the battery lid 6 via the negative electrode current collector plate 24.
  • the gasket 5 is attached to one surface side of the battery lid 6, and the positive external terminal 14 and the negative external terminal 12 are insulated from the battery cover 6. Further, the insulating plate 7 is attached to the other surface side of the battery lid 6, and the positive current collector plate 44 and the negative current collector plate 24 are insulated from the battery lid 6, respectively.
  • the battery lid 6 is provided with a liquid injection hole 9 for injecting an electrolytic solution into the battery container. After injecting the electrolytic solution into the battery can 1 from the injection hole 9, the injection stopper 11 is joined to the battery lid 6 by laser welding to seal the injection hole 9, and the secondary battery 100 is sealed.
  • Examples of a material for forming the positive electrode external terminal 14 and the positive electrode current collector plate 44 include an aluminum alloy, and an example of a material for forming the negative electrode external terminal 12 and the negative electrode current collector plate 24 is, for example, a copper alloy.
  • Examples of the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.
  • a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6) is dissolved in a carbonate ester-based organic solvent such as ethylene carbonate is used as the electrolytic solution injected into the battery container.
  • a lithium salt such as lithium hexafluorophosphate (LiPF 6)
  • a carbonate ester-based organic solvent such as ethylene carbonate
  • the positive electrode external terminal 14 and the negative electrode external terminal 12 are respectively formed with a positive electrode connection portion 14a and a negative electrode connection portion 12a that protrude downward.
  • Each of the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a has a cylindrical shape, and the tips thereof are inserted into the positive electrode side through hole 46 and the negative electrode side through hole 26 of the battery lid 6.
  • the positive electrode connection portion 14 a penetrates the battery lid 6 and protrudes more toward the inside of the battery can 1 than the positive electrode current collector plate base 41 of the positive electrode current collector plate 44.
  • the tip of the positive electrode connection portion 14 a is caulked to fix the positive electrode external terminal 14 and the positive electrode current collector plate 44 integrally to the battery lid 6.
  • the negative electrode connecting portion 12 a penetrates the battery lid 6 and protrudes more toward the inner side of the battery can 1 than the negative electrode current collector plate base portion 21 of the negative electrode current collector plate 24.
  • the tip of the negative electrode connection portion 12 a is caulked to fix the negative electrode external terminal 12 and the negative electrode current collector plate 24 integrally to the battery lid 6.
  • the positive electrode current collector plate 44 has a positive electrode current collector plate base 41 and a positive electrode side connection end 42.
  • the positive electrode side connection end portion 42 is bent at the side end of the positive electrode current collector plate base portion 41 and extends toward the bottom surface 1 d side along the wide side surface 1 b of the battery can 1.
  • the positive electrode side connection end portion 42 of the positive electrode current collector plate 44 is connected in a state where it is overlapped with the positive electrode foil exposed portion 34 c of the wound electrode group 3.
  • a positive electrode side opening hole 43 through which the positive electrode connection portion 14a is inserted is formed in the positive electrode current collector plate base 41.
  • the negative electrode current collector plate 24 has a negative electrode current collector plate base portion 21 and a negative electrode side connection end portion 22.
  • the negative electrode side connection end portion 22 is bent at the side end of the negative electrode current collector plate base portion 21, and extends toward the bottom surface 1 d side along the wide side surface 1 b of the battery can 1.
  • the negative electrode side connection end portion 22 of the negative electrode current collector plate 24 is connected in a state of being overlapped with the negative electrode foil exposed portion 32 c of the wound electrode group 3.
  • the negative electrode current collector plate base 21 is formed with a negative electrode side opening hole 23 through which the negative electrode connection portion 12a is inserted.
  • the positive electrode foil exposed portion 34c and the positive electrode current collector plate 44, and the negative electrode foil exposed portion 32c and the negative electrode current collector plate 24 are joined by, for example, ultrasonic welding.
  • Ultrasonic welding is a method in which a horn is pressed against the positive / negative electrode foil exposed portions 34c and 32c and the metal interface is bonded by ultrasonic vibration in a state where the positive / negative electrode current collector plates 44 and 24 are fixed with an anvil.
  • the insulating protective film 2 is wound around the wound electrode group 3 with the winding center in the direction along the flat portion 36 of the wound electrode group 3 and perpendicular to the winding axis direction of the wound electrode group 3. Yes.
  • the insulating protective film 2 is made of, for example, a single sheet made of synthetic resin such as PP (polypropylene) or a plurality of film members, and is parallel to the flat portion 36 of the wound electrode group 3 and orthogonal to the winding axis direction. It has a length that can be wound at least one round around the winding direction.
  • FIG. 3 is an exploded perspective view of the wound electrode group illustrated in FIG. 2.
  • FIG. 3 shows a state in which the outer peripheral side of the wound electrode group 3 is developed.
  • the wound electrode group 3 is configured by winding a negative electrode 32 and a positive electrode 34 in a flat shape with separators 33 and 35 interposed therebetween.
  • the separator 35 is interposed between one surface of the negative electrode 32 and the other surface of the positive electrode 34.
  • the separator 33 is interposed between one surface of the positive electrode 34 and the other surface of the negative electrode 32.
  • the outermost periphery of the negative electrode 32 and the outermost periphery of the separator 33 are wound so as to be the outermost periphery of the wound electrode group 3. Accordingly, in the cross-sectional view illustrated in FIG.
  • the wound electrode group 3 includes the separator 33, the negative electrode 32, the separator 35, the positive electrode 34, the separator 33, the negative electrode 32, the separator 35, and the positive electrode in order from the outer peripheral side. Repeated 34 ..
  • the separators 33 and 35 have a role of insulating between the positive electrode 34 and the negative electrode 32.
  • the thickness of the wound electrode group 3 depends on the thickness of the separators 33 and 35, the thickness of the negative electrode 32, and the thickness of the positive electrode 34, and also depends on the number of windings (the number of stacked layers).
  • the negative electrode mixture layer 32b of the negative electrode 32 is larger in the width direction than the positive electrode mixture layer 34b of the positive electrode 34, and the positive electrode mixture layer 34b is always sandwiched between the negative electrode mixture layers 32b. Yes. That is, the negative electrode 32 has a negative electrode mixture layer 32b wider than the positive electrode mixture layer 34b, and ends on both sides in a direction (width direction) orthogonal to the winding axis direction of the negative electrode mixture layer 32b. Are wound on the positive electrode 34 in a state of projecting from the end portions on both sides in the direction (width direction) orthogonal to the winding axis direction of the positive electrode mixture layer 34b.
  • the positive foil exposed portion 34c and the negative foil exposed portion 32c are disposed on the opposite sides in the width direction.
  • the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c are bundled in the thickness direction at the plane portion and connected to the positive electrode current collector plate 44 and the negative electrode current collector plate 24 by welding or the like.
