WO2018020906A1 - 角形二次電池 - Google Patents

角形二次電池 Download PDF

Info

Publication number
WO2018020906A1
WO2018020906A1 PCT/JP2017/022646 JP2017022646W WO2018020906A1 WO 2018020906 A1 WO2018020906 A1 WO 2018020906A1 JP 2017022646 W JP2017022646 W JP 2017022646W WO 2018020906 A1 WO2018020906 A1 WO 2018020906A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
metal foil
resin layer
positive
Prior art date
Application number
PCT/JP2017/022646
Other languages
English (en)
French (fr)
Inventor
稔之 有賀
伸行 堀
良介 伊藤
山本 祐輝
飯塚 佳士
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018529443A priority Critical patent/JP6684000B2/ja
Publication of WO2018020906A1 publication Critical patent/WO2018020906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a prismatic secondary battery.
  • the negative electrode has a current collector and an active material
  • the positive electrode includes a current collector and an active material in addition to the first and the current collector between the current collector and the active material. Since it has a structure that has a second insulating part and the insulating layer faces the negative electrode active material part end, it has a mechanism that does not cause a short circuit even when a conductive foreign matter mixed in at the time of manufacture contacts, A technique is devised that does not hinder the permeation of the electrolyte.
  • Patent Document 1 there is a special problem regarding the inclusion of conductive foreign matter mixed from the current collector side of the negative electrode or conductive foreign matter at the time of joining that occurs when the negative electrode current collector and the external terminal are joined. Therefore, there is a possibility that a slight short circuit occurs inside the battery, resulting in performance degradation such as a decrease in battery voltage and an increase in self-discharge amount.
  • This invention is made
  • the present invention includes a plurality of means for solving the above problems.
  • a square secondary battery comprising a wound group in which a negative electrode having a negative electrode and a separator are stacked and laminated, wherein the positive electrode metal foil exposed part and the negative metal foil exposed part are opposite to each other.
  • the resin layer is provided on the positive electrode metal foil on the negative electrode metal foil exposed portion side of the positive electrode, and the resin layer is formed on the electrode joint portion of the negative metal foil exposed portion. It arrange
  • FIG. 10 is a diagram corresponding to FIG. 9 in the second embodiment.
  • FIG. 6 illustrates a configuration of a positive electrode in Example 3. Sectional drawing of the winding group in Example 3.
  • FIG. 10 The figure explaining the structure of the winding group in Example 4.
  • FIG. 10 is a diagram illustrating another configuration of the wound group in the fourth embodiment.
  • FIG. 1 is an external perspective view of a prismatic secondary battery
  • FIG. 2 is an exploded perspective view of the prismatic secondary battery.
  • the prismatic secondary battery 100 includes a battery can 1 and a battery lid 6.
  • the battery can 1 has a pair of opposed wide side surfaces 1b having a relatively large area, a pair of opposed narrow side surfaces 1c and a bottom surface 1d having a relatively small area, and an opening that opens upward at the top. Part 1a.
  • the wound group 3 is accommodated in the battery can 1, and the opening 1 a of the battery can 1 is sealed by the battery lid 6.
  • the battery lid 6 has a substantially rectangular flat plate shape, and is welded so as to close the opening 1 a of the battery can 1 to seal the battery can 1.
  • the battery lid 6 is provided with a positive external terminal 14 and a negative external terminal 12. The wound group 3 is charged through the positive external terminal 14 and the negative external terminal 12, and power is supplied to the external load.
  • the battery cover 6 is integrally provided with a gas discharge valve 10, and when the pressure in the battery container rises to a preset value or more, the gas discharge valve 10 is opened and gas is discharged from the inside, so that the inside of the battery container The pressure of is reduced. Thereby, the safety of the prismatic secondary battery 100 is ensured.
  • a wound group 3 is accommodated in the battery can 1 via an insulating protective film 2. Since the wound group 3 is wound in a flat shape, the wound group 3 has a pair of opposed curved portions having a semicircular cross section and a flat portion formed continuously between the pair of curved portions. ing.
  • the winding group 3 is inserted into the battery can 1 from one curved portion side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion side is disposed on the upper opening side.
  • the positive electrode metal foil exposed portion 34 c of the wound group 3 is electrically connected to the positive electrode external terminal 14 provided on the battery lid 6 via the positive electrode current collector plate 44. Further, the negative electrode metal foil exposed portion 32 c of the wound group 3 is electrically connected to the negative electrode external terminal 12 provided on the battery lid 6 via the negative electrode current collector plate 24. Thereby, electric power is supplied from the winding group 3 to the external load via the positive electrode current collecting plate 44 and the negative electrode current collecting plate 24, and externally supplied to the wound group 3 via the positive electrode current collecting plate 44 and the negative electrode current collecting plate 24. The generated power is supplied and charged.
  • a gasket 5 and an insulating plate 7 are provided on the battery lid 6. It has been.
  • Examples of the material for forming the positive electrode external terminal 14 and the positive electrode current collector plate 44 include an aluminum alloy, and examples of the material for forming the negative electrode external terminal 12 and the negative electrode current collector plate 24 include a copper alloy.
  • Examples of the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.
  • the battery lid 6 is provided with a liquid injection port 9 for injecting the electrolytic solution into the battery container.
  • the liquid injection port 9 is injected by the liquid injection plug 11 after the electrolytic solution is injected into the battery container. Sealed.
  • the liquid injection plug 11 is joined to the battery lid 6 by laser welding to seal the liquid injection port 9 and seal the rectangular secondary battery 100.
  • a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in an organic carbonate-based organic solvent such as ethylene carbonate is used as the electrolytic solution injected into the battery container. Can do.
  • the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a have a cylindrical shape that protrudes from the lower surface of the positive electrode external terminal 14 and the negative electrode external terminal 12 and can be inserted into the positive electrode side through hole 46 and the negative electrode side through hole 26 of the battery lid 6. Have.
  • the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a penetrate the battery lid 6 and are more inside the battery can 1 than the positive electrode current collector plate 44, the positive electrode current collector plate base 41 of the negative electrode current collector plate 24, and the negative electrode current collector plate base 21.
  • the positive electrode external terminal 14, the negative electrode external terminal 12, the positive electrode current collector plate 44, and the negative electrode current collector plate 24 are integrally fixed to the battery lid 6.
  • a gasket 5 is interposed between the positive electrode external terminal 14 and the negative electrode external terminal 12 and the battery cover 6, and an insulating plate is interposed between the positive electrode current collector plate 44, the negative electrode current collector plate 24 and the battery cover 6. 7 is interposed.
  • the positive electrode current collector plate 44 and the negative electrode current collector plate 24 are a rectangular plate-shaped positive electrode current collector plate base 41, a negative electrode current collector plate base 21, and a positive electrode current collector plate base 41 that are arranged to face the lower surface of the battery lid 6.
