WO2018198469A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018198469A1
WO2018198469A1 PCT/JP2018/003906 JP2018003906W WO2018198469A1 WO 2018198469 A1 WO2018198469 A1 WO 2018198469A1 JP 2018003906 W JP2018003906 W JP 2018003906W WO 2018198469 A1 WO2018198469 A1 WO 2018198469A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
separator
positive
flat
Prior art date
Application number
PCT/JP2018/003906
Other languages
English (en)
French (fr)
Inventor
伸行 堀
渡辺 聡
飯塚 佳士
稔之 有賀
山本 祐輝
佳佑 澤田
野入 義和
哲徳 多幡
光雄 山▲崎▼
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019515104A priority Critical patent/JP6944998B2/ja
Publication of WO2018198469A1 publication Critical patent/WO2018198469A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • lithium ion secondary batteries for example, positive and negative electrodes each having a metal foil exposed portion are wound through a separator to form a wound group, and the positive and negative electrode metal foil exposed portions are stacked and collected. It is structured to be welded to the electric plate.
  • a metal foreign matter or the like generated during the production process is mixed in the electrode group, a minute internal short circuit occurs and the performance deteriorates.
  • metal ions oxidized at the positive electrode potential diffuse in the electrolytic solution, and are reduced and deposited when in contact with the negative electrode. The deposited metal grows in the pores of the separator toward the positive electrode, and forms a short-circuit path when it comes into contact with the positive electrode.
  • Patent Document 1 does not disclose a structure that can prevent foreign matter from entering the positive electrode.
  • a secondary battery includes an electrode group in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and a flat portion having a pair of flat surfaces on the front and back surfaces.
  • a positive electrode current collector plate to be connected, and a surface side portion of the separator is disposed on a surface side of the positive electrode on the outermost surface side in the electrode group, and the positive electrode includes a positive foil exposed portion and a positive electrode joint.
  • the positive electrode foil exposed portion is provided on one side edge of the electrode group between a laminated portion having a thickness thinner than the flat portion of the electrode group and between the laminated portion and the flat portion.
  • the positive electrode current collector plate is disposed on one surface of the laminated portion of the positive electrode foil exposed portion, and is directed from the flat surface of the flat portion of the electrode group toward the laminated portion side.
  • the surface of the separator so as to approach the exposed portion of the positive electrode foil on the outermost surface side Part is deformed.
  • FIG. 2 is an exploded perspective view of the secondary battery illustrated in FIG. 1.
  • FIG. 3 is an exploded perspective view of the wound electrode group illustrated in FIG. 2.
  • the top view which shows the joining state of the positive / negative electrode current collecting plate and the winding electrode group.
  • 4A is a cross-sectional view taken along the line Va-Va in FIG. 4
  • FIG. 5B is an enlarged view of a region Vb in FIG.
  • FIG. 6 is an enlarged sectional view taken along line VI-VI in FIG. 4.
  • the top view which shows the state which provided the tape for a foreign material mixing regulation in the wound electrode group shown by FIG.
  • FIG. 14A is a cross-sectional view taken along the line XIVa-XIVa of FIG. 13, and FIG. 14B is an enlarged view of a region XIVb of FIG. FIG.
  • FIG. 5 shows a fifth embodiment of the present invention, where (a) is a cross-sectional view of the vicinity of the welded portion on the positive electrode side corresponding to FIG. .
  • Sectional drawing of the outermost periphery vicinity of the winding electrode group 3 which shows the 5th Embodiment of this invention and includes the winding start part of the positive electrode corresponding to FIG. 6 of 1st Embodiment.
  • FIG. 1 is an external perspective view of a flat wound secondary battery.
  • the secondary battery 100 includes a battery can 1 and a battery lid 6 that form a battery container.
  • the battery can 1 is a rectangular secondary battery having a flat box shape, a pair of opposed wide side surfaces 1b having a relatively large area, and a pair of opposed narrow side surfaces 1c having a relatively small area, It has a bottom surface 1d and has an opening 1a (see FIG. 2) above it.
  • a wound electrode group 3 is accommodated in the battery can 1, and an opening 1 a of the battery can 1 is sealed by a battery lid 6.
  • the battery lid 6 has a substantially rectangular flat plate shape and is welded by closing the opening 1a of the battery can 1 to seal the battery can 1 to the outside.
  • the battery lid 6 is provided with a positive external terminal 14 and a negative external terminal 12.
  • the positive external terminal 14 and the negative external terminal 12 are connected to an external device via a bus bar (not shown).
  • the wound electrode group 3 is charged via the positive external terminal 14 and the negative external terminal 12, and power is supplied to the external load.
  • the battery cover 6 is integrally provided with a gas discharge valve 10. When the pressure in the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the flat wound secondary battery 100 is ensured.
  • the battery lid 6 is provided with a liquid injection plug 11 for sealing the liquid injection hole 9 (see FIG. 2).
  • FIG. 2 is an exploded perspective view of the secondary battery illustrated in FIG. 1.
  • a wound electrode group 3 is accommodated in the battery can 1 of the secondary battery 100 via an insulating protective film 2.
  • the wound electrode group 3 is formed by winding a negative electrode 32 and a positive electrode 34 through separators 33 and 35 between both members (see FIG. 3).
  • the wound electrode group 3 includes a flat flat portion 36 and curved portions 37 having a semicircular cross section formed at both ends of the flat portion 36 in the winding direction.
  • the flat portion 36 has a pair of flat surfaces 36U and 36L (see also FIG. 5 and the like) that face each other in the thickness direction.
  • the wound electrode group 3 is inserted into the battery can 1 from one curved portion 37 side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion 37 side is the opening of the battery can 1. It arrange
  • the positive electrode 34 has a positive foil exposed portion 34c
  • the negative electrode 32 has a negative foil exposed portion 32c.
  • the positive electrode foil exposed portion 34 c of the wound electrode group 3 is electrically connected to the positive electrode external terminal 14 provided on the battery lid 6 via the positive electrode current collector plate 44.
  • the negative electrode foil exposed portion 32 c of the wound electrode group 3 is electrically connected to the negative electrode external terminal 12 provided on the battery lid 6 via the negative electrode current collector plate 24.
  • the gasket 5 is attached to one surface side of the battery lid 6, and the positive external terminal 14 and the negative external terminal 12 are insulated from the battery cover 6. Further, the insulating plate 7 is attached to the other surface side of the battery lid 6, and the positive current collector plate 44 and the negative current collector plate 24 are insulated from the battery lid 6, respectively.
  • the battery lid 6 is provided with a liquid injection hole 9 for injecting an electrolytic solution into the battery container. After injecting the electrolytic solution into the battery can 1 from the injection hole 9, the injection stopper 11 is joined to the battery lid 6 by laser welding to seal the injection hole 9, and the secondary battery 100 is sealed.
  • Examples of a material for forming the positive electrode external terminal 14 and the positive electrode current collector plate 44 include an aluminum alloy, and an example of a material for forming the negative electrode external terminal 12 and the negative electrode current collector plate 24 is, for example, a copper alloy.
  • Examples of the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.
  • a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF6) is dissolved in an organic carbonate-based solvent such as ethylene carbonate is used as the electrolytic solution injected into the battery container.
  • a lithium salt such as lithium hexafluorophosphate (LiPF6)
  • an organic carbonate-based solvent such as ethylene carbonate
  • the positive electrode external terminal 14 and the negative electrode external terminal 12 are respectively formed with a positive electrode connection portion 14a and a negative electrode connection portion 12a that protrude downward.
  • Each of the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a has a cylindrical shape, and the tips thereof are inserted into the positive electrode side through hole 46 and the negative electrode side through hole 26 of the battery lid 6.
  • the positive electrode connection portion 14 a penetrates the battery lid 6 and protrudes more toward the inside of the battery can 1 than the positive electrode current collector plate base 41 of the positive electrode current collector plate 44.
  • the tip of the positive electrode connection portion 14 a is caulked to fix the positive electrode external terminal 14 and the positive electrode current collector plate 44 integrally to the battery lid 6.
  • the negative electrode connecting portion 12 a penetrates the battery lid 6 and protrudes more toward the inner side of the battery can 1 than the negative electrode current collector plate base portion 21 of the negative electrode current collector plate 24.
  • the tip of the negative electrode connection portion 12 a is caulked to fix the negative electrode external terminal 12 and the negative electrode current collector plate 24 integrally to the battery lid 6.
  • the positive electrode current collector plate 44 has a positive electrode current collector plate base 41 and a positive electrode side connection end 42.
  • the positive electrode side connection end portion 42 is bent at the side end of the positive electrode current collector plate base portion 41, extends toward the bottom surface 1 d side along the wide side surface 1 b of the battery can 1, and the positive electrode of the wound electrode group 3. It is connected in a state where it is opposed to the foil exposed portion 34c.
  • a positive electrode side opening hole 43 through which the positive electrode connection portion 14a is inserted is formed in the positive electrode current collector plate base 41.
  • the negative electrode current collector plate 24 has a negative electrode current collector plate base portion 21 and a negative electrode side connection end portion 22.
  • the negative electrode side connection end portion 22 is bent at the side end of the negative electrode current collector plate base portion 21, extends toward the bottom surface 1 d along the wide side surface 1 b of the battery can 1, and the negative electrode foil of the wound electrode group 3.
  • the connection is made in a state of being overlapped facing the exposed portion 32c.
  • the negative electrode current collector plate base 21 is formed with a negative electrode side opening hole 23 through which the negative electrode connection portion 12a is inserted.