  • the separators 33 and 35 are wider than the negative electrode mixture layer 32b in the width direction, the separators 33 and 35 are wound at positions where the metal foil surface at the end is exposed at the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c. This will not interfere with welding.
  • the separators 33 and 35 have their protrusions in the width direction changed to verify each secondary battery (sample).
  • the shaft core for example, a material obtained by winding a resin sheet having higher bending rigidity than any of the positive electrode metal foil, the negative electrode metal foil, and the separators 33 and 35 can be used.
  • FIG. 4 shows the structure of the separator
  • FIG. 4 (a) is a plan view
  • FIG. 4 (b) is a sectional view taken along the line IVb-IVb of FIG. 4 (a).
  • the separators 33 and 35 are made of a soft belt-like sheet member, and are provided by laminating heat-resistant layers 33b and 35b made of an inorganic material and a binder on one surface of the porous polyolefin resin layers 33a and 35a serving as a base material. It has been.
  • the separators 33 and 35 are arranged in a direction in which the heat-resistant layers 33 b and 35 b face the positive electrode 34.
  • the separator is not limited to this, and a separator having only a resin layer that does not have the heat-resistant layers 33b and 35b may be applied.
  • FIG. 5 shows the configuration of the negative electrode
  • FIG. 5 (a) is a plan view
  • FIG. 5 (b) is a cross-sectional view taken along the line Vb-Vb of FIG. 5 (a).
  • the negative electrode 32 is provided with a negative electrode mixture layer 32b formed by applying a negative electrode mixture containing a negative electrode active material on both surfaces of a negative electrode metal foil 32a which is a negative electrode current collector.
  • the negative electrode foil exposure part 32c which is the uncoated part in which the negative mix is not apply
  • the negative electrode 32 has a negative electrode mixture layer 32b applied to the negative electrode metal foil 32a and a negative electrode foil exposed portion 32c where the negative electrode metal foil 32a is exposed.
  • the negative electrode foil exposed portion 32c is a region where the negative electrode metal foil 32a protrudes from the negative electrode mixture layer 32b, and is disposed at the other side position in the direction (width direction) orthogonal to the winding axis direction of the wound electrode group 3.
  • the negative electrode 32 10 parts by weight of styrene butadiene rubber (hereinafter referred to as SBR) is added as a binder to 100 parts by weight of natural graphite powder as a negative electrode active material, and H 2 O as a dispersion solvent is added thereto.
  • carboxymethyl cellulose (CMC) was added as a thickener and kneaded to prepare a negative electrode mixture.
  • This negative electrode mixture was applied to both surfaces of a copper foil (negative electrode metal foil 32a) leaving a negative electrode foil exposed portion 32c (negative electrode uncoated portion) as a welded portion. Then, the negative electrode 32 was obtained through the drying, the press, and the cutting process.
  • amorphous carbon capable of inserting and releasing lithium ions, various artificial graphite materials, coke, etc. It may be a carbonaceous material, a compound such as Si or Sn (for example, SiO, TiSi 2, etc.), or a composite material thereof, and the particle shape is also particularly limited, such as scaly, spherical, fibrous, or massive is not.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Polyethylene polystyrene
  • polybutadiene polystyrene
  • butyl rubber polystyrene
  • nitrile rubber many Polymers such as sulfurized rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.
  • the solvent of H 2 O as a dispersion solvent for the coated portion of the negative electrode 32 has been illustrated for the case of adding CMC as a thickener, not limited thereto, in a solvent e.g. H 2 O
  • a dispersion solvent to which N-methylpyrrolidone (hereinafter referred to as NMP) is added may be used.
  • FIG. 6 shows the configuration of the positive electrode
  • FIG. 6 (a) is a plan view
  • FIG. 6 (b) is a sectional view taken along the line VIb-VIb of FIG. 6 (a).
  • the positive electrode 34 is provided with a positive electrode mixture layer 34b formed by applying a positive electrode mixture containing a positive electrode active material on both surfaces of a positive electrode metal foil 34a that is a positive electrode current collector.
  • the positive electrode foil exposure part 34c which is the uncoated part in which the positive mix is not apply
  • the positive electrode 34 has a positive electrode mixture layer 34b applied to the positive metal foil 34a and a positive electrode foil exposed portion 34c from which the positive metal foil 34a is exposed.
  • the positive foil exposed portion 34c is a region in which the positive metal foil 34a protrudes from the positive electrode mixture layer 34b, and is disposed at one position in the direction (width direction) orthogonal to the winding axis direction of the wound electrode group 3.
  • the positive electrode 34 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material. Then, NMP was added as a dispersion solvent and kneaded to prepare a slurry-like positive electrode mixture. This slurry-like positive electrode mixture was applied to both surfaces of an aluminum foil (positive metal foil) leaving a positive foil exposed portion 34c (positive electrode uncoated portion) as a welded portion. Then, the positive electrode 34 was obtained through the drying, the press, and the cutting process.
  • lithium manganate chemical formula LiMn 2 O 4
  • lithium manganate is used as the positive electrode active material.
  • another lithium manganate having a spinel crystal structure or a lithium manganese composite oxide or layered crystal structure in which a part is substituted or doped with a metal element Lithium cobaltate, lithium titanate, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.
  • PVDF polytetrafluoroethylene
  • polyethylene polyethylene
  • polystyrene polybutadiene
  • butyl rubber nitrile rubber
  • styrene butadiene rubber polysulfide rubber
  • Polymers such as nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.
  • FIG. 7 is a cross-sectional view showing the detailed structure of the joint on the negative electrode side in the wound electrode group 3.
  • the negative electrode foil exposed portion 32c of the negative electrode 32 is laminated so that the wound portions are in close contact with each other.
  • the negative electrode current collector plate 24 is bonded by a joining device 80 such as ultrasonic welding or resistance welding.
  • a joining device 80 such as ultrasonic welding or resistance welding.
  • the negative electrode bonding portion 25 has a bonding end portion 25a that is the end closest to the negative electrode mixture layer 32b side.
  • foreign substances such as metal generated during the production process may enter from between the end portions of the separators 33 and 35 to cause an internal short circuit.
  • the inventor determines the distance from the end of the separator to the junction of the current collector, the thickness of the electrode group in the laminated portion, the length of the separator protruding from the mixture layer, the thickness of the electrode foil, the lamination of the electrode foil It has been found that an internal short circuit (voltage drop) can be suppressed by balancing each parameter such as the number of sheets and the total laminated thickness of the separators. This will be described in detail below.
  • A Distance between the joining end portion 25a on the negative electrode mixture layer 32b side in the negative electrode joining portion 25 and the end portion (straight line g) on the negative electrode current collector plate 24 side in the outermost peripheral portion of the separators 33 and 35 B: Winding electrode The thickness of the portion of the group 3 where the negative electrode mixture layer 32b is laminated (the thickness of the wound electrode group 3 in the example of FIG.