  • the negative electrode current collector plate base 21 is bent at the side end and extends toward the bottom surface along the wide side surface of the battery can 1, and the positive electrode metal foil exposed portion 34c of the wound group 3, the negative electrode metal foil exposed portion It has the positive electrode side connection end part 42 and the negative electrode side connection end part 22 which are connected in the state which overlapped facing 32c.
  • the positive electrode current collector plate base 41 and the negative electrode current collector plate base 21 are respectively formed with a positive electrode side opening hole 43 and a negative electrode side opening hole 23 through which the positive electrode connection part 14a and the negative electrode connection part 12a are inserted.
  • the insulating protective film 2 is wound around the winding group 3 with the direction along the flat plane of the winding group 3 and the direction orthogonal to the winding axis direction of the winding group 3 as the central axis direction.
  • the insulating protective film 2 is made of a single sheet or a plurality of film members made of synthetic resin such as PP (polypropylene), for example, and is a direction parallel to the flat surface of the wound group 3 and perpendicular to the winding axis direction. Is wound around at least one round.
  • FIG. 3 is an exploded perspective view showing a state in which a part of the wound group is developed.
  • the winding group 3 is configured by winding in a flat shape with separators 33 and 35 sandwiched between the negative electrode 32 and the positive electrode 34.
  • the positive electrode mixture layer 34b and the negative electrode mixture layer 32b overlap each other, and the positive electrode metal foil exposed portion 34c and the negative electrode metal foil exposed portion 32c are arranged separately on one side and the other side in the winding axis direction.
  • the positive electrode metal foil exposed portion 34c and the negative electrode metal foil exposed portion 32c are arranged so as to protrude in opposite directions.
  • the outermost electrode is the negative electrode 32, and the separators 33 and 35 are wound outside thereof.
  • the separators 33 and 35 have a role of insulating between the positive electrode 34 and the negative electrode 32.
  • the negative electrode mixture layer 32b of the negative electrode 32 is larger in the width direction than the positive electrode mixture layer 34b of the positive electrode 34, and the positive electrode mixture layer 34b is always sandwiched between the negative electrode mixture layers 32b. Yes. That is, the negative electrode 32 has a negative electrode mixture layer 32b that is wider than the positive electrode mixture layer 34b, and ends of the negative electrode mixture layer 32b on both sides in the winding axis direction are wound around the positive electrode mixture layer 34b.
  • the positive electrode 34 is overlapped and wound so as to protrude from both end portions in the axial direction.
  • the positive electrode metal foil exposed portion 34c and the negative electrode metal foil exposed portion 32c have electrode joint portions that are bundled in the flat thickness direction at the planar portion of the wound group 3, and are connected to the positive electrode current collector plate 44, the negative electrode by welding or the like. It is connected to the current collector plate 24 (see FIG. 2).
  • the separators 33 and 35 are wider than the negative electrode mixture layer 32b in the width direction, the separators 33 and 35 are wound to positions where the metal foil surface at the end is exposed at the positive metal foil exposed portion 34c and the negative metal foil exposed portion 32c. , It does not hinder bundled welding.
  • the shaft core for example, a material obtained by winding a resin sheet having higher bending rigidity than any of the positive electrode metal foil, the negative electrode metal foil, and the separators 33 and 35 can be used.
  • FIG. 4A and 4B are diagrams illustrating the configuration of the separators 33 and 35.
  • FIG. 4A is a front view of the negative electrode
  • FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. It is.
  • the separators 33 and 35 are made of a soft belt-like sheet member, and are provided by laminating heat-resistant layers 33b and 35b made of an inorganic material and a binder on one surface of the porous polyolefin resin layers 33a and 35a serving as a base material. It has been.
  • the separators 33 and 35 are disposed in a direction in which the heat-resistant layers 33b and 35b face the positive electrode 34 (see FIG. 9). Depending on the specifications of the battery, this is not a limitation, and a separator having only a resin layer that does not have the heat-resistant layers 33b and 35b may be applied.
  • FIG. 5A and 5B are diagrams for explaining the configuration of the negative electrode.
  • FIG. 5A is a front view of the negative electrode
  • FIG. 5B is a cross-sectional view taken along the line AA ′ of FIG. .
  • the negative electrode 32 is provided with a negative electrode mixture layer 32b formed by applying a negative electrode mixture containing a negative electrode active material on both surfaces of a negative electrode metal foil which is a negative electrode current collector. And the negative electrode metal foil exposure part 32c which is the uncoated part in which the negative mix is not apply
  • the negative electrode metal foil exposed portion 32c is a region where the negative electrode metal foil protrudes from the negative electrode mixture layer 32b. In the wound group 3, the negative electrode metal foil exposed portion 32c is disposed at the other side position in the winding axis direction of the wound group 3.
  • negative electrode 32 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and N as a dispersion solvent.
  • NMP kneading methylpyrrolidone
  • amorphous carbon is used as the negative electrode active material
  • the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions and various artificial graphite materials , Carbonaceous materials such as coke, compounds such as Si and Sn (for example, SiO, TiSi 2 etc.), or composite materials thereof may be used. It is not limited.
  • PVDF polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber styrene butadiene rubber
  • polysulfide rubber polysulfide rubber
  • nitro Polymers such as cellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.
  • NMP as dispersion solvent of the coating unit in the negative electrode
  • CMC carboxymethylcellulose
  • FIG. 6A and 6B are diagrams illustrating the configuration of the positive electrode in Example 1.
  • FIG. 6A is a front view of the positive electrode
  • FIG. 6B is an AA ′ line in FIG. 6A. It is sectional drawing.
  • the positive electrode 34 is provided with a positive electrode mixture layer 34b formed by applying a positive electrode mixture containing a positive electrode active material on both surfaces of a positive electrode metal foil which is a positive electrode current collector. And the positive electrode metal foil exposure part 34c which is the uncoated part in which the positive mix is not apply
  • the positive electrode metal foil exposed portion 34c is a region where the positive electrode metal foil protrudes from the positive electrode mixture layer 34b, and in the wound group 3, is disposed at one position in the winding axis direction.
  • the positive electrode 34 is provided with a resin layer 50 in close contact with the separators 33 and 35 at one end opposite to the positive electrode metal foil exposed portion 34c as one of the characteristic configurations of the present invention.
  • the resin layer 50 is provided on the positive electrode metal foil so as to extend in the longitudinal direction of the positive electrode 34 with a constant width along the end portion of the positive electrode mixture layer 34b.
  • the resin layer 50 is provided so as to be disposed on the negative electrode metal foil exposed portion 32c side of the positive electrode 34 in the wound group 3, at a position facing the separators 33 and 35 of the positive metal foil exposed portion 34c, and It arrange
  • the resin layer 50 does not have adhesiveness before heating, and has a configuration in which adhesiveness is expressed by heating once.
  • thermoplasticity that exhibits adhesiveness by heating is used. Contains resin.
  • the resin layer 50 is softened by heating, is compressed in the softened state, enters minute irregularities on the surfaces of the separators 33 and 35, and is bonded and fixed by an anchor effect.