  • the insulating protective film 2 is wound around the winding electrode group 3 with the winding center in the direction along the flat surfaces 36U and 36L of the flat portion 36 of the winding electrode group 3 and perpendicular to the winding axis direction of the winding electrode group 3. It is wrapped around
  • the insulating protective film 2 is made of, for example, a single sheet made of synthetic resin such as PP (polypropylene) or a plurality of film members, and is in a direction parallel to the flat surfaces 36U and 36L of the wound electrode group 3 and in the winding axis direction. It has the length which can be wound around the direction orthogonal to the winding center.
  • FIG. 3 is an exploded perspective view of the wound electrode group illustrated in FIG. 2.
  • FIG. 3 shows a state in which the outer peripheral side of the wound electrode group 3 is developed.
  • the wound electrode group 3 is configured by winding a negative electrode 32 and a positive electrode 34 in a flat shape with separators 33 and 35 interposed therebetween. That is, the wound electrode group 3 is wound in order from the outer peripheral side by repeating the separator 35, the negative electrode 32, the separator 33, the positive electrode 34, the separator 35, the negative electrode 32, the separator 33, the positive electrode 34,. Yes.
  • the separators 33 and 35 have a role of insulating between the positive electrode 34 and the negative electrode 32.
  • the negative electrode 32 has a negative electrode mixture layer 32b applied to both surfaces of the negative electrode foil 32a, and a negative electrode foil exposed portion 32c where the negative electrode foil 32a is exposed from the negative electrode mixture layer 32b.
  • the positive electrode 34 has a positive electrode mixture layer 34b applied to both surfaces of the positive electrode foil 34a, and a positive electrode foil exposed portion 34c where the positive electrode foil 34a is exposed from the positive electrode mixture layer 34b.
  • the negative electrode mixture layer 32b is larger in the width direction (the length in the direction orthogonal to the winding direction) than the positive electrode mixture layer 34b, whereby the positive electrode mixture layer 34b is disposed in the region of the negative electrode mixture layer 32b. Has been.
  • the positive foil exposed portion 34c and the negative foil exposed portion 32c are disposed on the opposite sides in the width direction.
  • the positive foil exposed portion 34c and the negative foil exposed portion 32c are laminated on the inner and outer peripheral portions adjacent to each other at the flat portion 36.
  • adjacent inner and outer peripheral portions are welded to each other, and the positive electrode current collector plate 44 is welded to one surface of the laminated portion.
  • adjacent inner and outer peripheral portions are welded together, and the negative electrode current collector plate 24 is welded to one surface of the laminated portion.
  • the length in the width direction of the separators 33 and 35 is larger than that of the negative electrode mixture layer 32b.
  • the separators 33 and 35 are arranged so that the end portions thereof are located inside the end portions of the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c, and the positive foil exposed portion 34c and the negative electrode foil exposed.
  • Each of the portions 32c has a region exposed from the separators 33 and 35 to the outside in the width direction. For this reason, it does not become a hindrance at the time of welding the positive electrode current collection board 44 and the negative electrode current collection board 24 to the positive electrode foil exposure part 34c and the negative electrode foil exposure part 32c, respectively.
  • the negative electrode 32 could be obtained by the following method. 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and N-methylpyrrolidone (hereinafter referred to as “dispersion solvent”) is added thereto. NMP) was added and kneaded to prepare a negative electrode mixture. This negative electrode mixture is applied to both sides of a 10 ⁇ m thick copper foil (negative electrode foil 32a) leaving the welded portion (negative electrode foil exposed portion 32c). Then, the negative electrode 32 with a negative electrode active material application part thickness of 70 micrometers which does not contain copper foil was obtained through drying, a press, and a cutting process.
  • PVDF polyvinylidene fluoride
  • amorphous carbon powder as a negative electrode active material
  • NMP N-methylpyrrolidone
  • amorphous carbon is used as the negative electrode active material
  • the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions and various artificial graphite materials
  • Carbonaceous materials such as coke, compounds such as Si and Sn (for example, SiO, TiSi2, etc.), or composite materials thereof may be used, and the particle shape is particularly limited, such as scaly, spherical, fibrous, or massive Is not to be done.
  • the positive electrode 34 could be obtained by the following method. 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn2O4) as a positive electrode active material, and NMP is added as a dispersion solvent thereto A kneaded positive electrode mixture was prepared. This positive electrode mixture was applied to both surfaces of an aluminum foil (positive electrode foil 34a) having a thickness of 20 ⁇ m, leaving the welded portion (positive foil exposed portion 34c). Thereafter, a positive electrode 34 having a thickness of 90 ⁇ m in the thickness of the positive electrode active material coating portion not including an aluminum foil was obtained through drying, pressing, and cutting processes.
  • LiMn2O4 lithium manganate
  • NMP is added as a dispersion solvent thereto
  • a kneaded positive electrode mixture was prepared. This positive electrode mixture was applied to both surfaces of an aluminum foil (positive electrode foil 34a) having a thickness of 20 ⁇ m,
  • lithium manganate is used as the positive electrode active material.
  • another lithium manganate having a spinel crystal structure or a lithium manganese composite oxide or layered crystal structure in which a part is substituted or doped with a metal element Lithium cobaltate, lithium titanate, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.
  • PVDF polytetrafluoroethylene
  • polyethylene polyethylene
  • polystyrene polybutadiene
  • butyl rubber nitrile rubber
  • Polymers such as styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins, and mixtures thereof.
  • PTFE polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber Polymers such as styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins, and mixture
  • the shaft core for example, a structure obtained by winding a resin sheet having higher bending rigidity than any of the positive electrode foil 34a, the negative electrode foil 32a, and the separators 33 and 35 can be used.
  • FIG. 4 is a plan view showing a joined state between the positive and negative current collector plates and the wound electrode group.
  • the positive electrode foil exposed portion 34c and the positive electrode current collector plate 44, and the negative electrode foil exposed portion 32c and the negative electrode current collector plate 24 are joined, for example, by ultrasonic welding.
  • Ultrasonic welding is a method in which a horn is pressed against the positive / negative electrode foil exposed portions 34c and 32c and the metal interface is bonded by ultrasonic vibration in a state where the positive / negative electrode current collector plates 44 and 24 are fixed with an anvil. .
  • the positive electrode current collector 64 which is a bonding surface between the positive electrode foil exposed portion 34c and the positive electrode current collector plate 44
  • the negative electrode current collector 62 which is a bonded surface between the negative electrode foil exposed portion 32c, and the negative electrode current collector plate 24
  • the positive and negative current collector plates 44 and 24 and the positive and negative electrode exposed portions 34c and 32c are scraped to generate metal foreign matter.
  • a part of the generated metal foreign matter may intrude into the wound electrode group 3 due to the flow of the electrolytic solution in the step of injecting the electrolytic solution, for example.
  • the separator When entering the inside of the wound electrode group 3, depending on the size and shape of the metal foreign matter, the separator may be penetrated to cause an internal short circuit.
  • the invading metal foreign material is the negative electrode foil 32a or copper constituting the negative electrode current collector plate 24, it is oxidized at the positive electrode potential, diffuses in the electrolyte solution, and is reduced and deposited at the negative electrode.
  • the deposited copper may connect the negative electrode and the positive electrode to form a minute internal short circuit. For example, when the inside of the separator gap grows in a dendritic manner, even if it is a small foreign substance that does not physically penetrate the separator, an internal short circuit may occur.
  • Factor 1 The metal foreign matter generated on the negative electrode side flows in the electrolytic solution and enters the wound electrode group 3 from the positive electrode side, is oxidized by the positive electrode potential, is reduced and precipitated on the negative electrode, and short-circuits the positive electrode and the negative electrode.
  • Factor 2 Metal foreign matter generated on the positive electrode side or foreign matter generated during the manufacturing process is mixed into the wound electrode group 3 from the positive electrode side, and almost penetrates the separator to short-circuit the positive electrode and the negative electrode. While an internal short circuit is a serious problem that causes a loss of function of the secondary battery, it is not easy to take measures against contamination by foreign substances to prevent it.
  • FIG. 5A is a cross-sectional view taken along the line Va-Va in FIG. 4, and FIG. 5B is an enlarged view of a region Vb in FIG. 5A.
  • FIG. 5A illustrates the welded portion side of the positive electrode 34.
  • the positive foil exposed portion 34c of the positive electrode 34 is laminated so that the portions of the flat portions of the inner and outer circumferences to be wound are in close contact with each other. Naturally, the thickness of the laminated portion 38 is smaller than the thickness of the flat portion 36 of the wound electrode group 3. In the state illustrated in FIG.
  • the positive electrode current collector plate 44 disposed on one surface of the laminated portion 38 is fixed with an anvil, and the positive electrode foil exposed portion 34 c constituting the laminated portion 38 is pressed with a horn from the other surface side. Give ultrasonic vibration. Thereby, frictional heat is generated between adjacent metal members, and a solid phase welding state is created. By this action, the positive electrode foil exposed portions 34 c constituting the laminated portion 38 are joined together, and the positive electrode current collector plate 44 is joined to one surface of the laminated portion 38.
  • the flat surfaces 36U and 36L of the flat portion 36 are provided between the laminated portion 38 and the flat portion 36 of the wound electrode group 3 in the positive electrode foil exposed portion 34c.
  • a deformed portion 39 that curves toward the laminated portion 38 is formed.
  • the positive foil exposed portion 34 c and the separators 33 and 35 are curved toward the laminated portion 38 so that the interval gradually decreases. Therefore, in the deformed portion 39, the size of the gaps 54a and 54b between the positive foil exposed portion 34c and the separator 33 and the separator 35 disposed on both sides thereof is limited by the positive foil exposed portion 34c joined to each other at the tip.
