WO2020017096A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2020017096A1
WO2020017096A1 PCT/JP2019/010438 JP2019010438W WO2020017096A1 WO 2020017096 A1 WO2020017096 A1 WO 2020017096A1 JP 2019010438 W JP2019010438 W JP 2019010438W WO 2020017096 A1 WO2020017096 A1 WO 2020017096A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
secondary battery
battery
base
storage element
Prior art date
Application number
PCT/JP2019/010438
Other languages
English (en)
French (fr)
Inventor
隆幸 鈴木
鈴木 修一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020530890A priority Critical patent/JP7065965B2/ja
Publication of WO2020017096A1 publication Critical patent/WO2020017096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the conventional prismatic secondary battery exhibits an excellent effect in that heat generation at the connection portion of the current collector plate can be suppressed and the battery can withstand a large amount of charge and discharge.
  • the connection portion of the current collector has a thicker portion than the thickness of the fixed portion or the welded portion, the volume and weight of the current collector become excessive, and it is difficult to reduce the size and weight of the prismatic secondary battery.
  • the present disclosure provides a secondary battery that can be made smaller and lighter than conventional ones and that can withstand a large amount of charge and discharge.
  • FIG. 1 is a perspective view showing an example of a secondary battery according to Embodiment 1 of the present disclosure.
  • FIG. 2 is an exploded perspective view of the secondary battery shown in FIG. 1.
  • FIG. 3 is an exploded perspective view of a storage element of the secondary battery illustrated in FIG. 2.
  • FIG. 3 is a sectional view of a current collector plate of the secondary battery shown in FIG. 2.
  • 5 is a simulation result of a current distribution before and after a bent portion of the current collector plate shown in FIG.
  • FIG. 5 is a cross-sectional view of a current collector plate corresponding to FIG. 4 of the secondary battery according to Embodiment 2 of the present disclosure.
  • FIG. 5 is a cross-sectional view of a current collector corresponding to FIG.
  • FIG. 1 is a perspective view illustrating an example of a secondary battery 100 according to Embodiment 1 of the present disclosure.
  • FIG. 2 is an exploded perspective view of the secondary battery 100 shown in FIG.
  • the secondary battery 100 of the present embodiment is, for example, a prismatic secondary battery used for a power storage device of an electric vehicle (EV) or a hybrid electric vehicle (HEV), and more specifically, for example, a prismatic lithium ion secondary battery.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the secondary battery 100 of the present embodiment has the following main features as its main features.
  • the secondary battery 100 includes a rectangular battery container 10, a power storage element 30 housed in the battery container 10, a pair of current collectors 40 connected to the power storage element 30, and a pair of current collectors 40. And a pair of external terminals 20 connected to each other and exposed to the outside of the battery case 10.
  • the current collecting plate 40 includes a base 41 connected to the external terminal 20, an extending portion 42 extending in a direction intersecting the base 41, a joining portion 42 a of the extending portion 42 connected to the power storage element 30, and a base 41. And a bent portion 43 provided between them.
  • the bent portion 43 is on the side opposite to the power storage element 30 in a cross section (see FIG.
  • each part of the secondary battery 100 of the present embodiment is described using an XYZ rectangular coordinate system in which the width direction of the flat rectangular secondary battery 100 is the X direction, the thickness direction is the Y direction, and the height direction is the Z direction.
  • the configuration may be described.
  • the directions of up, down, left, and right in the following description are convenient directions for describing the configuration of each part of the secondary battery 100 based on the drawings, and are not limited to the vertical direction and the horizontal direction.
  • the battery case 10 is a metal case having a flat rectangular box shape, for example.
  • the battery case 10 has a pair of wide side surfaces 10w along the width direction (X direction), a pair of narrow side surfaces 10n along the thickness direction (Y direction), an elongated rectangular upper surface 10t and a bottom surface 10b.
  • the wide side surface 10w has the largest area among the wide side surface 10w, the narrow side surface 10n, the upper surface 10t, and the bottom surface 10b.
  • the battery container 10 has, for example, a flat rectangular battery can 11 having one end opened in the height direction (Z direction), and a rectangular plate-shaped battery lid 12 that closes an opening 11 a of the battery can 11. ing.
  • the battery container 10 has a battery can 11 having an opening 11a of the battery can 11 into which the power storage element 30 is inserted, and the battery lid 12 being welded over the entire periphery of the opening 11a of the battery can 11 by, for example, laser welding. Opening 11 a is sealed by the battery lid 12.
  • the current collecting plate 40 is a plate-like member bent into a predetermined shape as shown in FIG. 2, and is connected to the power storage element 30.
  • the current collector 40 includes a positive current collector 40P that connects the positive electrode 31 and the positive external terminal 20P, and a negative current collector 40N that connects the negative electrode 32 and the negative external terminal 20N.
  • the material of the positive electrode current collector plate 40P is, for example, aluminum or an aluminum alloy.
  • the material of the negative electrode current collector plate 40N is, for example, copper or a copper alloy.
  • the negative electrode 32 has a negative electrode metal foil 32a as a negative electrode current collector, a negative electrode mixture layer 32b formed on both front and back surfaces thereof, and a foil exposed portion where the negative electrode metal foil 32a is exposed from the negative electrode mixture layer 32b. Part 32c.
  • the foil exposed portion 32c of the negative electrode 32 is provided on one side in the width direction (X direction) of the long strip-shaped negative electrode 32, that is, on one side of the winding axis 30A of the power storage element 30.
  • the negative electrode metal foil 32a is, for example, a copper foil having a thickness of about 10 ⁇ m.
  • the negative electrode mixture layer 32b is formed by, for example, applying a slurry-like negative electrode mixture on both the front and back surfaces of the negative electrode metal foil 32a except for the foil exposed portion 32c, drying the applied negative electrode mixture, and pressing the mixture. Have been. Thereafter, the negative electrode electrode 32 can be manufactured by appropriately cutting the negative electrode metal foil 32a on which the negative electrode mixture layer 32b is formed.
  • the thickness of the negative electrode mixture layer 32b not including the negative electrode metal foil 32a is, for example, about 70 ⁇ m.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the positive electrode mixture layer 31b is formed, for example, by applying a slurry-type positive electrode mixture to both the front and back surfaces of the positive electrode metal foil 31a except for the foil exposed portion 31c, drying the applied positive electrode mixture, and pressing. Have been. Then, the positive electrode 31 can be manufactured by appropriately cutting the positive metal foil 31a on which the positive electrode mixture layer 31b is formed.
  • the thickness of the positive electrode material mixture layer 31b not including the positive metal foil 31a is, for example, about 90 ⁇ m.
  • the slurry of the positive electrode mixture is, for example, 100 parts by weight of lithium manganate (chemical formula: LiMn 2 O 4 ) as a positive electrode active material, 10 parts by weight of flake graphite as a conductive material, and a binder. A mixture obtained by adding 10 parts by weight of PVDF and further kneading by adding NMP as a dispersion solvent can be used.
  • the positive electrode active material contained in the positive electrode mixture layer 31b is not limited to the above-described lithium manganate.
  • the positive electrode active material another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element can be used.
  • the positive electrode active material lithium cobalt oxide or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide partially substituted or doped with a metal element may be used.