  • the space S converted between the negative electrode foils is represented by the following formula (1).
  • S [ ⁇ AB / (A + C) ⁇ Dd ⁇ Ee] / (d ⁇ 1) (1)
  • Dd (thickness of separator 33) ⁇ (number of stacked separators 33) + (thickness of separator 35) ⁇ (number of stacked separators 35)
  • the ideal thickness between the negative electrode foil exposed portions 32c (at the uppermost layer and the lowermost layer in FIG. 7) at the position of the straight line g connecting the end portions of the separators 33 and 35 is defined as Bi. (Refer to FIG. 7, hereinafter, referred to as “ideal thickness between the outermost peripheral negative electrode foil exposed portions 32c”).
  • Samples of various levels were prepared by changing each of A to E, d, and e defined above as parameters, and the presence or absence of short-circuit traces of each sample was determined by the following method. Verified.
  • the sample was prepared as follows.
  • the thickness of the wound electrode group 3 was adjusted by changing the thickness of the negative electrode 32 in the range of 50 ⁇ m to 100 ⁇ m. Copper foil was used as the negative electrode metal foil 32a, and the thickness was 8 ⁇ m and 10 ⁇ m.
  • the thickness of the wound electrode group 3 was adjusted by changing the thickness of the positive electrode 34 in the range of 50 ⁇ m to 100 ⁇ m.
  • the positive electrode metal foil 34a used aluminum foil, and the thickness was 15 micrometers.
  • the thickness of the separators 33 and 35 was changed in the range of 18 ⁇ m to 30 ⁇ m.
  • the thickness of the insulating protective film 2 is changed to be the same in order to make the clearance in the thickness direction between the battery can 1 and the wound electrode group 3 constant. I tried to become.
  • the metal fine powder (copper powder is used in this verification) classified into 50 micrometers or less by the sieve was intentionally mixed in the part of the negative electrode joint part 25 (refer FIG. 7) of the wound electrode group 3 by the sieve.
  • the charge / discharge cycle was repeated several times. Thereafter, each sample was disassembled, and the presence or absence of short-circuit marks of the separators 33 and 35 in each sample was verified.
  • FIG. 8 shows the result of the above-described verification, and is a diagram showing the relationship between the ratio of the space S converted to the gap between the negative electrode metal foils and the thickness E of the separator—the occurrence rate of short-circuit marks.
  • the occurrence rate of the short-circuit trace illustrated in FIG. 8 will be described.
  • an internal short circuit is considered to occur due to three factors.
  • the conductive foreign matter is often a metallic foreign matter, and when the metallic foreign matter comes into contact with the positive electrode potential of the secondary battery, it dissolves electrochemically and elutes on the opposite negative electrode side. Due to the electrodeposition reaction of dissolution and precipitation, the metal foreign matter grows on the negative electrode, reaches the positive electrode, and is short-circuited.
  • Li ions concentrate due to this electrodeposition, Li dendrite is generated, and a short circuit occurs in the secondary battery.
  • the occurrence rate of short-circuit marks shown in FIG. 8 includes all short-circuits generated by the above factors (i) to (iii).
  • the level at which the ratio between the calculated value S of the formula (1) and the thickness E of the separator exceeds 100% is based on the ideal thickness Bi between the outermost peripheral negative electrode foil exposed portions 32c.
  • metal foreign objects having a thickness greater than or equal to the thickness of the separators 33 and 35 easily enter the inside.
  • the occurrence rate of short-circuit marks is 75% or more as shown in FIG. The result was high.
  • FIG. 9 is a cross-sectional view showing a detailed structure of the joint on the negative electrode side when Expression (5) is established.
  • the state illustrated in FIG. 9 means that there is no space between the separators 33 and 35 in each layer. Therefore, it can be considered that the occurrence of short-circuit marks can be suppressed almost completely.
  • the state shown in FIG. 9, that is, the level satisfying the formula (5) is the most effective means for the penetration of the conductive foreign matter onto the electrode.
  • the structure is such that no space exists between the separators 33 and 35 in each layer, excessive stress is applied to the negative electrode foil exposed portion 32c in the manufacturing process, which may reduce productivity. Therefore, in consideration of productivity, it is determined that a level satisfying Equation (3) or Equation (4) is appropriate for reducing the occurrence rate of short-circuit marks.
  • the following effects can be obtained. (1) In the secondary battery 100 including the wound electrode group, the distance from the end of the separators 33 and 35 to the negative electrode bonding portion 25 of the stacked portion where the negative electrode current collector plate 24 is bonded is A, and the negative electrode mixture layer 32b.
  • B is the thickness of the wound electrode group 3 in the layered portion
  • C is the length of the separators 33 and 35 protruding from the end of the negative electrode mixture layer 32b
  • D is the thickness of the negative electrode metal foil 32a
  • the negative electrode metal When the laminated number of the foils 32a is d, the thickness of the separators 33 and 35 is E, and the total number of separators 33 and 35 interposed inside the outermost negative electrode metal foil 32a is e, the following formula (I ) E> [ ⁇ AB / (A + C) ⁇ Dd ⁇ Ee] / (d ⁇ 1) Equation (I) Meet.
  • the secondary battery 100 that satisfies this condition has a great effect in suppressing the occurrence of short-circuit marks.
  • the end portions of both the separator 33 and the separator 35 are illustrated as a structure that protrudes from the negative electrode mixture layer 32b to the negative electrode current collector plate 24 side by a length C.
  • only one of the end portions of the separators 33 and 35 was extended to produce a secondary battery 100 having a level satisfying the formula (4), and the same verification as described above was performed.
  • the occurrence rate of short-circuit marks by dismantling investigation was 10% or less.
  • the structure satisfying the expressions (3) and (4) is illustrated on the negative electrode 32 side of the wound electrode group 3.
  • a structure satisfying the expressions (3) and (4) may be employed on the positive electrode 34 side of the wound electrode group 3.
  • the “negative electrode” in definitions A, B, C, D, and d is replaced with “positive electrode”.
  • the distance from the end of the separators 33, 35 to the joining portion of the polar laminated portion where the current collecting plates 24, 44 are joined is A, and the current collecting plate 24.
  • 44 is the thickness of the electrode group 3 in the portion where the polar mixture layers 32b, 34b are laminated, and the ends of the polar mixture layers 32b, 34b are joined to the current collector plates 24, 44
  • the length from which the separators 33 and 35 protrude from C is C
  • the thickness of the polar metal foils 32a and 34a to which the current collector plates 24 and 44 are joined is D, and the polar metal foil to which the current collector plates 24 and 44 are joined
  • the number of stacked layers 32a and 34a is d
  • the thickness of the separators 33 and 35 is E
  • the separators 33 and 35 interposed between the outermost metal foils 32a and 34a having polarities to which the current collector plates 24 and 44 are joined are provided.