  • the outermost peripheral portion 33a of the separator 33, the outermost peripheral portion 32d of the negative electrode 32, and the outermost peripheral portion 35a of the separator 35 are wound once. Since the outermost peripheral part 33a of the separator 33, the outermost peripheral part 32d of the negative electrode 32, and the outermost peripheral part 35a of the separator 35 do not form the laminated part 38 of the positive electrode foil exposed part 34c, it faces the laminated part 38 side. It does not deform and remains flat.
  • a large gap 54 c is formed between the outermost peripheral portion 33 a of the separator 33 and the deformed portion 39, that is, the outermost positive electrode foil exposed portion 34 c of the wound electrode group 3. As shown in FIG. 5B, the gap 54c is opened outward. For this reason, there is a high possibility that a metal foreign object enters the gap 54 from the outside.
  • FIG. 6 is an enlarged sectional view taken along line VI-VI in FIG. 6 shows the vicinity of the outermost periphery of the wound electrode group 3 including the end 74 of the positive electrode 34 shown in FIG.
  • the outermost peripheral portion 33 a of the separator 33, the outermost peripheral portion 32 d of the negative electrode 32 and the outermost peripheral portion 35 a of the separator 35 disposed on the outer periphery of the positive electrode 34 are from the end of the positive electrode 34. , Extending in the winding direction. For this reason, in particular, at the end 74 of the positive electrode 34, there is a high possibility that a metal foreign object will enter the gap 54d from the outside.
  • the gap 54 c formed between the deformed portion 39 and the outermost peripheral portion 33 a of the separator 33. , 54d is likely to be mixed with metal foreign matter from the outside.
  • an embodiment of the present invention that can suppress the mixing of metallic foreign matter into the wound electrode group 3 will be described below.
  • FIG. 7 is a plan view showing a state in which the wound electrode group shown in FIG. 4 is provided with a foreign matter mixing restriction tape.
  • 8A is a cross-sectional view taken along line VIIIa-VIIIa in FIG. 7, and FIG. 8B is an enlarged view of a region VIIIb in FIG. 8A.
  • a foreign matter mixing restriction tape 200 is attached to the upper surface of the outermost peripheral portion 35 a of the separator 35.
  • the tape 200 is disposed on the flat surface 36U side in the flat portion 36 where the positive electrode current collector plate 44 joined to the laminated portion 38 is disposed. Further, as illustrated in FIG.
  • the tape 200 covers one side edge of the positive electrode current collector plate 44 side and straddles the winding end portion 74 of the positive electrode 34 in the winding direction and the winding direction. It extends in the opposite direction. Further, the tape 200 is arranged in the region 64R of the positive electrode current collector 64 in the winding direction.
  • the tape 200 deforms the outermost peripheral portion 35a of the separator 35 toward the outermost outer peripheral portion 33a side of the separator 33, and the tip end side (side edge side in the width direction) is changed to the outermost peripheral portion 33a of the separator 33 of the separator. Make contact.
  • the tape 200 further presses the outermost peripheral portion 35a of the separator 35 against the outermost peripheral portion 33a of the separator 33 so that the tip end side of the outermost peripheral portion 33a of the separator 33 approaches the outermost positive electrode foil exposed portion 34c. Deform.
  • the gap 54c formed between the outermost peripheral portion 33a of the separator 33 and the outermost positive electrode foil exposed portion 34c is reduced and closed to the outside.
  • the tape 200 is disposed so as to cover the positive electrode side end portion 74 ⁇ / b> T of the end portion 74 of the positive electrode 34. Therefore, the gap 54d formed at the end of the end 74 of the positive electrode 34 shown in FIG. 6 is reduced and closed on the positive current collector plate 44 side. Accordingly, the tape 200 suppresses metal foreign matter from entering the wound electrode group 3 through the gap 54c and the gap 54d.
  • Condition 1 The length of the tape is 23% of the length of the flat portion 36 of the wound electrode group 3
  • Condition 2 The length of the tape is 62% of the length of the flat portion 36 of the wound electrode group 3
  • Condition 3 The length of the tape is 100% of the length of the flat portion 36 of the wound electrode group 3 Note that the sample of Condition 3 corresponds to a third embodiment described later.
  • the wound electrode group 3 to which the tape 200 was not attached was also produced.
  • the tape 200 is disposed on the flat surface 36U side of the flat portion 36 where the positive electrode current collector plate 44 is bonded. All the tapes 200 were disposed so as to cover the end 74 of the positive electrode 34.
  • the number of metallic foreign matters mixed in the wound electrode group 3 was determined after the wound electrode group 3 was accommodated in the battery can 1 and the battery can 1 and the battery lid 6 were welded. Usually, in the state as produced, there is a very low probability that metal foreign matter is mixed in the wound electrode group 3. Therefore, in order to promote confirmation of the effect, about 1 mg of copper foreign matter was added from the injection hole 9 and diffused into the battery can 1. The copper foreign matter used was sieved with a 70 ⁇ m sieve. Subsequently, the electrolyte solution was injected into the battery can 1 and the electrolyte solution was infiltrated into the wound electrode group 3 by appropriately adjusting the pressure inside and outside the battery container, and then sealed with the injection plug 11.
  • the secondary battery 100 was charged in a state where the positive electrode potential exceeded the dissolution potential of copper and allowed to stand for a certain time. Then, the wound electrode group 3 was taken out from the secondary battery 100 and disassembled, and the number of copper that was dissolved and precipitated in the voids 54c and 54d was confirmed.
  • FIG. 9 shows the result of the above-described test, and is a diagram showing the relationship between the tape length and the number of mixed foreign matters.
  • the horizontal axis indicates the length of the tape 200 with respect to the length of the flat portion 36 of the wound electrode group 3 in the winding direction, and the vertical axis indicates the total number of metal foreign matters mixed in the wound electrode group 3 without the tape. Is shown as a relative value with 1. From FIG. 9, it can be seen that the sample to which any one of the tapes of the conditions 1 to 3 is attached has the copper mixing number reduced to less than 1/5 with respect to the wound electrode group 3 without the tape. When the samples of conditions 1 to 3 are compared, the sample of condition 2 has a slightly higher contamination rate than the samples of conditions 1 and 3.
  • the tape 200 is affixed to at least a part of the flat portion 36 of the wound electrode group 3, and the tip end side of the outermost peripheral portion 33a of the separator 33 arranged outside the outermost positive electrode foil exposed portion 34c is positive. If it deform
  • the outermost peripheral portion 33 a of the separator 33 is disposed on the outer periphery of the outermost positive electrode 34, and the positive foil exposed portion 34 c of the positive electrode 34 is a laminate having a thickness smaller than that of the flat portion 36 of the wound electrode group 3.
  • Part 38 and a deformed part 39 provided between the laminated part 38 and the flat part 36, and the positive electrode current collector plate 44 is disposed on one surface of the laminated part 38 of the positive electrode foil exposed part 34c.
  • the outer peripheral portion 33a of the separator 33 is deformed so as to approach the outermost positive electrode foil exposed portion 34c from the flat surface 36U of the flat portion 36 of the rotating electrode group 3 toward the laminated portion 38 side.
  • the tape 200 is deformed so that the tip end side of the outermost peripheral portion 33a of the separator 33 approaches the positive electrode foil exposed portion 34c on the outermost outer periphery, thereby suppressing the contamination of metallic foreign matter into the wound electrode group 3. can do.
  • the suppression effect with respect to both the factor 1 and the factor 2 of the internal short circuit by a metal foreign material can be acquired as mentioned above.
  • FIG. 10 is a plan view of the second embodiment
  • FIG. 11 is a sectional view taken along line XI-XI in FIG. 10 and 11 correspond to FIGS. 7 and 8A of the first embodiment, respectively.
  • the foreign matter mixing restriction tape 201 is formed from the positive current collector 44 and the positive electrode on one flat surface 36U of the flat portion 36 of the wound electrode group 3 in a direction orthogonal to the winding direction. It extends to a region covering the upper surface of the positive electrode current collector 64 formed on the joint surface with the foil exposed portion 34c.
  • An intermediate portion in the longitudinal direction of the tape 201 is deformed in a curved shape in a direction in which the positive electrode current collector 64 side descends from the flat surface 36U of the flat portion 36, following the outer surface shape of the deformable portion 39. Also in the second embodiment, the tape 201 is deformed so that the tip end side of the outermost peripheral portion 33a of the separator 33 approaches the outermost positive electrode foil exposed portion 34c. A tape 201 is disposed so as to cover the end 74 of the positive electrode 34. Therefore, the second embodiment also has the same effect as the first embodiment.
  • the tape 201 since the tape 201 covers the positive current collector 64 formed on the joint surface between the positive current collector 44 and the positive foil exposed portion 34c, the tape 201 adheres to the positive current collector 64. The movement of the metallic foreign matter can be restricted. For this reason, it is possible to further enhance the effect of suppressing the contamination of the metallic foreign material into the wound electrode group 3.
  • FIG. 12 shows a third embodiment of the present invention.
  • FIG. 12 corresponds to FIG. 7 of the first embodiment.
  • the foreign matter mixing restriction tape 202 has a length over the entire length in the winding direction of the flat portion 36 of the wound electrode group 3.
  • the outermost peripheral portion 33a of the separator 33 extends over the entire length of the flat portion 36 of the wound electrode group 3 in the winding direction, and the tip end side thereof approaches the outermost positive electrode foil exposed portion 34c. It deforms as follows. This structure is the same as the sample of Condition 3 described above. In the test, the total number of metal foreign matters mixed in the wound electrode group 3 was 0, which was the same as in the first embodiment.