  • the binder used in the negative electrode mixture and the positive electrode mixture is not limited to PVDF.
  • the binder include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.
  • PTFE polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber styrene butadiene rubber
  • polysulfide rubber nitrocellulose
  • cyanoethylcellulose various latexes
  • acrylonitrile vinyl fluoride
  • Polymers such as vinyliden
  • the electricity storage element 30 may have a core for laminating and winding the negative electrode 32, the separator 33, the positive electrode 31, and the separator 34.
  • the shaft core for example, a material obtained by winding a resin sheet having higher bending rigidity than the positive electrode metal foil 31a, the negative electrode metal foil 32a, and the separators 33 and 34 can be used.
  • the dimension of the negative electrode mixture layer 32b in the direction of the winding axis 30A (the X direction) is larger than the dimension of the positive electrode mixture layer 31b, and the positive electrode mixture layer 31b is always disposed between the negative electrode mixture layer 32b. It is configured to be sandwiched between.
  • the exposed foil portion 31c of the positive electrode 31 and the exposed foil portion 32c of the negative electrode 32 are wound at one end and the other end in the winding axis 30A direction (X direction), respectively, as shown in FIG. It is laminated. Further, the foil exposed portions 31c and 32c are each bundled flat as shown in FIG. 2 and are joined to the joining portion 42a of the extending portion 42 of the current collector 40 by, for example, ultrasonic joining or resistance welding.
  • the dimensions of the separators 33 and 34 are larger than the dimensions of the negative electrode mixture layer 32b.
  • the ends of the separators 33 and 34 are arranged at positions inside the ends of the foil exposed portions 31c and 32c of the positive electrode 31 and the negative electrode 32 in the winding axis 30A direction (X direction). Therefore, there is no problem when the foil exposed portions 31c and 32c of the positive electrode 31 and the negative electrode 32 are bundled and joined to the joining portion 42a of the extending portion 42 of the positive current collecting plate 40P and the negative current collecting plate 40N, respectively. .
  • the base 41 of the current collecting plate 40 is fixed to the battery lid 12 via the plate-shaped insulating member 14 and is electrically connected to the external terminal 20. More specifically, the connection portion 22 of the external terminal 20 includes, for example, the through hole 13 a of the gasket 13, the through hole 12 a of the battery cover 12, the through hole 14 a of the insulating member 14, and the base 41 of the current collector 40.
  • the current collector plate 40 is inserted through the through-hole 41 a and plastically deformed and crimped on the lower surface of the base 41 of the current collector 40 so as to expand the diameter.
  • the external terminal 20 and the current collecting plate 40 are electrically connected to each other, and are fixed to the battery lid 12 in a state of being electrically insulated via the gasket 13 and the insulating member 14. Further, by joining the joining portion 42 a of the extending portion 42 of the current collecting plate 40 to the laminated portion 35 of the foil exposed portions 31 c and 32 c of the electricity storage element 30, the electrodes 31 and 32 constituting the electricity storage element 30 are It is electrically connected to the external terminal 20 via the current collector plate 40.
  • the material of the gasket 13 and the insulating member 14 is an electrically insulating resin such as polybutylene terephthalate, polyphenylene sulfide, or perfluoroalkoxy fluororesin.
  • the power storage element 30 is joined to the current collecting plate 40 and is fixed to the battery lid 12 via the current collecting plate 40, and is covered with an insulating sheet 50 made of resin having electrical insulating properties. It is inserted into the battery can 11 through the opening 11a.
  • the insulating sheet 50 is formed of one sheet or a plurality of film members made of a synthetic resin such as polypropylene.
  • the insulating sheet 50 has a size and a shape that can cover substantially the entire power storage element 30 to which the current collecting plate 40 is joined together with the current collecting plate 40.
  • the electricity storage element 30 is wound into a flat shape, and has semi-cylindrical curved portions 30 b provided at both ends in the height direction of the battery container 10, and a flat space between the curved portions 30 b. And a flat portion 30a.
  • the energy storage element 30 is inserted into the battery can 11 from one curved portion 30b so that the winding axis 30A extends along the width direction (X direction) of the secondary battery 100, and the other curved portion 30b is Are arranged opposite to each other.
  • the battery lid 12 is joined over the entire periphery of the opening 11 a of the battery can 11 to form the battery container 10, and the electrolyte is injected into the battery container 10 through the injection hole 16, An injection plug 17 is joined to the injection hole 16 and sealed.
  • the secondary battery 100 is charged by supplying power to the electrodes 31 and 32 of the power storage element 30 via the external terminals 20 and the current collector plate 40, and is charged from the electrodes 31 and 32 of the power storage element 30. Electric power can be supplied to the outside through the electric plate 40 and the external terminals 20.
  • FIG. 4 is a cross-sectional view of the current collector plate 40 of the secondary battery 100 shown in FIG. More specifically, FIG. 4 is a cross-sectional view of the bent portion 43 of the current collector plate 40 shown in FIG. 2, that is, the positive electrode current collector plate 40P and the negative electrode current collector plate 40N.
  • FIG. 10 is a cross-sectional view of a cross section orthogonal to the surface 42b and extending along the extension direction DL of the extension 42.
  • the bent portion 43 of the current collector plate 40 has a built-up portion 43d on the side opposite to the curved surface 43a.
  • the built-up portion 43 d stores more power than the extension line L2 of the surface 42 b of the extension portion 42 facing the power storage element 30 and the extension line L1 of the inner surface 41 b of the base 41 facing the power storage element 30. Overhangs towards element 30.
  • the inner surface of the bent portion 43 facing the power storage element 30 is an arc-shaped concave curved surface 43e.
  • the diameter d2 of the curvature circle C2 of the concave curved surface 43e of the bent portion 43 is smaller than the diameter d1 of the curvature circle C2 of the curved surface 43a of the outer surface 43b of the bent portion 43.
  • the bent portion 43 is provided between the base 41 and the extending portion 42.
  • the secondary battery 100 may have the bent portion 43 on both the positive current collector 40P and the negative current collector 40N, but the bent portion 43 is provided on at least one of the positive current collector 40P and the negative current collector 40N. You only need to have it.
  • the extending portion 42 of the current collecting plate 40 may have a plurality of bent portions 43, 44, 45 between the joining portion 42 a and the base 41.
  • the current collector 40 can be manufactured, for example, as follows. First, a metal plate as a base material of the current collector plate 40 is punched into a predetermined shape by press working, and the thickness of the base 41, the extending portion 42, and the bent portion 43 is adjusted by, for example, press molding. Next, the current collector plate 40 is manufactured by bending a material punched into a predetermined shape and having a thickness adjusted into a predetermined shape by press working. Further, the overlay portion 43d may be formed by overlaying such as brazing.
  • a current flows through the current collectors 40. More specifically, in the positive electrode current collector plate 40P, from the joining portion 42a of the extending portion 42 joined to the foil exposed portion 31c of the positive electrode 31 of the power storage element 30 to the base 41 connected to the positive electrode external terminal 20P. The current flows toward.
  • the conventional prismatic secondary battery described in Patent Literature 1 has a current collector plate fixed to a battery lid, and a welded portion welded to a metal foil exposed portion of a winding group. And a connecting portion for connecting between the fixed portion and the welded portion.