  • FIG. 7 is an enlarged view of a portion C in FIG.
  • the resin layer 50 and the positive electrode mixture layer 34b are provided on a positive electrode metal foil that is a conductor, and are in contact with each other.
  • the end portion of the resin layer 50 overlaps the end portion of the positive electrode mixture layer 34b. Yes.
  • the sum of the thickness t2 of the positive electrode mixture layer 34b and the thickness t3 of the resin layer 50 at the overlapping portion w is the positive electrode mixture. It is set to be equal to or less than the maximum thickness t1, which is the thickness of the central portion of the agent layer 34b (t1> t2 + t3).
  • the positive electrode 34 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material. Then, NMP was added as a dispersion solvent and kneaded to prepare a slurry-like positive electrode mixture. This slurry-like positive electrode mixture was applied to both surfaces of an aluminum foil (positive metal foil) having a thickness of 20 ⁇ m, leaving a positive metal foil exposed portion 34c (positive electrode uncoated portion) as a welded portion. Then, the positive electrode 34 with a thickness of 90 ⁇ m of the positive electrode mixture layer 34b not containing the aluminum foil was obtained through drying, pressing, and cutting processes.
  • LiMn 2 O 4 lithium manganate
  • NMP was added as a dispersion solvent and kneaded to prepare a slurry-like positive electrode mixture.
  • This slurry-like positive electrode mixture was applied to
  • the resin layer 50 is configured by applying an adhesive and drying it.
  • the positive electrode mixture is first applied and dried for a predetermined time, and then the adhesive is applied.
  • the adhesive may be applied simultaneously with the positive electrode mixture.
  • the resin layer 50 is cold-pressed after the adhesive is applied and dried, and is adjusted to the same thickness t1 as the positive electrode mixture layer 34b.
  • the resin layer 50 contains a thermoplastic resin that develops adhesiveness when heated, depending on the type or formulation of the thermoplastic resin, the adhesiveness is manifested by compression by a press, particularly by pressing in an overheated state. Adhering to a press machine or the like may cause a decrease in productivity. Therefore, the resin layer 50 is preferably dried and pressed at room temperature.
  • lithium manganate is used as the positive electrode active material
  • other lithium manganate having a spinel crystal structure or a lithium manganese composite oxide or layered in which a part is substituted or doped with a metal element A lithium cobalt oxide or lithium titanate having a crystal structure, or a lithium-metal composite oxide obtained by substituting or doping a part thereof with a metal element may be used.
  • PVDF polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber styrene butadiene rubber
  • polysulfide rubber polysulfide rubber.
  • Polymers such as nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.
  • the resin layer 50 in this embodiment will be described.
  • the resin layer 50 was made of the same PVDF (polyvinylidene fluoride) as the binder in the positive electrode mixture.
  • a thermoplastic resin may be contained. Examples include polypropylene (PP), low density polyethylene (PE: softening temperature 95 ° C), polystyrene (PS: softening temperature 100 ° C), polyethylene terephthalate (PET), polyvinyl chloride (PVC: softening temperature 85 ° C), acrylic resin And methacrylic resin (softening temperature: 90 to 105 ° C.), etc., as long as they contain at least one of them.
  • the softening temperature of the resin layer 50 is set to a temperature lower than the melting temperature of the separators 33 and 35.
  • the resin layer 50 was formed by applying PVDF to which NMP was added as a dispersion solvent to a target portion and then drying the solution at room temperature to evaporate the dispersion solvent.
  • the NMP dispersion solvent containing PVDF was used as the configuration of the resin layer 50.
  • the present invention is not limited to this, and the resin material softened at a high temperature is directly applied to the positive metal foil exposed portion 34c.
  • the resin layer 50 is obtained by applying to the substrate and cooling.
  • the thickness can be easily adjusted when pressed, and can be easily adjusted when adjusting the thickness of the resin layer 50 to be the same as the thickness of the positive electrode mixture layer 34b.
  • particulate resin it should be noted that the desired effect may not be obtained due to the mixing path of the target conductive foreign matter depending on the particle diameter and density.
  • FIG. 8 is a cross-sectional view of the wound group 3 in the embodiment
  • FIG. 9 is an enlarged view of a portion D in FIG.
  • the negative electrode mixture layer 32b protrudes on both sides in the winding axis direction of the wound group 3 rather than the positive electrode mixture layer 34b.
  • the positive metal foil exposed portion 34c protrudes outward in the winding axis direction from the negative electrode mixture layer 32b.
  • the uncoated side end portion 32e of the negative electrode mixture layer 32b is disposed at a position on the outer side in the winding axis direction than the coated side end portion 34d of the positive electrode mixture layer 34b.
  • the separators 33 and 35 are oriented so that the heat-resistant layers 33b and 35b face the positive electrode mixture layer 34b and sandwich the positive electrode mixture layer 34b therebetween.
  • the resin layer 50 is provided on the opposite end of the positive electrode metal foil exposed portion 34c of the positive electrode 34, and is disposed so as to be located on the negative electrode metal foil exposed portion 32c side of the positive electrode 34.
  • the separators 33, 35 are provided. Is disposed at a position facing the negative electrode mixture layer 32b of the negative electrode 32 with separators 33 and 35 interposed therebetween.
  • the end of the resin layer 50 in the wound group 3 is from the uncoated side end 32e of the negative electrode mixture layer 32b (the end of the negative electrode mixture layer 32b on the negative electrode metal foil exposed portion 32c side).
  • the end portion of the resin layer 50 is set at a position that does not protrude beyond the end portions of the separators 33 and 35, and the negative electrode metal foil exposed portion 32c is bundled in the flat thickness direction and connected to the negative electrode current collector plate 24. The weldability is not impaired. That is, the end portions of the separators 33 and 35 bonded to the resin layer 50 protrude from the end portions of the resin layer 50.
  • the end face of the positive electrode metal foil is exposed at the end face of the positive electrode 34 on the side where the resin layer 50 is disposed. Since the positive electrode metal foil (aluminum foil in this embodiment) has a positive potential, the metal-derived conductive foreign material (for example, the negative electrode metal foil exposed portion 32c is bundled to form the electrode joint portion on the negative electrode side of the negative electrode current collector plate 24). In the case where copper fine powder generated when ultrasonic welding is performed on the connection end portion 22 and mixed with the positive electrode metal foil, the dendrite precipitates that are similarly electrochemically dissolved and deposited on the opposite negative electrode side. There is a risk.
  • the end portion of the resin layer 50 is disposed so as to protrude outward in the winding axis direction from the uncoated side end portion 32e of the negative electrode mixture layer 32b. Therefore, since the resin layer 50 is disposed at a position facing the negative electrode on which dendrite is deposited, there is no short circuit.
  • the manufacturing method of the winding group 3 includes a winding step S1 and an adhesion step S2.
  • the positive electrode 34 and the negative electrode 32 having the above-described configuration are wound in a flat shape with the separators 33 and 35 interposed therebetween to form a wound group 3 wound in a flat shape.
  • the wound group 3 wound in a flat shape is heated and compressed in the flat thickness direction for several seconds at a temperature not higher than the shutdown temperature of the separators 33 and 35 and not lower than the melting point of the resin layer 50.