  • the gap 54c which is a metal foreign matter mixing path, is reduced over the entire length of the flat portion 36 of the wound electrode group 3, the certainty of the effect of suppressing foreign matter mixing is the first. There is an expectation of improvement from the embodiment.
  • FIG. 13 is a plan view showing a fourth embodiment of the present invention
  • FIG. 14 (a) is a cross-sectional view taken along the line XIVa-XIVa of FIG. 13
  • FIG. 14 (b) is a cross-sectional view of FIG. It is an enlarged view of area XIVb.
  • a foreign matter mixing restriction portion 44 a is integrally formed on the positive electrode current collector plate 44. In the direction perpendicular to the winding direction, the foreign matter mixture restricting portion 44a follows the outer surface shape of the deformed portion 39 from one flat surface 36U of the flat portion 36 of the wound electrode group 3 in a flat surface of the flat portion 36.
  • the fourth embodiment also has the same effect as the first embodiment.
  • the foreign matter mixing restriction portion 44a is formed by integral molding with the positive electrode current collector plate 44, the foreign matter mixing restriction portion 44a is formed of the wound electrode group simultaneously with the step of bonding the positive current collector plate 44 to the positive electrode foil exposed portion 34c. Since it is fixed to 3, the efficiency of the assembly process can be improved.
  • FIG. 15 shows a fifth embodiment of the present invention
  • FIG. 15 (a) is a cross-sectional view of the vicinity of the weld on the positive electrode side corresponding to FIG. 5 of the first embodiment
  • FIG. FIG. 16 is an enlarged view of a region XVb in FIG.
  • FIG. 16 is a cross-sectional view in the vicinity of a welded portion on the positive electrode side corresponding to FIG. 5 of the first embodiment
  • FIG. 16 shows the fifth embodiment of the present invention and the positive electrode corresponding to FIG. 6 of the first embodiment. It is sectional drawing of the outermost periphery vicinity of the wound electrode group 3 containing the electrode starting part.
  • the positive / negative deformed portion 39 and the laminated portion 38 of the wound electrode group 3 in the first embodiment are polarized in two steps in the thickness direction. That is, on the positive electrode side, the positive electrode foil exposed portion 34c of the positive electrode 34 and the separators 33 and 35 are bundled separately at the upper and lower sides of the wound electrode group 3 in the approximate center in the thickness direction. Yes.
  • the positive foil exposed portion 34cU and the separators 33, 35 of the positive electrode 34 bundled on the upper side form an upper deformed portion 39a, and the positive foil exposed portion 34cU extends to form an upper laminated portion 38a.
  • the positive foil exposed portion 34cL and the separators 33, 35 of the positive electrode 34 bundled on the lower side form a lower deformed portion 39b, and the positive foil exposed portion 34cL is extended to form a lower laminated portion 38b.
  • the positive electrode current collector 34cU on the innermost circumference (lowermost layer in FIG. 15) in the upper laminated portion 38a and the positive electrode foil exposed portion 34cL on the innermost circumference (uppermost layer in FIG. 15) in the lower laminated portion 38b The plates 44 are joined by welding. In order to join the upper and lower laminated portions 38a and 38b and the positive electrode current collector plate 44 by ultrasonic welding, the positive electrode current collector plate 44 is fixed with an anvil, and a horn is placed on the opposite side of the upper and lower laminated portions 38a and 38b. Press and apply ultrasonic vibration while applying pressure.
  • the negative electrode side is the same, and the negative electrode foil exposed portion 32c and the separators 33, 35 of the negative electrode 32 bundled on the upper side form an upper deformed portion, and the negative electrode foil exposed portion 32cU extends.
  • An upper laminated portion is formed.
  • the negative electrode foil exposed portion 32c of the negative electrode 32 bundled on the lower side and the separators 33 and 35 form a lower deformed portion, and the negative electrode foil exposed portion 32cL extends to form a lower laminated portion.
  • the innermost negative electrode foil exposed portion 32c in the upper laminated portion on the negative electrode side The negative electrode current collector plate 44 is welded to the innermost negative electrode foil exposed portion 32c in the lower laminated portion.
  • the tape 200 is attached to the side 39 aL of the upper deformed portion 39 a on the positive electrode side of the wound electrode group 3 on which the positive electrode current collector plate 44 is disposed.
  • the tape 200 is stuck on the outer surface of the separators 33 and 35 on the inner peripheral side of the positive electrode foil exposed portion 34cU on the innermost periphery (lowermost layer in FIG. 15) from the flat portion 36 to the upper deformed portion 39aL. For this reason, the tape 200 is deformed so that the front end side of the separators 33 and 35 approaches the positive electrode foil exposed portion 34cU on the innermost periphery (the lowermost layer in FIG. 15).
  • the gap 54e formed between the separators 33 and 35 and the innermost positive electrode foil exposed portion 34cU is reduced and closed outward.
  • the tape 200 is disposed so as to cover the positive side end of the starting portion 75 of the positive electrode 34. Therefore, the gap 54f formed in the starting portion 75 of the positive electrode 34 shown in FIG. 16 is reduced and closed in the positive current collector plate 44 side. Therefore, the mixing of the metal foreign matter into the wound electrode group 3 from the gap 54e and the gap 54f is suppressed by the tape 200.
  • the tape 200 is also attached to the side 39bU of the lower deformable portion 39b on which the positive electrode current collector plate 44 is disposed.
  • the tape 200 applied to the lower deformable portion 39bU suppresses the mixing of metal foreign matter into the wound electrode group 3 also in the lower deformable portion 39b. Therefore, also in the fifth embodiment, the same effects as in the first embodiment can be obtained.
  • the tape 200 attached to the upper deformed portion 39aL and the lower deformed portion 39bU is separated from the innermost positive electrode foil exposed portions 34cU and 34cL on the inner peripheral side of the deformed portions 39a and 39b. 35.
  • the tape 200 is separated from the positive electrode foil exposed portions 34cU and 34cL on the outermost surface side in the deformed portions 39a and 39b. , 35 can be expressed.
  • the positive and negative electrode groups are exemplified as a structure polarized in two stages.
  • the positive and negative electrode groups may be polarized in three or more stages.
  • the outermost peripheral portion 33a of the separator 33 is deformed by the tapes 200 to 202 or the foreign matter mixture restricting portion 44a so that the tip end side approaches the outermost positive electrode foil exposed portion 34c. It was illustrated as a construction to do. However, the outermost peripheral portion 33a of the separator 33 is deformed by hot pressing without using the tapes 200 to 202 or the foreign matter mixing restriction portion 44a, or the outermost peripheral portion 33a of the separator 33 is bonded to the outermost positive electrode foil exposed portion 34c. You may make it.
  • the tapes 200 to 202 are illustrated as being attached only to the flat surface 36U side where the positive electrode current collector plate 44 joined to the stacked portion 38 is disposed in the deformed portion 39. .
  • the tapes 200 to 202 may be attached to the flat surfaces 36U and 36L of the deformed portion 39.
  • the end portion 74 of the positive electrode 34 is illustrated as a configuration arranged in the region 64R of the positive electrode current collector 64 in the winding direction.
  • the end 74 of the positive electrode 34 may be arranged outside the region 64R of the positive current collector 64 in the winding direction.
  • the end portion 74 of the positive electrode 34 is exemplified as a configuration arranged on the flat surface 36U side where the positive electrode current collector plate 44 of the wound electrode group 3 is arranged.
  • the end 74 of the positive electrode 34 may be disposed on the flat surface 36L side opposite to the flat surface 36U side where the positive electrode current collector plate 44 of the wound electrode group 3 is disposed. It is known that more dust is generated by ultrasonic welding on the anvil side used to fix the workpiece. Accordingly, if the end 74 of the positive electrode 34 is moved away from the positive electrode current collector plate 44 supported by the anvil, the risk of contamination of metallic foreign matter into the wound electrode group 3 during ultrasonic welding can be reduced. Can be expected.
  • the separator 33 and the separator 35 are wound around the outer periphery of the outermost peripheral portion 34d of the positive electrode 34 once as an example.
  • one or both of the separator 33 and the separator 35 may be wound around the outer periphery of the outermost peripheral portion 34d of the positive electrode 34 several times.
  • the positive electrode 34 and the negative electrode 32 are exemplified as the secondary battery 100 having the wound electrode group 3 wound through the separators 33 and 35.
  • the present invention can be applied to a secondary battery including an electrode group in which a rectangular sheet-shaped positive electrode and a rectangular sheet-shaped negative electrode are laminated in a flat shape with a separator interposed therebetween.
  • the secondary battery is exemplified as the lithium ion battery.
  • the present invention can be applied to other secondary batteries such as a nickel cadmium battery and a nickel metal hydride battery.