  • the connection part has a width
  • the secondary battery 100 of the present embodiment has a rectangular battery container 10, a power storage element 30 housed in the battery container 10, and a pair of collectors connected to the power storage element 30.
  • the battery pack includes a power plate 40 and a pair of external terminals 20 connected to the pair of current collector plates 40 and exposed to the outside of the battery case 10.
  • the current collecting plate 40 includes a base 41 connected to the external terminal 20, an extending portion 42 extending in a direction intersecting the base 41, a joining portion 42 a of the extending portion 42 connected to the power storage element 30, and a base 41. And a bent portion 43 provided between them. As shown in FIG.
  • the thickness T3 in the bent portion 43 of the current collector plate 40 it is possible to sufficiently increase the thickness T3 in the bent portion 43 of the current collector plate 40 to suppress an increase in electric resistance, suppress heat generation, and withstand a large current charge / discharge.
  • the secondary battery 100 can be provided. Furthermore, by removing the portion of the bent portion 43 where the current density is low on the outer surface 43 b side opposite to the power storage element 30, the current density can be made uniform throughout the bent portion 43, and the current collector plate 40 can be made uniform. Unnecessary increase in the volume and the weight of the can be suppressed.
  • FIG. 7 is a cross-sectional view of a current collector plate 40 corresponding to FIG. 4 of the secondary battery according to Embodiment 3 of the present disclosure.
  • the same portions as those of the secondary battery 100 according to the first embodiment described above are denoted by the same reference numerals as those of the secondary battery 100 according to the first embodiment, and the description will be appropriately omitted.
  • the diameter d1 of the curvature circle C1 of the curved surface 43a on the outer surface 43b of the bent portion 43 facing the power storage element 30 is opposite to the bent portion facing the power storage element 30.
  • the arc-shaped concave curved surface 43e which is the inner surface of 43, is smaller than the diameter d2 of the curvature circle C2.
  • the thickness T3 of the bent portion 43 is, for example, a direction perpendicular to a tangent to each point on the concave curved surface 43e which is the inner surface of the bent portion 43, that is, the inner surface of the bent portion 43. Is the dimension of the bent portion 43 in the radial direction of the curvature circle C2 of the concave curved surface 43e.
  • the current distribution can be uniformed over the entire bent portion 43 to suppress heat generation, and the volume and weight of the current collector plate 40 can be reduced. It becomes possible to reduce. Therefore, according to the present embodiment, similarly to Embodiment 1 described above, it is possible to provide a secondary battery that can be made smaller and lighter than the related art and can withstand a large amount of charge and discharge.
  • FIG. 8 is a cross-sectional view of a current collector plate 40 corresponding to FIG. 4 of the secondary battery according to Embodiment 4 of the present disclosure.
  • the same portions as those of the secondary battery 100 according to the first embodiment described above are denoted by the same reference numerals as those of the secondary battery 100 according to the first embodiment, and the description will be appropriately omitted.
  • the inner surface of the built-up portion 43d of the bent portion 43 of the current collecting plate 40 facing the power storage element 30 is a flat inclined surface 43f.
  • the thickness T3 of the bent portion 43 is, for example, a direction perpendicular to a tangent to each point on the outer surface 43b of the bent portion 43 facing the power storage element 30, that is, the curved surface 43a. In the radius direction of the curvature circle C1 or the normal direction of the flat surface 43c.
  • the current distribution can be uniformed over the entire bent portion 43 to suppress heat generation, and the volume and weight of the current collector plate 40 can be reduced. It becomes possible to reduce. Therefore, according to the present embodiment, similarly to Embodiment 1 described above, it is possible to provide a secondary battery that can be made smaller and lighter than the related art and can withstand a large amount of charge and discharge.
  • the maximum thickness T3 ′ of the bent portion 43 of the current collector plate 40 is larger than the thickness T1 of the base 41 and the thickness T2 of the extending portion 42.
  • the electric resistance of the bent portion 43 can be further reduced as compared with the secondary battery 100 of Embodiment 1 described above. Therefore, according to the present embodiment, as compared with the secondary battery 100 of Embodiment 1 described above, a secondary battery that can further suppress the heat generation of the bent portion 43 and can withstand a larger current charge and discharge can be used. Can be provided.
  • the bent portion 43 is orthogonal to the surface 42 b of the extending portion 42 facing the power storage element 30 and, on the cross section along the extension direction DL of the extension portion 42, on the opposite side to the power storage element 30. It has an arc-shaped curved surface 43a.
  • the diameter d1 of the curvature circle C1 of the curved surface 43a is equal to or greater than the thickness T2 of the extending portion 42 continuing to the bent portion 43 and the thickness T1 of the base 41.
  • the thickness T3 of the bent portion 43 is equal to or greater than the thickness T2 of the extending portion 42 or the thickness T1 of the base 41.
  • the inner surface of the built-up portion 43 d of the bent portion 43 of the current collector 40 facing the power storage element 30 has an arc-shaped convex shape facing the power storage element 30. It is a convex curved surface 43g.
  • the thickness T3 of the bent portion 43 is, for example, a direction perpendicular to a tangent to each point on the outer surface 43b of the bent portion 43 facing the power storage element 30, that is, the curved surface 43a. In the radius direction of the curvature circle C1 or the normal direction of the flat surface 43c.