  • the structure satisfying the expressions (3) and (4) may be employed not only on one side of the negative electrode 32 side or the positive electrode 34 side but also on both sides of the negative electrode 32 side or the positive electrode 34 side.
  • the separator 33 and the separator 35 are wound around the outermost periphery of the positive electrode 34 once as an example.
  • one or both of the separator 33 and the separator 35 may be wound several times around the outermost periphery of the positive electrode 34.
  • the positive electrode 34 and the negative electrode 32 are exemplified as the secondary battery 100 having the wound electrode group 3 wound through the separators 33 and 35.
  • the present invention can be applied to a secondary battery including an electrode group in which a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode are laminated in a flat shape with a separator interposed therebetween.
  • the secondary battery is exemplified as the lithium ion battery.
  • the present invention can be applied to other secondary batteries such as a nickel cadmium battery and a nickel hydrogen battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

内部短絡を抑制することができ、かつ、生産性を向上することができる二次電池を提供する。電極群を備える二次電池は、セパレータの端部から集電板が接合された極性の積層部の接合部での距離をA、集電板が接合された極性の合剤層が積層された部分における電極群の厚さをB、集電板が接合された極性の合剤層の端部からセパレータが突出する長さをC、集電板が接合された極性の金属箔の厚さをD、集電板が接合された極性の金属箔の積層枚数をd、セパレータの厚さをE、集電板が接合された極性の最外周の金属箔間の内側に介在するセパレータの総枚数をeとしたときに、下記の式(I)を満たす。 E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(I)

Description

二次電池
 本発明は、二次電池に関する。
 近年、ハイブリッド電気自動車や純粋な電気自動車等の動力源として、大容量かつ高出力なリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、例えば、金属箔露出部をそれぞれ有する正・負極電極を、セパレータを介して捲回して捲回電極群を形成し、正・負極電極の金属箔露出部を積層して集電板に溶接する構造とされている。
 このような二次電池では、生産プロセスの際に発生する金属異物等が捲回電極群の内部に混入すると、微小な内部短絡が生じて性能が低下する。
 このため、金属異物等が捲回電極群内に混入するのを防止するための種々の対策が講じられている。
 例えば、セパレータ間に挟まれた正極電極の金属箔露出部の両面に、絶縁部を形成した構造が採用されている。絶縁部は、金属箔露出部の一面に形成された電解液を透過させない中実の第1の絶縁層と、電解液が透過する空隙を有し、第1の絶縁層を覆う第2の絶縁層とを有する(例えば、特許文献1参照)。
特開2015-60787号公報
 特許文献1に記載された二次電池では、絶縁部の構造が複雑であるため、生産性が悪く製造コストが増大する。
 本発明の一態様によると、二次電池は、正極金属箔および正極合剤層を有する正極電極と、負極金属箔および負正極合剤層を有する負極電極とがセパレータを介して積層された電極群と、前記正極金属箔が積層された正極積層部および前記負極金属箔が積層された負極積層部の少なくとも一方に接合された集電板とを備えた二次電池であり、前記セパレータの端部から前記集電板が接合された極性の積層部の接合部までの距離をA、前記集電板が接合された極性の合剤層が積層された部分における前記電極群の厚さをB、前記集電板が接合された極性の合剤層の端部から前記セパレータが突出する長さをC、前記集電板が接合された極性の金属箔の厚さをD、前記集電板が接合された極性の金属箔の積層枚数をd、前記セパレータの厚さをE、前記集電板が接合された極性の金属箔より内側に介在するセパレータの総枚数をeとしたときに、下記の式(I)
 E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(I)
を満たす。
 本発明によれば、内部短絡を抑制することができ、かつ、生産性を向上することができる。
本発明の二次電池の一実施の形態を示す外観斜視図。 図1に図示された二次電池の分解斜視図。 図2に図示された捲回電極群の分解斜視図。 セパレータの構成を示し、(a)は平面図、(b)は(a)のIVb-IVb線断面図。 負極電極の構成を示し、(a)は平面図、(b)は(a)のVb-Vb線断面図。 正極電極の構成を示し、(a)は平面図、(b)は(a)のVIb-VIb線断面図。 捲回電極群における負極電極側の接合部の詳細構造を示す断面図。 検証結果を示し、集電箔間当たりに換算した空間とセパレータの厚さとの比-短絡痕の発生率の関係を示す図。 式(3)が成立するときの負極電極側の接合部の詳細構造を示す断面図。
 以下、図面を参照して本発明の二次電池の一実施の形態を説明する。
 図1は、扁平捲回形の二次電池の外観斜視図であり、図2は、図1に図示された二次電池の分解斜視図である。
 二次電池100は、電池容器を形成する電池缶1および電池蓋6を備える。電池缶1は、扁平な箱型形状を有する角形二次電池であり、相対的に面積の大きい一対の対向する幅広側面1bと、相対的に面積の小さい一対の対向する幅狭側面1cと、底面1dを有し、その上方に開口部1aを有する。
 電池缶1内には、捲回電極群3が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形の平板状であって、電池缶1の開口部1aを塞いで溶接され、外部に対し電池缶1を封止している。電池蓋6には、正極外部端子14と、負極外部端子12が設けられている。正極外部端子14、負極外部端子12は、バスバー(図示せず)を介して外部機器に接続される。正極外部端子14と負極外部端子12を介して捲回電極群3に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁10が一体的に設けられている。電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、扁平捲回形の二次電池100の安全性が確保される。電池蓋6には、注液孔9(図2参照)を封止する注液栓11が設けられている。
 二次電池100の電池缶1内には、絶縁保護フィルム2を介して捲回電極群3が収容されている。
 捲回電極群3は、負極電極32と正極電極34とを、両部材の間にセパレータ33、35を介して捲回して形成されている(図3参照)。捲回電極群3は、扁平な平坦部36と、平坦部36の捲回方向の両端に形成された断面半円形状の湾曲部37を有する。捲回電極群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部37側から電池缶1内に挿入され、他方の湾曲部37側が、電池缶1の開口部1a側に配置される。