Abstract

セパレータの外周部と最外周の正極箔露出部との間から金属異物が混入するのを抑制する。 二次電池100は、正・負極電極34、32がセパレータ33、35を介して積層され平坦部36が設けられた電極群3と、正極集電板44とを備える。正極電極34dの最外周部34dに、セパレータ33の外周部33aが配置される。正極箔露出部34cは、積層部38と、変形部39とを有する。捲回電極群3の平坦部36の平坦面36Uから積層部38側に向けて最外周の正極箔露出部34cに接近するようにセパレータ33の外周部32aが変形されている。

Description

二次電池
 本発明は、二次電池に関する。
 近年、ハイブリッド電気自動車や純粋な電気自動車等の動力源として、大容量かつ高出力なリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、例えば、金属箔露出部をそれぞれ有する正・負極の電極を、セパレータを介して捲回して捲回群を形成し、正・負極の金属箔露出部を積層して集電板に溶接する構造とされている。
 このような二次電池では、生産プロセスの際に発生する金属異物等が電極群の内部に混入すると、微小な内部短絡が生じて性能が低下する。特に、正極電極に金属異物が混入すると、正極電位で酸化された金属イオンが電解液中を拡散し、負極電極に接すると還元析出する。析出した金属はセパレータの細孔内を正極電極に向かって成長し、やがて正極に接すると微小な短絡経路を形成する。
 内部短絡は、金属異物の内部への混入以外にも、厚さが薄いセパレータを用いた場合にも生じるとする文献もある。この文献では、厚さが薄いセパレータでは、電池の温度が上昇した際に、セパレータの収縮により正・負極間にセパレータが介在しない部分が生じることにより内部短絡が生じるとしている。このため、この対策として、セパレータの一側縁を、正・負極の端部より突き出させ、この突出部と、正極または負極とを粘着性テープにより固定して、セパレータの収縮を規制する構造としている(例えば、特許文献1参照)。
特開2003-168411号公報
 特許文献1には、正極電極への異物混入を抑制することができる構造は開示されていない。
 本発明の一態様によると、二次電池は、正極電極と負極電極とがセパレータを介して積層され、表裏面に一対の平坦面を有する平坦部が設けられた電極群と、前記正極電極に接続される正極集電板と、を備え、前記電極群における最表面側の前記正極電極より表面側に、前記セパレータの表面側部が配置され、前記正極電極は、正極箔露出部および正極合剤層を有し、前記正極箔露出部は、前記電極群の一側縁に、前記電極群の前記平坦部より薄い厚さの積層部と、前記積層部と前記平坦部との間に設けられた変形部とを有し、前記正極集電板は、前記正極箔露出部の前記積層部の一面上に配置され、前記電極群の前記平坦部の前記平坦面から前記積層部側に向けて前記最表面側の正極箔露出部に接近するように前記セパレータの前記表面側部が変形されている。
 本発明によれば、セパレータの外周部と最外周の正極箔露出部との間から金属異物が混入するのを抑制することができる。
本発明の二次電池の第1の実施形態の外観斜視図。 図1に図示された二次電池の分解斜視図。 図2に図示された捲回電極群の分解斜視図。 正・負極集電板と捲回電極群との接合状態を示す平面図。 (a)は、図4のVa-Va線断面図、(b)は、(a)の領域Vbの拡大図。 図4のVI-VI線拡大断面図。 図4に示された捲回電極群に、異物混入規制用のテープを設けた状態を示す平面図。 (a)は、図7のVIIIa-VIIIa線断面図、(b)は、(a)の領域VIIIbの拡大図。 テープ長さと混入異物数の関係を示す図。 本発明の第2の実施形態を示す平面図。 図10のXI-XI線断面図。 本発明の第3の実施形態を示す平面図。 本発明の第4の実施形態を示す平面図。 (a)は、図13のXIVa-XIVa線断面図、(b)は、(a)の領域XIVbの拡大図。 本発明の第5の実施形態を示し、(a)は、第1の実施形態の図5に相当する正極側の溶接部付近の断面図、(b)は(a)の領域XVbの拡大図。 本発明の第5の実施形態を示し、第1の実施形態の図6に相当する正極電極の捲き始め部を含む捲回電極群3の最外周近傍の断面図。
 以下、図面を参照して本発明の二次電池の実施形態を説明する。
-第1の実施形態-
 図1~図9を参照して、本発明の第1の実施形態を説明する。
 図1は、扁平捲回形の二次電池の外観斜視図である。二次電池100は、電池容器を形成する電池缶1および電池蓋6を備える。電池缶1は、扁平な箱型形状を有する角形二次電池であり、相対的に面積の大きい一対の対向する幅広側面1bと、相対的に面積の小さい一対の対向する幅狭側面1cと、底面1dを有し、その上方に開口部1a(図2参照)を有する。
 電池缶1内には、捲回電極群3が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形の平板状であって、電池缶1の開口部1aを塞いで溶接され、外部に対し電池缶1を封止している。電池蓋6には、正極外部端子14と、負極外部端子12が設けられている。正極外部端子14、負極外部端子12は、バスバー(図示せず)を介して外部機器に接続される。正極外部端子14と負極外部端子12を介して捲回電極群3に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁10が一体的に設けられている。電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、扁平捲回形の二次電池100の安全性が確保される。電池蓋6には、注液孔9(図2参照)を封止する注液栓11が設けられている。
 図2は、図1に図示された二次電池の分解斜視図である。
 二次電池100の電池缶1内には、絶縁保護フィルム2を介して捲回電極群3が収容されている。
 捲回電極群3は、負極電極32と正極電極34とを、両部材の間にセパレータ33、35を介して捲回して形成されている(図3参照)。捲回電極群3は、扁平な平坦部36と、平坦部36の捲回方向の両端に形成された断面半円形状の湾曲部37を有する。平坦部36は厚さ方向に対向する一対の平坦面36U、36L(図5等も参照)を有している。捲回電極群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部37側から電池缶1内に挿入され、他方の湾曲部37側が、電池缶1の開口部1a側に配置される。
 詳細は後述するが、正極電極34は、正極箔露出部34cを有し、負極電極32は、負極箔露出部32cを有する。
 捲回電極群3の正極箔露出部34cは、正極集電板44を介して電池蓋6に設けられた正極外部端子14に電気的に接続されている。また、捲回電極群3の負極箔露出部32cは、負極集電板24を介して電池蓋6に設けられた負極外部端子12に電気的に接続されている。これにより、正極集電板44および負極集電板24を介して捲回電極群3から外部負荷へ電力が供給され、正極集電板44および負極集電板24を介して捲回電極群3へ外部発電電力が供給され充電される。
 電池蓋6の一面側にガスケット5が取付けられ、正極外部端子14および負極外部端子12が、それぞれ、電池蓋6と絶縁される。また、電池蓋6の他面側に絶縁板7が取付けられ、正極集電板44および負極集電板24は、それぞれ、電池蓋6と絶縁される。電池蓋6には、電池容器内に電解液を注入するための注液孔9が穿設されている。注液孔9から電池缶1内に電解液を注入した後、電池蓋6に注液栓11をレーザ溶接により接合して注液孔9を封止し、二次電池100を密閉する。
 正極外部端子14および正極集電板44の形成素材としては、例えばアルミニウム合金が挙げられ、負極外部端子12および負極集電板24の形成素材としては、例えば、銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
 電池容器内に注入される電解液としては、例えばエチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF6)等のリチウム塩が溶解された非水電解液を適用することができる。電池容器内外の圧力を適切に調整すると、捲回電極群3内の空気と電解液の置換が促進されて、電池容器内に電解液を効率的に注入することができる。
 正極外部端子14および負極外部端子12には、それぞれ、下方に向かって突出する正極接続部14a、負極接続部12aが形成されている。正極接続部14aおよび負極接続部12aは、それぞれ、円柱形状を有しており、その先端が電池蓋6の正極側貫通孔46、負極側貫通孔26に挿入される。正極接続部14aは、電池蓋6を貫通して正極集電板44の正極集電板基部41よりも電池缶1の内部側に突出している。正極接続部14aの先端は、かしめられて、正極外部端子14と正極集電板44とを電池蓋6に一体に固定している。負極接続部12aは、電池蓋6を貫通して負極集電板24の負極集電板基部21よりも電池缶1の内部側に突出している。負極接続部12aの先端は、かしめられて負極外部端子12と、負極集電板24とを電池蓋6に一体に固定している。
 正極集電板44は、正極集電板基部41と、正極側接続端部42とを有している。正極側接続端部42は、正極集電板基部41の側端で折曲されて、電池缶1の幅広側面1bに沿って底面1d側に向かって延出され、捲回電極群3の正極箔露出部34cに対向して重ね合わされた状態で接続される。正極集電板基部41には、正極接続部14aが挿通される正極側開口穴43が形成されている。
 負極集電板24は、負極集電板基部21と、負極側接続端部22とを有している。負極側接続端部22は、負極集電板基部21の側端で折曲されて、電池缶1の幅広側面1bに沿って底面1d側に向かって延出し、捲回電極群3の負極箔露出部32cに対向して重ね合わされた状態で接続される。負極集電板基部21には、負極接続部12aが挿通される負極側開口穴23が形成されている。
 絶縁保護フィルム2は、捲回電極群3の平坦部36の平坦面36U、36Lに沿う方向でかつ捲回電極群3の捲回軸方向に直交する方向を巻き付け中心として、捲回電極群3の周囲に巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回電極群3の平坦面36U、36Lと平行な方向でかつ捲回軸方向に直交する方向を巻き付け中心として巻き付けることができる長さを有している。
 図3は、図2に図示された捲回電極群の分解斜視図である。図3は、捲回電極群3の外周側を展開した状態で示している。
 捲回電極群3は、負極電極32と正極電極34とを間にセパレータ33、35を介して扁平状に捲回することによって構成されている。つまり、捲回電極群3は、外周側から順に、セパレータ35、負極電極32、セパレータ33、正極電極34、セパレータ35、負極電極32、セパレータ33、正極電極34……を繰り返して捲回されている。セパレータ33、35は、正極電極34と負極電極32との間を絶縁する役割を有している。
 負極電極32は、負極箔32aの両面に塗布された負極合剤層32bと、負極箔32aが負極合剤層32bから露出する負極箔露出部32cを有する。正極電極34は、正極箔34aの両面に塗布された正極合剤層34bと、正極箔34aが正極合剤層34bから露出する正極箔露出部34cを有する。