Abstract

本開示は、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することを課題とする。その解決手段は、角形の電池容器と、蓄電要素と、集電板40と、外部端子とを備える二次電池である。集電板40は、基部41と、その基部41に交差する方向に延びる延在部42と、延在部42の接合部と基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上であり、屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。

Description

二次電池
 本開示は、二次電池に関する。
 従来から電池缶の内部に捲回群が収納され、その捲回群から集電板を介して電力を取り出す二次電池において、集電板の構造を改良した角形二次電池に関する発明が知られている(下記特許文献1を参照)。
 特許文献1に記載された従来の角形二次電池は、金属箔露出部を有する電極が捲回された扁平状の捲回群と、その捲回群を収納する電池缶と、その電池缶を封口する電池蓋と、その電池蓋に設けた外部端子と、その外部端子と捲回群を電気的に接続する集電板とを有している。この従来の角形二次電池は、集電板の次の構成に特徴を有している。すなわち、集電板は、電池蓋に固定される固定部と、捲回群の金属箔露出部に溶接される溶接部と、固定部と溶接部との間を接続する接続部を有し、接続部が固定部および溶接部の幅以下の幅部分と、固定部または溶接部よりも厚い厚さ部分を有している(同文献、請求項1等を参照)。
 このように、接続部の厚みを固定部の厚みまたは溶接部の厚みよりも厚くすることで、固定部または溶接部と比較して接続部の電流抵抗値を低くすることができ、接続部の発熱を抑制することができる(同文献、第0007段落、第0039段落、第0051段落、第0058段落、第0063段落、第0091段落等を参照)。
国際公開第2016/047199号
 前記従来の角形二次電池は、集電板の接続部の発熱を抑制することができ、大電流の充放電に耐え得る点で優れた効果を発揮する。しかし、集電板の接続部が固定部または溶接部の厚みよりも厚い厚さ部分を有する場合には、集電板の体積および重量が過大になり、角形二次電池の小型軽量化が困難になるおそれがある。
 本開示は、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供する。
 本開示の一態様は、角形の電池容器と、該電池容器に収容された蓄電要素と、該蓄電要素に接続された一対の集電板と、該一対の集電板にそれぞれ接続され前記電池容器の外部に露出した一対の外部端子と、を備えた二次電池であって、前記集電板は、前記外部端子に接続された基部と、該基部に交差する方向に延びる延在部と、該延在部の前記蓄電要素に接合された接合部と前記基部との間に設けられた屈曲部と、を有し、前記屈曲部は、前記蓄電要素に対向する前記延在部の表面に直交しかつ前記延在部の延在方向に沿う断面において、前記蓄電要素と反対側に円弧状の湾曲面を有し、前記湾曲面の曲率円の直径は、前記延在部の厚さおよび前記基部の厚さ以上であり、前記屈曲部の厚さは、前記延在部の厚さまたは前記基部の厚さ以上であることを特徴とする二次電池である。
 本開示によれば、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することができる。
本開示の実施形態1に係る二次電池の一例を示す斜視図。 図1に示す二次電池の分解斜視図。 図2に示す二次電池の蓄電要素の分解斜視図。 図2に示す二次電池の集電板の断面図。 図4に示す集電板の屈曲部の前後の電流分布のシミュレーション結果。 本開示の実施形態2に係る二次電池の図4に相当する集電板の断面図。 本開示の実施形態3に係る二次電池の図4に相当する集電板の断面図。 本開示の実施形態4に係る二次電池の図4に相当する集電板の断面図。 本開示の実施形態5に係る二次電池の図4に相当する集電板の断面図。
 以下、図面を参照して本開示に係る二次電池の実施形態を説明する。
(実施形態1)
 図1は、本開示の実施形態1に係る二次電池100の一例を示す斜視図である。図2は、図1に示す二次電池100の分解斜視図である。本実施形態の二次電池100は、たとえば、電気自動車(EV)やハイブリッド電気自動車(HEV)の蓄電装置に使用される角形二次電池であり、より詳細には、たとえば、角形のリチウムイオン二次電池である。
 詳細については後述するが、本実施形態の二次電池100は、次の構成を主要な特徴としている。二次電池100は、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面(図4を参照。)において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 以下、本実施形態の二次電池100の各部の構成を詳細に説明する。なお、各図面では、扁平角形の二次電池100の幅方向をX方向、厚さ方向をY方向、高さ方向をZ方向とするXYZ直交座標系を用いて、二次電池100の各部の構成を説明する場合がある。また、以下の説明における上下左右の方向は、図面に基づいて二次電池100の各部の構成を説明するための便宜的な方向であり、鉛直方向や水平方向に限定されない。
 電池容器10は、たとえば扁平な矩形箱形の形状を有する金属製の容器である。電池容器10は、幅方向(X方向)に沿う一対の広側面10wと、厚さ方向(Y方向)に沿う一対の狭側面10nと、細長い長方形の上面10tおよび底面10bを有している。これら広側面10w、狭側面10n、上面10tおよび底面10bのうち、広側面10wが最大の面積を有している。
 電池容器10は、たとえば、高さ方向(Z方向)の一端が開放された扁平角形の電池缶11と、その電池缶11の開口部11aを閉塞する長方形板状の電池蓋12とを有している。電池容器10は、電池缶11の開口部11aから蓄電要素30が内部に挿入され、たとえばレーザ溶接によって電池缶11の開口部11aの全周にわたって電池蓋12が溶接されることで、電池缶11の開口部11aが電池蓋12によって封止されている。
 電池蓋12は、二次電池100の幅方向(X方向)である長手方向の両端部に外部端子20の一部を挿通させる貫通孔12aを有している。また、電池蓋12は、長手方向の中央部にガス排出弁15を有している。ガス排出弁15は、たとえば、電池蓋12の一部をプレス加工して薄肉化し、スリットを形成した部分であり、電池蓋12と一体的に設けられている。ガス排出弁15は、電池容器10の内圧が所定の圧力まで上昇したときに開裂して、電池容器10の内部のガスを排出することで、電池容器10の内圧を低減して二次電池100の安全性を確保する。
 電池蓋12は、たとえば貫通孔12aとガス排出弁15との間に注液孔16を有している。注液孔16は、電池蓋12の内部に電解液を注入するために設けられ、電解液の注入後に、たとえばレーザ溶接によって注液栓17を接合することによって封止される。電池容器10内に注入される電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を使用することができる。
 一対の外部端子20は、電池蓋12の外面すなわち電池容器10の上面10tの長手方向に離隔して配置され、電池蓋12を貫通して電池容器10の内部でそれぞれ一対の集電板40の基部41に接続されている。外部端子20は、正極外部端子20Pと負極外部端子20Nを含んでいる。正極外部端子20Pの素材は、たとえばアルミニウムまたはアルミニウム合金である。負極外部端子20Nの素材は、たとえば銅または銅合金である。
 外部端子20は、たとえばバスバーに接合される接合部21と、集電板40に接続される接続部22とを有している。接合部21は、おおむね直方体形状の矩形のブロック状の形状を有し、電気絶縁性を有するガスケット13を介して電池蓋12の外面すなわち電池容器10の上面10tに配置される。接続部22は、電池蓋12に対向する接合部21の底面から電池蓋12を貫通する方向に延びる円柱状または円筒状の部分である。
 集電板40は、図2に示すように、所定の形状に屈曲された板状の部材であり、蓄電要素30に接続されている。集電板40は、正極電極31と正極外部端子20Pとを接続する正極集電板40Pと、負極電極32と負極外部端子20Nとを接続する負極集電板40Nとを含む。正極集電板40Pの素材は、たとえばアルミニウムまたはアルミニウム合金である。負極集電板40Nの素材は、たとえば銅または銅合金である。