 詳細は後述するが、正極電極34は、正極箔露出部34cを有し、負極電極32は、負極箔露出部32cを有する。
 捲回電極群3の正極箔露出部34cは、正極集電板44を介して電池蓋6に設けられた正極外部端子14に電気的に接続されている。また、捲回電極群3の負極箔露出部32cは、負極集電板24を介して電池蓋6に設けられた負極外部端子12に電気的に接続されている。これにより、正極集電板44および負極集電板24を介して捲回電極群3から外部負荷へ電力が供給され、正極集電板44および負極集電板24を介して捲回電極群3へ外部発電電力が供給され充電される。
 電池蓋6の一面側にガスケット5が取付けられ、正極外部端子14および負極外部端子12が、それぞれ、電池蓋6と絶縁される。また、電池蓋6の他面側に絶縁板7が取付けられ、正極集電板44および負極集電板24は、それぞれ、電池蓋6と絶縁される。電池蓋6には、電池容器内に電解液を注入するための注液孔9が穿設されている。注液孔9から電池缶1内に電解液を注入した後、電池蓋6に注液栓11をレーザ溶接により接合して注液孔9を封止し、二次電池100を密閉する。
 正極外部端子14および正極集電板44の形成素材としては、例えばアルミニウム合金が挙げられ、負極外部端子12および負極集電板24の形成素材としては、例えば、銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
 電池容器内に注入される電解液としては、例えば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF6)等のリチウム塩が溶解された非水電解液を適用することができる。電池容器内外の圧力を適切に調整すると、捲回電極群3内の空気と電解液の置換が促進されて、電池容器内に電解液を効率的に注入することができる。
 正極外部端子14および負極外部端子12には、それぞれ、下方に向かって突出する正極接続部14a、負極接続部12aが形成されている。正極接続部14aおよび負極接続部12aは、それぞれ、円柱形状を有しており、その先端が電池蓋6の正極側貫通孔46、負極側貫通孔26に挿入される。正極接続部14aは、電池蓋6を貫通して正極集電板44の正極集電板基部41よりも電池缶1の内部側に突出している。正極接続部14aの先端は、かしめられて、正極外部端子14と正極集電板44とを電池蓋6に一体に固定している。負極接続部12aは、電池蓋6を貫通して負極集電板24の負極集電板基部21よりも電池缶1の内部側に突出している。負極接続部12aの先端は、かしめられて負極外部端子12と、負極集電板24とを電池蓋6に一体に固定している。
 正極集電板44は、正極集電板基部41と、正極側接続端部42とを有している。正極側接続端部42は、正極集電板基部41の側端で折曲されて、電池缶1の幅広側面1bに沿って底面1d側に向かって延出される。正極集電板44の正極側接続端部42は、捲回電極群3の正極箔露出部34cに対向して重ね合わされた状態で接続される。正極集電板基部41には、正極接続部14aが挿通される正極側開口穴43が形成されている。
 負極集電板24は、負極集電板基部21と、負極側接続端部22とを有している。負極側接続端部22は、負極集電板基部21の側端で折曲されて、電池缶1の幅広側面1bに沿って底面1d側に向かって延出される。負極集電板24の負極側接続端部22は、捲回電極群3の負極箔露出部32cに対向して重ね合わされた状態で接続される。負極集電板基部21には、負極接続部12aが挿通される負極側開口穴23が形成されている。
 正極箔露出部34cと正極集電板44、および負極箔露出部32cと負極集電板24は、それぞれ、例えば、超音波溶接により接合される。超音波溶接は、正・負極集電板44、24をアンビルで固定した状態で、正・負極箔露出部34c、32cにホーンを押し当てて、超音波振動により金属界面を接合する手法である。
 なお、集電部の接合方法としては、抵抗溶接等の他の方法を適用しても良い。
 絶縁保護フィルム2は、捲回電極群3の平坦部36に沿う方向でかつ捲回電極群3の捲回軸方向に直交する方向を巻き付け中心として、捲回電極群3の周囲に巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回電極群3の平坦部36と平行な方向でかつ捲回軸方向に直交する方向を巻き付け中心として少なくとも1周以上巻き付けることができる長さを有している。
 図3は、図2に図示された捲回電極群の分解斜視図である。図3は、捲回電極群3の外周側を展開した状態で示している。
 捲回電極群3は、負極電極32と正極電極34とを間にセパレータ33、35を介して扁平状に捲回することによって構成されている。セパレータ35は、負極電極32の一面と正極電極34の他面との間に介在している。セパレータ33は、正極電極34の一面と負極電極32の他面との間に介在している。そして、負極電極32の最外周部およびセパレータ33の最外周部が、捲回電極群3の最外周になるように捲回されている。従って、捲回電極群3は、図7に図示された断面図では、外周側から順に、セパレータ33、負極電極32、セパレータ35、正極電極34、セパレータ33、負極電極32、セパレータ35、正極電極34……を繰り返して捲回されている。セパレータ33、35は、正極電極34と負極電極32との間を絶縁する役割を有している。捲回電極群3の厚さは、構成されるセパレータ33、35の厚さ、負極電極32の厚さ、正極電極34の厚さに依存し、さらに捲回数(積層枚数)によっても依存する。
 負極電極32の負極合剤層32bは、正極電極34の正極合剤層34bよりも幅方向に大きく、正極合剤層34bは、必ず負極合剤層32bの間に挟まれるように構成されている。すなわち、負極電極32は、正極合剤層34bよりも幅広の負極合剤層32bを有しており、負極合剤層32bの捲回軸方向に直交する方向(幅方向)の両側の端部が正極合剤層34bの捲回軸方向に直交する方向(幅方向)の両側の端部よりもそれぞれ突出した状態で、正極電極34と重ね合わされて捲回される。正極箔露出部34c、負極箔露出部32cは、相互に、幅方向の反対側に配置されている。
 正極箔露出部34c、負極箔露出部32cは、平面部分で厚さ方向に束ねられて溶接等により正極集電板44、負極集電板24に接続される。なお、セパレータ33、35は幅方向で負極合剤層32bよりも広いが、正極箔露出部34c、負極箔露出部32cで端部の金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。後述するが、本実施形態ではセパレータ33、35は幅方向の突出部を変化させて各二次電池(試料)の検証を行った。
 また、必要に応じて、捲回電極群3の最内周に軸芯を配置することも可能である。軸芯としては例えば、正極金属箔、負極金属箔、セパレータ33、35のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
 図4はセパレータの構成を示し、図4(a)は平面図であり、図4(b)は図4(a)のIVb-IVb線断面図である。
 セパレータ33、35は、軟質な帯状のシート部材からなり、基材となる多孔質のポリオレフィン樹脂層33a、35aの一方の面に、無機材料とバインダからなる耐熱層33b、35bが積層されて設けられている。セパレータ33、35は、耐熱層33b、35bが正極電極34に対向する向きに配置される。なお、二次電池の仕様によっては、この限りではなく、耐熱層33b、35bを有していない樹脂層のみのセパレータを適用してもよい。
 図5は負極電極の構成を示し、図5(a)は平面図であり、図5(b)は図5(a)のVb-Vb線断面図である。
 負極電極32は、負極集電体である負極金属箔32aの両面に負極活物質を含む負極合剤を塗布して形成された負極合剤層32bが設けられている。そして、負極金属箔32aの幅方向一方側の端部には、負極合剤が塗布されていない未塗工部である負極箔露出部32cが設けられている。すなわち、負極電極32は、負極金属箔32aに塗工された負極合剤層32bと、負極金属箔32aが露出する負極箔露出部32cとを有している。負極箔露出部32cは、負極合剤層32bから負極金属箔32aが突出した領域であり、捲回電極群3の捲回軸方向に直交する方向(幅方向)の他方側の位置に配置される。