 負極合剤層32bは、正極合剤層34bよりも幅方向(捲回方向に直交する方向の長さ)に大きく、これにより正極合剤層34bは、負極合剤層32bの領域内に配置されている。正極箔露出部34c、負極箔露出部32cは、相互に、幅方向の反対側に配置されている。正極箔露出部34cおよび負極箔露出部32cは、平坦部36で隣接する内外周の部分が相互に積層される。正極箔露出部34cが積層された積層部では、隣接する内外周の部分が相互に溶接されると共に、正極集電板44が積層部の一面に溶接される。負極箔露出部32cが積層された積層部では、隣接する内外周の部分が相互に溶接されると共に、負極集電板24が積層部の一面に溶接される。
 セパレータ33、35の幅方向の長さは、負極合剤層32bよりも大きい。しかし、セパレータ33、35は、その端部が、正極箔露出部34cの端部および負極箔露出部32cの端部よりも内側に位置するように配置され、正極箔露出部34cおよび負極箔露出部32cそれぞれは、セパレータ33、35から幅方向の外側に露出する領域を有する。このため、正極箔露出部34cおよび負極箔露出部32cに、それぞれ、正極集電板44、負極集電板24を溶接する際の支障にはならない。
 負極電極32を下記の方法によって得ることができた。
 負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN-メチルピロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極箔32a)の両面に溶接部(負極箔露出部32c)を残して塗布する。その後、乾燥、プレス、裁断工程を経て、銅箔を含まない負極活物質塗布部厚さ70μmの負極電極32を得た。
 なお、本実施形態では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi2等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
 正極電極34を下記の方法によって得ることができた。
 正極活物質としてマンガン酸リチウム(化学式LiMn2O4)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤を作製した。この正極合剤を厚さ20μmのアルミニウム箔(正極箔34a)の両面に溶接部(正極箔露出部34c)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、アルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極電極34を得た。
 本実施形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。
 また、本実施形態では、正極電極34、負極電極32における塗工部の結着材としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 また、軸芯としては例えば、正極箔34a、負極箔32a、セパレータ33、35のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
 図4は、正・負極集電板と捲回電極群との接合状態を示す平面図である。
 正極箔露出部34cと正極集電板44、および負極箔露出部32cと負極集電板24は、それぞれ、例えば超音波溶接により接合される。超音波溶接は、正・負極集電板44、24をアンビルで固定した状態で、正・負極箔露出部34c、32cにホーンを押し当てて、超音波振動により金属界面を接合する手法である。正極箔露出部34cと正極集電板44との接合面である正極集電部64、負極箔露出部32cと負極集電板24との接合面である負極集電部62では、正・負極集電板44、24をアンビルで固定し、ホーンを押し当てて振動させる過程で正・負極集電板44、24や正・負極露出部34c、32cが削られて金属異物を生じる。
 なお、集電部の接合方法としては、抵抗溶接等の他の方法を適用しても良い。
 生じた金属異物の一部は、例えば、電解液を注入する工程で電解液の流れで捲回電極群3の内部に侵入する恐れがある。捲回電極群3の内部に侵入すると、金属異物の大きさや形状によってはセパレータを貫通して内部短絡に至ることがある。さらに、侵入した金属異物が負極箔32aや負極集電板24を構成する銅等の場合には、正極電位で酸化されて電解液中を拡散し、負極で還元析出する。析出した銅が負極と正極とを接続して微小な内部短絡回路を生じることがある。析出や成長形態は金属種等により異なるが、例えば、セパレータの空隙内を樹枝状に成長する場合には、物理的にセパレータを貫通しない小さな異物であっても内部短絡を生じることがある。
 つまり、異物により内部短絡の要因には、以下の2つがある。
要因1.負極側で発生した金属異物が電解液中を流動して正極側から捲回電極群3の内部に混入し、正極電位により酸化され、負極において還元析出され、正極と負極を短絡する。
要因2.正極側で発生した金属異物、または製造工程中に発生した異物が、正極側から捲回電極群3の内部に混入し、セパレータをほぼ貫通する状態となって正極と負極を短絡する。
 内部短絡は二次電池の機能損失を招く重大な不具合である一方で、それを防ぐための異物混入対策は容易でない。
 図5(a)は、図4のVa-Va線断面図であり、図5(b)は、図5(a)の領域Vbの拡大図である。図5(a)は、正極電極34の溶接部側を図示している。
 正極電極34の正極箔露出部34cは、捲回される内外周の平坦部の部分が相互に密着するように積層される。積層部38の厚さは、当然、捲回電極群3の平坦部36の厚さより薄い。図5に図示された状態で、積層部38の一面に配置された正極集電板44をアンビルで固定し、積層部38を構成する正極箔露出部34cの他面側からホーンで加圧しながら超音波振動を与える。これにより、隣接する金属部材同士に摩擦熱が発生し、固相溶接状態が作り出される。この作用により、積層部38を構成する正極箔露出部34c同士が接合されると共に、正極集電板44が積層部38の一面に接合される。
 正極箔露出部34cの積層部38を形成する際、正極箔露出部34cには、積層部38と捲回電極群3の平坦部36との間に、平坦部36の各平坦面36U、36Lから積層部38に向かって湾曲する変形部39が形成される。図5(b)に図示されるように、変形部39では、正極箔露出部34cとセパレータ33、35とは、積層部38に向かって、漸次、間隔が小さくなるように湾曲する。従って、変形部39においては、正極箔露出部34cとその両側に配置されたセパレータ33およびセパレータ35との隙間54a、54bの大きさは、先端で互いに接合される正極箔露出部34cにより制限される。
 一方、正極電極34の最外周部34dの外周には、内周側から外周側に向けて、セパレータ33の最外周部33a、負極電極32の最外周部32d、セパレータ35の最外周部35aが、この順に、1周、捲回されている。セパレータ33の最外周部33a、負極電極32の最外周部32dおよびセパレータ35の最外周部35aは、正極箔露出部34cの積層部38を形成するものではないので、積層部38側に向けて変形することはなく、平坦状のままである。
 このため、セパレータ33の最外周部33aと、変形部39、すなわち、捲回電極群3の最外周の正極箔露出部34cとの間には、大きな隙間54cが形成される。この隙間54cは、図5(b)に図示されているように、外方に開放されている。このため、隙間54には、外部から金属異物が侵入する恐れが高い。
 図6は、図4のVI-VI線拡大断面図である。図6では、図4に示す正極電極34の捲き終り部74を含む捲回電極群3の最外周近傍を示している。
 正極電極34の捲き終りでは、正極電極34の外周に配置されているセパレータ33の最外周部33a、負極電極32の最外周部32dおよびセパレータ35の最外周部35aは、正極電極34の終端より、捲回方向に延在している。このため、特に、正極電極34の捲き終り部74では、隙間54dに外部から金属異物が侵入する恐れが高い。
 上述したように、捲回電極群3の正極箔露出部34cを積層して、正極集電板44に接合すると、変形部39とセパレータ33の最外周部33aとの間に形成される隙間54c、54dに外部から金属異物が混入される恐れが高くなる。そこで、捲回電極群3への金属異物の混入を抑制することができる本発明の一実施の形態を以下に示す。
 図7は、図4に示された捲回電極群に、異物混入規制用のテープを設けた状態を示す平面図である。図8(a)は、図7のVIIIa-VIIIa線断面図であり、図8(b)は、図8(a)の領域VIIIbの拡大図である。
 図8(a)、8(b)に図示されるように、セパレータ35の最外周部35aの上面に異物混入規制用のテープ200が貼られている。テープ200は、平坦部36における、積層部38に接合された正極集電板44が配置された平坦面36U側に配置されている。
 また、図7に図示されるように、テープ200は、正極集電板44側の一側縁を覆い、かつ、正極電極34の捲き終り部74を跨いで、捲回方向および捲回方向の逆方向に延在されている。また、テープ200は、捲回方向において、正極集電部64の領域64R内に配置されている。
 テープ200は、セパレータ35の最外周部35aを、セパレータ33の最外周部33a側に向けて変形させ、先端部側(幅方向の側縁部側)をセパレータのセパレータ33の最外周部33aに当接させる。テープ200は、さらに、セパレータ35の最外周部35aをセパレータ33の最外周部33aに押し付けて、セパレータ33の最外周部33aの先端部側を最外周の正極箔露出部34cに接近するように変形する。これにより、セパレータ33の最外周部33aと最外周の正極箔露出部34cとの間形成される隙間54cは縮減され、外方に対して閉鎖状になる。また、テープ200は、正極電極34の捲き終り部74の正極側端部74Tを覆って配置されている。このため、図6に示す正極電極34の捲き終り部74の端部に形成される隙間54dは、正極集電板44側において縮減され閉鎖状になる。
 従って、テープ200により隙間54cと隙間54dから捲回電極群3内部への金属異物の混入が抑制される。
 上記したテープ200により、捲回電極群3への金属異物の混入が抑制されることの効果を、以下に示す方法により確認した。
 図7に図示される捲回電極群3に、捲回方向の長さが、下記条件1~3のテープ200を貼り付けた試料を3個ずつ作製した。
条件1:テープの長さが捲回電極群3の平坦部36の長さの23%
条件2:テープの長さが捲回電極群3の平坦部36の長さの62%
条件3:テープの長さが捲回電極群3の平坦部36の長さの100%
 なお、条件3の試料は、後述する第3の実施形態に相当する。
 また、テープ200を貼り付けない捲回電極群3も作製した。
 なお、各条件の試料では、テープ200は、平坦部36の正極集電板44が接合された側の平坦面36U側に配置されている。また、テープ200は全て正極電極34の捲き終り部74を覆うように配置した。