 集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接合された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。基部41は、電池蓋12の内面に沿って配置され、延在部42は、電池蓋12の内面に直交する方向へ向けて延びている。延在部42の接合部42aは、蓄電要素30の箔露出部31c,32cが捲回されて扁平に積層された積層部35に対して、たとえば、超音波接合によって接合されている。
 図3は、図2に示す二次電池100の電池容器10の内部に収容された蓄電要素30の一部を展開した状態を示す分解斜視図である。蓄電要素30は、たとえば電極31,32と、この電極31,32間を絶縁する絶縁体であるセパレータ33,34とを備え、これら電極31,32とセパレータ33,34とが交互に積層されて捲回された構成を有する捲回電極群である。より具体的には、蓄電要素30は、たとえば正極電極31と、セパレータ33と、負極電極32と、セパレータ34とを備え、これらが積層されて捲回された構成を有している。蓄電要素30において、最内周と最外周に捲回された電極は負極電極32であり、最外周に捲回された負極電極32の外周にさらにセパレータ33,34が捲回されている。
 負極電極32は、負極集電体である負極金属箔32aと、その表裏両面に形成された負極合剤層32bと、その負極合剤層32bから負極金属箔32aが露出した部分である箔露出部32cとを有している。負極電極32の箔露出部32cは、長尺帯状の負極電極32の幅方向(X方向)、すなわち蓄電要素30の捲回軸30A方向の一側に設けられている。負極金属箔32aは、たとえば厚さが約10μm程度の銅箔である。
 負極合剤層32bは、たとえば、負極金属箔32aの表裏両面に、箔露出部32cを除いてスラリー状の負極合剤を塗布し、塗布された負極合剤を乾燥させてプレスすることで形成されている。その後、負極合剤層32bが形成された負極金属箔32aを、適宜、裁断することによって負極電極32を製作することができる。負極金属箔32aを含まない負極合剤層32bの厚さは、たとえば約70μm程度である。負極合剤のスラリーとしては、たとえば、負極活物質である100重量部の非晶質炭素粉末に対し、結着剤である10重量部のポリフッ化ビニリデン(PVDF)を添加し、さらに分散溶媒としてN-メチルピロリドン(NMP)を添加して混練したものを用いることができる。
 なお、負極合剤層32bに含まれる負極活物質は、前述の非晶質炭素に限定されない。たとえば、負極活物質として、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(たとえば、SiO、TiSiなど)、またはこれらの複合材料を用いてもよい。また、負極活物質の粒子形状は特に制限されず、たとえば、鱗片状、球状、繊維状、塊状などであってもよい。
 正極電極31は、正極集電体である正極金属箔31aと、その表裏両面に形成された正極合剤層31bと、その正極合剤層31bから正極金属箔31aが露出した部分である箔露出部31cとを有している。正極電極31の箔露出部31cは、長尺帯状の正極電極31の幅方向(X方向)、すなわち蓄電要素30の捲回軸30A方向において、負極電極32の箔露出部32cと反対側の一側に設けられている。正極金属箔31aは、たとえば厚さが約20μm程度のアルミニウム箔である。
 正極合剤層31bは、たとえば、正極金属箔31aの表裏両面に、箔露出部31cを除いてスラリー状の正極合剤を塗布し、塗布された正極合剤を乾燥させてプレスすることで形成されている。その後、正極合剤層31bが形成された正極金属箔31aを、適宜、裁断することによって正極電極31を製作することができる。正極金属箔31aを含まない正極合剤層31bの厚さは、たとえば約90μm程度である。正極合剤のスラリーとしては、たとえば、正極活物質である100重量部のマンガン酸リチウム(化学式LiMn)に対し、導電材である10重量部の鱗片状黒鉛と、結着剤である10重量部のPVDFとを添加し、さらに分散溶媒としてNMPを添加して混練したものを用いることができる。
 なお、正極合剤層31bに含まれる正極活物質は、前述のマンガン酸リチウムに限定されない。たとえば、正極活物質として、スピネル結晶構造を有する他のマンガン酸リチウム、一部を金属元素で置換またはドープしたリチウムマンガン複合酸化物を用いることができる。また、正極活物質として、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いてもよい。
 また、負極合剤および正極合剤に用いられる結着剤は、PVDFに限定されない。結着剤としては、たとえば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 図示は省略するが、蓄電要素30は、負極電極32、セパレータ33、正極電極31、およびセパレータ34を積層させて捲回するための軸芯を有してもよい。軸芯としては、たとえば、正極金属箔31a、負極金属箔32a、およびセパレータ33,34よりも曲げ剛性の高い樹脂シートを捲回したものを用いることができる。また、蓄電要素30は、捲回軸30A方向(X方向)において負極合剤層32bの寸法が正極合剤層31bの寸法よりも大きく、正極合剤層31bが必ず負極合剤層32bの間に挟まれるように構成されている。
 蓄電要素30において、正極電極31の箔露出部31cと負極電極32の箔露出部32cは、それぞれ、図3に示すように捲回軸30A方向(X方向)の一端と他端で捲回されて積層されている。さらに、箔露出部31c,32cは、それぞれ、図2に示すように扁平に束ねられ、たとえば超音波接合や抵抗溶接によって集電板40の延在部42の接合部42aに接合されている。
 なお、捲回軸30A方向(X方向)において、セパレータ33,34の寸法は、負極合剤層32bの寸法よりも大きい。しかし、セパレータ33,34の端部は、正極電極31および負極電極32の箔露出部31c,32cの端部よりも、捲回軸30A方向(X方向)における内側の位置に配置されている。そのため、正極電極31および負極電極32の箔露出部31c,32cを束ねて、それぞれ、正極集電板40Pおよび負極集電板40Nの延在部42の接合部42aに接合する際に支障はない。
 集電板40の基部41は、板状の絶縁部材14を介して電池蓋12に固定され、外部端子20に電気的に接続されている。より詳細には、外部端子20の接続部22が、たとえば、ガスケット13の貫通孔13aと、電池蓋12の貫通孔12aと、絶縁部材14の貫通孔14aと、集電板40の基部41の貫通孔41aに挿通され、集電板40の基部41の下面で先端を拡径させるように塑性変形させてかしめられている。
 これにより、外部端子20と集電板40とが、互いに電気的に接続され、電池蓋12に対してガスケット13と絶縁部材14を介して電気的に絶縁された状態で固定されている。また、集電板40の延在部42の接合部42aが、蓄電要素30の箔露出部31c,32cの積層部35に接合されることで、蓄電要素30を構成する電極31,32が、集電板40を介して外部端子20に電気的に接続されている。ガスケット13および絶縁部材14の素材は、たとえばポリブチレンテレフタレート、ポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂などの電気絶縁性を有する樹脂である。
 蓄電要素30は、集電板40に接合され、集電板40を介して電池蓋12に固定された状態で、電気絶縁性を有する樹脂製の絶縁シート50によって覆われて、電池缶11の開口部11aから電池缶11内に挿入される。絶縁シート50は、たとえばポリプロピレンなどの合成樹脂を素材とする一枚のシートまたは複数のフィルム部材からなる。絶縁シート50は、集電板40が接合された蓄電要素30のおおむね全体を集電板40とともに覆うことができる寸法および形状を有している。
 図3に示すように、蓄電要素30は、扁平形状に捲回され、電池容器10の高さ方向の両端部に設けられた半円筒状の湾曲部30bと、これら湾曲部30bの間の平坦な平坦部30aとを有している。蓄電要素30は、捲回軸30A方向が二次電池100の幅方向(X方向)に沿うように、一方の湾曲部30bから電池缶11内に挿入され、他方の湾曲部30bが電池蓋12に対向して配置される。その後、前述のように、電池蓋12を電池缶11の開口部11aの全周にわたって接合して電池容器10を構成し、注液孔16を介して電池容器10内に電解液を注入し、注液孔16に注液栓17を接合して封止する。
 以上の構成により、二次電池100は、外部端子20と集電板40を介して蓄電要素30の電極31,32に電力を供給することで充電され、蓄電要素30の電極31,32から集電板40および外部端子20を介して外部へ電力を供給することができる。