 負極電極32に関しては、負極活物質として天然黒鉛粉末100重量部に対して、結着剤として10重量部のスチレンブタジエンゴム(以下、SBRという。)を添加し、これに分散溶媒としてH2Oの溶媒に、増粘剤としてカルボキシメチルセルロース(CMC)を添加、混練した負極合剤を作製した。この負極合剤を銅箔(負極金属箔32a)の両面に溶接部である負極箔露出部32c(負極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、負極電極32を得た。
 上記では、負極活物質に天然黒鉛を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な非晶質炭素や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi2等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
 また、負極電極32における塗工部の結着剤としてSBRを用いる場合について例示したが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 また、負極電極32における塗工部の分散溶媒としてH2Oの溶媒に、増粘剤としてCMCを添加した場合について例示したが、これに限られたものではなく、例えばH2Oの溶媒に、分散溶媒としてN-メチルピロリドン(以下、NMPという。)を添加したものを用いてもよい。
 図6は、正極電極の構成を示し、図6(a)は平面図であり、図6(b)は図6(a)のVIb-VIb線断面図である。
 正極電極34は、正極集電体である正極金属箔34aの両面に正極活物質を含む正極合剤を塗布して形成された正極合剤層34bが設けられている。そして、正極金属箔34aの幅方向一方側の端部には、正極合剤が塗布されていない未塗工部である正極箔露出部34cが設けられている。すなわち、正極電極34は、正極金属箔34aに塗工された正極合剤層34bと、正極金属箔34aが露出する正極箔露出部34cとを有している。正極箔露出部34cは、正極合剤層34bから正極金属箔34aが突出した領域であり、捲回電極群3の捲回軸方向に直交する方向(幅方向)の一方側の位置に配置される。
 正極電極34に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn24)100重量部に対し、導電材として10重量部の鱗片状黒鉛と、結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練してスラリ状の正極合剤を作製した。このスラリ状の正極合剤をアルミニウム箔(正極金属箔)の両面に溶接部である正極箔露出部34c(正極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て正極電極34を得た。
 本実施形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。
 また、本実施形態では、正極合剤における結着剤としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混体などを用いることができる。
 図7は、捲回電極群3における負極電極側の接合部の詳細構造を示す断面図である。
 上述した通り、負極電極32の負極箔露出部32cは、捲回された部分を相互に密着するように積層され、例えば、超音波溶接や抵抗溶接等の接合装置80により、負極集電板24の負極側接続端部22に接合され、負極接合部25を形成する。負極接合部25は、負極合剤層32b側に最も近い端部の接合端部25aを有する。
 図7に示す捲回電極群3には、生産プロセスの際に発生する金属等の異物がセパレータ33、35の端部の間から混入し、内部短絡を生じる恐れがある。発明者は、セパレータ端部から集電板の接合部までの距離、積層された部分における電極群の厚さ、合剤層からセパレータが突出する長さ、電極箔の厚さ、電極箔の積層枚数等の各パラメータとセパレータの総積層厚とのバランスをとることで、内部短絡(電圧低下)を抑制できることを見出した。
 以下、このことについて詳述する。
 ここで、以下の通りの定義とする。
 A:負極接合部25における負極合剤層32b側の接合端部25aと、セパレータ33、35の最外周部における負極集電板24側の端部(直線g)との距離
 B:捲回電極群3における負極合剤層32bが積層されている部分の厚さ(図7の例では捲回電極群3の厚さ)
 C:セパレータ33、35が負極合剤層32bから負極集電板24側に突出する長さ
 D:負極金属箔32aの厚さ
 d:負極金属箔32aの積層枚数
 E:セパレータ33、35の厚さ
 e:最外周の負極金属箔32a間の内側に介在するセパレータ33、35の積層枚数
 (A~Cは、図7を参照)
 負極電極箔間当たりに換算した空間Sは、下記の式(1)で示される。
 S=〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(1)
 但し、セパレータ33とセパレータ35の厚さが異なる場合には、
 Dd=(セパレータ33の厚さ)×(セパレータ33の積層枚数)+(セパレータ35の厚さ)×(セパレータ35の積層枚数)
 とする。
 また、セパレータ33、35の端部を結ぶ直線gの位置における、最外周に配置されている(図7では、最上層と最下層の)負極箔露出部32c間の理想的な厚さをBi(図7参照、以下、「最外周負極箔露出部32c間の理想的な厚さ」という)と定義する。Biの算出方法は、下記の式(2)に従う。
 Bi=AB/(A+C)  ……式(2)
 上記に定義した、A~E、d、eをパラメータとして、各々を変化させて、様々な水準の試料(二次電池)を作製し、以下に示す方法により、各試料の短絡痕の有無を検証した。
 試料の作製に際しては、以下のようにした。
 負極電極32は、その厚さを50μm~100μmの範囲で変化させて、捲回電極群3の厚さを調整した。負極金属箔32aとして銅箔を用い、その厚さが、8μmと10μmのものを用いた。正極電極34は、その厚さを50μm~100μmの範囲で変化させて捲回電極群3の厚みを調整した。また、正極金属箔34aとしてアルミニウム箔を用い、その厚さは、15μmとした。セパレータ33、35は、その厚さを、18μm~30μmの範囲で変化させた。捲回電極群3を電池缶1に収容するに際し、電池缶1と捲回電極群3との厚さ方向のクリアランスを一定にするために、絶縁保護フィルム2の厚さを変化させて、同一になるようにした。また、捲回電極群3の負極接合部25(図7参照)の部分に、篩により、50μm以下に分級した金属微粉(本検証では銅粉を使用)をスパチュラー一杯分意図的に混入した。完成した各試料は、充放電サイクルを数回繰り返した。この後、各試料を解体し、各試料におけるセパレータ33、35の短絡痕の有無を検証した。
 図8は、上記検証結果を示し、負極金属箔間当たりに換算した空間Sとセパレータの厚さEとの比-短絡痕の発生率の関係を示す図である。
 図8に図示された短絡痕の発生率について説明する。
 一般的に内部短絡は3つの要因で起こると考えられる。
(i)第一に導電性異物が正・負極電極上に侵入し、例えば,充放電による正・負極電極の膨張により、セパレータが圧縮された場合、その圧縮時のセパレータ厚よりも大きい粒子の異物がセパレータを突き破りその導電性異物を介して短絡する。
(ii)第二に導電性異物は金属異物であることが多く、金属異物が二次電池の正極電位に接すると電気化学的に溶解し、対向する負極側で溶出する。この溶解析出の電析反応により、金属異物が負極電極上で成長し、正極電極に到達して短絡する。
(iii)第三にこの電析に起因してLiイオンが集中し、Liデンドライトが発生し、二次電池内部で短絡に至る。
 図8に図示された短絡痕の発生率は、上記要因(i)~(iii)により発生したすべての短絡を含むものである。
 図8において、式(1)の算出値Sとセパレータの厚さEとの比が100%を超えている水準は、最外周負極箔露出部32c間の理想的な厚さBiから、介在している負極金属箔32aの総厚とセパレータ33、35の総厚を差し引き、さらに負極金属箔間当たりに換算した空間Sが、セパレータ33、35の厚さよりも大きくなることを意味している。つまり、セパレータ33、35の厚さ以上の金属異物も内部に入りやすいことを意味しており、解体調査による検証結果では、図8に示されるように、短絡痕の発生率も75%以上と高い結果となった。
 これに対し、式(1)の算出値Sとセパレータの厚さEとの比が100%以下の水準であると、短絡痕の発生率は半分(50%)以下となり、式(1)の算出値Sとセパレータの厚さEとの比が100%を超えている水準に比し、短絡痕の発生率が大幅に抑制されることが判る。