  • adhesiveness is expressed in the resin layer 50, and the resin layer 50 is adhered to the heat-resistant layers 33b and 35b of the separators 33 and 35. Therefore, the resin layer 50 is pressure-bonded or heat-welded to the separators 33 and 35 so that the positive electrode 34 and the separators 33 and 35 are integrated with each other. Therefore, the resin layer 50 can be adhered and sealed to the separators 33 and 35, and conductive foreign matter can be prevented from entering between them, and the probability of the conductive foreign matter coming into contact with the positive potential can be drastically reduced.
  • the resin layer 50 is disposed at a position facing the negative electrode mixture layer 32b of the negative electrode 32 with the separators 33 and 35 interposed therebetween, pressure can be applied in the flat thickness direction during heat compression.
  • the separators 33 and 35 can be reliably pressed and bonded (crimped).
  • the resin layer 50 is continuously provided in the winding direction of the winding group 3. Therefore, it is possible to suppress the loosening caused by the separation between the positive electrode 34 and the separators 33 and 35.
  • the injection of the electrolytic solution since there is no adhesion between the surface of the electrode active material and the separator, a sufficient injection / impregnation property can be secured, and there is no concern about an increase in DCR.
  • the position of the end portion of the resin layer 50 protrudes outward in the winding axis direction from the position of the uncoated side end portion 32e of the negative electrode mixture layer 32b and extends in the thickness direction. Since the coating width of the resin layer 50 is set so as to be aligned, when the wound group 3 is heated and compressed, at least a part of the resin layer 50 is applied to the separators 33 and 35 over the entire coating width. It can be pressed and can be securely bonded to the separators 33 and 35.
  • the friction coefficient with the positive electrode mixture layer 34b is small.
  • the wound group 3 used for the prismatic secondary battery has a flat shape composed of a straight portion and an arc portion, and the winding slack is generated as compared with the wound group used for the cylindrical secondary battery. It is easy to do, and a straight part is distorted and a gap is likely to occur.
  • the resin layer 50 is provided at the end opposite to the positive electrode metal foil exposed portion 34c, and the separators 33 and 35 are bonded to each other. Can be prevented.
  • the resin layer 50 disposed on the positive electrode 34 is located on the negative electrode metal foil exposed portion 32c side opposite to the positive electrode metal foil exposed portion 34c of the positive electrode 34, and the separators 33, 35 are disposed. It is in close contact with and sealed. Therefore, it is possible to prevent the conductive foreign matter from being mixed onto the positive electrode mixture layer 34b from the negative electrode metal foil exposed portion 32c side.
  • the conductive foreign matter is often a metallic foreign matter, and when the metallic foreign matter comes into contact with the positive electrode potential of the battery, it is electrochemically dissolved and deposited on the opposite negative electrode side. As a result, Li ions concentrate, Li dendrite is generated, and a short circuit occurs inside the battery.
  • the resin layer 50 since the resin layer 50 is in close contact with the separators 33 and 35 and is sealed, the conductive foreign matter is difficult to be mixed onto the positive electrode mixture layer 34b from the negative electrode metal foil exposed portion 32c.
  • the resin layer 50 since the resin layer 50 is provided continuously over the length direction of the positive electrode 34, it is provided continuously in the winding direction in the state of the winding group 3, and the coating side end of the positive electrode is provided. 34d can be adhered and sealed over the entire circumference to prevent the inclusion of conductive foreign matter. Therefore, it is possible to produce a highly reliable battery that can suppress the generation of Li dendrite due to the conductive foreign matter and suppress the fine short circuit inside the battery.
  • the resin layer 50 is bonded to the separators 33 and 35, the positive electrode 34 and the separators 33 and 35 are integrated with each other through the resin layer 50. Therefore, by repeating charge and discharge, the loosening of the wound group caused by the separation of the positive electrode and the separator due to the expansion and contraction of the electrode is suppressed. Thereby, mixing of the conductive foreign material from the winding slack portion of the wound group 3 can also be prevented. Therefore, a highly reliable battery can be produced throughout the lifetime.
  • FIG. 10 is a diagram corresponding to FIG. 9 in the second embodiment.
  • the resin layer 50 may not be in contact with the positive electrode mixture layer 34b and may have a gap 34e.
  • the thickness (t2 + t3) of the overlapping portion w is set to the maximum thickness t1 of the positive electrode mixture layer 34b. It is necessary to control the following. If the thickness of the overlapping portion w is larger than the maximum thickness t1 (see FIG. 7) of the positive electrode mixture layer 34b, the overlapping portion W protrudes and becomes bulky in the radial direction when wound, and the durability of the positive electrode metal foil is increased. There is a risk of affecting the performance and the can insertion property of the wound group 3.
  • the gap 34e is provided between the positive electrode mixture layer 34b and the resin layer 50, it is not necessary to control the thickness of the overlapping portion w to be equal to or less than the maximum thickness t1 of the positive electrode mixture layer 34b. 34 becomes easy to manufacture.
  • FIG. 11A and 11B are diagrams illustrating the configuration of the positive electrode in Example 3.
  • FIG. 11A is a front view of the positive electrode
  • FIG. 11B is an AA ′ line in FIG. It is sectional drawing.
  • FIG. 12 is a cross-sectional view of a wound group in the third embodiment.
  • the positive electrode 34 has a resin layer 50 positioned on a side opposite to the positive electrode metal foil exposed portion 34c of the positive electrode mixture layer 34b and a positive electrode metal from the positive electrode mixture layer 34b. It arrange
  • the resin layer 50 disposed on the positive electrode metal foil exposed portion 34c is in close contact with the separators 33 and 35 in the wound state as shown in FIG. 12, and the positive electrode mixture layer 34b is formed from the positive metal foil exposed portion 34c side. It is possible to prevent foreign matter from entering the top.
  • the resin layers 50 are provided and sealed on both sides of the positive electrode mixture layer 34b, it is possible to reliably prevent foreign matters from entering from the outside.
  • the resin layer 50 disposed in the positive electrode metal foil exposed portion 34c may partially overlap the positive electrode mixture layer 34b as shown in FIG. 7, and the gap 34e is formed as shown in FIG. It may be provided.
  • Example 4 13A and 13B are diagrams for explaining the configuration of a wound group in Example 4.
  • FIG. 13A is a front view of the wound group
  • FIG. 13B is a wound group of FIG. It is the end elevation of the negative electrode metal foil exposure part side which looked at from the B direction.
  • the negative electrode metal foil exposed portion 32c is bundled in the flat thickness direction and ultrasonically welded to the negative electrode side connection end portion 22 of the negative electrode current collector plate 24, but conductive foreign matters (metals such as copper fine powder) Foreign matter) is likely to occur during this ultrasonic welding, and is generated from the electrode joint portion, which is a portion of the negative electrode metal foil exposed portion 32c that is welded to the negative electrode side connection end portion 22 of the negative electrode current collector plate 24.
  • Cheap is a portion of the negative electrode metal foil exposed portion 32c that is welded to the negative electrode side connection end portion 22 of the negative electrode current collector plate 24.
  • a resin layer 50 may be provided across the width W1 of the electrode joint at a position facing the electrode joint of the negative electrode metal foil exposed portion 32c.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