 図4は、図2に示す二次電池100の集電板40の断面図である。より詳細には、図4は、図2に示す集電板40、すなわち正極集電板40Pおよび負極集電板40Nの屈曲部43の断面図であり、延在部42の蓄電要素30に対向する表面42bに直交し、かつ延在部42の延在方向DLに沿う断面における断面図である。
 前述のように、集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、その延在部42の蓄電要素30に接合された接合部42aと基部41との間に設けられた屈曲部43と、を有している。図4に示すように、屈曲部43は、蓄電要素30に対向する延在部42の表面42bに直交し、かつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 より具体的には、本実施形態の二次電池100において、集電板40は、基部41の厚さT1が、延在部42の厚さT2よりも厚く、屈曲部43の厚さT3が、延在部42の厚さT2以上かつ基部41の厚さT1以下である。屈曲部43の厚さT3は、たとえば、延在部42との境界B2から基部41との境界B1へ向けて、漸次、厚くなっている。基部41の厚さT1と屈曲部43の厚さT3は、たとえば、基部41と屈曲部43との境界B1で等しくなっている。同様に、屈曲部43の厚さT3と延在部42の厚さT2は、たとえば、屈曲部43と延在部42との境界B2で等しくなっている。
 図4に示すように、蓄電要素30に対向する延在部42の表面42bに直交し、かつ延在部42の延在方向DLに沿う断面において、屈曲部43の厚さT3は、たとえば、蓄電要素30と反対を向く屈曲部43の外表面43b上の各点における接線TLに垂直な方向の寸法である。図4に示す例において、屈曲部43の外表面43bは、湾曲面43aと、湾曲面43aと延在部42の外表面42cとの間の平坦面43cと、を含んでいる。すなわち、屈曲部43の厚さT3は、たとえば、湾曲面43aの曲率円C1の径方向または平坦面43cの法線方向における屈曲部43の寸法である。
 本実施形態の二次電池100において、集電板40の屈曲部43は、湾曲面43aと反対側に肉盛部43dを有している。図4に示す断面において、肉盛部43dは、蓄電要素30に対向する延在部42の表面42bの延長線L2および蓄電要素30に対向する基部41の内表面41bの延長線L1よりも蓄電要素30に向けて張り出している。また、図4に示す例において、蓄電要素30に対向する屈曲部43の内表面は、円弧状の凹曲面43eである。屈曲部43の凹曲面43eの曲率円C2の直径d2は、屈曲部43の外表面43bの湾曲面43aの曲率円C2の直径d1よりも小さい。
 本実施形態の二次電池100において、屈曲部43は、基部41と延在部42との間に設けられている。二次電池100は、正極集電板40Pと負極集電板40Nの双方に屈曲部43を有してもよいが、正極集電板40Pと負極集電板40Nの少なくとも一方に屈曲部43を有していればよい。また、集電板40の延在部42は、図2に示すように、接合部42aと基部41との間に、複数の屈曲部43,44,45を有してもよい。この場合、屈曲部44,45は、屈曲部43と同様の湾曲面を有し、その湾曲面の曲率円の直径が、延在部42の厚さT2および基部41の厚さT1以上であり、屈曲部44,45の厚さが延在部42の厚さT2または基部41の厚さT1以上であってもよい。
 集電板40は、たとえば、次のように製造することができる。まず、集電板40の母材である金属板をプレス加工によって所定の形状に打ち抜き、たとえばプレス成型により基部41、延在部42、屈曲部43となる部分の厚さを調整する。次に、所定の形状に打ち抜かれて厚さが調整された材料を、プレス加工によって所定の形状に曲げ加工を行って、集電板40を製造する。さらに、たとえばろう付けなどの肉盛加工によって肉盛部43dを形成してもよい。
 以下、本実施形態の二次電池100の作用を、従来の角形二次電池との対比に基づいて説明する。
 本実施形態の二次電池100は、前述のように、たとえばEVやHEVの蓄電装置に使用され、外部から供給された電力を、一対の外部端子20および一対の集電板40を介して蓄電要素30に充電する。また、蓄電要素30に充電された電力を、一対の集電板40および一対の外部端子20を介して外部へ供給する。
 このように、たとえば、蓄電要素30に充電された電力を、一対の集電板40および一対の外部端子20を介して外部へ供給するときに、集電板40に電流が流れる。より具体的には、正極集電板40Pでは、蓄電要素30の正極電極31の箔露出部31cに接合された延在部42の接合部42aから、正極外部端子20Pに接続された基部41へ向けて電流が流れる。
 前述のように、特許文献1に記載された従来の角形二次電池は、集電板が、電池蓋に固定される固定部と、捲回群の金属箔露出部に溶接される溶接部と、固定部と溶接部との間を接続する接続部を有している。そして、接続部が固定部および溶接部の幅以下の幅部分と、固定部または溶接部よりも厚い厚さ部分を有している。この厚さ部分を有することで、集電板の接続部の発熱を抑制することができ、大電流の充放電に耐え得る角形二次電池を提供することができる。
 しかし、この従来の角形二次電池は、集電板の接続部が固定部または溶接部の厚みよりも厚い厚さ部分を有するため、集電板の体積および重量が過大になり、角形二次電池の小型軽量化が困難になるおそれがある。より具体的には、捲回群と反対を向く厚さ部分の外表面側において、電流密度が疎になり、電流が流れない部分が存在するおそれがある。集電板の厚さ部分に電流が流れない部分が多くなると、集電板の体積および重量が必要以上に増加し、角形二次電池の小型軽量化を阻害するおそれがある。
 これに対し、本実施形態の二次電池100は、前述のように、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、図4に示すように、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 この構成により、集電板40の屈曲部43において、厚さT3を十分に厚くして電気抵抗が増加するのを抑制することができ、発熱を抑制して大電流の充放電に耐え得る二次電池100を提供することができる。さらに、屈曲部43の蓄電要素30と反対の外表面43b側の電流密度が疎になる部分を除去することで、屈曲部43の全体において電流密度を均一化することができ、集電板40の体積および重量が必要以上に増加するのを抑制することができる。
 図5は、図4に示す断面における集電板40の屈曲部43の前後の電流分布のシミュレーション結果である。なお、図5は、発熱の大小をグレースケールの濃淡で示しており、より濃色の部分がより発熱が大きいことを示している。図5に示すように、屈曲部43の蓄電要素30と反対の外表面43b側が湾曲面43aを有することで、電流密度が疎になる延在部42と基部41との間の屈曲部43の外表面43bの角部を除去することができ、屈曲部43の全体において電流分布が均一化され、発熱が抑制されている。したがって、本実施形態によれば、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池100を提供することができる。
 また、本実施形態の二次電池100において、集電板40の基部41の厚さT1は延在部42の厚さT2よりも厚く、屈曲部43の厚さT3は延在部42の厚さT2以上かつ基部41の厚さT1以下である。この構成により、屈曲部43の厚さT3が延在部42の厚さT2よりも小さくなって電気抵抗が増加するのを防止することができる。また、屈曲部43の厚さT3が基部41の厚さT1の厚さよりも厚くなって集電板40の体積および重量が必要以上に増加するのを抑制することができる。したがって、本実施形態の二次電池100によれば、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐えることが可能になる。
 また、本実施形態の二次電池100において、集電板40の屈曲部43は、湾曲面43aと反対側に肉盛部43dを有している。この構成により、屈曲部43の厚さT3を増加させ、屈曲部43の電気抵抗を低減することが可能になる。また、蓄電要素30に対向する屈曲部43の内表面が凹曲面43eを有することで、集電板40の体積および重量が必要以上に増加するのを抑制することができる。したがって、本実施形態の二次電池100によれば、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐えることが可能になる。
 また、本実施形態の二次電池100において、集電板40の屈曲部43は、基部41と延在部42との間に設けられている。この構成により、延在部42の複数の屈曲部43,44,45のうち、比較的に電流密度が疎になる部分が発生しやすい基部41と延在部42との間の屈曲部43において、電流密度が疎になる部分を除去することができる。したがって、本実施形態の二次電池100によれば、集電板40の体積および重量をより効果的に低減することができる。