 つまり、下記の式(3)を満たす条件であれば、内部短絡の発生率が大幅に低減されるのである。
 E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(3)
 特に、式(1)の算出値Sとセパレータの厚さEとの比が50%以下の水準では、短絡痕の発生率は、式(1)の算出値Sとセパレータの厚さEとの比が100%以下の水準の1/4程度以下となり、さらに、大幅な低減効果が得られた。
 すなわち、下記の式(4)を満たす条件であれば、内部短絡の発生率は、さらに大幅に低減される。
 E/2>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(4)
 上記式(3)および式(4)を満たす水準であっても、短絡痕の発生率は、0%ではない。しかし、上記における算出値Sは、あくまでも、最外周負極箔露出部32c間の理想的な厚さBiから、介在している負極金属箔32aの総厚とセパレータ33、35の総厚を差し引き、さらに負極金属箔間当たりに換算した空間を示しているものであり、部分的な変形は考慮されていない。このため、式(3)および式(4)を満たす水準における短絡痕の発生は、セパレータ33、35の端部同士の空間が広がっている積層部が部分的に形成されていることによるものと考えられる。しかしながら、本検証は、負極接合部25の部分に意図的に大量な導電異物を混入させて行ったものであるから、実用上は十分、有効な効果が得られたものと認められる。
 また、算出値Sが0以下になると短絡痕の発生率は0%となった。算出値Sが0以下であるから、式(1)は、
 0≧〔{AB/(A+C)-Dd-Ee〕/(d-1)
となる。この式を変換すれば、下記の式(5)が得られる。
 E≧{AB/(A+C)-Dd〕/e ……式(5)
 図9は、式(5)が成立するときの負極電極側の接合部の詳細構造を示す断面図である。
 図9に図示された状態は、各層におけるセパレータ33、35同士の間に、空間が存在していないことを意味している。従って、短絡痕の発生をほぼ完全に抑制できたと見做すことができる。
 図9に図示された状態、すなわち、式(5)を満たす水準は、導電異物の電極上への侵入に対しては最も有効な手段である。しかし、各層におけるセパレータ33、35同士の間に空間が存在しない構造とすると、製造工程において、負極箔露出部32cに過度なストレスが掛かるため、生産性が低下する可能性がある。
 従って、生産性を含めて考慮すると、式(3)または式(4)を満たす水準が、短絡痕の発生率を低減するうえで、適切であると判断される。
 本発明の一実施の形態によれば、下記の効果を奏する。
(1)捲回電極群を備える二次電池100は、セパレータ33、35の端部から負極集電板24が接合された積層部の負極接合部25までの距離をA、負極合剤層32bが積層された部分における捲回電極群3の厚さをB、負極合剤層32bの端部からセパレータ33、35が突出する長さをC、負極金属箔32aの厚さをD、負極金属箔32aの積層枚数をd、セパレータ33、35の厚さをE、最外周の負極金属箔32a間の内側に介在するセパレータ33、35の総枚数をeとしたときに、下記の式(I)
 E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(I)
を満たす。
 この条件を満たす二次電池100は、図8に示すように、短絡痕の発生の抑制に、大きな効果を奏する。
 上記一実施の形態では、セパレータ33およびセパレータ35の両方の端部を負極合剤層32bから負極集電板24側に長さC、突出させる構造として例示した。
 上記変形例として、セパレータ33、35の端部のいずれか一方のみを延出させて、式(4)を満たす水準の二次電池100を作製し、上記と同様の検証を行った。その結果、解体調査による短絡痕の発生率は10%以下であった。
 この際、注目すべきは、セパレータ33、35のうち、外周側に位置するセパレータ35をセパレータ33よりも長く延出するとより良好な結果が得られた。この条件を満たす試料の検証では、解体調査による短絡痕の発生率は0%であった。この効果の要因については明確ではないが、セパレータ33とセパレータ35の突出長さを変化させたことで、セパレータ33、35間に発生する隙間を効果的に閉じることが出来たのではないかと推察される。
 なお、上記一実施の形態および変形例では、捲回電極群3の負極電極32側において、式(3)および式(4)を満たす構造として例示した。
 しかし、捲回電極群3の正極電極34側において、式(3)および式(4)を満たす構造を採用するようにしてもよい。但し、この場合には、定義A、B、C、D、dの「負極」を「正極」に置き換えるものとする。
 すなわち、捲回電極群3を備える二次電池100は、セパレータ33、35の端部から集電板24、44が接合された極性の積層部の接合部での距離をA、集電板24、44が接合された極性の合剤層32b、34bが積層された部分における電極群3の厚さをB、集電板24、44が接合された極性の合剤層32b、34bの端部からセパレータ33、35が突出する長さをC、集電板24、44が接合された極性の金属箔32a、34aの厚さをD、集電板24、44が接合された極性の金属箔32a、34aの積層枚数をd、セパレータ33、35の厚さをE、集電板24、44が接合された極性の最外周の金属箔32a、34a間の内側に介在するセパレータ33、35の総枚数をeとしたときに、下記の式(I)を満たすものであればよい。
 E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(I)
 また、式(3)および式(4)を満たす構造は、負極電極32側または正極電極34側の一方のみでなく、負極電極32側または正極電極34側の両側に採用してもよい。
 上記各実施形態では、正極電極34の最外周部の外周には、セパレータ33およびセパレータ35が1周、捲回されている構成として例示した。しかし、セパレータ33およびセパレータ35の一方または両方を、正極電極34の最外周部の外周に数周、捲回するようにしてもよい。
 上記各実施形態では、正極電極34と負極電極32とが、セパレータ33、35を介して捲回された捲回電極群3を有する二次電池100として例示した。しかし、本発明は、矩形シート状の正極電極と矩形シート状の負極電極とを、セパレータを介して平坦状に積層した電極群を備える二次電池に適用することができる。
 上記各実施形態では、二次電池をリチウムイオン電池として例示した。しかし本発明は、ニッケル・カドミウム電池やニッケル水素電池等、他の二次電池に適用することができる。
 本発明は、上記一実施の形態および変形例の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
  1   電池缶
  3   捲回電極群(電極群)
  6   電池蓋
 24   負極集電板
 25   負極接合部
 25a  接合端部
 32   負極電極
 32a  負極金属箔
 32b  負極合剤層
 32c  負極箔露出部
 33   セパレータ
 34   正極電極
 34a  正極金属箔
 34b  正極合剤層
 34c  正極箔露出部
 35   セパレータ
 44   正極集電板
100   二次電池

Claims (8)

  1.  正極金属箔および正極合剤層を有する正極電極と、負極金属箔および負正極合剤層を有する負極電極とがセパレータを介して積層された電極群と、
     前記正極金属箔が積層された正極積層部および前記負極金属箔が積層された負極積層部の少なくとも一方に接合された集電板とを備えた二次電池であり、
     前記セパレータの端部から前記集電板が接合された極性の積層部の接合部までの距離をA、前記集電板が接合された極性の合剤層が積層された部分における前記電極群の厚さをB、前記集電板が接合された極性の合剤層の端部から前記セパレータが突出する長さをC、前記集電板が接合された極性の金属箔の厚さをD、前記集電板が接合された極性の金属箔の積層枚数をd、前記セパレータの厚さをE、前記集電板が接合された極性の最外周の金属箔間の内側に介在するセパレータの総枚数をeとしたときに、下記の式(I)
     E>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(I)
     を満たす、二次電池。
  2.  請求項1に記載の二次電池において、
     下記の式(II)
     E/2>〔{AB/(A+C)-Dd-Ee〕/(d-1) ……式(II)