負極集電部側から混入する導電性異物によって発生する内部微短絡(電圧低下)を抑制できる角形二次電池を提供する。本発明の角形二次電池100は、正極電極34と負極電極32の間にセパレータ33、35を挟んで捲回した扁平状の捲回群3を有する。そして、正極電極34は、正極金属箔に塗工された正極合剤層34bと、正極金属箔が露出する正極金属箔露出部34cとを有しており、正極金属箔露出部34cの反対側の端部にセパレータ33、35との間を接着する樹脂層50が設けられている。

Description

角形二次電池
 本発明は、角形二次電池に関する。
 近年、電気自動車等の動力源として、正極電極と負極電極との間にセパレータを介在させ、これらを捲回して作製した捲回群を備えたエネルギー密度の高い角形二次電池の開発が進められている。また高エネルギー化の一方で、信頼性を確保しつつ、高い生産効率の確立が要求されている。
 特許文献1には角形二次電池において、負極電極は集電部と活物質部を有し、正極電極に集電部と活物質部に加え集電部と活物質部の間に第一と第二の絶縁部を有し、その絶縁層は負極活物質部端と対向させる構造を有するので、製造時に混入する導電性異物が接触しても短絡させない機構を有し、さらにその絶縁層は電解液の透過を妨げることがない工夫が施されている技術が示されている。
特開2015-60787号公報
 しかしながら、特許文献1記載の場合、負極電極の集電部側から混入する導電性異物や負極集電部と外部端子とを接合する際に発生する接合時の導電性異物の混入に関しては、特別に保護されているわけではなく従来技術と同等であるので、電池内部で微短絡が発生し、電池電圧の低下や自己放電量の増大といった性能低下が発生する可能性がある。
 本発明は、上記課題を鑑みてなされたものであり、導電性異物の混入によって発生する内部微短絡(電圧低下)を抑制できる角形二次電池を提供することを課題とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、正極金属箔露出部と正極合剤層を有する正極電極と、負極金属箔露出部と負極合剤層を有する負極電極と、セパレータとを重ねて積層させた捲回群を備えた角形二次電池であって、前記捲回群は前記正極金属箔露出部と前記負極金属箔露出部とが互いに逆方向に突出されており、前記正極電極の前記負極金属箔露出部側には、正極金属箔上に樹脂層が設けられており、該樹脂層は、前記負極金属箔露出部の電極接合部に対向する位置に配置されて、前記セパレータに密着されていることを特徴とする。
 本発明によれば、導電性異物の混入によって発生する内部微短絡(電圧低下)を抑制できる。尚、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
角形二次電池の外観斜視図。 角形二次電池の分解斜視図。 捲回群の斜視図。 セパレータの構成を説明する図。 負極電極の構成を説明する図。 実施例1における正極電極の構成を説明する図。 図6のC部を拡大して示す図。 捲回群の断面を模式的に示す図。 図8のD部を拡大して示す図。 実施例2における図9に対応する図。 実施例3における正極電極の構成を説明する図。 実施例3における捲回群の断面図。 実施例4における捲回群の構成を説明する図。 実施例4における捲回群の他の構成を説明する図。
 以下、実施例について、図面を用いて説明する。なお、以下の実施例では角形二次電池の例としてリチウムイオン二次電池の場合について説明するが、これに限定されるものではなく、正極電極と負極電極を間にセパレータを介して巻回した扁平状の捲回群を有する電池であれば本発明を適用できる。
[実施例1]
 図1は、角形二次電池の外観斜視図、図2は、角形二次電池の分解斜視図である。
 角形二次電池100は、電池缶1および電池蓋6を備える。電池缶1は、相対的に面積の大きい一対の対向する幅広側面1bと相対的に面積の小さい一対の対向する幅狭側面1cと底面1dとを有し、上部に上方に向かって開口する開口部1aを有する。
 電池缶1内には、捲回群3が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形平板状であって、電池缶1の開口部1aを塞ぐように溶接されて電池缶1が封止されている。電池蓋6には、正極外部端子14と、負極外部端子12が設けられている。正極外部端子14と負極外部端子12を介して捲回群3に充電され、また外部負荷に電力が供給される。
 電池蓋6には、ガス排出弁10が一体的に設けられ、電池容器内の圧力が予め設定された値以上まで上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、角形二次電池100の安全性が確保される。
 電池缶1内には、絶縁保護フィルム2を介して捲回群3が収容されている。捲回群3は、扁平形状に捲回されているため、断面半円形状の互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。捲回群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部側から電池缶1内に挿入され、他方の湾曲部側が上部開口側に配置される。
 捲回群3の正極金属箔露出部34cは、正極集電板44を介して電池蓋6に設けられた正極外部端子14と電気的に接続されている。また、捲回群3の負極金属箔露出部32cは、負極集電板24を介して電池蓋6に設けられた負極外部端子12と電気的に接続されている。これにより、正極集電板44および負極集電板24を介して捲回群3から外部負荷へ電力が供給され、正極集電板44および負極集電板24を介して捲回群3へ外部発電電力が供給され充電される。
 正極集電板44と負極集電板24、及び、正極外部端子14と負極外部端子12を、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。
 正極外部端子14および正極集電板44の形成素材としては、例えばアルミニウム合金が挙げられ、負極外部端子12および負極集電板24の形成素材としては、例えば銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
 電池蓋6には、電池容器内に電解液を注入するための注液口9が穿設されており、この注液口9は、電解液を電池容器内に注入した後に注液栓11によって封止される。注液栓11は、レーザ溶接により電池蓋6に接合されて注液口9を封止し、角形二次電池100を密閉する。電池容器内に注入される電解液としては、例えばエチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を適用することができる。
 正極接続部14a、負極接続部12aは、正極外部端子14、負極外部端子12の下面からそれぞれ突出して先端が電池蓋6の正極側貫通孔46、負極側貫通孔26に挿入可能な円柱形状を有している。正極接続部14a、負極接続部12aは、電池蓋6を貫通して正極集電板44、負極集電板24の正極集電板基部41、負極集電板基部21よりも電池缶1の内部側に突出しており、先端が“かしめ”られて、正極外部端子14、負極外部端子12と、正極集電板44、負極集電板24を電池蓋6に一体に固定している。正極外部端子14、負極外部端子12と電池蓋6との間には、ガスケット5が介在されており、正極集電板44、負極集電板24と電池蓋6との間には、絶縁板7が介在されている。
 正極集電板44、負極集電板24は、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41、負極集電板基部21と、正極集電板基部41、負極集電板基部21の側端で折曲されて、電池缶1の幅広側面に沿って底面側に向かって延出し、捲回群3の正極金属箔露出部34c、負極金属箔露出部32cに対向して重ね合わされた状態で接続される正極側接続端部42、負極側接続端部22を有している。正極集電板基部41、負極集電板基部21には、正極接続部14a、負極接続部12aが挿通される正極側開口穴43、負極側開口穴23がそれぞれ形成されている。
 捲回群3の扁平面に沿う方向でかつ捲回群3の捲回軸方向に直交する方向を中心軸方向として前記捲回群3の周囲には絶縁保護フィルム2が巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回群3の扁平面と平行な方向でかつ捲回軸方向に直交する方向を巻き付け中心として少なくとも1周以上巻き付けられる長さを有している。
 図3は、捲回群の一部を展開した状態を示す分解斜視図である。
 捲回群3は、負極電極32と正極電極34との間にセパレータ33、35を挟んで扁平状に捲回することによって構成されている。捲回群3は、正極合剤層34bと負極合剤層32bとが重なり合い、正極金属箔露出部34cと負極金属箔露出部32cとが捲回軸方向一方側と他方側とに分かれて配置されている。すなわち、捲回群3は、正極金属箔露出部34cと負極金属箔露出部32cとが互いに逆方向に突出されて配置されている。捲回群3は、最外周の電極が負極電極32であり、さらにその外側にセパレータ33、35が捲回される。セパレータ33、35は、正極電極34と負極電極32との間を絶縁する役割を有している。
 負極電極32の負極合剤層32bは、正極電極34の正極合剤層34bよりも幅方向に大きく、正極合剤層34bは、必ず負極合剤層32bの間に挟まれるように構成されている。すなわち、負極電極32は、正極合剤層34bよりも幅広の負極合剤層32bを有しており、負極合剤層32bの捲回軸方向両側の端部が正極合剤層34bの捲回軸方向両側の端部よりもそれぞれ突出するように、正極電極34と重ね合わされて捲回される。