 また、本実施形態の二次電池100において、電池容器10は、一端が開放された扁平角形の電池缶11と、その電池缶11の開口部11aを閉塞する長方形板状の電池蓋12とを有している。また、一対の外部端子20は、電池蓋12の外面の長手方向に離隔して配置され、電池蓋12を貫通して電池容器10の内部でそれぞれ一対の集電板40の基部41に接続されている。また、集電板40の基部41は、電池蓋12の内面に沿って配置され、集電板40の延在部42は、電池蓋12の内面に直交する方向へ向けて延びている。この構成により、屈曲部43を有しない場合、基部41と延在部42はおおむね直角になり、基部41と延在部42との角部において電流密度が疎になる部分が発生する。しかし、本実施形態の二次電池100は、集電板40が屈曲部43を有し、屈曲部43が湾曲面43aを有することで、電流密度が疎になる部分を除去することができる。したがって、本実施形態の二次電池100によれば、集電板40の体積および重量をより効果的に低減することができる。
 以上説明したように、本実施形態によれば、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池100を提供することができる。
(実施形態2)
 次に、本開示の実施形態2に係る二次電池について、図1から図3を援用し、図6を用いて説明する。図6は、本開示の実施形態2に係る二次電池の図4に相当する集電板40の断面図である。本実施形態の二次電池において、前述の実施形態1に係る二次電池100と同様の部分には、実施形態1に係る二次電池100と同一の符号を付し、説明を適宜省略する。
 本実施形態の二次電池は、前述の実施形態1に係る二次電池100と同様に、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、図6に示すように、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 より具体的には、本実施形態の二次電池において、集電板40は、基部41の厚さT1と、延在部42の厚さT2と、屈曲部43の厚さT3とが、おおむね等しくなっている。屈曲部43の厚さT3は、たとえば、延在部42との境界B2から基部41との境界B1まで一定である。この構成により、前述の実施形態1の二次電池100と同様に、屈曲部43の全体において電流分布が均一化されて発熱が抑制されるだけでなく、前述の実施形態1の二次電池100と比較して集電板40の体積および重量を低減し、二次電池をより小型軽量化することが可能になる。したがって、本実施形態によれば、前述の実施形態1と同様に、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することができる。
(実施形態3)
 次に、本開示の実施形態3に係る二次電池について、図1から図3を援用し、図7を用いて説明する。図7は、本開示の実施形態3に係る二次電池の図4に相当する集電板40の断面図である。本実施形態の二次電池において、前述の実施形態1に係る二次電池100と同様の部分には、実施形態1に係る二次電池100と同一の符号を付し、説明を適宜省略する。
 本実施形態の二次電池は、前述の実施形態1に係る二次電池100と同様に、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、図7に示すように、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 より具体的には、本実施形態の二次電池において、蓄電要素30の反対を向く屈曲部43の外表面43bにおける湾曲面43aの曲率円C1の直径d1は、蓄電要素30に対向する屈曲部43の内表面である円弧状の凹曲面43eの曲率円C2の直径d2よりも小さい。この場合、図7に示す断面において、屈曲部43の厚さT3は、たとえば、屈曲部43の内表面である凹曲面43e上の各点の接線に垂直な方向、すなわち屈曲部43の内表面である凹曲面43eの曲率円C2の径方向における屈曲部43の寸法である。
 このような構成により、前述の実施形態1の二次電池100と同様に、屈曲部43の全体において電流分布が均一化されて発熱を抑制することができ、集電板40の体積および重量を低減することが可能になる。したがって、本実施形態によれば、前述の実施形態1と同様に、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することができる。
 また、本実施形態の二次電池において、集電板40の屈曲部43の最大厚さT3’は、基部41の厚さT1および延在部42の厚さT2よりも厚い。この構成により、前述の実施形態1の二次電池100と比較して、屈曲部43の電気抵抗をより低減することができる。したがって、本実施形態によれば、前述の実施形態1の二次電池100と比較して、屈曲部43の発熱をより抑制することができ、より大電流の充放電に耐え得る二次電池を提供することができる。
(実施形態4)
 次に、本開示の実施形態4に係る二次電池について、図1から図3を援用し、図8を用いて説明する。図8は、本開示の実施形態4に係る二次電池の図4に相当する集電板40の断面図である。本実施形態の二次電池において、前述の実施形態1に係る二次電池100と同様の部分には、実施形態1に係る二次電池100と同一の符号を付し、説明を適宜省略する。
 本実施形態の二次電池は、前述の実施形態1に係る二次電池100と同様に、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、図8に示すように、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 より具体的には、本実施形態の二次電池において、蓄電要素30に対向する集電板40の屈曲部43の肉盛部43dの内表面は、平坦な傾斜面43fである。この場合、図8に示す断面において、屈曲部43の厚さT3は、たとえば、蓄電要素30と反対を向く屈曲部43の外表面43b上の各点の接線に垂直な方向、すなわち湾曲面43aの曲率円C1の径方向または平坦面43cの法線方向における屈曲部43の寸法である。
 このような構成により、前述の実施形態1の二次電池100と同様に、屈曲部43の全体において電流分布が均一化されて発熱を抑制することができ、集電板40の体積および重量を低減することが可能になる。したがって、本実施形態によれば、前述の実施形態1と同様に、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することができる。
 また、本実施形態の二次電池において、集電板40の屈曲部43の最大厚さT3’は、基部41の厚さT1および延在部42の厚さT2よりも厚い。この構成により、前述の実施形態1の二次電池100と比較して、屈曲部43の電気抵抗をより低減することができる。したがって、本実施形態によれば、前述の実施形態1の二次電池100と比較して、屈曲部43の発熱をより抑制することができ、より大電流の充放電に耐え得る二次電池を提供することができる。
(実施形態5)
 次に、本開示の実施形態5に係る二次電池について、図1から図3を援用し、図9を用いて説明する。図9は、本開示の実施形態5に係る二次電池の図4に相当する集電板40の断面図である。本実施形態の二次電池において、前述の実施形態1に係る二次電池100と同様の部分には、実施形態1に係る二次電池100と同一の符号を付し、説明を適宜省略する。
 本実施形態の二次電池は、前述の実施形態1に係る二次電池100と同様に、角形の電池容器10と、その電池容器10に収容された蓄電要素30と、その蓄電要素30に接続された一対の集電板40と、その一対の集電板40にそれぞれ接続されて電池容器10の外部に露出した一対の外部端子20と、を備えている。集電板40は、外部端子20に接続された基部41と、その基部41に交差する方向に延びる延在部42と、蓄電要素30に接続された延在部42の接合部42aと基部41との間に設けられた屈曲部43と、を有している。屈曲部43は、図9に示すように、蓄電要素30に対向する延在部42の表面42bに直交しかつ延在部42の延在方向DLに沿う断面において、蓄電要素30と反対側に円弧状の湾曲面43aを有している。湾曲面43aの曲率円C1の直径d1は、屈曲部43に連続する延在部42の厚さT2および基部41の厚さT1以上である。屈曲部43の厚さT3は、延在部42の厚さT2または基部41の厚さT1以上である。