     を満たす、二次電池。
  3.  請求項2に記載の二次電池において、
     さらに、下記の式(III)
     E≧{AB/(A+C)-Dd}/e ……式(III)
     を満たす、二次電池。
  4.  請求項1から3までのいずれか一項に記載の二次電池において、
     前記セパレータは、前記負極電極の一面と前記正極電極の他面との間に介在する第1のセパレータと、前記正極電極の一面と前記負極電極の他面との間に介在する第2のセパレータとを含み、
     前記第1のセパレータと前記第2のセパレータとは、前記集電板が接合された極性の合剤層の端部から突出する長さが異なる、二次電池。
  5.  請求項4に記載の二次電池において、
     前記集電板が接合された極性の合剤層の端部から突出する長さは、前記第1のセパレータと前記第2のセパレータのうち、外周側に配置されるセパレータの方が長い、二次電池。
  6.  請求項1に記載の二次電池において、
     前記集電板が接合された極性の金属箔は、負極金属箔である二次電池。
  7.  請求項1から3までのいずれか一項に記載の二次電池において、
     前記正極金属箔は正極集電板に接合され、前記負極金属箔は負極集電板に接合されている、二次電池。
  8.  請求項7に記載の二次電池において、
     前記電極群は、前記正極電極と前記負極電極とが前記セパレータを介して捲回されている捲回電極である、二次電池。
PCT/JP2018/003104 2017-06-14 2018-01-31 二次電池 WO2018230029A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525061A JP6978500B2 (ja) 2017-06-14 2018-01-31 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117181 2017-06-14
JP2017117181 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230029A1 true WO2018230029A1 (ja) 2018-12-20

Family

ID=64660630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003104 WO2018230029A1 (ja) 2017-06-14 2018-01-31 二次電池

Country Status (2)

Country Link
JP (1) JP6978500B2 (ja)
WO (1) WO2018230029A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990588B2 (en) 2019-04-09 2024-05-21 Lg Energy Solution, Ltd. Battery cell including short-circuit inducing member and safety evaluation method using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190913A (ja) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2011176137A (ja) * 2010-02-24 2011-09-08 Tdk Corp 電気化学デバイス
JP2012043752A (ja) * 2010-08-23 2012-03-01 Toyota Motor Corp 二次電池とそれを搭載する車両
JP2013232425A (ja) * 2013-06-28 2013-11-14 Toyota Motor Corp 非水系二次電池
JP2014220140A (ja) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 非水系二次電池
JP2015084279A (ja) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 二次電池
JP2016110886A (ja) * 2014-12-09 2016-06-20 株式会社Gsユアサ 蓄電素子
WO2017061123A1 (ja) * 2015-10-09 2017-04-13 株式会社Gsユアサ 蓄電素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190913A (ja) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2011176137A (ja) * 2010-02-24 2011-09-08 Tdk Corp 電気化学デバイス
JP2012043752A (ja) * 2010-08-23 2012-03-01 Toyota Motor Corp 二次電池とそれを搭載する車両
JP2014220140A (ja) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 非水系二次電池
JP2013232425A (ja) * 2013-06-28 2013-11-14 Toyota Motor Corp 非水系二次電池
JP2015084279A (ja) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 二次電池
JP2016110886A (ja) * 2014-12-09 2016-06-20 株式会社Gsユアサ 蓄電素子
WO2017061123A1 (ja) * 2015-10-09 2017-04-13 株式会社Gsユアサ 蓄電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990588B2 (en) 2019-04-09 2024-05-21 Lg Energy Solution, Ltd. Battery cell including short-circuit inducing member and safety evaluation method using same

Also Published As

Publication number Publication date
JP6978500B2 (ja) 2021-12-08
JPWO2018230029A1 (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
US9583783B2 (en) Prismatic secondary battery
US20160254569A1 (en) Assembled battery
CN106688123B (zh) 矩形二次电池
WO2018020906A1 (ja) 角形二次電池
JP2013222517A (ja) 角形二次電池
WO2018230029A1 (ja) 二次電池
CN109564998B (zh) 方形二次电池
JP2017084667A (ja) 蓄電素子
JP2016139532A (ja) 角形二次電池
JP2016178053A (ja) 角形二次電池
JP2020035641A (ja) 二次電池
JP6382336B2 (ja) 角形二次電池
JP6562726B2 (ja) 角形二次電池及びその製造方法
JP2018056085A (ja) 二次電池
JP6216203B2 (ja) 捲回式二次電池
WO2018198469A1 (ja) 二次電池
JP6504994B2 (ja) 角形蓄電素子
JP6360305B2 (ja) 角形二次電池
JPWO2019003770A1 (ja) 二次電池およびその製造方法
JP2018056023A (ja) 二次電池
JP6752737B2 (ja) 角形二次電池
JP6892338B2 (ja) 蓄電装置および蓄電装置の製造方法
JP2018056086A (ja) 二次電池及び二次電池の製造方法
WO2020017096A1 (ja) 二次電池
JP2015106496A (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817485

Country of ref document: EP

Kind code of ref document: A1