 正極金属箔露出部34c、負極金属箔露出部32cは、捲回群3の平面部分で扁平厚さ方向に束ねられた電極接合部を有しており、溶接等により正極集電板44、負極集電板24に接続される(図2を参照)。なお、セパレータ33、35は幅方向で負極合剤層32bよりも広いが、正極金属箔露出部34c、負極金属箔露出部32cで端部の金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。また、必要に応じて、捲回群3の最内周に軸芯を配置することも可能である。軸芯としては例えば、正極金属箔、負極金属箔、セパレータ33、35のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
 図4は、セパレータ33、35の構成を説明する図であり、図4(a)は、負極電極の正面図、図4(b)は、図4(a)のA-A’線断面図である。
 セパレータ33、35は、軟質な帯状のシート部材からなり、基材となる多孔質のポリオレフィン樹脂層33a、35aの一方の面に、無機材料とバインダからなる耐熱層33b、35bが積層されて設けられている。セパレータ33、35は、耐熱層33b、35bが正極電極34に対向する向きに配置される(図9を参照)。
 尚、電池の仕様によっては、この限りではなく、耐熱層33b、35bを有していない樹脂層のみのセパレータを適用してもよい。
 図5は、負極電極の構成を説明する図であり、図5(a)は、負極電極の正面図、図5(b)は、図5(a)のA-A’線断面図である。
 負極電極32は、負極集電体である負極金属箔の両面に負極活物質を含む負極合剤を塗布して形成された負極合剤層32bが設けられている。そして、負極金属箔の幅方向一方側の端部には、負極合剤が塗布されていない未塗工部である負極金属箔露出部32cが設けられている。すなわち、負極電極32は、負極金属箔に塗工された負極合剤層32bと、負極金属箔が露出する負極金属箔露出部32cとを有している。負極金属箔露出部32cは、負極合剤層32bから負極金属箔が突出した領域であり、捲回群3では、捲回群3の捲回軸方向の他方側の位置に配置される。
 負極電極32に関しては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN-メチルピロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極金属箔)の両面に溶接部である負極金属箔露出部32c(負極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、銅箔を含まない負極活物質塗布部の厚さ70μmの負極電極32を得た。
 なお、本実施例では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
 また、負極電極における塗工部の結着剤としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 また、負極電極における塗工部の分散溶媒としてNMPを用いる場合について例示したが、これに限られたものではなく、例えばHOの溶媒に、増粘剤としてカルボキシメチルセルロース(CMC)を添加したものを用いてもよい。
 図6は、実施例1における正極電極の構成を説明する図であり、図6(a)は、正極電極の正面図、図6(b)は、図6(a)のA-A’線断面図である。
 正極電極34は、正極集電体である正極金属箔の両面に正極活物質を含む正極合剤を塗布して形成された正極合剤層34bが設けられている。そして、正極金属箔の幅方向一方側の端部には、正極合剤が塗布されていない未塗工部である正極金属箔露出部34cが設けられている。すなわち、正極電極34は、正極金属箔に塗工された正極合剤層34bと、正極金属箔が露出する正極金属箔露出部34cとを有している。正極金属箔露出部34cは、正極合剤層34bから正極金属箔が突出した領域であり、捲回群3では、捲回軸方向の一方側の位置に配置される。
 そして、正極電極34は、本発明の特徴的な構成の一つとして、正極金属箔露出部34cと反対側の端部に、セパレータ33、35に密着する樹脂層50が設けられている。樹脂層50は、正極合剤層34bの端部に沿って一定幅で正極電極34の長手方向に亘って延在するように正極金属箔上に設けられている。樹脂層50は、捲回群3において正極電極34の負極金属箔露出部32c側に配置されるように設けられており、正極金属箔露出部34cのセパレータ33、35に対向する位置でかつ、間にセパレータ33、35を介して負極電極32の負極合剤層32bに対向する位置に配置される。樹脂層50は、加熱前は接着性を有しておらず、一度加熱することによって接着性を発現する構成を有しており、本実施例では、加熱することによって接着性を発現する熱可塑性樹脂を含有する。樹脂層50は、加熱することによって軟化し、軟化した状態で圧縮されることによりセパレータ33、35の表面の微小な凹凸に入り込み、アンカー効果によって接着固定される。
 図7は、図6(b)のC部拡大図である。
 樹脂層50と正極合剤層34bは、導体である正極金属箔に設けられており、互いに接触している。本実施例では、正極合剤層34bを先に塗工し、後で樹脂層50を塗工しているので、樹脂層50の端部が正極合剤層34bの端部の上に重なっている。このように、正極合剤層34bと樹脂層50との間に重なり部分wがある場合に、かかる重なり部分wにおける正極合剤層34bの厚みt2と樹脂層50の厚みt3の和が正極合剤層34bの中央部分の厚みである最大厚みt1以下になるように設定されている(t1>t2+t3)。
 正極電極34に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と、結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練してスラリ状の正極合剤を作製した。このスラリ状の正極合剤を厚さ20μmのアルミニウム箔(正極金属箔)の両面に溶接部である正極金属箔露出部34c(正極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断工程を経て、アルミニウム箔を含まない正極合剤層34bの厚さ90μmの正極電極34を得た。
 樹脂層50は、接着材を塗布して乾燥させることにより構成されている。本実施例では、正極合剤を先に塗布して所定時間乾燥させた後に接着材を塗布しているが、正極合剤と同時に接着材を塗布してもよい。樹脂層50は、接着材を塗布して乾燥した後に冷間プレスされ、正極合剤層34bと同じ厚さt1に調整される。
 樹脂層50は、加熱することによって接着性を発現する熱可塑性樹脂を含有するので、熱可塑性樹脂の種類あるいは配合等によっては、プレスによる圧縮、特に過熱状態でのプレスにより、接着性が発現し、プレス機等に接着して生産性の低下を招くおそれがある。従って、樹脂層50は、常温で乾燥してプレスすることが好ましい。
 また、本実施例では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。
 また、本実施例では、正極合剤における結着剤としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 次に、本実施例における樹脂層50について説明する。樹脂層50は、正極合剤における結着剤と同一のPVDF(ポリフッ化ビニリデン)とした。しかしこれに限定されるわけではなく、熱可塑性樹脂を含有しても良い。例として、ポリプロピレン(PP)、低密度ポリエチレン(PE:軟化温度95℃)、ポリスチレン(PS:軟化温度100℃)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC:軟化温度85℃)、アクリル樹脂、メタクリル樹脂(軟化温度90~105℃)などがあり、これらのうちの少なくとも1種類を含むものであればよい。樹脂層50の軟化温度は、セパレータ33、35の溶融温度よりも低い温度に設定されている。
 本実施例では、分散溶媒としてNMPを添加したPVDFを目的の箇所に塗布後、室温で乾燥させて分散溶媒を蒸発させることで、樹脂層50を形成した。
 本実施例では、樹脂層50の構成として、PVDFを含むNMP分散溶媒を用いたが、これに限定されるわけではなく、高温化で軟化した、上記樹脂材料を直接、正極金属箔露出部34cに塗布し、冷却させて、樹脂層50を得る方法もある。また粒子状の樹脂からなる分散溶媒を選択してもよい。粒子状の樹脂を用いると、プレスした際に厚みの調整が容易となり、樹脂層50の厚みを正極合剤層34bの厚みと同一に調整する際に、容易に調整することができる。しかし、粒子状の樹脂を用いた場合は粒子径や密度により、目的とする導電性異物の混入経路となるため、所望の効果が得られなくなる可能性があるので留意が必要である。
 図8は、実施例における捲回群3の断面図、図9は、図8のD部拡大図である。
 捲回群3は、正極合剤層34bよりも負極合剤層32bの方が捲回群3の捲回軸方向両側に突出している。そして、正極金属箔露出部34cは、負極合剤層32bよりも捲回軸方向外側に突出している。負極合剤層32bの未塗工側端部32eは、正極合剤層34bの塗工側端部34dよりも捲回軸方向外側の位置に配置されている。セパレータ33、35は、耐熱層33b、35bが正極合剤層34bに対向して正極合剤層34bを間に挟み込むように、面の向きが合わせられている。