 捲回電極群3内に混入した金属異物の数は、捲回電極群3を電池缶1に収納して電池缶1と電池蓋6とを溶接した後に行った。通常、作製したままの状態では、捲回電極群3内に金属異物が混入する確率は大変低い。そこで、効果の確認を促進するため、注液孔9より銅異物を約1mg添加して、電池缶1内に拡散させた。使用した銅異物は、70μmの篩で篩ったものである。続いて、電池缶1内に電解液を注入し、電池容器内外の圧力を適切に調整することで捲回電極群3内に電解液を浸透させた後、注液栓11により封止した。次に、正極電位が銅の溶解電位を超える状態に二次電池100を充電して一定時間静置した。そして、二次電池100から捲回電極群3を取り出して解体し、空隙54c、54d内に溶解析出して顕在化した銅の数を確認した。
 図9は、上記の試験の結果を示しており、テープ長さと混入異物数の関係を示す図である。横軸は、捲回電極群3の平坦部36の捲回方向の長さに対するテープ200の長さを示し、縦軸は、捲回電極群3内に混入した金属異物の総数を、テープ無しを1とした相対値で示す。
 図9より、条件1~3のいずれのテープを貼り付けた試料も、テープ無しの捲回電極群3に対して、銅の混入数が1/5未満に減少したことが分かる。条件1~3の試料を対比すると、条件2の試料は、条件1および3の試料よりも、僅かに、金属異物の混入率が高いという結果が出ている。しかし、条件1および条件3の試料では、金属異物の混入率が0であるという結果を見ると、銅の混入数はテープ200の長さには依存しないと判断される。結論として、捲回電極群3の平坦部36の少なくとも一部にテープ200を貼り付けて、最外周の正極箔露出部34cの外側に配置するセパレータ33の最外周部33aの先端部側を正極箔露出部34cに接近するように変形すれば、隙間54cが縮減されて金属異物の混入が抑制されると言える。また、隙間54dに限るとテープの貼り付けにより異物の混入はゼロにできた。つまり、正極集電板44が配置された平坦面36U側にテープ200を貼り付けて、セパレータ33の最外周部33aの先端部側を正極箔露出部34cに接近するように変形することにより、正極集電板44が配置された側のみならず、正極集電板44が配置されていない側も含めて、外部からの捲回電極群3への金属異物に進混入を抑制することができることが確認された。
 本発明の第1の実施形態によれば、下記の効果を奏する。
(1)最外周の正極電極34の外周に、セパレータ33の最外周部33aが配置され、正極電極34の正極箔露出部34cは、捲回電極群3の平坦部36より薄い厚さの積層部38と、積層部38と平坦部36との間に設けられた変形部39とを有し、正極集電板44は、正極箔露出部34cの積層部38の一面上に配置され、捲回電極群3の平坦部36の平坦面36Uから積層部38側に向けて最外周の正極箔露出部34cに接近するようにセパレータ33の外周部33aが変形されている。このため、テープ200により、セパレータ33の最外周部33aの先端部側が最外周の正極箔露出部34cに接近するように変形することにより、捲回電極群3内への金属異物の混入を抑制することができる。
 なお、上記第1の実施形態によれば、上述した通り、金属異物による内部短絡の要因1および要因2の両方に対する抑制効果を得ることができる。
-第2の実施形態-
 図10は、第2の実施形態の平面図であり、図11は、図10のXI-XI線断面図である。図10、図11は、それぞれ、第1の実施形態の図7、図8(a)に対応する。
 第2の実施形態では、異物混入規制用のテープ201は、捲回方向に直交する方向において、捲回電極群3の平坦部36の一方の平坦面36U上から、正極集電板44と正極箔露出部34cとの接合面に形成される正極集電部64の上面を覆う領域まで延在されている。テープ201の長手方向の中間部は、変形部39の外面形状に倣って、正極集電部64側が平坦部36の平坦面36Uから降下する方向に湾曲状に変形している。
 第2の実施形態においても、テープ201により、セパレータ33の最外周部33aの先端部側が最外周の正極箔露出部34cに接近するように変形する。また、テープ201が正極電極34の捲き終り部74を覆って配置されている。
 従って、第2の実施形態においても第1の実施形態と同様な効果を奏する。
 加えて、第2の実施形態では、テープ201が正極集電板44と正極箔露出部34cとの接合面に形成される正極集電部64を覆っているため、正極集電部64に付着した金属異物の移動を制限できる。このため、さらに、捲回電極群3内への金物異物の混入の抑制効果を高めることができる。
-第3の実施形態-
 図12は、本発明の第3の実施形態を示す。図12は、第1の実施形態の図7に対応する。
 第3の実施形態では、異物混入規制用のテープ202は、捲回電極群3の平坦部36の捲回方向における全長に亘る長さを有する。第3の実施形態では、セパレータ33の最外周部33aは、捲回電極群3の平坦部36の捲回方向の全長に亘って、その先端部側が最外周の正極箔露出部34cに接近するように変形する。この構造は、上述した条件3の試料と同一である。試験では、捲回電極群3内に混入した金属異物の総数は0であり、第1の実施形態と同じであった。しかし、第3の実施形態では、金属異物の混入経路である隙間54cを、捲回電極群3の平坦部36の全長に亘り縮減するので、異物混入の抑制効果の確実性は、第1の実施形態より向上するという期待がある。
-第4の実施形態-
 図13は、本発明の第4の実施形態を示す平面図であり、図14(a)は、図13のXIVa-XIVa線断面図であり、図14(b)は、図14(a)の領域XIVbの拡大図である。
 第4の実施形態では、正極集電板44に、異物混入規制部44aが一体成形されている。異物混入規制部44aは、捲回方向に直交する方向において、捲回電極群3の平坦部36の一方の平坦面36U上から、変形部39の外面形状に倣って、平坦部36の平坦面36Uから降下する方向に湾曲して正極集電板44に接続されている。異物混入規制部44aは、セパレータ33の最外周部33aを、その先端部側が最外周の正極箔露出部34cに接近するように変形する。これにより、セパレータ33の最外周部33aと最外周の正極箔露出部34cとの間に形成される隙間54cが縮減され、閉鎖状になる。また、異物混入規制部44aが正極電極34の捲き終り部74を覆って配置されている。
 従って、第4の実施形態においても、第1の実施形態と同様な効果を奏する。
 加えて、異物混入規制部44aを正極集電板44と一体成形により形成するので、異物混入規制部44aは、正極集電板44を正極箔露出部34cに接合する工程と同時に捲回電極群3に固定されるので、組付け工程の能率化を図ることができる。
-第5の実施形態-
 図15は、本発明の第5の実施形態を示し、図15(a)は、第1の実施形態の図5に相当する正極側の溶接部付近の断面図であり、図15(b)は、図15(a)の領域XVbの拡大図である。
第1の実施形態の図5に相当する正極側の溶接部付近の断面図であり、図16は、本発明の第5の実施形態を示し、第1の実施形態の図6に相当する正極電極の捲き始め部を含む捲回電極群3の最外周近傍の断面図である。
 第5の実施形態では、第1の実施形態における捲回電極群3の正・負極の変形部39および積層部38は、厚さ方向に2段に分極されている。つまり、正極側では、正極電極34の正極箔露出部34cおよびセパレータ33、35は、捲回電極群3の厚さ方向のほぼ中央で、それより上部側と下部側に分離して束ねられている。上部側に束ねられた正極電極34の正極箔露出部34cUおよびセパレータ33、35は上部変形部39aを形成し
、正極箔露出部34cUは延在されて上部積層部38aを形成する。下部側に束ねられた正極電極34の正極箔露出部34cLおよびセパレータ33、35は下部変形部39bを形成し、正極箔露出部34cLは延在されて下部積層部38bを形成する。
 上部積層部38aにおける最内周(図15では最下層)の正極箔露出部34cU、および下部積層部38bにおける最内周(図15では最上層)の正極箔露出部34cLには、正極集電板44が溶接により接合されている。上・下部積層部38a、38bと正極集電板44とを超音波溶接により接合するには、正極集電板44をアンビルで固定し、上・下部積層部38a、38bの反対面側にホーンを押し当てて、加圧しながら超音波振動を与える。
 図示はしないが、負極側も同様であり、上部側に束ねられた負極電極32の負極箔露出部32cおよびセパレータ33、35は上部変形部を形成し、負極箔露出部32cUは延在されて上部積層部を形成する。下部側に束ねられた負極電極32の負極箔露出部32cおよびセパレータ33、35は下部変形部を形成し、負極箔露出部32cLは延在されて下部積層部を形成する。また、負極側の上部積層部における最内周の負極箔露出部32c
、および下部積層部における最内周の負極箔露出部32cには、負極集電板44が溶接により接合されている。
 図15に図示されるように、捲回電極群3の正極側における上部変形部39aの正極集電板44が配置された側39aLにはテープ200が貼られている。テープ200は、最内周(図15では最下層)の正極箔露出部34cUの内周側のセパレータ33、35の外面に、平坦部36から上部変形部39aLに跨って貼られている。このため、テープ200は、セパレータ33、35の先端部側を最内周(図15では最下層)の正極箔露出部34cUに接近するように変形する。これにより、セパレータ33、35と最内周の正極箔露出部34cUとの間に形成される隙間54eは縮減され、外方に対して閉鎖状になる。また、図示はしないが、テープ200は、正極電極34の捲き始め部75の正極側端部を覆って配置されている。このため、図16に示す正極電極34の捲き始め部75に形成される隙間54fは、正極集電板44側において縮減され閉鎖状になる。
 従って、テープ200により隙間54eと隙間54fから捲回電極群3内部への金属異物の混入が抑制される。
 また、図15(a)に二点鎖線で図示するように、テープ200は、下部変形部39bの正極集電板44が配置された側39bUにも貼られる。この下部変形部39bUに貼られるテープ200により、下部変形部39bにおいても、捲回電極群3内部への金属異物の混入が抑制される。
 従って、第5の実施形態においても、第1の実施形態と同様な効果を奏する。
 第5の実施形態において、上部変形部39aLおよび下部変形部39bUに貼られるテープ200は、それぞれの変形部39a、39bの最内周の正極箔露出部34cU、34cLより内周側のセパレータ33、35に貼られる。ここで、各変形部39a、39bの最内周側は、最表面側でもあるから、テープ200は、変形部39a、39bにおける最表面側の正極箔露出部34cU、34cLより表面側のセパレータ33、35に貼られると表現することができる。
 第5の実施形態においては、正・負極の電極群が、2段に分極された構造として例示した。しかし、正・負極の電極群は、3段以上に分極するようにしてもよい。
 上記第1~第4の実施形態では、テープ200~202または異物混入規制部44aにより、セパレータ33の最外周部33aを、その先端部側が最外周の正極箔露出部34cに接近するように変形する構成造として例示した。しかし、テープ200~202または異物混入規制部44aを用いることなく、熱プレスによりセパレータ33の最外周部33aを変形させたり、セパレータ33の最外周部33aを最外周の正極箔露出部34cに接着したりするようにしてもよい。