 より具体的には、本実施形態の二次電池において、蓄電要素30に対向する集電板40の屈曲部43の肉盛部43dの内表面は、蓄電要素30へ向けて凸の円弧状の凸曲面43gである。この場合、図9に示す断面において、屈曲部43の厚さT3は、たとえば、蓄電要素30と反対を向く屈曲部43の外表面43b上の各点の接線に垂直な方向、すなわち湾曲面43aの曲率円C1の径方向または平坦面43cの法線方向における屈曲部43の寸法である。
 このような構成により、前述の実施形態1の二次電池100と同様に、屈曲部43の全体において電流分布が均一化されて発熱を抑制することができ、集電板40の体積および重量を低減することが可能になる。したがって、本実施形態によれば、前述の実施形態1と同様に、従来よりも小型軽量化が可能であり、かつ大電流の充放電に耐え得る二次電池を提供することができる。
 また、本実施形態の二次電池において、集電板40の屈曲部43の最大厚さT3’は、基部41の厚さT1および延在部42の厚さT2よりも厚い。この構成により、前述の実施形態1の二次電池100と比較して、屈曲部43の電気抵抗をより低減することができる。したがって、本実施形態によれば、前述の実施形態1の二次電池100と比較して、屈曲部43の全体において電流分布がより均一化されて発熱をより抑制することができ、より大電流の充放電に耐え得る二次電池を提供することができる。
 以上、図面を用いて本開示に係る二次電池の実施形態を詳述してきたが、具体的な構成は前述の実施形態に係る二次電池に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。たとえば、延在部の厚さは、集電板の基部の厚さよりも厚くてもよい。
10  電池容器
11  電池缶
11a 開口部
12  電池蓋
20  外部端子
30  蓄電要素
40  集電板
41  基部
42  延在部
42a 接合部
42b 表面
43  屈曲部
43a 湾曲面
43d 肉盛部
100 二次電池
C1  曲率円
DL  延在方向
d1  直径
T1  基部の厚さ
T2  延在部の厚さ
T3  屈曲部の厚さ
T3’ 屈曲部の最大厚さ

Claims (6)

  1.  角形の電池容器と、該電池容器に収容された蓄電要素と、該蓄電要素に接続された一対の集電板と、該一対の集電板にそれぞれ接続され前記電池容器の外部に露出した一対の外部端子と、を備えた二次電池であって、
     前記集電板は、前記外部端子に接続された基部と、該基部に交差する方向に延びる延在部と、該延在部の前記蓄電要素に接合された接合部と前記基部との間に設けられた屈曲部と、を有し、
     前記屈曲部は、前記蓄電要素に対向する前記延在部の表面に直交しかつ前記延在部の延在方向に沿う断面において、前記蓄電要素と反対側に円弧状の湾曲面を有し、
     前記湾曲面の曲率円の直径は、前記延在部の厚さおよび前記基部の厚さ以上であり、
     前記屈曲部の厚さは、前記延在部の厚さまたは前記基部の厚さ以上であることを特徴とする二次電池。
  2.  前記基部の厚さは前記延在部の厚さよりも厚く、前記屈曲部の厚さは前記延在部の厚さ以上かつ前記基部の厚さ以下であることを特徴とする請求項1に記載の二次電池。
  3.  前記屈曲部の最大厚さは、前記基部の厚さおよび前記延在部の厚さよりも厚いことを特徴とする請求項1に記載の二次電池。
  4.  前記屈曲部は、前記湾曲面と反対側に肉盛部を有することを特徴とする請求項1に記載の二次電池。
  5.  前記屈曲部は、前記基部と前記延在部との間に設けられていることを特徴とする請求項1に記載の二次電池。
  6.  前記電池容器は、一端が開放された扁平角形の電池缶と、該電池缶の開口部を閉塞する長方形板状の電池蓋とを有し、
     前記一対の外部端子は、前記電池蓋の外面の長手方向に離隔して配置され、前記電池蓋を貫通して前記電池容器の内部でそれぞれ前記一対の集電板の前記基部に接続され、
     前記基部は、前記電池蓋の内面に沿って配置され、
     前記延在部は、前記電池蓋の前記内面に直交する方向へ向けて延びていることを特徴とする請求項1に記載の二次電池。
PCT/JP2019/010438 2018-07-18 2019-03-14 二次電池 WO2020017096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530890A JP7065965B2 (ja) 2018-07-18 2019-03-14 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135324 2018-07-18
JP2018-135324 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020017096A1 true WO2020017096A1 (ja) 2020-01-23

Family

ID=69163668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010438 WO2020017096A1 (ja) 2018-07-18 2019-03-14 二次電池

Country Status (2)

Country Link
JP (1) JP7065965B2 (ja)
WO (1) WO2020017096A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124007A (ja) * 2010-12-08 2012-06-28 Panasonic Corp 二次電池およびその製造方法
JP2013134893A (ja) * 2011-12-26 2013-07-08 Toyota Industries Corp 接続構造、二次電池、及び車両
WO2016047199A1 (ja) * 2014-09-26 2016-03-31 日立オートモティブシステムズ株式会社 角形二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124007A (ja) * 2010-12-08 2012-06-28 Panasonic Corp 二次電池およびその製造方法
JP2013134893A (ja) * 2011-12-26 2013-07-08 Toyota Industries Corp 接続構造、二次電池、及び車両
WO2016047199A1 (ja) * 2014-09-26 2016-03-31 日立オートモティブシステムズ株式会社 角形二次電池

Also Published As

Publication number Publication date
JP7065965B2 (ja) 2022-05-12
JPWO2020017096A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6198844B2 (ja) 組電池
EP3229305B1 (en) Rectangular secondary battery
US10026933B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6363893B2 (ja) 二次電池
JP6446239B2 (ja) 二次電池
JP2009087612A (ja) 積層式電池
JP6410833B2 (ja) 角形二次電池
JP7118242B2 (ja) 二次電池
JP6186449B2 (ja) 組電池
CN109564998B (zh) 方形二次电池
JP6562726B2 (ja) 角形二次電池及びその製造方法
JP7461964B2 (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池及び方法
JP2016110787A (ja) 角形二次電池
WO2020017096A1 (ja) 二次電池
JP2015204236A (ja) 二次電池および電池モジュール
WO2023007756A1 (ja) 二次電池
JP2016143618A (ja) 角形二次電池
JP6978500B2 (ja) 二次電池
JP6216203B2 (ja) 捲回式二次電池
WO2022190439A1 (ja) 角型二次電池及びその製造方法
WO2016076109A1 (ja) 角形二次電池
JP6892338B2 (ja) 蓄電装置および蓄電装置の製造方法
JP2016219356A (ja) 角形二次電池
JP6255502B2 (ja) リチウムイオン二次電池
JP2015095285A (ja) 角形リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837293

Country of ref document: EP

Kind code of ref document: A1