 樹脂層50は、正極電極34の正極金属箔露出部34cの反対側の端部に設けられており、正極電極34の負極金属箔露出部32c側に位置するように配置され、セパレータ33、35に対向する位置でかつ、間にセパレータ33、35を介して負極電極32の負極合剤層32bと対向する位置に配置されている。本実施例では、捲回群3内で樹脂層50の端部が負極合剤層32bの未塗工側端部32e(負極金属箔露出部32c側の負極合剤層32bの端部)よりも捲回軸方向外側に突出しており、正極合剤層34bの塗工側端部34dから負極合剤層32bの未塗工側端部32eに対向する位置までの間に亘る塗工幅で配置されている。樹脂層50の端部は、セパレータ33、35の端部よりも突出しない位置に設定されており、負極金属箔露出部32cを扁平厚さ方向に束ねて負極集電板24に接続する際に溶接性を損なわないようになっている。すなわち、樹脂層50と接着されるセパレータ33、35の端部は、樹脂層50の端部よりも突出している。
 また、正極電極34の樹脂層50が配置されている側の端面には、正極金属箔の端面が露出している。正極金属箔(本実施例ではアルミニウム箔)は、正電位を帯びているので、金属由来の導電性異物(例えば負極金属箔露出部32cを束ねて電極接合部を負極集電板24の負極側接続端部22に超音波溶接した際に発生する銅微粉など)が混入し、当該正極金属箔に接触した場合、同様に電気化学的溶解し、対向する負極側で溶析するデンドライト析出が発生するおそれがある。しかし、本実施例では、樹脂層50の端部が負極合剤層32bの未塗工側端部32eよりも捲回軸方向外側に突出して配置されている。したがって、デンドライトが析出している負極の対向する位置には、樹脂層50が配置されているため、微短絡に至ることは無い。
 次に、上記構成を有する捲回群の製造方法について説明する。
 捲回群3の製造方法は、捲回工程S1と、接着工程S2とを含む。捲回工程S1では、上記構成を有する正極電極34と負極電極32を間にセパレータ33、35を挟んで扁平状に捲回して扁平状に捲回された捲回群3を形成する。
 接着工程S2では、扁平状に捲回された捲回群3を、セパレータ33、35のシャットダウン温度以下でかつ、樹脂層50の融点以上の温度で数秒間、扁平厚さ方向に加熱圧縮する。これにより、樹脂層50に接着性を発現させ、樹脂層50をセパレータ33、35の耐熱層33b、35bに接着させる。したがって、樹脂層50は、セパレータ33、35に圧着又は熱溶着され、正極電極34とセパレータ33、35とが互いに一体化される。したがって、樹脂層50をセパレータ33、35に密着させてシールすることができ、これらの間に導電性異物が侵入するのを防ぎ、導電性異物が正電位に接する確率を激減させることができる。
 樹脂層50は、間にセパレータ33、35を介して負極電極32の負極合剤層32bと対向する位置に配置されているので、加熱圧縮の際に扁平厚さ方向に圧力を加えることができ、セパレータ33、35に対して確実に押圧して接着(圧着)することができる。そして、樹脂層50は、捲回群3の捲回方向に連続して設けられている。したがって、正極電極34とセパレータ33、35とが離れることに起因する捲き弛みを抑制することができる。また、電解液の注液に関しても、電極活物質表面とセパレータとの間を接着していないので、十分な注液性/含浸性を確保できているので、DCRの上昇の懸念は無い。
 本実施例によれば、捲回群3において樹脂層50の端部の位置が負極合剤層32bの未塗工側端部32eの位置よりも、捲回軸方向外側に突出し厚さ方向に揃うように樹脂層50の塗工幅が設定されているので、捲回群3を加熱圧縮した際に、樹脂層50の少なくても一部分をその塗工幅全体に亘ってセパレータ33、35に押圧することができ、セパレータ33、35に確実に接着することができる。
 本実施例のようにセパレータ33、35が耐熱層33b、35bを有する場合、正極合剤層34bとの摩擦係数が小さいので、樹脂層50がない場合には特に捲き弛みが発生しやすい。また、角形二次電池に用いられる捲回群3は、直線部分と円弧部分からなる扁平形状を有しており、円筒形二次電池に用いられる捲回群と比較して、捲き弛みが発生しやすく、直線部分に歪みが生じて隙間が生じやすい。この課題に対して、本発明では、正極金属箔露出部34cと反対側の端部に樹脂層50を設けて、セパレータ33、35を接着しているので、捲き弛みを抑制しかつ隙間の発生を防ぐことが出来る。
 なお、本実施例では、セパレータ33、35が耐熱層33b、35bを有する場合について説明したが、本発明は、これに限定されるものではなく、セパレータが耐熱層を有していない構造にも適用できる。
 本実施例によれば、正極電極34に配置された樹脂層50は、正極電極34の正極金属箔露出部34cとは反対側となる負極金属箔露出部32c側に位置し、セパレータ33、35に密着してシールしている。したがって、導電性異物が負極金属箔露出部32c側から正極合剤層34b上に混入するのを防ぐことができる。一般的に導電性異物は金属異物であることが多く、金属異物が電池の正極電位に接すると電気化学的溶解し、対向する負極側で溶積する。これに起因してLiイオンが集中し、Liデンドライトが発生し、電池内部で微短絡に至る。
 本実施例では、樹脂層50がセパレータ33、35に密着してシールしているので、導電性異物が負極金属箔露出部32cから正極合剤層34b上に混入し難い構造となっている。特に、樹脂層50が正極電極34の長さ方向に亘って連続して設けられているので、捲回群3の状態では捲回方向に連続して設けられ、正極電極の塗工側端部34dを全周長に亘って密着してシールし、導電性異物の混入を防止することができる。したがって、導電性異物に起因するLiデンドライトの発生を抑制し、電池内部の微短絡を抑制できる信頼性の高い電池を生産することが出来る。
 また、本実施例では、樹脂層50がセパレータ33、35に接着されているので、正極電極34とセパレータ33、35が樹脂層50を介して一体化されている。したがって、充放電を繰り返すことで電極の膨張収縮による、正極電極とセパレータとが離れることに起因する捲回群の捲き弛みが抑制される。これにより、捲回群3の巻き弛み部からの導電性異物の混入も防ぐことが出来る。したがって、寿命を通して、信頼性の高い電池を生産することができる。
[実施例2]
 図10は、実施例2における図9に対応する図である。
 樹脂層50は、正極合剤層34bに接触していなくてもよく、隙間34eを有していてもよい。例えば図7に示すように、正極合剤層34bと樹脂層50との間に重なり部分wがある場合には、その重なり部分wの厚み(t2+t3)を正極合剤層34bの最大厚さt1以下に制御する必要がある。仮に、重なり部分wの厚みが正極合剤層34bの最大厚みt1(図7を参照)よりも大きいと、捲回した際に重なり部分Wが突出して径方向に嵩高となり、正極金属箔の耐久性や捲回群3の缶挿入性に影響を与えるおそれがある。本実施例では正極合剤層34bと樹脂層50との間に隙間34eを設けているので、重なり部分wの厚みを正極合剤層34bの最大厚みt1以下に制御する必要がなく、正極電極34の製造が容易となる。
[実施例3]
 図11は、実施例3における正極電極の構成を説明する図であり、図11(a)は、正極電極の正面図、図11(b)は、図11(a)のA-A’線断面図である。図12は、実施例3における捲回群の断面図である。
 正極電極34は、さらなる異物混入によるデンドライト短絡を防ぐ方法として、樹脂層50を、正極合剤層34bの正極金属箔露出部34cと反対側の位置、及び、正極合剤層34bよりも正極金属箔露出部34c側の位置に配置する。すなわち、本実施例では、正極合剤層34bの両端に樹脂層50が配置される。正極金属箔露出部34cに配置される樹脂層50は、図12に示すように巻回された状態においてセパレータ33、35に密着しており、正極金属箔露出部34c側から正極合剤層34b上への異物混入を防ぐことが出来る。本実施例によれば、正極合剤層34bの両側に樹脂層50を設けてシールしているので、外部からの異物混入を確実に防ぐことができる。なお、正極金属箔露出部34cに配置される樹脂層50は、図7に示すように、正極合剤層34bに部分的に重なり合っても良く、また、図10に示すように、隙間34eを設けてもよい。
[実施例4]
 図13は、実施例4における捲回群の構成を説明する図であり、図13(a)は、捲回群の正面図、図13(b)は、図13(a)の捲回群をB方向から矢視した負極金属箔露出部側の端面図である。
 上述の実施例1~3では、樹脂層50が正極電極の長さ方向に亘って連続して設けられている場合について説明した。かかる構成によれば、正極電極の塗工側端部34dを全周長に亘ってシールし、異物の混入を防止することができる。
 しかしながら、樹脂層50を正極電極の長さ方向に全周長に亘って設ける構成の代わりに、必要充分な場所のみに部分的に設けてもよい。例えば、負極金属箔露出部32cは、扁平厚さ方向に束ねられて負極集電板24の負極側接続端部22に超音波溶接されるが、銅微粉などの金属由来の導電性異物(金属異物)は、この超音波溶接の際に発生しやすく、負極金属箔露出部32cのうち、負極集電板24の負極側接続端部22に溶接接合される部分である電極接合部から発生しやすい。
 したがって、例えば図13に示すように、負極金属箔露出部32cの電極接合部に対向する位置に、電極接合部の幅W1に亘るように樹脂層50を設けてもよい。かかる構成により、溶接接合した際に発生する導電性異物が負極金属箔露出部32c側から正極合剤層34b上に混入し難い構造にできる。したがって、導電性異物が正電位に接する確率を激減させることができ、導電性異物に起因するLiデンドライトの発生を抑制し、電池内部の微短絡を抑制できる。また、例えば図14に示すように、捲回群3の平面部の幅W2に亘るように樹脂層50を設けてもよい。
 以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 電池缶
3 捲回群
32 負極電極
32b 負極合剤層
32c 負極金属箔露出部
32e 未塗工側端部
33 セパレータ
34 正極電極
34b 正極合剤層
34c 正極金属箔露出部
35 セパレータ
50 樹脂層
100 角形二次電池