 上記第1~第4の実施形態では、変形部39における、積層部38に接合された正極集電板44が配置された平坦面36U側のみにテープ200~202を貼り付けた構成として例示した。しかし、テープ200~202を変形部39の両平坦面36U、36L側に貼り付ける構成としてもよい。
 上記第1~第4実施形態では、正極電極34の捲き終り部74を、捲回方向における正極集電部64の領域64R内に配置した構成として例示した。しかし、正極電極34の捲き終り部74を、捲回方向における正極集電部64の領域64R外に配置する構成としてもよい。
 上記第1~第4実施形態では、正極電極34の捲き終り部74を、捲回電極群3の正極集電板44が配置された平坦面36U側に配置した構成として例示した。しかし、正極電極34の捲き終り部74を、捲回電極群3の正極集電板44が配置された平坦面36U側とは反対側の平坦面36L側に配置するようにしてもよい。超音波溶接による発塵は、ワークを固定するために使用するアンビル側でより多く生じることが知られている。従って、正極電極34の捲き終り部74を、アンビルにより支持される正極集電板44から遠ざけると、超音波溶接時に捲回電極群3内への金属異物の混入リスクを低減することができる効果が期待できる。
 上記第1~第4実施形態では、正極電極34の最外周部34dの外周には、セパレータ33およびセパレータ35が1周、捲回されている構成として例示した。しかし、セパレータ33およびセパレータ35の一方または両方を、正極電極34の最外周部34dの外周に数周、捲回するようにしてもよい。
 上記各実施形態では、正極電極34と負極電極32とが、セパレータ33、35を介して捲回された捲回電極群3を有する二次電池100として例示した。しかし、本発明は、矩形シート状の正極電極と矩形シート状の負極電極とを、セパレータを介して平坦状に積層した電極群を備える二次電池に適用することができる。
 上記各実施形態では、二次電池をリチウムイオン電池として例示した。しかし本発明は、ニッケル・カドミウム電池やニッケル水素電池等、他の二次電池に適用することができる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
  3   捲回電極群(電極群)
 32   負極電極
 33、35   セパレータ
 34   正極電極
 34a  正極箔
 34b  正極合剤層
 34c、34cU、34cL  正極箔露出部
 34d  最外周部(最表面側部)
 36   平坦部
 36U、36L  平坦面
 38   積層部
 38a  上部積層部
 38b  下部積層部
 39   変形部
 39a  上部変形部
 39b  下部変形部
 44   正極集電板
 44a  異物混入規制部(規制部)
 64   正極集電部(接合部)
 74   捲き終り部
 75   捲き始め部
100   二次電池
200~202   テープ
 

Claims (10)

  1.  正極電極と負極電極とがセパレータを介して積層され、表裏面に一対の平坦面を有する平坦部が設けられた電極群と、
     前記正極電極に接続される正極集電板と、を備え、
     前記電極群における最表面側の前記正極電極より表面側に、前記セパレータの表面側部が配置され、
     前記正極電極は、正極箔露出部および正極合剤層を有し、
     前記正極箔露出部は、前記電極群の一側縁に、前記電極群の前記平坦部より薄い厚さの積層部と、前記積層部と前記平坦部との間に設けられた変形部とを有し、
     前記正極集電板は、前記正極箔露出部の前記積層部の一面上に配置され、
     前記電極群の前記平坦部の前記平坦面から前記積層部側に向けて前記最表面側の正極箔露出部に接近するように前記セパレータの前記表面側部が変形されている、二次電池。
  2.  請求項1に記載の二次電池において、
     前記平坦部の前記平坦面は、前記正極集電板が配置された側の平坦面である、二次電池。
  3.  請求項1に記載の二次電池において、
     前記セパレータの前記表面側部を、前記最表面側の前記正極箔露出部に接近するように変形させるための規制部を備える、二次電池。
  4.  請求項3に記載の二次電池において、
     前記規制部は、テープであることを特徴とする二次電池。
  5.  請求項4に記載の二次電池において、
     前記正極集電板と正極箔露出部とは接合部において電気的に接続され、前記テープは、前記電極群の前記一側縁に沿う方向において、前記接合部に対応する領域内に少なくともその一部が配置されている、二次電池。
  6.  請求項5に記載の二次電池において、
     前記テープは、前記電極群の前記正極集電板が配置された側において、前記電極群の前記一側縁に沿う方向における前記平坦部の全領域に亘って設けられている、二次電池。
  7.  請求項3に記載の二次電池において、
     前記規制部は、前記正極集電板に一体に形成されている、二次電池。
  8.  請求項1に記載の二次電池において、
     前記電極群は、前記正極電極と前記負極電極とが前記セパレータを介して捲回されている捲回電極である、二次電池。
  9.  請求項8に記載の二次電池において、
     前記最表面側の前記正極箔露出部の捲き終り部または捲き始め部の少なくとも一部に対応する領域の前記セパレータの前記表面側部を覆う規制部を有する、二次電池。
  10.  請求項1に記載の二次電池において、
     前記電極群の前記正極箔露出部および前記セパレータは、複数段の前記変形部を形成するように分極され、前記変形部それぞれにおける前記セパレータの前記表面側部が変形されている、二次電池。
PCT/JP2018/003906 2017-04-28 2018-02-06 二次電池 WO2018198469A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515104A JP6944998B2 (ja) 2017-04-28 2018-02-06 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089823 2017-04-28
JP2017-089823 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198469A1 true WO2018198469A1 (ja) 2018-11-01

Family

ID=63918216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003906 WO2018198469A1 (ja) 2017-04-28 2018-02-06 二次電池

Country Status (2)

Country Link
JP (1) JP6944998B2 (ja)
WO (1) WO2018198469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463425B2 (ja) 2022-04-04 2024-04-08 プライムアースEvエナジー株式会社 二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154971A (ja) * 2010-01-28 2011-08-11 Hitachi Vehicle Energy Ltd 円筒型二次電池
JP2014049311A (ja) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd 角形二次電池
WO2015159433A1 (ja) * 2014-04-18 2015-10-22 日立オートモティブシステムズ株式会社 角形二次電池
JP2016178025A (ja) * 2015-03-20 2016-10-06 株式会社Gsユアサ 蓄電素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154971A (ja) * 2010-01-28 2011-08-11 Hitachi Vehicle Energy Ltd 円筒型二次電池
JP2014049311A (ja) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd 角形二次電池
WO2015159433A1 (ja) * 2014-04-18 2015-10-22 日立オートモティブシステムズ株式会社 角形二次電池
JP2016178025A (ja) * 2015-03-20 2016-10-06 株式会社Gsユアサ 蓄電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463425B2 (ja) 2022-04-04 2024-04-08 プライムアースEvエナジー株式会社 二次電池

Also Published As

Publication number Publication date
JP6944998B2 (ja) 2021-10-06
JPWO2018198469A1 (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
JP2011198663A (ja) 二次電池とその製造方法
WO2018020906A1 (ja) 角形二次電池
JP6608596B2 (ja) 角形二次電池及びその製造方法
JP6232213B2 (ja) 二次電池及びその製造方法
US11728518B2 (en) Rectangular secondary battery
JPWO2017038327A1 (ja) 二次電池
JP6606400B2 (ja) 蓄電素子
WO2018198469A1 (ja) 二次電池
JP6715936B2 (ja) 角形二次電池
JP2016139532A (ja) 角形二次電池
JP2016178053A (ja) 角形二次電池
JP6562726B2 (ja) 角形二次電池及びその製造方法
JP2018056085A (ja) 二次電池
JP7117944B2 (ja) 二次電池
JP6504994B2 (ja) 角形蓄電素子
JP6182061B2 (ja) 二次電池
JP2018125109A (ja) 二次電池および組電池
JP2021064519A (ja) 二次電池
JP2018056023A (ja) 二次電池
JPWO2019003770A1 (ja) 二次電池およびその製造方法
JP6978500B2 (ja) 二次電池
JP6360305B2 (ja) 角形二次電池
JP6752737B2 (ja) 角形二次電池
JP2018056086A (ja) 二次電池及び二次電池の製造方法
WO2023007756A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789956

Country of ref document: EP

Kind code of ref document: A1