Claims (6)

  1.  正極金属箔露出部と正極合剤層を有する正極電極と、
     負極金属箔露出部と負極合剤層を有する負極電極と、
     セパレータとを重ねて積層させた捲回群を備えた角形二次電池であって、
     前記捲回群は前記正極金属箔露出部と前記負極金属箔露出部とが互いに逆方向に突出されており、
     前記正極電極の前記負極金属箔露出部側には、正極金属箔上に樹脂層が設けられており、
     該樹脂層は、前記負極金属箔露出部の電極接合部に対向する位置に配置されて、前記セパレータに密着されている
     ことを特徴とする角形二次電池。
  2.  前記樹脂層は、前記捲回群の平面部に設けられることを特徴とする請求項1に記載の角形二次電池。
  3.  前記樹脂層は、前記捲回群の捲回方向に連続して設けられることを特徴とする請求項1に記載の角形二次電池。
  4.  前記樹脂層の端部は、前記負極金属箔露出部側の負極合剤層の端部よりも突出しており、
     前記樹脂層と接着される前記セパレータの端部は、前記樹脂層の端部よりも突出していることを特徴とする請求項1から請求項3のいずれか一項に記載の角形二次電池。
  5.  前記樹脂層は、前記セパレータに圧着もしくは熱溶着で固定されていることを特徴とする請求項1から請求項3のいずれか一項に記載の角形二次電池。
  6.  前記樹脂層は、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、アクリル樹脂、メタクリル樹脂のうちの少なくとも1種類を含むことを特徴とする請求項1から請求項3のいずれか一項に記載の角形二次電池。
PCT/JP2017/022646 2016-07-27 2017-06-20 角形二次電池 WO2018020906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529443A JP6684000B2 (ja) 2016-07-27 2017-06-20 角形二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-147800 2016-07-27
JP2016147800 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018020906A1 true WO2018020906A1 (ja) 2018-02-01

Family

ID=61015947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022646 WO2018020906A1 (ja) 2016-07-27 2017-06-20 角形二次電池

Country Status (2)

Country Link
JP (1) JP6684000B2 (ja)
WO (1) WO2018020906A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209112A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 二次電池用電極、二次電池、及び二次電池用電極の製造方法
WO2022212132A1 (en) * 2021-03-31 2022-10-06 Enovix Operations Inc. Electrode assemblies including current limiters, secondary batteries having such electrode assemblies, and methods of testing
US20220399612A1 (en) 2021-06-15 2022-12-15 Enovix Corporation Spacers for providing protection of electrochemical battery enclosures and systems and methods therefor
US11600864B2 (en) 2017-11-15 2023-03-07 Enovix Corporation Constrained electrode assembly
US11894512B2 (en) 2015-05-14 2024-02-06 Enovix Corporation Longitudinal constraints for energy storage devices
US11901514B2 (en) 2016-11-16 2024-02-13 Enovix Corporation Three-dimensional batteries with compressible cathodes
US11961952B2 (en) 2016-05-13 2024-04-16 Enovix Corporation Dimensional constraints for three-dimensional batteries
WO2024077132A3 (en) * 2022-10-05 2024-06-20 Enovix Corporation Electrode assemblies for secondary batteries that include current limiters
US12087947B2 (en) 2017-11-15 2024-09-10 Enovix Corporation Electrode assembly, secondary battery, and method of manufacture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093583A (ja) * 1998-11-16 2001-04-06 Denso Corp 積層型電池及びその電極の製造方法
JP2009037833A (ja) * 2007-08-01 2009-02-19 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
JP2009043515A (ja) * 2007-08-08 2009-02-26 Hitachi Maxell Ltd 電池用電極、その製造方法および前記電池用電極を有する電池
JP2011216403A (ja) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd 角形リチウムイオン二次電池
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
JP2016119183A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 電極体および正極の製造方法
JP2016152170A (ja) * 2015-02-18 2016-08-22 日立オートモティブシステムズ株式会社 角形二次電池及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093583A (ja) * 1998-11-16 2001-04-06 Denso Corp 積層型電池及びその電極の製造方法
JP2009037833A (ja) * 2007-08-01 2009-02-19 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
JP2009043515A (ja) * 2007-08-08 2009-02-26 Hitachi Maxell Ltd 電池用電極、その製造方法および前記電池用電極を有する電池
JP2011216403A (ja) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd 角形リチウムイオン二次電池
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
JP2016119183A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 電極体および正極の製造方法
JP2016152170A (ja) * 2015-02-18 2016-08-22 日立オートモティブシステムズ株式会社 角形二次電池及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894512B2 (en) 2015-05-14 2024-02-06 Enovix Corporation Longitudinal constraints for energy storage devices
US11961952B2 (en) 2016-05-13 2024-04-16 Enovix Corporation Dimensional constraints for three-dimensional batteries
US11901514B2 (en) 2016-11-16 2024-02-13 Enovix Corporation Three-dimensional batteries with compressible cathodes
US11600864B2 (en) 2017-11-15 2023-03-07 Enovix Corporation Constrained electrode assembly
US12087947B2 (en) 2017-11-15 2024-09-10 Enovix Corporation Electrode assembly, secondary battery, and method of manufacture
US12095040B2 (en) 2017-11-15 2024-09-17 Enovix Corporation Constrained electrode assembly
WO2022209112A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 二次電池用電極、二次電池、及び二次電池用電極の製造方法
WO2022212132A1 (en) * 2021-03-31 2022-10-06 Enovix Operations Inc. Electrode assemblies including current limiters, secondary batteries having such electrode assemblies, and methods of testing
US11682812B2 (en) 2021-03-31 2023-06-20 Enovix Corporation Electrode assemblies including current limiters and methods of assembling such electrode assemblies
US20220399612A1 (en) 2021-06-15 2022-12-15 Enovix Corporation Spacers for providing protection of electrochemical battery enclosures and systems and methods therefor
US11699830B2 (en) 2021-06-15 2023-07-11 Enovix Operations Inc. Spacers for providing protection of electrochemical battery enclosures and systems and methods therefor
WO2024077132A3 (en) * 2022-10-05 2024-06-20 Enovix Corporation Electrode assemblies for secondary batteries that include current limiters

Also Published As

Publication number Publication date
JP6684000B2 (ja) 2020-04-22
JPWO2018020906A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6684000B2 (ja) 角形二次電池
WO2010026774A1 (ja) 積層型二次電池
WO2014034241A1 (ja) 角形二次電池
JP6608596B2 (ja) 角形二次電池及びその製造方法
JP6647252B2 (ja) 二次電池
JP2018125110A (ja) 二次電池
WO2015093288A1 (ja) 角形二次電池
JP6586169B2 (ja) 二次電池
JP6494159B2 (ja) 二次電池
JP7117944B2 (ja) 二次電池
JP6401589B2 (ja) リチウム二次電池
JP6715936B2 (ja) 角形二次電池
JP2016139532A (ja) 角形二次電池
JP6978500B2 (ja) 二次電池
JP2018137192A (ja) 角形二次電池
WO2016076108A1 (ja) 角形二次電池
JP2018056085A (ja) 二次電池
JP6504994B2 (ja) 角形蓄電素子
WO2018198469A1 (ja) 二次電池
JP2016081751A (ja) 角形二次電池
JP2018056023A (ja) 二次電池
JP6360305B2 (ja) 角形二次電池
JP6752737B2 (ja) 角形二次電池
JPWO2019003770A1 (ja) 二次電池およびその製造方法
JP6892338B2 (ja) 蓄電装置および蓄電装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529443

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833916

Country of ref document: EP

Kind code of ref document: A1